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Abstract 11 

With its six layers and ~12000 neurons, a cortical column is a complex network whose function is plausibly 12 

greater than the sum of its constituents’.  Functional characterization of its network components will require 13 

going beyond the brute-force modulation of the neural activity of a small group of neurons.  Here we 14 

introduce an open-source, biologically inspired, computationally efficient network model of the 15 

somatosensory cortex’s granular and supragranular layers after reconstructing the barrel cortex in soma 16 

resolution. Comparisons of the network activity to empirical observations showed that the in silico network 17 

replicates the known properties of touch representations and whisker deprivation-induced changes in 18 

synaptic strength induced in vivo. Simulations show that the history of the membrane potential acts as a 19 

spatial filter that determines the presynaptic population of neurons contributing to a post-synaptic action 20 

potential; this spatial filtering might be critical for synaptic integration of top-down and bottom-up 21 

information.   22 
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 60 

Introduction 61 

One of the grand challenges in neuroscience is to mechanistically describe the cerebral cortical function.  62 

Numerous studies have identified the organizational principles of cortical circuits in various cortical areas 63 

across model systems by describing the principles of neuronal classification, cell-type specific projection 64 

patterns, input-output mapping across cortical layers, and by functional characterization of the anatomically 65 

identified neurons upon simple stimulation conditions, (see e.g. Douglas and Martin, 2004; Markram et al., 66 

2015). Although a wiring-diagram approach is critical for a structural description of the network, relating 67 

the anatomical structure to network function will require a detailed study of the dynamical processes in 68 

single neurons as well as neural populations (Douglas and Martin, 2007; O’Connor et al., 2009). Or, in 69 

other words, one of the best ways to understand the functioning of the brain is trying to build one (Einevoll 70 

et al., 2019; Eliasmith and Trujillo, 2014). Accordingly, a large number of large-scale reconstructed 71 

computational models of cortical function (see Supplemental Table 1, the discussion  section and this recent 72 

review (Fan and Markram, 2019)), including macaque (Chariker et al., 2016; Schmidt et al., 2018a, 2018b; 73 

Schuecker et al., 2017; Zhu et al., 2009), cat (Ananthanarayanan et al., 2009) and mouse/rat (Arkhipov et 74 

al., 2018; Billeh et al., 2019) visual cortex, rat auditory cortex (Traub et al., 2005), rat hindlimb sensory 75 

cortex (Markram et al., 2015),  cerebellum (Sudhakar et al., 2017) and “stereotypical” mammalian 76 

neocortex (Izhikevich and Edelman, 2008; Markram, 2006; Potjans and Diesmann, 2014; Reimann et al., 77 

2013; Tomsett et al., 2015), have been introduced, where neuronal dynamics are approximated using neuron 78 

models that range from integrate-and-fire point neurons (Ananthanarayanan et al. 2009, Sharp et al., 2014; 79 

Zhu et al., 2009, Potjans & Diesmann, 2014, Chariker et al. 2016, Bernardi et al. 2020, Schmidt et al., 80 

2018a, Schmidt et a. 2018b, Schuecker et al. 2017) to morphologically reconstructed multi-compartment 81 

neurons (Traub et al. 2005, Markram et al. 2006, Izhikevich & Edelman 2008, Reimann et al.  2013, 82 

Markram et al. 2015, Tomsett et al., 2015, Sudhakar et al. 2017, Arkhipov et al. 2018, Billeh et al. 2019). 83 

These models have given insights in a range of topics including the nature of the local field potentials 84 

(Reimann et al., 2013; Tomsett et al., 2015), mechanisms of state transitions (Markram et al., 2015), 85 

frequency selectivity (Zhu et al., 2009), the influence of single-neuron properties on network activity 86 

(Arkhipov et al. 2018) and the relation between connectivity patterns and single-cell functional properties 87 

(i.e. receptive fields, Billeh et al. 2019).  88 

With its topographical organization, well-characterized structural and functional organization, and its ever 89 

growing number of publicly available molecular, cellular and behavioural big datasets (Azarfar et al., 90 

2018b; da Silva Lantyer et al., 2018; Kole et al., 2017, 2018a),  the barrel column is ideally suited as a 91 

model system for computational reconstruction of circuit organization and function. Accordingly, large-92 
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scale computational models of the rodent barrel cortex ranging from detailed reconstructed models that 93 

need to be run on a supercomputer (Phoka et al., 2012; Sharp et al., 2014) to much less detailed and 94 

computationally expensive models (Bernardi et al., 2020) have been developed. However, currently, there 95 

are not any publicly available tools available for biologically realistic network modeling that can be 96 

performed using a standard computer of today. Therefore, we developed an open-source biologically 97 

constrained computational network model of the granular and supragranular layers of the barrel cortex 98 

along with the ventroposterior medial thalamus. It is a detailed model, with cortical cell densities based on 99 

the reconstructions in soma resolution presented herein and our previous work on a temporal variation in 100 

response dynamics (Huang et al., 2016).  The code can be run on a desktop computer with or without a 101 

CUDA enabled GPU and is available for download on GitHub 102 

(https://github.com/DepartmentofNeurophysiology/Cortical-representation-of-touch-in-silico).  Here we 103 

show that this barrel cortex in silico can predict (a) emergent whisker representations, (b) changes in the 104 

synaptic strength upon whisker deprivation, (c) network representation of touch from behavioral data, using 105 

only the information extracted from whisker tracking.  The model will help novel principles of information 106 

processing (Huang et al., 2020).  107 

 108 

Results 109 

Anatomical organization of the barrel cortex 110 

Just like most other neocortical areas, barrel columns consist of six layers with distinct molecular 111 

fingerprints and tens of different neural classes (Azarfar et al., 2018a; Fox, 2018; Kole et al., 2018b; 112 

Markram et al., 2004; Oberlaender et al., 2012; Thomson and Lamy, 2007).  The reconstruction of the 113 

network in soma resolution (Figure 1, for detailed methods, see Materials and Methods) shows that the 114 

laminar distribution of cell-types varies significantly across layers. Similar to the laminar borders observed 115 

in the traditional Nissl staining, staining the column with neuronal nuclear antibody anti-NeuN, hereafter 116 

NeuN, results in a higher cellular density in Layer (L)4 and lower layers of L3 in comparison to L2 and L5-117 

6.  Inhibitory neurons stained with anti-GABA do not obey the laminar borders as outlined by the NeuN 118 

and display near equal densities in lower L4, L5b, and L1.  Specific inhibitory neuron markers, however, 119 

have distinct expression patterns across the laminae:  While Calretinin neurons are predominantly found in 120 

the L4/L3 border, Somatostatin neurons are preferentially located in the infragranular layers (Figure 1E). 121 

Parvalbumin-positive interneurons, on the other hand, are found at higher densities in L4 and L5. (Figure 122 

1E). The cellular distributions in the canonical D-row column can be found in Supplemental Table 2. 123 

  124 
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Stimulus representations in silico network 125 

To create a network model, three components are necessary: 1) the distribution of the nodes,  2) edges and 126 

3) a dynamic model of information transfer in single nodes. The first of these components, the distribution 127 

of nodes, was measured in the previous section (Figure 1). The second component, network connectivity, 128 

was determined using axonal and dendritic projection patterns (Egger et al., 2008; Feldmeyer et al., 2006, 129 

2002; Helmstaedter et al., 2008; Lübke et al., 2003), which were approximated by 3-D Gaussian functions 130 

(see Materials and Methods and Supplemental Table 3), with the assumption that the probability that two 131 

neurons are connected is proportional to the degree of axonal-dendritic overlap between these two neurons 132 

(i.e Peter’s rule, (White, 1979)). For the third component, the dynamic model of single neurons, we 133 

modified the computationally efficient Izhikevich neuron model (Izhikevich, 2004, 2003) see Materials and 134 

Methods and Supplemental Table 4) to include the inverse relationship between the first derivative of the 135 

membrane potential, i.e the speed with which the synaptic depolarization rises, and the action potential 136 

threshold, so that the threshold is a function of the history of the membrane potential on (the membrane 137 

state (Huang et al., 2016; Zeldenrust et al., 2020)).  This modification in the quadratic model did not affect 138 

the model’s ability to predict the timing of action potentials upon sustained current injection in soma (see 139 

Figure 2A; compare the middle column to (Izhikevich, 2004, 2003) and also correctly predicted the rate 140 

and timing changes associated with the membrane state at a single neuron resolution (Figure 2A). 141 

With the completion of the three required components for functional network creation, we constructed a 142 

biologically constrained barrel cortical column in silico.  Due to the general lack of experimental data on 143 

the pairwise connectivity between infragranular layer neurons and the rest of the network, in this version 144 

of the in silico column, we have constrained the network to the top 630 µm (Figure 2B), which is border 145 

between L4-L5 in the mouse.  As the granular layer (L4) is the principal recipient of the thalamic inputs 146 

(Azarfar et al., 2018a) and strongly drives the supragranular (L1-3) layers, before the cross-columnar 147 

integration takes place across the upper L2/3, this model provides an in silico simulation environment for 148 

the first three stages of thalamocortical and intracortical information processing that involves supragranular 149 

and granular layers.   150 

 151 

In the simulated network,  stimulus-evoked activity spreads across the network from ventroposterior medial 152 

nucleus (VPM) to L2/3 with latencies comparable to those observed in biological networks under anesthesia 153 

(Figure 2C, (Allen et al., 2003; Armstrong-James et al., 1992; Celikel et al., 2004).  Inhibitory neurons had 154 

an earlier onset of spiking with a peak latency of 8.2±0.6 ms (mean±std) in L4 (Figure 2C), which 155 

corresponds to <3 ms conduction delay, calculated from the population peristimulus time histograms 156 

(Figure 2C). These delays are similar to previous observations in vivo (Condylis et al., 2020; Dudai et al., 157 
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2020; Sermet et al., 2019; Swadlow, 2003, 1995). In terms of the latency to an action potential, neurons 158 

across the entire depth of L4 were homogenous with the exception that those closer to the L3 border showed 159 

a delayed spiking (Figure 2D).  As the feed-forward projections originating from L4 are the main inputs to 160 

the L2/3 neurons, the activity in silico naturally follows the latency distribution observed in vivo across the 161 

cortical layers, with L2 neurons generating action potential up to 4 ms later than the lower L3 neurons 162 

(Celikel et al., 2004); Figure 2C).  Independent from the actual location of the neuron within the silico 163 

network, however, inhibitory neurons have an earlier onset of spiking as compared to the neighboring 164 

excitatory neurons within the layer (Figure 2D).  165 

The spiking probability varies significantly across layers and neuron types in vivo (Celikel et al., 2004; De 166 

Kock et al., 2007; Gentet et al., 2012, 2010; O’Connor et al., 2010) and in silico (Figure 2D). Excitatory 167 

neurons respond to the stimulus sparsely, as the probability of a given neuron to generate an action potential 168 

at a given trial is low. When the stimulus does yield a suprathreshold response, the neuron typically 169 

generates a single action potential (Figure 2E).  The response probability and the number of action 170 

potentials/stimulus depend on the laminar location of the neuron, its cell type and its subthreshold 171 

membrane potential prior to the stimulus (Figure 2E; (Zeldenrust et al., 2020)) The laminar position of the 172 

neuron, be it excitatory or inhibitory, does not play a role in state-dependent changes in excitability at the 173 

single neuron level, although neurons in the supragranular layers respond on average more reliably to 174 

stimuli.  The only exception to this rule is when the stimulus arrives in a hyperpolarized membrane state; 175 

if the resting membrane potential prior to the stimulus onset averaged <-75 mV, both excitatory and 176 

inhibitory neurons in L2/3 display failure rates higher than corresponding L4 neurons in the same membrane 177 

state (Figure 2E).  This suggests that in hyperpolarized states, the activity of the supragranular layer is 178 

effectively uncoupled from the bottom-up sensory input.  179 

 180 

The source of response variability in silico  181 

In a network where information propagates across synaptically coupled neurons via relatively weak, failure-182 

prone and sparse connections, identical stimuli in the periphery will evoke distinct neural activation 183 

patterns, even if the measured spike rate and time are constant across presynaptic populations (given the 184 

stochasticity of the presynaptic population contributing to the postsynaptic spiking). Accordingly, neural 185 

representations in a biologically inspired silico network are expected to vary as a result of both the 186 

presynaptic spike timing variability and the changes in effective connectivity between layers and across 187 

trials discussed in the previous section.  188 
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To quantify the extent of the response variability in silico, we simulated the cortical responses to thalamic 189 

inputs in two conditions: (1) in every trial each thalamic spike train was generated as a result of an 190 

inhomogeneous Poisson process, constrained by the PSTH (see Figure 3A), or (2) a single realization of 191 

(1) was repeated over trials, so there was no trial-to-trial variability in the thalamic spike trains (see Figure 192 

3B) and the thalamic spike trains were identical across trials.  While the former condition creates variability 193 

in spike timing and the rate at the single thalamic neuron resolution, the latter condition preserves the rate 194 

and timing of the thalamic input onto the postsynaptic cortical neurons across trials. The results showed 195 

that the effective connectivity, i.e. which presynaptic neurons contribute to the firing of a postsynaptic 196 

neuron in a given trial, is a major contributor to the response variability (Figure 3).  This contribution was 197 

independent of the membrane state of the postsynaptic neuron and the neuron class, although the variability 198 

increased with membrane depolarization (Figure 3, A2-A3). 199 

 200 

Stimulus representations in L4 in silico 201 

Thalamic neurons project extensively to cortical L4, and diffusely to the L3/L4 and L5b/6 borders (Arnold 202 

et al., 2001; Oberlaender et al., 2012; Sermet et al., 2019).  This thalamocortical input is the principal 203 

pathway that carries the feedforward excitatory drive, carrying the bottom-up sensory information (Azarfar 204 

et al., 2018a) L4 representations of the sensory input are characterized by sparse neural representations in 205 

vivo (Aguilar, 2005; Celikel et al., 2004; De Kock et al., 2007) and in silico (Figure 4).  Thalamic input 206 

modeling the principal whisker’s stimulation in vivo results in a significant firing rate modulation (two 207 

orders of magnitude, between 0.02-2.2 spikes/stimulus/cell) in the network, depending on the membrane 208 

states of the L4 neurons prior to the stimulus arrival as well as the neuronal class studied (at vr=-80 mV, 209 

excitatory neurons fire at 0.06±0.11 spikes/stimulus, range 0-0.82; inhibitory neurons, 0.68±0.71 210 

spikes/stimulus, range 0-2.22; at vr=-60mV, excitatory neurons, 0.44±0.30 spikes/stimulus, range 0-1.96; 211 

inhibitory neurons, 2.13±1.48 spikes/stimulus, range 0.02-6.54; values show mean±std).  While excitatory 212 

neurons fire sparsely, inhibitory neurons spike with higher reliability (Figure 4C).  The resting membrane 213 

potential changes the properties of excitatory neurons firing, as L4 excitatory neurons switch from a sparse 214 

representation (i.e. the probability of spiking for each neuron per stimulus is low, and when neurons spike 215 

they typically fire single action potentials) to less sparse spiking as membrane potential depolarizes (Figure 216 

4E).  The inhibitory neural population, on the other hand, undergoes rate scaling as the resting membrane 217 

potential is depolarized (Figure 4E).  Hence for the neural coding of stimuli in L4, the membrane state acts 218 

as a state-switch for excitatory neurons and a gain-modulator for the inhibitory neurons in the principal 219 

whisker’s cortical column.  220 

    221 
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The spatial distribution of synaptic inputs in a network is primarily constrained by the axo-dendritic overlap 222 

across the synaptically connected neurons.  Accordingly, with diffuse axonal projections of thalamic 223 

neurons, and spatially constrained dendritic branching to the barrel borders, excitatory and inhibitory L4 224 

neurons along the rostro-caudal (RC) and medio-lateral (MC) planes do not display a spatial bias in the 225 

tangential plane (Figure 4B).  Unlike this spatial homogeneity of L4 responses to the stimulus, preferential 226 

laminar targeting of the thalamic input results in a higher likelihood of spiking in the bottom portion of the 227 

barrel, especially for postsynaptic excitatory neurons (Figure 4F).  228 

The topographical nature of the representation of whisker touch dictates that each neuron has a preferred 229 

whisker, called the principal whisker, which evokes the largest number of action potentials upon deflection 230 

(Brecht and Sakmann, 2002; Foeller et al., 2005).  However the receptive fields of cortical neurons are 231 

rarely (if ever) constrained to a single whisker, as multi-whisker receptive fields in the thalamus (Aguilar, 232 

2005; Armstrong‐James and Callahan, 1991; Diamond et al., 1992; Kwegyir-Afful et al., 2005; Simons and 233 

Carvell, 1989) and cross-columnar projections in the cortex (Egger et al., 2008) ensure that each neuron 234 

receives information from multiple whiskers.  Responses to the surround whiskers are always weaker, in 235 

number of spikes per stimulus, and arrive with a delay compared to the principal whisker deflection (Brecht 236 

and Sakmann, 2002). This relationship is preserved in silico representations of touch presented here (Figure 237 

4B, C, F). Principal vs surround whiskers activate excitatory and inhibitory neurons similarly, although 238 

evoked representations of surround whiskers are invariably weaker (Figure 4B).  Similar to the principal 239 

whisker deflection, surround whisker stimulation results in largely homogenous representations across the 240 

RC-ML axis (Figure 4B) even if the postsynaptic spiking is constrained to depolarized membrane states.  241 

The sublaminar activation pattern in L4 results in a higher likelihood of spiking in the bottom half of L4, 242 

even after surround whisker stimulation (Figure 4F). 243 

One main difference between the principal vs surround representations is the role of the membrane state in 244 

the modulation of network activity.  Unlike the differential role of the resting membrane potential in 245 

encoding principal whisker touch across the excitatory and inhibitory networks, the contribution of the 246 

different membrane states to surround whisker representation slowly (but predictably) varies across 247 

different membrane states (Figure 4C).  Most excitatory and inhibitory neurons in the surround L4 do not 248 

represent the stimulus information during the quiescent hyperpolarized membrane state, resulting in 249 

principal whisker specific cortical representations.  In the depolarized membrane states, the probability of 250 

spiking disproportionately increases for the inhibitory neurons. 251 
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 252 

Stimulus representations in the supragranular layers in silico 253 

Feedforward L4 projections are powerful modulators of supragranular layers and bring the bottom-up 254 

information from the sensory periphery for eventual cross-columnar integration primarily via L2, and less 255 

so via upper L3 neurons (Kerr et al., 2007; Petersen, 2007; Petersen and Sakmann, 2001). Principles of 256 

sensory representations by L2/3 in silico (Figure 5) are generally similar to the L4 neurons, with the 257 

exceptions that (1) supragranular excitatory neurons have an increased probability of firing during surround 258 

whisker stimulation, and (2) the spatial localization of a neuron has predictive power for its response 259 

properties. 260 

Unlike the granular layer representations of the stimulus in the quiescent membrane states, L2/3 excitatory 261 

neurons are completely silent at hyperpolarized membrane potentials, suggesting that the bottom-up 262 

thalamocortical information is decoupled from the rest of the cortical circuits that originate from the 263 

supragranular layers.  The lack of spiking is not specific to the excitatory neurons, inhibitory neurons are 264 

similarly unresponsive to the L4 input if the resting membrane potential was hyperpolarized (Figure 5C). 265 

Although inhibitory neurons fire stimulus-evoked action potentials at hyperpolarized membrane potentials 266 

(< -70 mV), the net effect of the membrane potential on suppressing cortical propagation of information 267 

via L2 is maintained across both classes of neurons (Figure 5).  The lack of stimulus-evoked spiking in the 268 

surround column Figure 5 in resting membrane potentials < -70 mV and the changes in the spike probability 269 

described before suggest that sensory representations are weak but specific to the principal whisker column 270 

during the quiescent states in vivo.   271 

 272 

Given that the neuronal excitability changes with the membrane state, that the neural thresholds depend on 273 

the stimulus and membrane potential history and that each neuron will (not necessarily linearly) sum its 274 

inputs until this variable threshold, the effective connectivity within the network should change with the 275 

membrane state of the postsynaptic neuron. To visualize the effective connectivity we spatially mapped the 276 

presynaptic neurons that fired action potential(s) prior to the spiking of a postsynaptic neuron (Figure 6).  277 

As expected, the effective connectivity varied with the membrane state.  With an increasing probability of 278 

L2/3 spiking in the depolarized membrane states, the contribution of the intralaminar input to the spiking 279 

increased, suggesting that in the depolarized membrane states, sensory representations are a function of 280 

feed-forward drive originating from L4 and local changes in excitability in L2/3.  The latter component is 281 

likely to be modulated by top-down modulations as the state of the animal changes during, for example, 282 

active sensing, providing a mechanistic model how the bottom-up sensory information can be integrated 283 

with the top-down neuromodulatory influences.  284 
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 285 

Experience-dependent plasticity of synaptic strength in silico 286 

Neurons in the barrel cortex adapt to changes in sensory organ output as cortical circuits undergo plastic 287 

changes upon altered sensory input statistics (Allen et al., 2003; Clem et al., 2008; Feldman and Brecht, 288 

2005; Kole et al., 2018b).  These adaptive changes have long-lasting consequences in neural representations 289 

of touch. We have, therefore, integrated a spike-timing-dependent plasticity learning rule (Celikel et al., 290 

2004) to enable plastic changes in neural representations of touch in silico. Figure 7 shows the 291 

implementation of the model on a 3-column model of the barrel cortex, layers 2-4 (Figure 7A).  Each 292 

column receives its major synaptic input from its own respective whisker in the form of thalamic 293 

representations of whisker touch (see above), with the exception that the center column lacks a principal 294 

whisker, mimicking the whisker deprivation condition (Figure 7B).   295 

 296 

Employing empirically observed STDP rules in synapses at the feed-forward projections originating from 297 

L4 (Figure 7C; bottom) and the intracolumnar projections of L2/3 (Figure 7C; top) resulted in a 298 

reorganization of touch representation already within 100 trials, in agreement with the experimental 299 

observations in barrel cortical slices (Allen et al., 2003; Celikel et al., 2004). The model correctly predicted 300 

all the known pathways that are modified upon whisker deprivation including the potentiation in the spared 301 

whiskers’ L4-L2/3 projections (Clem et al., 2008), slow depression in the deprived cortical column’s L4-302 

L2/3 projections (Bender et al., 2006) and plasticity of the oblique projections from L4 onto the neighboring 303 

L2/3 (Hardingham et al., 2011).  The model further predicted a number of circuit changes, including the 304 

bidirectional changes across the cross-columnar projections between the spared and deprived columns, 305 

which could potentially explain the topographic map reorganization by receptive field plasticity 306 

 307 

Network representation of touch in vivo 308 

As a final test of our in silico cortical column, we let it respond to an in vivo-like stimulation (Figure 8): as 309 

input to the network, we used recorded whisker angle (black) and curvature (red) from a freely moving rat 310 

in a pole localization task (data from (Peron et al., 2015)) made available as 'ssc-2' on CRCNS.org).  We 311 

modeled thalamus as a network of 3 barreloids, each containing 200 'filter-and-fire' neurons that respond to 312 

whisker angle, curvature, or a combination of both. The center barreloid was considered to be the principal 313 

barreloid for the spared whisker, whereas the other two were considered surround barreloids, with reduced 314 

probability (30% of original amplitude) and delayed (2.5 ms) response latency (Brecht et al., 2003; Brecht 315 

and Sakmann, 2002). The response of the network is tightly localized, both in time and place (Figure 8C,D). 316 

The network response is also quite sparse  (Figure 8B,E), with each neuron firing at most a few spikes per 317 
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trial. This response is a bit more sparse than typically observed (Peron et al., 2015), probably due to the 318 

lack of motor and top-down input in this model.  319 

We compare the activity of a single barrel with evoked responses visualized using 2-photon imaging of 320 

calcium dynamics (Vogelstein et al., 2009). Although making a neuron-by-neuron comparison between 321 

networks is impossible, we can compare the overall activity of the networks. In both the recorded and the 322 

simulated networks, the activity is extremely sparse. The simulated network appears to have a few more 323 

neurons with a high firing frequency (Figure 9G), however, these do not adapt their firing frequency upon 324 

touch (Figure 9H), so they probably do not represent touch information (Peron et al., 2020). Otherwise, 325 

both networks show a comparable overall activity pattern. 326 

 327 

Discussion 328 

Understanding the circuit mechanisms of touch will require studying the somatosensory cortex as a 329 

dynamical complex system.  Given that the majority of research in the barrel system has thus far focused 330 

on the identification of circuit components the development of a computational model of the barrel cortex 331 

is not only necessary but also feasible. Accordingly, we here employed a three-tiered approach to (1) 332 

reconstruct the barrel cortex in soma resolution, (2) implement a model neuron whose spiking is a function 333 

of the network activity impinging onto postsynaptic neurons, and (3) axo-dendritically connect neurons in 334 

the column based on Peter’s rule and experimentally observed pairwise network connectivity (see Materials 335 

and Methods). We finally performed simulations in this network to compare neural representations of touch 336 

in silico to experimental observations from biological networks in vivo. As extensively discussed in the 337 

Results section, the simulations faithfully replicate experimental observations in vivo with high accuracy 338 

including, but not limited to, emergence of whisker representations, experience-dependent changes in 339 

synaptic strength and circuit representation of touch from behavioral data, using information from whisker 340 

displacement during tactile exploration. Thus, here we will focus on the methodological limitations and 341 

technical constraints of the network modeling as performed herein. 342 

 343 

Technical considerations for anatomical reconstruction of a stereotypical barrel column 344 

One of the essential steps towards building a biologically plausible silico model of the mouse barrel cortex 345 

is to obtain the distribution patterns of different neuron types throughout the barrel cortex. In the current 346 

study, we directly visualized these distributions by labeling different types of neurons using cell-type 347 

specific markers and digitized the data using confocal scanning microscopy to ultimately reconstruct the 348 

cortex in soma resolution upon automated counting of all neurons, independent from whether the markers 349 

are nuclear or cytoplasmic. The identities of individual barrels in L4 can be reliably recognized based on 350 

GAD67 immunostaining (Supplemental Figure 3). However, due to difficulties in aligning images across 351 
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consecutive sections, we could not consistently follow every barrel column across the entire cortical depth. 352 

Thus, in the current study, we only report average cell densities across a canonical barrel cortex rather than 353 

reconstructing the barrel cortex while preserving the columnar identity. Similarly, the in silico model places 354 

neurons and synapses stochastically every time a network is reconstructed, reflecting this inherent 355 

uncertainty. The advantage of this is, that simulations can be repeated over different realizations of networks 356 

with a similar structure, and this way it can be tested whether results are a general property of such networks 357 

or just a coincidental result of a particular realization of the network. It should be noted that, in the rat barrel 358 

cortex, the cell density across different barrel columns has been shown to be relatively constant (Meyer et 359 

al., 2013), making our density estimation likely to be accurate, as we employed a normalized volume for 360 

the entire column. Obviously, however, the absolute cell number in one barrel column could vary depending 361 

on the exact location of the barrel within the barrel cortex (Meyer et al., 2013). 362 

 363 

Our automatic cell counting algorithm for nuclear cell counts is functionally similar to that employed in 364 

(Oberlaender et al., 2009). Compared to their method, we used lower threshold values to separate 365 

foreground objects from their background in order to capture weakly stained cells.  This comes at the 366 

expense of an increased number of connected clusters. We thus employed more sophisticated methods to 367 

separate clusters of connected cells, based on both intensity and shape information, rather than simply 368 

assuming that there exists a single dominant cell population based on volume, which could lead to bias 369 

when the assumption is not met (Oberlaender et al., 2009). Our method does not require manual correction, 370 

and the counting results are comparable with manual counts (Supplemental Table 5).  Furthermore, we also 371 

developed algorithms to enable source localization for the cytoplasmic signals, which allowed us to quantify 372 

cellular classes, like somatostatin neurons, that are characterized by non-nuclear markers.  Together these 373 

approaches have resulted in the most detailed quantification of the network, going beyond the two-neuron 374 

group (i.e. excitatory vs inhibitory) clustering available in the literature.  375 

 376 

Tissue shrinkage could affect cell density estimates.  Although we project cell densities onto a normalized 377 

volumetric column, and although we have quantified the shrinkage of the sections, the cell density estimates 378 

might somewhat differ using alternative reconstruction methods. Another potential error could be 379 

introduced by cutting cells located at slice borders – these cells will appear in both slices, resulting in an 380 

overestimation of the cell count. We corrected for this overestimation by including only those cells within 381 

a given radius along the z-direction (which is orthogonal to the cutting plane) and no smaller than half of 382 

the average radius along x- and y-direction.  This ensured that the overwhelming majority of the cells were 383 

not counted twice, as confirmed by the human observer quantifications. 384 

 385 
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Comparison with past cell counts 386 

In our data, the average neuronal density, as identified by NeuN staining, across all layers of the mouse 387 

barrel cortex is 1.66×105 per mm3, before correcting for tissue shrinkage. Assuming that each slice in our 388 

sample was cut precisely as a 50 µm section, after immunostaining the average optical thickness of slices 389 

was reduced to 32.5 µm, indicating a 34.8% shrinkage in z-direction. The shrinkage along x-y plane was 390 

generally much smaller in our protocol: imaged cells with a voxel size of 0.73-by-0.73-by-0.45 or 1.46-by-391 

1.46-by-0.9 µm showed similar pixel radius along x-, y- and z- axes (data not shown). If we assume that 392 

the real neurons have a similar radius along the 3 axes, the data suggests a shrinkage factor of ~2.3% along 393 

x- and y- axes. After correcting for the estimated average shrinkage factors, the average neuronal density 394 

became 1.03×105 per mm3, in agreement with the previous observations made in the C57B6 mouse (i.e. 395 

0.6×105-1.6×105 per mm3, (Hodge et al., 2005; Irintchev et al., 2005; Lyck et al., 2007; Ma et al., 1999; 396 

Tsai et al., 2009)). 397 

 398 

Comparison with other simulated networks 399 

Network models help explain network dynamics and information processing on many levels. Therefore, 400 

they exist at many different scales of complexity. On one extreme, simplified network models investigate 401 

how a single or a few aspects of the network (connectivity) properties affect network behavior. For instance, 402 

randomly connected balanced networks use integrate-and-fire neuron models (Brunel, 2000), binary neuron 403 

models (van Vreeswijk and Sompolinsky, 1998, 1996), or rate neuron models (Sompolinsky et al., 1988) 404 

to investigate the effects of synaptic sparseness, connectivity strength and the balance between excitation 405 

and inhibition on network dynamics. Similarly, like discussed in the introduction, feed-forward networks 406 

like the perceptron (Rosenblatt, 1958) can explain the increasing abstraction of receptive fields in sensory 407 

perception using similar simplified neuron models(Seung and Yuste, 2012) and randomly connected 408 

symmetric networks (Hopfield, 1982) can explain associative memory. Finally, the dynamics of small-409 

world networks (Watts and Strogatz, 1998) have several special properties such as rapid (near-critical) 410 

synchronization, low wiring costs and a balance between locally specialized and large-scale distributed 411 

information processing (Bassett and Bullmore, 2006; Stam and Reijneveld, 2007). 412 

 413 

Although simplified networks are often very powerful in providing (analytical) explanations about the 414 

influence of connectivity on network behavior, they are biologically not very realistic. A middle ground 415 

can be found in biologically-inspired networks that use the intrinsic connectivity schemes found in the 416 

brain. These model networks often make specific predictions about the effects of network properties on 417 

dynamics, although analytical solutions are mostly not feasible (see for instance (Rubin and Terman, 2004; 418 

Tort et al., 2007; Wendling et al., 2002)(Tort et al., 2007), (Rubin and Terman, 2004)). 419 
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Another intermediate level of network modeling involves fitting functional models to whole-network 420 

recordings (e.g. Generalized Linear Models (GLMs) (Paninski, 2004; Pillow et al., 2008; Truccolo et al., 421 

2005), Generalized Integrate-and-Fire models (GIF models) (Gerstner and Kistler, 2002; Jolivet et al., 422 

2004)). With these types of models, the spiking behavior and functional connectivity of entire networks can 423 

be fitted to network recordings. The results from such an analysis can be difficult to link to biophysical 424 

properties of the neurons and networks, but it is a very successful method for describing the functional 425 

connectivity of for instance the macaque, salamander, cat and rabbit retina (Denk and Detwiler, 1999; Doi 426 

et al., 2012; Keat et al., 2001; Li et al., 2015; Marre et al., 2012; Pillow et al., 2008; Reich et al., 1998) (for 427 

a review see (Field and Chichilnisky, 2007)) and C. elegans (Kato et al., 2015). 428 

 429 

Finally, on the other extreme, are biologically reconstructed networks, like the one we present here. For 430 

some systems, complete or partial wiring diagrams have been published (C. elegans (Varshney and Beth L. 431 

Chen, 2011), mouse retina (Helmstaedter et al., 2013)), that can be used to construct such models. A notable 432 

example is the crustacean stomatogastric ganglion system, that has been extensively studied and simulated, 433 

leading to variable invaluable insights into neural network functioning in general (Marder and Goaillard, 434 

2006; Prinz et al., 2004). These networks are biologically realistic, but because of their complexity, it is 435 

more difficult to analyze the influence of specific network properties on network dynamics and function. 436 

Moreover, one concern is that with the current methods, it is still impossible to measure all relevant 437 

parameters (molecular cell-type, electrophysiological cell-type, cell location, structural connectivity, 438 

functional connectivity) in a single sample. Therefore, every biologically reconstructed network so far is a 439 

combination of properties from different individuals and even animals. Whether such a synthesized model 440 

is a good approximation of the actual functional neural network remains to be seen (Edelman and Gally, 441 

2001; Marder and Taylor, 2011). Moreover, all current reconstructed networks are limited in their scope: 442 

right now it is not feasible to reconstruct and model the whole brain. For the barrel cortex presented here, 443 

that means that motor and top-down input are missing, which results in reduced neural activity in silico 444 

than observed experimentally (compare Figure 8 and 9 to (Peron et al., 2015)) especially during 445 

hyperpolarized membrane potentials. Despite these limitations, biologically reconstructed network models 446 

are very important as a testing ground for hypotheses based on more simplified networks, or to assess 447 

biological parameters that are difficult or impossible to measure experimentally, such as the effects of 448 

threshold adaptation (Huang et al., 2016; Zeldenrust et al., 2020) or the effects of different coding schemes 449 

(Huang et al., 2020). In Supplemental Table 1, we have summarized the properties of several biologically 450 

reconstructed networks that have been published. Note that until now, many of these reconstructed networks 451 

have to be run on a cluster of computers or on a supercomputer, because a simple desktop computer simply 452 

lacked the computational power to run a biologically reconstructed network and/or did not make the code 453 
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available (Tomsett et al., 2015) being an exception). We used simplified neuron models instead of 454 

reconstructed multi-compartmental models, increasing the computational efficiency, but possibly missing 455 

effects due to the morphology, such as certain forms of bursting (Zeldenrust et al., 2018), dendritic 456 

computation (Chu et al., 2020) or axon-initial segment effects (Kole and Brette, 2018). Finally, like the 457 

recent model by Markram et al. (Markram et al., 2015), we used no parameter tuning to construct this 458 

model, other than making the different cell-types of the Izhikevich-model and controlling the cell-type 459 

specific connection probabilities. All this makes the model very accessible for quickly testing fundamental 460 

hypotheses systematically (Huang et al., 2020, 2016).  461 
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Materials and Methods 462 

 Experimental procedures 463 

Tissue preparation and immunochemistry 464 

The slices from the barrel cortex were described before (Kole et al., 2020; Kole and Celikel, 2019) with 465 

minor modifications. In short, juvenile mice from either sex were perfused using 4% paraformaldehyde 466 

before tangential sections were prepared.  To ensure that cortical layers were orthogonal to the slicing plane 467 

the cortex was removed from the subcortical areas and medio-lateral and rostro-caudal borders trimmed.  468 

The remaining neocortex included the entire barrel cortex and was immobilized between two glass slides 469 

using four 1.2 mm metal spacers. The rest of the histological process, including post-fixation and sucrose 470 

treatment, was performed while the neocortex was flattened.  All care was given to ensure that the tissue is 471 

as flat as possible at the time of placement onto the sliding horizontal microtome. 50-micron sections were 472 

cut and processed using standard immunohistochemical protocols. The following antibodies were used: 473 

anti-NeuN (Millipore, Chicken), anti-GAD67 (Boehringer Mannheim, Mouse), anti-GABA (Sigma, 474 

Rabbit), anti-Parvalnumin (PV, Swant Antibodies, Goat), anti-Somatostatin (SST, Millipore, Rat), anti-475 

Calretinin (CR, Swant Antibodies, Goat), anti- vasointestinal peptide (VIP, Millipore, Rabbit) 476 

at concentrations suggested by the provider.   477 

The imaging was performed using a Leica Confocal microscope (LCS SP2) with a 20X objective 478 

(NA 0.8).  Each section sequentially cutting across layers was individually scanned with 512x512 pixel 479 

resolution; the signal in each pixel was average after 4 scans and before it was stored.  The alignment of 480 

each section was performed automatically using a fast Fourier transform based image registration method 481 

(Guizar-Sicairos et al., 2008) 482 

Automated cell counting 483 

All image analysis was done using a custom-written running toolbox in Matlab 2012b with an Image 484 

Processing Toolbox add-on (Mathworks). 485 

Nucleus-staining channels (NeuN, Parvalbumin and Calretinin) 486 

Most fluorescence imaging methods, including confocal microscopy, have several shortcomings that make 487 

the automated cell identification a challenging task: First, the background intensity of images is often 488 

uneven due to light scattering and tissue auto-fluorescence. Shading and bleaching of fluorophores further 489 

add to this problem when acquiring multiple confocal images at the same location. Second, intensity 490 

variation within a single cell might cause over-segmentation of the cell. Third, the intensity of different 491 

neuron populations turn out to be very different because they absorb fluorescent dye unevenly. Specifically, 492 

GAD67+ and SST+ neurons usually have a weakly stained nucleus as visualized by anti-NeuN antibody, 493 
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making non-linear gain modulation necessary in a cell-type specific manner. To overcome these problems 494 

and maximize the hit and correct rejection rate over miss and false positives (i.e. (H+CR)/(M+FP)), we 495 

have developed the following pipeline: 496 

Pre-processing: The goal of pre-processing is to obtain relatively consistent images from original 497 

fluorescent images with varying quality to pass to the cell count algorithm, so the same algorithm can 498 

process a large variety of images and still get consistent results. Depending on the nature of the individual 499 

channel, i.e. which antibody was used, different pre-processing steps were employed. 500 

Median filtering: A median filter with 3×3×3 pixel neighborhood is applied to fluorescent image 501 

stacks to smooth intensity distribution within each image stack in 3D. This operation removes local high-502 

frequency intensity variations (Supplemental Figure 1b). 503 

Vignetting correction: Vignetting is the phenomenon of intensity attenuation away from the image 504 

center. We use a single-image based vignetting correction method (Zheng et al., 2009) to correct for the 505 

intensity attenuation (Supplemental Figure 1c). The algorithm extracts vignetting information using 506 

segmentation techniques, which separate the vignetting effect from other sources of intensity variations 507 

such as texture.  The resulting image is the foreground, i.e. the cellular processes, on a homogenous 508 

background. 509 

Background subtraction: Background can result from non-specific binding of antibodies or auto-510 

fluorescence of the tissue. To reduce the background noise, local minima in each original grayscale image 511 

are filled by morphological filling, and background is estimated by morphological opening with 15 pixel 512 

radius disk-shaped structuring element. The radius value is chosen to be comparable to the largest object 513 

size so the potential object pixels are not affected. The estimated background is then subtracted from the 514 

original image to enhance signal-to-noise ratio, SNR (Supplemental Figure 1d). 515 

Contrast-limited adaptive histogram equalization (CLAHE): CLAHE (Heckbert, 1994) 516 

enhances local contrast within individual images by remapping intensity value of each pixel using a 517 

transformation function derived from its neighbourhood. While increasing local contrast and amplifying 518 

weakly stained cells, it also reduces global intensity difference, which partially corrects for the uneven 519 

illumination that individual fluorescent images often suffer from (Supplemental Figure 1e). CLAHE is 520 

applied as an 8×8 tiles division for each image. Images from channels with very low number of positive 521 

staining with high SNR (e.g. Calretinin staining channel) are not processed with CLAHE. 522 

Image segmentation to identify cell nucleus 523 

Black-and-white image transform is applied to grayscale images to separate foreground, i.e regions 524 

presumably contain nuclei, from background. In the ideal conditions, if all the objects were stained evenly 525 

during immunochemistry, the image pixels’ intensity value will be distributed as two well-separated 526 

Gaussian distributions. However, objects are usually not evenly stained; specifically, GAD67+ and SST+ 527 
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neurons usually have weak NeuN staining. As a result, the intensity distribution for object pixels is very 528 

broad and cannot be described by a single Gaussian distribution. To reliably identify foreground pixels we 529 

calculated threshold values using 2-level Otsu's method (Otsu, 1979), which separates the pixels into 3 530 

groups. The group with the lowest intensity reliably captures the background pixels, and the other 2 groups 531 

are set to the foreground. This transformation is directly applied to 3D image stack to obtain 3D foreground 532 

(Supplemental Figure 1f). 533 

Marker-based watershed segmentation: B&W transform identified regions contains cell 534 

nucleus, albeit non-specifically, and it does not identify the location and shape of each individual nucleus 535 

stained, thus image segmentation is needed to identify individual nuclei. Watershed method (Meyer, 1994) 536 

is an efficient way of segmenting grayscale images, i.e. foreground part of image obtained by B&W 537 

transformation based on gradient, and has the advantage of operating on local image gradient instead of 538 

global gradient. However, direct application of watershed methods usually results in over-segmentation of 539 

nuclei due to local intensity variation within individual nuclei. To overcome this problem, marker-based 540 

watershed algorithm is employed, in which markers serving as starting 'basin' for each object are first placed 541 

on an image to be segmented, and watershed algorithm is then applied to produce one segment (or object) 542 

on each marker. 543 

We computed the markers by applying regional maxima transform on foreground grey-scale 544 

images. To ensure at most one marker is placed in each nucleus, first the grey-scale image need to be 545 

smoothed to eliminate local intensity variation. This is realized by applying morphological opening-by-546 

reconstruction operation (Vincent, 1993) with 5 pixels radius on foreground grayscale image, which 547 

removes small blemishes in each individual nucleus and ensures regional maxima transform can find 548 

foreground markers accurately. 549 

After identifying markers watershed algorithm is applied (Supplemental Figure 1g). To ensure 550 

accurate detection of cell boundaries, the B&W foreground needs to enclose the entire cell object. This 551 

image dilation is applied to the B&W foreground to enlarge it by 1 pixel in radius before application of 552 

watershed segmentation algorithm. Finally, objects with size smaller than 400 pixels in total are removed 553 

by morphological opening. 554 

Corrections for clusters of connected neurons: Clusters of closely located neurons are not always 555 

successfully separated without further image processing; especially when closely located neurons all have 556 

similar intensity distribution. In such cases application of intensity-based watershed algorithms result in 557 

identification of one object instead of many real neurons (Supplemental Figure 1b). Furthermore, our 558 

strategy for watershed segmentation to augment regional intensity similarity to make sure that nuclei are 559 

over-segmented actually increases the chance of under-segmentation during clustering. To correct for this 560 

under-segmentation we employed a five-step approach: 561 
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a. The volume (total number of pixels) of all identified objects is calculated, and objects with a 562 

volume larger than mean+std of the population are labeled as “potential clusters”. 563 

b. For each object in the potential cluster list, the original grayscale image is retrieved. Then, from 564 

all the pixels contained in the object, 50% pixels with lower intensity values are removed, generating a new 565 

B&W object with a smaller size. Because usually, those low-intensity pixels are from the periphery region 566 

of each individual neuron, the new B&W object has better separation between different neurons. 567 

c. Euclidean distance-based 3-D regional maximum transform is then applied to the new, smaller 568 

B&W 3-D candidate object, in which the distance from each pixel belongs to the object to the border of the 569 

object, is calculated. Assuming neurons have Ellipsoid-like shape, the peak (largest distance from borders) 570 

of this transform will likely be the center of neurons, even if they are connected. The regional maximum 571 

transform is then applied to locate those peaks in the Euclidean distance space. Before the regional 572 

maximum transform is applied, the target image is smoothed by morphological opening-by-reconstruction 573 

operation with 1-pixel radius to remove small local variations. 574 

d. If more than one center is found (in c) watershed method is applied to the distance transform of 575 

the original B&W object, using the identified centers as markers. If only one center is found then the cluster 576 

is judged as a single neuron and removed from the list. Again, the distance metric is smoothed by a 577 

morphological opening-by-reconstruction operation before the watershed algorithm is applied. 578 

e. Steps a-d is repeated until the “potential cluster list” is empty (Supplemental Figure 1h). 579 

Morphological filtering: Neurons have a certain shape and volume. Based on this statistical 580 

information clustered objects can be filtered to remove small artifacts. This is necessary because of the low 581 

threshold value used for the foreground generation. To remove the artifacts from neurons we first performed 582 

a morphological opening with a structure whose size is 1/3 of the size of each object’s bounding box. The 583 

bounding box is calculated in 3-D hence it is the smallest cube that contains the object. This operation 584 

breaks down irregular shapes but keeps relatively regular shapes (sphere, ellipsoid, cuboid) intact. Then, 585 

both pixel size (volume) and mean intensity of the objects are fitted with a Gaussian mixture model, and 586 

the group with the smallest pixel size and lowest mean intensity is judged as an artifact and is removed. 587 

(Supplemental Figure 1f). 588 

Combining information from different soma-staining channels: Cells identified from each 589 

channel are added together to give cumulative soma counts across all antibody channels. Overlapped objects 590 

are judged to be different cells if: 591 

a. Overlapping is smaller than 30% of any object volume constituting the cluster 592 

b. after subtraction the new object preserves the ellipsoid shape 593 

 594 
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Cytosol-staining channels (GAD67 and Somatostatin) 595 

Identification of the cells in cytosol-staining channels utilizes reference information gathered from 596 

the soma-staining channels, hence segmentation of cytosolic signals requires at least one nuclear channel 597 

staining. 598 

Early stages of the image processing for the cytosolic signal localization was identical to that of 599 

soma-staining channels except CLAHE step. Subsequently, cell objects were imported from combined 600 

soma-staining channels information (Supplemental Figure 2c). 601 

For each cell object, two additional pixels were added to the diameter of the object (Supplemental 602 

Figure 2d). This enlarged cell object is used as a mask to detect positive staining in the cytosol-staining 603 

channel (Supplemental Figure 2f). Positive staining was defined as connected pixels with a volume at least 604 

10% of the object and that they have significantly higher intensity compared to the pixels within 2.5 times 605 

of the associated cell (Supplemental Figure 2g). Finally, the percentage of positive staining was obtained 606 

and used to identify GAD67 or Somatostatin positive cells. 607 

Performance comparison between computer and the human observer 608 

Three human observers independently counted a number of 3-D images stacks from different 609 

antibody staining, using Vaa3D software (Peng et al., 2010). Three identical copies of each image stack 610 

were placed in the manual counting dataset in random order; the human observers subsequently confirmed 611 

that they did not notice the duplicates in the data set they had analyzed. The automated counting result was 612 

compared with the average human counting result, and the summary of the difference is shown in 613 

Supplemental Table 5. 614 

Generating an average barrel column  615 

After performing automatic cell counting on individual slices across different cortical depths, we calculated 616 

average cell density for different types of cells identified by distinct antibody channels at a given cortical 617 

depth as indicated by slice number. Tissue shrinkage was not corrected but the average column size was 618 

empirically determined. To account for the differences in cortical thickness across different animals, we 619 

then binned the density data from each individual animal into 20 bins, which were subsequently averaged 620 

to obtain the average cell density distribution across cortical depth. The layer borders zlim between different 621 

cortical layers (L1-L2/3, L2/3-L4, L4-L5, L5-L6) were determined as described previously (Meyer et al., 622 

2010), by first fitting a Gaussian function 623 

 624 

to the NeuN+ cell density profile along with cortical depth with manually set c1, c2 and z0, and then the 625 

respective zlim was calculated as  626 

 627 
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 628 

L5A-L5B border was determined by manual inspection on NeuN+ cell density. We then calculated the size 629 

of an average barrel in C-E rows, 1-3 columns by manually labeling corresponding barrels in anti-GAD67 630 

staining (Supplemental Figure 3). The number of different types of cells in an average barrel from C-E 631 

rows, 1-3 columns was then calculated by the size as well as the corresponding cell density.  632 

 633 

Network setup  634 

Neuronal Model 635 

We used the Izhikevich quadratic model neuron (Izhikevich, 2004, 2003) in this study: 636 

 637 

where v, vr, and vt are the membrane potential, resting membrane potential without stimulus, and the spike 638 

threshold of the neuron, respectively and I is the synaptic current the neuron received (see below). The 639 

dynamics of the recovery variable u are determined by: 640 

 641 

Parameters a, b, c, d together determine the firing pattern of the model neuron (see Supplemental Table 642 

4). The model has the following reset condition: 643 

 644 

Parameters a, b and c were taken from (Izhikevich, 2003); parameter d was adapted to match firing rates 645 

observed in the literature (see 4.2.2). For the simulations, a first-order Euler method with a step size of 0.1 646 

ms was used. 647 

Neural Network Model 648 

Neural Distributions 649 

The mouse barrel cortex L4-L2/3 network is modeled based on the distribution of different classes of 650 

neurons in an average barrel reconstructed by immunochemical labeling and confocal microscopy (see 651 

above). 13 different types of cortical neurons are included in the model (Markram et al., 2004; Oberlaender 652 

et al., 2012; Thomson and Lamy, 2007). In L2/3 there are 9 types of neurons, 2 excitatory: L2 pyramidal 653 

neurons and L3 pyramidal neurons (Brecht et al., 2003; Feldmeyer et al., 2006); 7 inhibitory: PV+ fast-654 

spiking neurons (Holmgren et al., 2003; Packer and Yuste, 2011), PV+ bursting neurons (Blatow et al., 655 
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2003), SST+ Martinotti neurons (Fino and Yuste, 2011; Kapfer et al., 2007; Wang et al., 2004) , 656 

Neurogliaform cells (Tamás et al., 2003; Wozny and Williams, 2011), CR+ bipolar neurons (Caputi et al., 657 

2009; Xu et al., 2006), CR+/VIP+ multipolar neurons (Caputi et al., 2009) and VIP+/CR- neurons (Porter 658 

et al., 1998). In L4 there are 4 types of neurons, 2 excitatory: L4 spiny stellate neurons and L4 star pyramidal 659 

neurons (Egger et al., 2008; Staiger et al., 2004); 2 inhibitory: PV+ fast-spiking neurons and PV- low-660 

threshold spiking neurons (Beierlein et al., 2003; Koelbl et al., 2015; Sun et al., 2006).  The distribution of 661 

excitatory, PV+, CR+, and SST+ neurons are taken from the anatomical reconstructions; for other cell 662 

types, we assigned corresponding number of different neurons in each cluster based on the previous studies 663 

(Kawaguchi and Kubota, 1997; Uematsu et al., 2008). These neurons were distributed in a 640-by-300-by-664 

300 µm region (L4, 210-by-300-by-300; L2/3, 430-by-300-by-300). Note that we scaled the size of the 665 

network to match the average dimension of a rat column (Feldmeyer et al., 2006), due to the fact that most 666 

of the axonal and dendritic projection patterns were measured in the rat. 667 

Connectivity 668 

Connectivity is determined using axonal and dendritic projection patterns (Egger et al., 2008; Feldmeyer et 669 

al., 2006, 2002; Helmstaedter et al., 2008; Lübke et al., 2003) which are approximated by 3-D Gaussian 670 

functions, with the assumption that the probability that two neurons are connected is proportional to the 671 

degree of axonal-dendritic overlap between these two neurons (i.e Peter’s rule, (White, 1979)). For each 672 

pre-synaptic i and post-synaptic neuron j, we calculate the axonal-dendritic overlapping index Ii,j, which is 673 

the sum of the product of presynaptic axonal distribution and postsynaptic dendritic distribution Dj:  674 

 675 

where SDj is the 3-D space that contains 99.9% of Dj. We then convert I,ij into connection probability Pi,j 676 

between neuron i and j, by choosing a constant k for each unique pre- and post-synaptic cell type pair so 677 

that the average connection probability within experimentally measured inter-soma distances (usually 100 678 

µm) matches the empirically measured values between these two types of cells (Supplemental Table 3): 679 

 680 

Finally, a binary connectivity matrix was randomly generated using the pairwise connection probabilities 681 

Pi,j, in which connected pairs are labeled as 1. 682 

Synapses 683 

Synaptic currents in this network are modeled by a double-exponential function. Parameters of those 684 

functions are adjusted to match experimentally measured PSPs (peak amplitude, rise time, half-width, 685 

failure rate, coefficient of variation and pair-pulse ratio) in the barrel cortex in vitro (Supplemental Table 686 

3; see (Thomson and Lamy, 2007) for an extensive review). The onset latency is calculated from the 687 
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distance between cell pairs; the conduction velocity of the action potential was set to 190µm/ms (Feldmeyer 688 

et al., 2002). The short-term synaptic dynamics (pair-pulse depression/facilitation) is modeled as a scalar 689 

multiplier to actual synaptic weight, which follows a single exponential dynamic (Izhikevich and Edelman, 690 

2008):  691 

 692 

𝜏𝑥 was set to 150ms for excitatory synapses and depression inhibitory synapses (p<1), and 100ms for 693 

facilitating inhibitory synapses (p>1).  Differences in the activation state of cortex are included in the model 694 

by setting the common initial voltage and the equilibrium potential vr of all cells, thus accounting for 695 

potential up - and down-states as well as an intermediate state. 696 

  697 

Thalamic inputs into the barrel cortex in silico 698 

To the best of our knowledge, there is not any published quantitative work on the cellular 699 

organization of the mouse thalamic nuclei. In the rat, each barreloid in thalamic VPM nuclei has ~1/18 700 

number of neurons compared to the corresponding L4 barrel (Meyer et al., 2013). Given that in our average 701 

barrel column L4 contains ~1600 neurons, we assigned between  100 and 200 thalamic neurons to each 702 

barreloid in VPM. The thalamic-cortical connectivity is calculated using the same method as cortical-703 

cortical connectivity discussed above, using published thalamic axon projection patterns (Furuta et al., 704 

2011; Oberlaender et al., 2012). The POM pathway was not modeled. 705 

Each of the thalamic neurons is modelled as a ‘filter and fire’ neuron (Chichilnisky, 2001; Keat et 706 

al., 2001; Pillow et al., 2008; Truccolo et al., 2005), where each of the thalamic neurons responds to either 707 

whisker angle (filters and activation functions randomly chosen based on a parametrization of the filters 708 

from (Petersen et al., 2008)), curvature, or a combination of both. The center barreloid was considered to 709 

be the principal barreloid for the spared whisker, whereas the other two were considered secondary 710 

barreloids, which meant that they received the stimuli reduced (30% of original amplitude) and delayed 711 

(2.5 ms) (Brecht et al., 2003; Brecht and Sakmann, 2002). The thalamic spike trains served as input to the 712 

cortical model, which similarly consisted of three cortical columns, corresponding to the three thalamic 713 

barreloids. An example of how to run these simulations can be found on Github: 714 

https://github.com/DepartmentofNeurophysiology/Cortical-representation-of-touch-in-silico. 715 

Thalamic stimulation in the model based on population PSTHs (Figures 2-7) was collected 716 

extracellularly in anesthetized animals in vivo (Aguilar, 2005). The PSTHs only specified the population 717 

firing rate in the thalamic cells; to generate individual neuron response in different trials we assume that 718 

thalamic neurons fire independent Poisson spike trains in each trial, constrained by the PSTHs.  719 
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Spike-timing dependent plasticity 720 

A network of 3 barrel columns, representing canonical C,D,E rows, was constructed to simulate spike-721 

timing-dependent plasticity in the barrel cortex following a single (D-row) whisker deprivation. Each 722 

column was randomly generated using distributions of 13 different types of neurons, and connectivity was 723 

calculated using the same method discussed above. The middle column was whisker-deprived, which 724 

received surround whisker evoked thalamic input; the two lateral columns were whisker-spared and 725 

received principal whisker evoked thalamic input (Aguilar, 2005). The STDP rule for L4-L2/3 excitatory 726 

connections was as follows (Celikel et al., 2004):  727 

 728 

𝛥𝑡 was the timing difference (in ms) between the time at which presynaptic spike arrives at postsynaptic 729 

neuron (i.e. presynaptic neuron spike time plus synaptic delay) and the time at which the postsynaptic 730 

neuron spikes ms. The constants were directly taken from the literature, in which the values were obtained 731 

by least-square fits to the experimental data. For L2/3-L2/3 excitatory connections, the rule was as follows 732 

(Banerjee et al., 2014): 733 

 734 

The synaptic weight change was additive for potentiation and multiplicative for depression; repeating the 735 

simulations with an additive rule for potentiation and depression did not change the results and are not 736 

shown herein. Plasticity rules for excitatory-inhibitory and inhibitory connections are less commonly 737 

studied.  Inclusion of the empirically identified learning curves (Haas et al., 2006; Lu et al., 2007) did not 738 

qualitatively alter the results and are not included herein. 739 

Simulated freely whisking experiment  740 

In the simulations of a freely whisking experiment, the network (Figure 8: 3 barrels, Figure 9: 1 barrel) was 741 

presented with the whisker angle and curvature recorded from a freely moving rat (animal an171923, 742 
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session 2012_06_04) in a pole localization task (data from (Peron et al., 2015) made available as 'ssc-2' on 743 

CRCNS.org).  744 

NB Direct whisker modulation by motor cortex (Crochet et al., 2011) can be optionally included in the 745 

model, but was not used for our current simulations. However, it is present in the online code as option.  746 

 747 

  748 
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Figures 1173 

 1174 

 1175 

 1176 

Figure 1. The anatomy of the canonical cortical column in the mouse barrel cortex. (A) Schematic 1177 

representation of the slicing approach.  Numbers refer to the order of incision (1,2) and sectioning (3) (see 1178 

Materials and Methods for details).  (B-C) Six monoclonal antibodies raised against select cellular markers 1179 

were used for co-staining cellular classes.  Insets show different staining patterns. Cell labeled with the 1180 

same number is the same cell across different stainings. (D) Randomly selected raw images (top row) along 1181 

with automatically detected cells in a 300x300x25 microm volume of fixed tissue (see Materials and 1182 

Methods for details).  (E) Density of identified cellular populations across the six cortical layers. The shaded 1183 

regions represent 2 standard deviations from the mean (N=22 slices for NeuN, 12 for GABA, PV and 10 1184 

for CR, SOM, VIP; in average 3 columns in each slice from 3 animals, 5 hemispheres. Values are mean 1185 

and std calculated from each slice). The last column represents the relative cellular density after normalizing 1186 

the cell count to the number of NeuN positive neurons in a given layer.  1187 
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 1188 

Figure 2. Neural activity and circuit connectivity in silico. (A) Spiking pattern of five electrically 1189 

characterized cell classes upon somatic step-and-hold current injection across three membrane states. (B) 1190 

The connectivity matrix across the network. (C) Emergent cortical activity upon thalamic stimulation, 1191 

simulated as a response to a single whisker deflection (Petersen et al., 2008). Peristimulus time histograms 1192 

(PSTHs) depict population responses across thalamus (modeled; see Materials and Methods for details), 1193 

and cortical responses.  (D) Same as in C but action potentials from neurons in the top 630 microm of the 1194 

cortical column are shown.  (E) Likelihood of spiking across identified neuron classes and membrane states.     1195 
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 1197 

Figure 3. Variability of stimulus representations in silico. (A1) The population activity in thalamus is 1198 

constrained by the PSTH as spike timing for individual cells are drawn according to Poisson-distributions. 1199 

Raster plots exemplify the spiking responses of 3 representative thalamic neurons across 20 trials (upper 1200 

panel) drawn from the population PSTH (lower panel). (A2) Representation of the thalamic input in single 1201 

(upper panels) neurons and populations (lower panels). Left column: L4 excitatory, right column: L4 1202 

inhibitory neurons. PSTHs represent neural responses to 50 thalamic stimulation across three different 1203 

membrane states (black: -60 mV, blue: -70 mV, red: -80 mV) (A3) Same as in A2, but for L2/3 excitatory 1204 

and inhibitory neurons. (B1) The population PSTH in thalamus is the same as in A1 (lower panel), but spike 1205 

timing and rate of individual thalamic neurons’ spiking is constant across trials (see raster plots in upper 1206 

panel). (B2, B3) same as in A2, A3, but show cortical response to stereotypic thalamic inputs. Note that 1207 

even when the same thalamic input pattern was used to stimulate the network, neurons still showed spike 1208 

timing variability due to synaptic failures and synaptic strength variations although the variance was greatly 1209 

reduced as the effective connectivity in the network was kept constant. 1210 
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 1211 

Figure 4. Stimulus evoked representations in cortical layer 4 in silico. (A) Schematic representation of 1212 

the spatial orientation of the simulated network.  The visualizations are in the tangential plane. The principal 1213 

cortical column is the D2 whisker’s column. (B) Average neuronal response in rostro-caudal (RC) and 1214 

medio-lateral (ML) planes, across different resting membrane states (pixel size 15x15 μm in cortical tissue). 1215 

The figurines on the grey shaded background display the response in the principal whisker’s cortical 1216 

column; the yellow background shows the activity in the first order surrounding L4.   (C) Average firing 1217 

rate of excitatory (top) and inhibitory neurons (bottom) in the network as a function of the resting membrane 1218 

potential before stimulus onset in the principal (top) and surround (bottom) whisker’s L4.  (D) Average 1219 

firing rate in the ML axis across the membrane states.  (E) Distribution of the spiking response per stimulus 1220 

across neuron classes and membrane states. (F) Left: Schematic representation of the coronal orientation 1221 

of the visualized network. Right: Average neuronal response across the dorsoventral plane in L4 (pixel size 1222 

15x15 μm in cortical tissue). (G) Average firing rate across cortical depth.    1223 
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 1225 

Figure 5. Stimulus evoked representations in the supragranular layers of the barrel cortical network 1226 

in silico. (A) Schematic representation of the spatial orientation of the simulated network in the tangential 1227 

plane. The principal cortical column is the D2 whisker’s column. (B) Average neuronal response mapped 1228 

onto rostro-caudal (RC) and medio-lateral (ML) planes, across resting membrane states (pixel size 15x15 1229 

μm in cortical tissue). The figurines on the grey shaded background display the response in the principal 1230 

whisker’s cortical column; yellow background shows the activity in the first order surrounding 1231 

supragranular layers. (C) Average firing rate of excitatory (top) and inhibitory neurons (bottom) in the 1232 

network as a function of the resting membrane potential before stimulus onset in the principal (top) and 1233 

surround (bottom) whisker’s cortical network.  (D) Average firing rate in the ML axis across the membrane 1234 

states.  (E) Distribution of the spiking response per stimulus across neuron classes and membrane states. 1235 

(F) Left: Schematic representation of the coronal orientation of the visualized network. Right: Average 1236 

neuronal response across the dorsoventral plane in L4 (pixel size 15x15 μm in cortical tissue). (G) Average 1237 

firing rate across cortical depth.  1238 
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 1240 
Figure 6. Visualization of the presynaptic population contributing to a postsynaptic action potential. 1241 

We spatially mapped the neural activity across the granular and supragranular layers prior to an action 1242 

potential in a given layer.  The maps were averaged across all postsynaptic neurons that fire evoked action 1243 

potentials during the simulations. (A) Population activity that drives L2 excitatory (first row), inhibitory 1244 

(second row), L3 excitatory (third row) and L3 inhibitory (last row) neurons to spike in response to thalamic 1245 

input. The first spike fired by aforementioned L2 or L3 neurons was used as the trigger to calculate the 1246 

spike-triggered input map. Insert: schematic representation of the location of different cell populations in 1247 

the barrel column. (B) Spike triggered spatial averaging (rows as in A); columns denote network activity 1248 

observed across different resting membrane potentials.  (C) Average depth distribution of excitatory inputs 1249 

to drive a spike (rows as in A). (D-F) Same as A-C, but using surround whisker stimulation (SWC) instead 1250 

of principal whisker stimulation (PWC).  1251 
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 1253 

Figure 7.  Spike-timing dependent map plasticity in silico. (A) A network model with 3 barrels. Cells in 1254 

each column are randomly generated using distributions quantified in Figure 1. (B) Schematic 1255 

representation of the feed-forward and intracolumnar networks in the upper layers of the somatosensory 1256 

cortex. (C) Experimentally observed STDP learning rule in L4-L2/3 projections (top; Celikel et al 2004; 1257 

see Materials and Methods) and for L2/3-L2/3 connections (bottom; Banerjee et al 2014). (D) Population 1258 

PSTH for the spared columns, i.e most medial and most lateral columns in A1.  (E) Population PSTH for 1259 

the deprived, i.e. center, column. (F) Change in synaptic efficacy as a function of whisker deprivation in 1260 

the simulated network. Color codes denote the whisker deprivation status of pre- and postsynaptic neurons’ 1261 

location. Note that presynaptic neurons are always located in L4. 1262 
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 1264 

Figure 8. Network response to in vivo-like stimulation. (A) Input to the network: whisker angle (black) 1265 

and curvature (red) from a freely moving rat in a pole localization task (data from (Peron et al., 2015), made 1266 

available as 'ssc-2' on CRCNS.org).  (B) Example voltage trace responses of 6 randomly chosen model 1267 

neurons. (C) Peri-Stimulus Time Histograms (PSTHs) of the model-thalamus (top), L4 (middle) and L2/3 1268 

(bottom). The thalamus consists of 3 barreloids, each containing 200 'filter-and-fire' neurons that respond 1269 

to whisker angle, curvature or a combination of both. The central barreloid (black, 2) receives a stronger 1270 

input, as this is the 'stimulated' barrel for the only spared whisker. Spike trains of the thalamus are sent to 1271 

the cortical network model of L4 (middle), which sends its spike trains to L2/3 (bottom). These similarly 1272 

consist of 3 barrels, of which the central (black, 2) barrel belongs to the spared whisker. (D) Average 1273 

membrane potential of the excitatory (left) and inhibitory (right) model neurons as a function of cortical 1274 

depth. L4 (barrel cortex) is denoted with a grey shaded shape. (E) Average firing rates of the model neurons 1275 

as a function of cortical depth.  1276 
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 1277 
Figure 9. Simulation of calcium imaging experiment in L2/3. (A) Recorded (Peron et al., 2015) network 1278 

response one (time) frame before touch (sampling frequency: 7 Hz; recorded volume: 6).  (B) Recorded 1279 

network response one frame after touch (C) Difference in network response between before and after touch. 1280 

(D-F) Same as in A-C, but now for simulations (full simulation: single barrel including L23 (shown here) 1281 

and L4 (see supplemental Figure 4). The fluorescence signal was calculated from network response 1282 

following the method in (Vogelstein et al., 2009). Note that a recorded volume is larger than a single barrel. 1283 

The frames are scaled accordingly.  (G) Comparison of the distribution of activity of one frame after touch 1284 

between the recorded and the simulated network. (H) Comparison of the distribution of the difference in 1285 

activity between one frame before and after touch between the recorded and the simulated network.  1286 
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