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Abstract 

Polygenic risk scores (PRSs) have been offered since 2019 to screen in vitro fertilization embryos for 

genetic liability to adult diseases, despite a lack of comprehensive modeling of expected outcomes. Here 

we predict, based on the liability threshold model, the expected reduction in complex disease risk 

following polygenic embryo screening for a single disease. Our main finding is that a strong determinant 

of the potential utility of such screening is the selection strategy, a factor that has not been previously 

studied. Specifically, when only embryos with a very high PRS are excluded, the achieved risk reduction 

is minimal. In contrast, selecting the embryo with the lowest PRS can lead to substantial relative risk 

reductions, given a sufficient number of viable embryos. For example, a relative risk reduction of ≈50% 

for schizophrenia can be achieved by selecting the embryo with the lowest PRS out of five viable 

embryos. We systematically examine the impact of several factors on the utility of screening, including 

the variance explained by the PRS, the number of embryos, the disease prevalence, the parental PRSs, and 

the parental disease status. When quantifying the utility, we consider both relative and absolute risk 

reductions, as well as population-averaged and per-couple risk reductions. We also examine the risk of 

pleiotropic effects. Finally, we confirm our theoretical predictions by simulating “virtual” couples and 

offspring based on real genomes from schizophrenia and Crohn’s disease case-control studies. We discuss 

the assumptions and limitations of our model, as well as the potential emerging ethical concerns. 

 

Abbreviations 

IVF: in-vitro fertilization; PRS: polygenic risk score; PES: polygenic embryo screening; RRR: 

relative risk reduction; ARR: absolute risk reduction; HRE: high-risk exclusion; LRP: lowest-risk 

prioritization; LTM: liability threshold model; pcRRR: per-couple relative risk reduction. 
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Introduction 

Polygenic risk scores (PRSs) have become increasingly well-powered, relying on findings from 

large-scale genome-wide association studies for numerous diseases (Visscher et al., 2017; Wray et al., 

2013). Consequently, a growing body of research has examined the potential clinical utility of applying 

PRSs in the treatment of adult patients in order to identify those at heightened risk for common late-onset 

diseases such as coronary artery disease or breast cancer (Britt et al., 2020; Khera et al., 2018; Torkamani 

et al., 2018). Another potential application of PRSs is preimplantation screening of in vitro fertilization 

(IVF) embryos, or polygenic embryo screening (PES). Polygenic embryo screening has been offered 

since 2019 (Treff, Eccles, et al., 2019), but has been the focus of comparatively little empirical research, 

despite debate over ethical and social concerns surrounding the practice (Anomaly, 2020; Lázaro-Muñoz 

et al., 2020; Munday & Savulescu, 2021). 

We have recently demonstrated that screening embryos on the basis of polygenic scores for 

quantitative traits (such as height or intelligence) has limited utility in most realistic scenarios (Karavani 

et al., 2019), and that the accuracy of the score is a more significant determinant of PES utility for 

quantitative traits compared with the number of available embryos. On the other hand, a series of four 

studies (Lello et al., 2020; Treff, Eccles, et al., 2019; Treff et al., 2020; Treff, Zimmerman, et al., 2019) 

conducted by a private company providing PES services has suggested that PES for dichotomous disease 

risk may have significant clinical utility. However, these studies examined a relatively limited range of 

scenarios, primarily focusing on distinctions between sibling pairs discordant for illness, and did not 

provide a comprehensive examination of various potential PES settings. Filling this gap is an urgent need, 

as understanding the statistical properties of PES forms a critical foundation to any ethical consideration 

(Lázaro-Muñoz et al., 2020). 

Here, we use statistical modeling to examine the potential utility of PES for reducing disease risk, 

with an aim toward informing future ethical deliberations. We focus on screening for a single complex 

disease, and study a range of realistic scenarios, quantifying the role of parameters such as the variance 

explained by the score, the number of available embryos, and the disease prevalence. We show that a 
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major determinant of the outcome of PES is the selection strategy, namely the way in which an embryo is 

selected for implantation given the distribution of PRSs across embryos. We also study the risk reduction 

conditional on parental PRSs or disease status, and consider the risk of developing diseases not screened. 

Finally, we validate some of our predictions based on real genomes of cases and controls for two common 

complex diseases.  

Results 

Model and selection strategies 

For each analysis presented below, we assume that a couple has generated, by IVF, 𝑛 viable embryos 

such that each embryo, if implanted, would have led to a live birth. We focus on a single complex disease, 

and assume that the corresponding PRS has been computed for each embryo. Given the PRSs of the 𝑛 

embryos, a single embryo is selected for implantation based on a selection strategy. 

The first strategy we consider is aimed only at avoiding high-risk embryos, consistent with studies of 

the potential clinical utility of PRSs in adults (Chatterjee et al., 2016; Dai et al., 2019; Gibson, 2019; 

Khera et al., 2018; Mars et al., 2020; Mavaddat et al., 2019; Torkamani et al., 2018). For example, the 

first case report presented on PES described the identification and exclusion of embryos with extremely 

high (top 2-percentiles) PRS (Treff, Eccles, et al., 2019). We term this strategy “high-risk exclusion” 

(HRE: Figure 1A, upper panel). Under HRE, after high-risk embryos are set aside, an embryo is 

randomly selected for implantation among the remaining available embryos. (In the case that all embryos 

are high-risk, we assume a random embryo is selected among them.) 

An alternative selection strategy is to use the embryo with the lowest PRS. Ranking and prioritizing 

embryos for implantation based on morphology is common in current IVF practice (Bormann et al., 2020; 

Montag et al., 2013; Rhenman et al., 2015). If ranking is instead based on a disease PRS, the embryo with 

the lowest PRS could be selected, without any recourse to high-risk PRS thresholds. Such an approach 

was suggested by another recent publication from the same company (based on a multi-disease index), but 

statistical comparisons were only examined in the context of sibling pairs (Treff et al., 2020). We term the 
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implantation of the embryo with the lowest PRS as “lowest-risk-prioritization” (LRP; Figure 1A, lower 

panel). 

In the following, we describe the theoretical risk reduction that can be achieved under these selection 

strategies. Our statistical approach is based on the liability threshold model (LTM; (Falconer, 1967)). The 

LTM represents disease risk as a continuous liability, comprising genetic and environmental risk factors, 

under the assumption that individuals with liability exceeding a threshold are affected. The liability 

threshold model has been shown to be consistent with data from family-based transmission studies (Wray 

& Goddard, 2010) and GWAS data (Visscher & Wray, 2015). Consequently, we define the disease risk of 

a given embryo probabilistically, as the chance that, given its PRS, its liability will cross the threshold at 

any point after birth (Figure 1B). 

We use the following notation. We define the predictive power of a PRS as the proportion of 

variance in the liability of the disease explained by the score (Dudbridge, 2013), and denote it as 𝑟𝑝𝑠
2 . We 

quantify the outcome of PES in two ways: the relative risk reduction (RRR) is defined as RRR =

𝐾−𝑃(disease)

𝐾
= 1 −

𝑃(disease)

𝐾
, where 𝐾 is the disease prevalence and 𝑃(𝑑𝑖𝑠𝑒𝑎𝑠𝑒) is the probability of the 

selected embryo to be affected; the absolute risk reduction (ARR) is defined as 𝐾 − 𝑃(𝑑𝑖𝑠𝑒𝑎𝑠𝑒). For 

example, if a disease has prevalence of 5% and the selected embryo has a probability of 3% to be 

affected, the RRR is 40%, and the ARR is 2% points. We computed the RRR and ARR analytically under 

each selection strategy, and for various values for the disease prevalence, the strength of the PRS, embryo 

exclusion thresholds, and other parameters. The mathematical details of the calculations are provided in 

the Materials and Methods. 

The risk reduction under the high-risk exclusion strategy 

In Figure 2 (upper row), we show the relative risk reduction achievable under the HRE strategy with 

𝑛 = 5 embryos. Under the 2-percentile threshold (straight black lines), the reduction in risk is limited: the 

RRR is <10% in all scenarios where 𝑟𝑝𝑠
2 ≤ 0.1. Currently, 𝑟𝑝𝑠

2 ≈ 0.1 (on the liability scale) is the upper 

limit of the predictive power of PRSs for most complex diseases (Lambert et al., 2021), with the 
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exception of a few disorders with large-effect common variants (such as Alzheimer’s disease or type 1 

diabetes) (Sharp et al., 2019; Q. Zhang et al., 2020). In the future, more accurate PRSs are expected. 

However, the common-variant SNP heritability is at most ≈30% even for the most heritable diseases such 

as schizophrenia and celiac disease (Holland et al., 2020; Y. Zhang et al., 2018), and it was recently 

suggested that 𝑟𝑝𝑠
2 = 0.3 is the maximal realistic value for the foreseeable future (Wray et al., 2020). At 

this value, relative risk reduction would be 20% for 𝐾 = 0.01, 9% for 𝐾 = 0.05, and 3% for 𝐾 = 0.2. 

These gains achieved with HRE are small because the overwhelming majority of affected individuals do 

not have extreme scores (Murray et al., 2020; Wald & Old, 2019). 

Risk reduction increases as the threshold for exclusion is expanded to include the top quartile of 

scores, and then reaches a maximum at ≈25-50% under a range of prevalence and 𝑟𝑝𝑠
2  values. For all of 

these simulations, we set the number of available (testable) embryos to 𝑛 = 5 (Dahdouh, 2021; Sunkara 

et al., 2011), although we acknowledge that the number of viable embryos may be much lower for many 

couples seeking IVF services for infertility (Smith et al., 2015). Simulations show that these estimates do 

not change much with increasing the number of embryos (see Figure 2 - Figure Supplement 1). This 

holds especially at more extreme threshold values, since most batches of 𝑛 embryos will not contain any 

embryos with a PRS within, e.g., the top 2-percentiles. 

It should be noted that the relative risk reduction does not increase monotonically under HRE. Under 

our definition, whenever all embryos are high risk, an embryo is selected at random. Thus, at the extreme 

case when all embryos (i.e, top 100%) are designated as high risk, an embryo is selected at random at all 

times, and the relative risk reduction reduces to zero. We chose this definition of the HRE strategy 

because it does not involve ranking of the embryos. However, we can also consider an alternative 

strategy: if all embryos are high risk, the embryo with the lowest PRS is selected. Here, the RRR is 

expected to increase when increasing the threshold and designating more embryos as high risk, which we 

confirm in Figure 2 – Figure Supplement 2. When the threshold is at 100% (all embryos are high risk), 
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this alternative strategy (which we do not further consider) reduces to the low-risk prioritization strategy, 

which we study next. 

The risk reduction under the low-risk prioritization strategy 

The HRE strategy treats all non-high-risk embryos equally. In practice, we expect most, or even all, 

embryos to be designated as non-high-risk, given the recent focus on the top PRS percentiles in the 

literature (e.g., Khera et al. 2018). However, as we have seen, this strategy leads to very little risk 

reduction. In Figure 2 (lower panels), we show the expected RRR for the low-risk prioritization strategy, 

under which we prioritize for implantation the embryo with the lowest PRS, regardless of any PRS cutoff. 

Indeed, under the LRP strategy, risk reductions are substantially greater than in HRE. For example, with 

𝑛 = 5 available embryos, RRR>20% across the entire range of prevalence and 𝑟𝑝𝑠
2  parameters considered, 

and can reach ≈50% for 𝐾 ≤ 5% and 𝑟𝑝𝑠
2 = 0.1, and even ≈80% for 𝐾 = 1% and 𝑟𝑝𝑠

2 = 0.3. While RRR 

continues to increase as the number of available embryos increases, the gains are quickly diminishing 

after 𝑛 = 5. On the other hand, Figure 2 also demonstrates that RRR drops steeply if the number of 

embryos falls below 𝑛 = 5, although the lower bound for RRR when just two embryos are available 

(≈20% for many scenarios) is still comparable to the upper bound of the HRE strategy for a greater 

number of embryos. 

Effects of PES on dichotomous vs quantitative traits 

Our results demonstrate that, contrary to our previous study reporting only small effects of PES for 

quantitative traits (Karavani et al., 2019), PES can generate substantial relative risk reductions for disease 

under the LRP strategy. To understand the relation between continuous and binary traits, consider an 

example involving IQ. Our estimate for the mean gain in IQ that could be achieved by selecting the 

embryo with the highest IQ polygenic score is approximately ≈2.5 IQ points (Karavani et al. 2019). Now 

assume that individuals with IQ<70 (2 SDs below the mean) are considered “affected” according to a 

dichotomized trait of “cognitive impairment.” Among individuals with IQ<70, the proportion of 

individuals with IQ in the range [67.5,70] is 33.5% (assuming a normal distribution). A gain of 2.5 points 
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would shift such offspring beyond the threshold for “cognitive impairment,” resulting in a corresponding 

33.5% reduction in risk of being “affected”. (Note that the above explanation is intended to provide an 

intuition and ignores any variability in the gain.) Figure 2 – Figure Supplement 3 utilizes statistical 

modeling (with 𝑟𝑝𝑠
2  derived from recent GWAS for intelligence (Savage et al., 2018)) to demonstrate that 

substantial risk reductions can be achieved for a dichotomized trait, including when selecting out of just 

three embryos (panel (A)). Panel (B) extends these results to data for LDL cholesterol (with 𝑟𝑝𝑠
2  derived 

from (Weissbrod et al., 2021)); given 𝑛 = 5 embryos and the currently available PRS for LDL-C levels, 

risk reductions for “high cholesterol” range from 40-60%, depending on the LDL level used to define the 

categorical trait. Thus, while implanting the embryo with the most favorable PRS is expected to result in 

very modest gains in an underlying quantitative trait, it is at the same time effective in avoiding embryos 

at the unfavorable tail of the trait. 

Effects of parental PRS and disease status 

We next examined the effects of parental PRSs on the achievable risk reduction (Materials and 

Methods), given that families with high genetic risk for a given disease may be more likely to seek PES. 

Figure 3 demonstrates that, as expected, the HRE strategy shows greater relative risk reduction as 

parental PRS increases, in particular when excluding only very high-scoring embryos. This result follows 

directly from the fact that, on average, offspring will tend to have PRS scores near the mid-parental PRS 

value. In contrast, the relative RR (though not the absolute RR; see next section) for the LRP strategy 

somewhat declines as parental PRSs increase. Nevertheless, the RRR for the LRP strategy remains greater 

than that for the HRE strategy across all parameters (as expected by the definitions of these strategies). 

It is also conceivable that families may be more likely to seek PES when one or both prospective 

parents is affected by a given disease. In Figure 3 - Figure Supplement 1, we plot the RRR under the 

HRE and LRP strategies given that the parents are both healthy, both affected, or one of each (where we 

fixed the prevalence 𝐾 = 5% and the heritability to ℎ2 = 40%). The figure illustrates that parental 

disease status has relatively little impact on the expected RRR (especially in comparison to the changes 
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under HRE when conditioning on the actual parental PRSs). This is because, as long as 𝑟𝑝𝑠
2 ≪ 1, parental 

disease does not necessarily provide much information about parental PRS, and thus does not strongly 

constrain the number of risk alleles available to each embryo. 

Absolute vs relative risk 

The above results were presented in terms of relative risk reductions. However, Figure 3 - Figure 

Supplement 1 also shows the baseline risk of an embryo of parents with a given disease status. For 

example, when one of the parents is affected, selecting the lowest risk embryo out of 𝑛 = 5 (for a realistic 

𝑟𝑝𝑠
2 = 0.1) reduces the risk from 10.0% to only 5.8%, thus nearly restoring the risk of the future child to 

the population prevalence (5%). More generally, we plot the absolute risk reduction (ARR) under the 

HRE and LRP strategies in Figure 3 - Figure Supplement 2 for a few values of the parental PRSs. 

Notably, while RRRs under the LRP strategy somewhat decrease with increasing parental PRSs, the 

ARRs substantially increase, in accordance with an expectation that PES in higher-risk parents should 

eliminate more disease cases. 

The clinical interpretation of these absolute risk changes will vary based on the population 

prevalence of the disorder (or the baseline risk of specific parents), and can offer a very different 

perspective on the magnitude of the effects (Gordis, 2014; Lázaro-Muñoz et al., 2020; Murray et al., 

2020). In particular, for a rare disease, large relative risk reductions may result in very small changes in 

absolute risk. As an example, schizophrenia is a highly heritable (Sullivan et al., 2003) serious mental 

illness with prevalence of at most 1% (Perälä et al., 2007). The most recent large-scale GWAS meta-

analysis for schizophrenia (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 

2020) has reported that a PRS accounts for approximately 8% of the variance on the liability scale. Our 

model shows that a 52% RRR is attainable using the LRP strategy with 𝑛 = 5 embryos. However, this 

translates to only ≈0.5 percentage points reduction on the absolute scale: a randomly-selected embryo 

would have a 99% chance of not developing schizophrenia, compared to a 99.5% chance for an embryo 

selected according to LRP. In the case of a more common disease such as type 2 diabetes, with a lifetime 
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prevalence in excess of 20% in the United States (Geiss et al., 2014), the RRR with 𝑛 = 5 embryos (if the 

full SNP heritability of 17% (Y. Zhang et al., 2018) were achieved) is 43%, which would correspond to 

>8 percentage points reduction in absolute risk. 

Variability of the risk reduction across couples 

The results depicted in Figure 2 describe the average risk reduction across the population, whereas 

the results in Figure 3 demonstrate results for specific combinations of parental risk scores. However, it 

remains unclear whether the large average risk reductions observed under the LRP strategy are driven by 

only a small proportion of couples. More generally, we would like to fully characterize the dependence of 

the risk reduction on parental PRSs, which could be of interest to physicians and couples in real-world 

settings.  

To address these questions, we define a new risk reduction index, which we term the per-couple 

relative risk reduction, or pcRRR. Informally, the pcRRR is the relative risk reduction conditional of the 

PRSs of the couple. Mathematically, pcRRR(couple) = 1 −
𝑃𝑠(disease | couple)

𝑃𝑟(disease | couple)
. Here, 𝑃𝑠(disease | couple) 

is the probability that the (PRS-based) selected embryo is affected given the PRSs of the couple, and 

𝑃𝑟(disease | couple) is similarly defined for a randomly selected embryo. Conveniently, the pcRRR 

depends only on the average of the maternal and paternal PRSs, which we denote as 𝑐. We calculated 

pcRRR(𝑐) analytically under the LRP strategy (Materials and Methods), as well as computed the 

distribution of pcRRR(𝑐) across all couples in the population. 

We show the distribution of pcRRR(𝑐) in Figure 4, panels (A)-(C). The results demonstrate that the 

pcRRR is relatively narrowly distributed around its mean, for all values of the prevalence (𝐾) considered. 

The distribution becomes somewhat wider (and left-tailed) for the most extreme 𝑟𝑝𝑠
2  (0.3). Thus, the 

population-averaged RRRs are not driven by a small proportion of the couples. In agreement, the pcRRR 

depends only weakly on the average parental PRS, as can be seen in panels (D)-(F).  
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We note that the per-couple relative risk reduction is itself also an average, over all possible batches 

of 𝑛 embryos of the couple. One may thus ask what is the distribution of possible RRRs across these 

batches. We provide a short discussion in Materials and Methods (Appendix Section 5.3). 

Pleiotropic effects of selection on genetically negatively correlated diseases 

Polygenic risk scores are often correlated across diseases (Watanabe et al., 2019; Zheng et al., 2017). 

Therefore, selecting based on the PRS of one disease may increase or decrease risk for other diseases. 

While a full analysis of screening for multiple diseases is left for future work, our simulation framework 

allows us to investigate the potential harmful effects of prioritizing embryos for one disease, in case that 

disease is negatively correlated with another disease (Materials and Methods). We considered genetic 

correlations between diseases taking the values 𝜌 = (−0.05, −0.1, −0.15, −0.2, −0.3). [The most 

negative correlation between two diseases reported in LDHub (http://ldsc.broadinstitute.org/ldhub/) is 

−0.3, occurring between ulcerative colitis and chronic kidney disease (Zheng et al., 2017).] In general, 

negative correlations between diseases are uncommon, and when they occur, typical correlations are 

about −0.1. 

Figure 5 shows the simulated risk reduction for the target disease and the risk increase for the 

correlated disease, across different values of 𝜌 and for three values of the prevalence 𝐾 (panels (A)-(C); 

assumed equal for the two diseases), all under the LRP strategy. In all panels, we used 𝑟𝑝𝑠
2 = 0.1 for both 

diseases. The relative risk reduction for the target disease is, as expected, always higher in absolute value 

than the risk increase of the correlated disease. For typical values of 𝜌 = −0.1 and 𝑛 = 5, the relative 

increase in risk of the correlated disease is relatively small, at ≈6% for 𝐾 ≤ 0.05 and ≈3.5% for 𝐾 = 0.2. 

However, for strong negative correlation (𝜌 = −0.3) the increase in risk can reach 22%, 16%, or 11% for 

𝐾 = 0.01, 0.05, and 0.2, respectively. Thus, care must be taken in the unique setting when the target 

disease is strongly negatively correlated with another disease. 

Simulations based on real genomes from case-control studies 
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Our analysis so far has been limited to mathematical analysis and simulations based on a statistical 

model. In principle, it would be desirable to compare our predictions to results based on real data. 

However, clearly, no real genomic and phenotypic data exist that would correspond to our setting, nor 

could such data be ethically or practically generated. Thus, we resort to a “hybrid” approach, in which we 

simulate the genomes of embryos based on real genomic data from case-control studies. This approach is 

similar to the one we have previously used for studying polygenic embryo screening for traits (Karavani 

et al., 2019). 

Briefly, our approach is as follows. We consider separately two diseases with somewhat differing 

genetic architecture: schizophrenia, which is amongst the most polygenic complex diseases, with no 

common loci of high effect size, and Crohn’s disease, which is estimated to be less polygenic, and has 

several common loci with much larger effects than those found in schizophrenia (O'Connor et al., 2019). 

For each disease, we used genomes of unrelated individuals drawn from case-control studies. For 

schizophrenia, we used ≈900 cases and ≈1600 controls of Ashkenazi Jewish ancestry, while for Crohn’s, 

we used ≈150 cases and ≈100 controls of European ancestry. We then generated “virtual couples” by 

randomly mating pairs of individuals, regardless of sex or disease status. For each couple, we simulate the 

genomes of 𝑛 hypothetical embryos, based on the laws of Mendelian inheritance and by randomly placing 

crossovers according to genetic map distances. In parallel, we used the “parental” genomes to learn a 

logistic regression model that predicts the disease risk given a PRS computed based on existing summary 

statistics. We then computed the PRS of each simulated embryo, and predicted the risk that embryo to be 

affected. Finally, we compared the risk of disease between a population in which one embryo per couple 

is selected at random, vs. a population in which one embryo is selected based on its PRS. For complete 

details, see Materials and Methods. 

In Figure 6, we plot the results for the relative risk reduction for schizophrenia (panels (A) and (B)) 

and Crohn’s disease (panels (C) and (D)). For each disease, we consider both the HRE and LRP 

strategies. The analytical predictions closely match the empirical risk reductions generated in the 

simulations, except for a slight overestimation of the RRR under the LRP strategy. Nevertheless, for both 
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schizophrenia and Crohn’s disease, we empirically observe that RRRs as high as ≈45% are achievable 

with 𝑛 = 5 embryos. In contrast, under the HRE strategy and when excluding embryos at the top 2% risk 

percentiles, risk reductions are very small, in agreement with the theoretical predictions. These results 

thus provide support to the robustness of our statistical model. 

To further investigate the assumptions of our model, we test in Figure 6 – Figure Supplement 1 

two intermediate predictions. The first is that the variance of the PRSs of embryos of a given couple 

should not depend on the average parental PRS. This is indeed the case (panels (A) and (C)), with the 

only exception of an uptick of the variance at very low parental PRSs for schizophrenia. The second 

prediction is that the variance across embryos is half of the variance in the parental population. The 

empirical results again show reasonable agreement with the theoretical prediction (panels (B) and (D)). 

The empirical variance (averaged across couples) was slightly lower than expected (by ≈4% for 

schizophrenia and ≈14% for Crohn’s), which may explain our slight overestimation of the expected RRR 

under the LRP strategy. 

Discussion 

In this paper, we used statistical modeling to evaluate the expected outcomes of screening embryos 

based on polygenic risk scores for a single disease. We predicted the relative and absolute risk reductions, 

either at the population level or at the level of individual couples. Our model is flexible, allowing us to 

provide predictions across various values of, e.g., the PRS strength, the disease prevalence, the parental 

PRS or disease status, and the number of available embryos. We presented a comprehensive analysis of 

the expected outcomes across various settings, including when there is a concern about a second disease 

negatively correlated with the target disease. We finally validated our modeling assumptions using 

genomes from case-control studies. Our publicly available code could help researchers and other 

stakeholders estimate the expected outcomes for settings we did not cover. 

Our most notable result was that a crucial determinant of risk reduction is the selection strategy. The 

use of PRS in adults has focused on those at highest risk (Chatterjee et al., 2016; Dai et al., 2019; Gibson, 
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2019; Khera et al., 2018; Mars et al., 2020; Mavaddat et al., 2019; Torkamani et al., 2018), for whom 

there may be maximal clinical benefit of screening and intervention. However, as PRSs have relatively 

low sensitivity, such a strategy is relatively ineffective in reducing the overall population disease burden 

(Ala-Korpela & Holmes, 2020; Wald & Old, 2019). Similarly, in the context of PES, exclusion of high-

risk embryos will result in relatively modest risk reductions. By contrast, selecting the embryo with the 

lowest PRS may result in large reductions in relative risk. 

While our prior work (Karavani et al. 2019) demonstrated that PES would have a small effect on 

quantitative traits, here we show that a small reduction in the liability can lead to a large reduction in the 

proportion of affected individuals. This is fundamentally a property of a threshold character with an 

underlying normally distributed continuous liability. For such traits, most of the individuals in the 

extreme of the liability distribution (i.e., the ones affected) are concentrated very near the threshold. Thus, 

even slightly reducing their liability can move a large proportion of affected individuals below the disease 

threshold. However, it should be noted that conventional thresholds for defining presence of disease may 

contain some degree of arbitrariness if the underlying distribution of pathophysiology is truly continuous. 

Consequently, the effects on ultimate morbidity may depend on the validity of the threshold itself 

(Davidson & Kahn, 2016). 

We investigated how the range of potential PES outcomes varies with the PRSs of the parents or 

with their disease status. Under the HRE strategy, if only excluding embryos at the few topmost risk 

percentiles, the RRR is very small when the parents have low PRSs, and vice versa (Figure 3, panels (A)-

(D)). This is expected, as excluding high PRS embryos will be effective only for couples who are likely to 

have many such embryos. Under the LRP strategy, the RRR depends only weakly on the parental PRSs 

(Figure 3, panels (E)-(H), and Figure 4). Under both strategies, the relative risk reduction depends only 

weakly on the parental disease status, as parental disease status is a weak signal for the underlying PRS. 

However, the absolute risk reduction increases substantially with increasing parental PRSs (Figure 3 – 

Figure Supplement 2) and when one or more parents are affected. 
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Our study has several limitations. First, our results assume an infinitesimal genetic architecture for 

the disease, which may not be appropriate for oligogenic diseases and is not relevant for monogenic 

disorders. However, it has been repeatedly demonstrated that common, complex traits and diseases are 

highly polygenic (Gazal et al., 2017; Holland et al., 2020; O’Connor et al., 2019; Shi et al., 2016; Zeng et 

al., 2018, 2021). For example, it was recently estimated that for almost all traits and diseases examined, 

the number of independently associated loci was at least ≈350, reaching ≈10,000 or more for cognitive 

and psychiatric phenotypes (O’Connor et al., 2019). This provides more than sufficient variability for the 

PRS to attain a normal distribution in the population and for our modeling assumptions to hold. Indeed, 

our empirical results for schizophrenia and Crohn’s disease, two diseases with somewhat different genetic 

architectures, agreed reasonably well with the theoretical predictions. However, our models would need to 

be substantially adjusted in the presence of variants of very large effect, such as inherited or de novo 

coding variants or copy number variants, e.g., as in autism (Satterstrom et al., 2020; Takumi & Tamada, 

2018).   

Additionally, our model relies on several simplifying statistical assumptions. For example, we did 

not explicitly model assortative mating, although this seems reasonable given that for genetic disease risk, 

correlation between parents is weak (Rawlik et al., 2019), and given that our previous study of traits 

showed no difference in the results between real and random couples (Karavani et al., 2019). This 

deficiency is also partly ameliorated by our modeling of the risk reduction when explicitly given the 

parental PRSs or disease status. Another assumption we made is that environmental influences on the 

child’s phenotype are independent of those that have influenced the parents (when conditioning on the 

parental disease status). However, this is reasonable given that family-specific environmental effect have 

been shown to be weak for complex diseases (Wang et al., 2017). For a discussion of additional model 

assumptions, see Materials and Methods, Appendix section 10. 

Perhaps more importantly, we assumed throughout that 𝑟𝑝𝑠
2  represents the realistic accuracy of the 

PRS achievable, within-family, in a real-world setting in the target population. However, the realistically 
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achievable 𝑟𝑝𝑠
2  may be lower than reported in the original publications that have generated the scores. For 

example, the accuracy of PRSs is sub-optimal when applied in non-European populations and across 

different socio-economic groups (Duncan et al., 2019; Mostafavi et al., 2020). A PRS that was tested on 

adults may be less accurate in the next generation. Additionally, the variance explained by the score, as 

estimated in samples of unrelated individuals, is inflated due to population stratification, assortative 

mating, and indirect parental effects (Kong et al., 2018; Young et al., 2019; Morris et al., 2020; Mostafavi 

et al., 2020). The latter, also called “genetic nurture", refers to trait-modifying environmental effects 

induced by the parents based on their genotypes. These effects do not contribute to prediction accuracy 

when comparing polygenic scores between siblings (as when screening IVF embryos), and thus, the 

variance explained by polygenic scores in this setting can be substantially reduced, in particular for 

cognitive and behavioral traits (Howe et al., 2021; Selzam et al., 2019). Our risk reduction estimates thus 

represent an upper bound relative to real-world scenarios. On the other hand, recent empirical work on 

within-family disease risk prediction showed that the reduction in accuracy is at most modest (Lello et al., 

2020), and within-siblings-GWAS yielded similar results to unrelated-GWAS for most physiological 

traits (Howe et al., 2021). Additionally, accuracy in non-European populations is rapidly improving due 

to the establishment of national biobanks in non-European countries (Koyama et al., 2020; Vujkovic et 

al., 2020) and improvement in methods for transferring scores into non-European populations (Amariuta 

et al., 2020; Cai et al., 2021). Either way, the analytical results presented in this paper are formulated 

generally as a function of the achievable accuracy 𝑟𝑝𝑠
2 , and as such, users can substitute values relevant to 

their specific target population and disease.  

Another major limitation of this work is that we have only considered screening for a single disease. 

In reality, couples may seek to profile an embryo on the basis of multiple disease PRSs simultaneously, or 

based a global measure of lifespan or healthspan (Sakaue et al., 2020; Timmers et al., 2020; Zenin et al., 

2019). This is likely to reduce the per-disease risk reduction, as we have previously observed for 

quantitative traits (Karavani et al., 2019), but will also likely be more cost effective (Treff et al., 2020). 
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PES for multiple diseases requires the formulation and analysis of new selection strategies, and is 

substantially more mathematically complex; we therefore leave it for future studies.  

As our approach was statistical in nature, it is important to place our results in the context of real-

world clinical practice of assisted reproductive technology. The number of embryos utilized in the 

calculations in the present study refers to viable embryos that could lead to live birth, which can be 

substantially smaller than the raw number of fertilized oocytes or even the number of implantable 

embryos at day 5. This consideration is especially important given the steep drop in risk reduction when 

the number of available embryos drops below 5 (Figure 2). In fact, many IVF cycles do not achieve any 

live birth. Rates of live birth decline with maternal age, in particular after age 40 (Smith et al., 2015); for 

women age >42, fewer than 4% of IVF cycles result in live births, making PES impractical. On the other 

hand, success rates will likely be higher for young prospective parents who seek PES to reduce disease 

risk but do not suffer from infertility. However, the prospect of elective IVF for the purpose of PES in 

such couples must be weighed against the potential risks of these invasive procedures to the mother and 

child (Dayan et al., 2019; Luke, 2017). 

A different concern is whether the embryo biopsy (which is required for genotyping) may cause risk 

to the viability and future health of the embryo. Several recent studies have demonstrated no evidence for 

potential adverse effects of trophectoderm biopsy on rates of successful implantation, fetal anomalies, and 

live birth (Awadalla et al., 2021; He et al., 2019; Riestenberg et al., 2021; Tiegs et al., 2021). Moreover, 

no significant adverse effects have been detected for postnatal child development in a recent meta-

analysis (Natsuaki & Dimler, 2018). On the other hand, a number of studies have reported that 

trophectoderm biopsy was associated with pregnancy complications, including preterm birth, pre-

eclampsia, and hypertensive disorders of pregnancy (Li et al., 2021)(W. Y. Zhang et al., 2019)(Makhijani 

et al., 2021). Specific variations in biopsy protocols may account for differences in outcomes across 

studies (Rubino et al., 2020). Newly developed techniques may allow in the future to genotype an embryo 

non-invasively based on DNA present in spent culture medium, although the accuracy of these methods is 
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still being debated (Leaver & Wells, 2020). It should also be noted that, throughout this manuscript, we 

assumed the use of single embryo transfer. 

Finally, the results of our study invite a debate regarding ethical and social implications. For 

example, the differential performance of PES across selection strategies and risk reduction metrics may 

be difficult to communicate to couples seeking assisted reproductive technologies (Cunningham et al., 

2015; Wilkinson et al., 2019). Indeed, in the first PES case report, the couple elected to forego any 

implantation despite the availability of embryos that were designated as normal risk (Treff et al. 2019). 

These difficulties are expected to exacerbate the already profound ethical issues raised by PES (as we 

have recently reviewed (Lázaro-Muñoz et al., 2020)), which include stigmatization (McCabe & McCabe, 

2011), autonomy (including “choice overload” (Hadar & Sood, 2014)), and equity (Sueoka, 2016). In 

addition, the ever-present specter of eugenics (Lombardo, 2018) may be especially salient in the context 

of the LRP strategy. How to juxtapose these difficulties with the potential public health benefits of PES is 

an open question. We thus call for urgent deliberations amongst key stakeholders (including researchers, 

clinicians, and patients) to address governance of PES and for the development of policy statements by 

professional societies. We hope that our statistical framework can provide an empirical foundation for 

these critical ethical and policy deliberations. 

Materials and Methods 

Summary of the modeling results 

In this section, we provide a brief overview of our model and derivations, with complete details 

appearing in the Appendix. 

Our model is follows. We write the polygenic risk scores of a batch of 𝑛 IVF embryos as (𝑠1, … , 𝑠𝑛), 

and generate the scores as 𝑠𝑖 = 𝑥𝑖 + 𝑐. The (𝑥1, … , 𝑥𝑛) are embryo-specific independent random 

variables with distribution 𝑥𝑖 ∼ 𝑁(0, 𝑟𝑝𝑠
2 /2), 𝑟𝑝𝑠

2  is the proportion of variance in liability explained by the 

score, and 𝑐 is a shared component with distribution 𝑐 ∼ 𝑁(0, 𝑟𝑝𝑠
2 /2), also representing the average of the 

maternal and paternal scores. 
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In each batch, an embryo is selected according to the selection strategy. Under high-risk exclusion, 

we select a random embryo with score 𝑠 < 𝑧𝑞𝑟𝑝𝑠, where 𝑧𝑞 is the (1 − 𝑞)-quantile of the standard normal 

distribution. If no such embryo exists, we select a random embryo, but we also studied the rule when in 

such a case, the lowest scoring embryo is selected. Under lowest-risk prioritization, we select the embryo 

with the lowest value of 𝑠. We computed the liability of the selected embryo as 𝑦 = 𝑠 + 𝑒, where 

𝑒 ∼ 𝑁(0,1 − 𝑟𝑝𝑠
2 ). We designate the embryo as affected if 𝑦 > 𝑧𝐾, where 𝑧𝐾 is the (1 − 𝐾)-quantile of 

the standard normal distribution and 𝐾 is the disease prevalence. In the simulations, we computed the 

disease probability (for each parameter setting) as the fraction of batches (out of 106 repeats) in which the 

selected embryo was affected. We also simulated the score and disease status of a second disease, which 

is not used for selecting the embryo, but may be negatively correlated with the target disease. 

We computed the disease probability analytically using the following approaches. We first computed 

the distribution of the score of the selected embryo. For lowest-risk prioritization, we used the theory of 

order statistics. For high-risk exclusion, we first conditioned on the shared component 𝑐, and then studied 

separately the case when all embryos are high-risk (i.e., have score 𝑠 > 𝑧𝑞𝑟𝑝𝑠), in which the distribution 

of the unique component of the selected embryo (𝑥) is a normal variable truncated from below at 𝑧𝑞𝑟𝑝𝑠, 

and the case when at least one embryo has score 𝑠 < 𝑧𝑞𝑟𝑝𝑠, in which 𝑥 is a normal variable truncated 

from above. We then integrated over the non-score liability components (and over 𝑐 in some of the 

settings) in order to obtain the probability of being affected. We solved the integrals in the final 

expressions numerically in R. 

We computed the risk reduction based on the ratio between the risk of a child of a random couple 

when the embryo was selected by PRS and the population prevalence. We also provide explicit results for 

the case when the average parental PRS 𝑐 is known. These expressions allowed us to compute the 

distribution of risk reductions per-couple. Finally, when conditioning on the parental disease status, we 

integrated the disease probability of the selected embryo over the posterior distribution of the parental 

score and non-score genetic components. For full details and for an additional discussion of previous 
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work and limitations, see the Appendix. R code is available at: 

https://github.com/scarmi/embryo_selection. 

Simulations based on genomes from case-control studies 

Our main analysis has been limited to mathematical modeling of polygenic scores and their relation 

to disease risk. For obvious ethical and practical reasons, we could not validate our modeling predictions 

with actual experiments. Nevertheless, we could perform realistic simulations based on genomes from 

case-control studies, similarly to our previous work (Karavani et al., 2019). Our approach is generally as 

follows. We consider, separately, two diseases: schizophrenia and Crohn’s. For schizophrenia, we use 

≈900 cases and ≈1600 controls of Ashkenazi Jewish ancestry, while for Crohn’s, we use ≈150 cases and 

≈100 controls from the New York area. For each disease, we use these individuals, who are unrelated, to 

generate “virtual couples” by randomly mating pairs of individuals. For each such “couple”, we simulate 

the genomes of 𝑛 hypothetical embryos, based on the laws of Mendelian inheritance and by randomly 

placing crossovers according to genetic map distances. In parallel, we use the same genomes to learn a 

logistic regression model that predicts the risk of disease given a PRS computed from the most recently 

available summary statistics (excluding the samples in our test cohorts). We then compute the PRS of 

each simulated embryo, and predict the risk of disease of that embryo. We finally compare the risk of 

disease between one randomly selected embryo per couple vs one embryo selected based on PRS. In the 

paragraphs below, we provide additional details. 

The Ashkenazi schizophrenia cohort: The samples and the genotyping process were previously 

described (Lencz et al., 2013). Patients were recruited from hospitalized inpatients at seven medical 

centres in Israel diagnosed with schizophrenia or schizoaffective disorder and samples from healthy 

Ashkenazi individuals were collected from volunteers at the Israeli Blood Bank. All subjects provided 

written informed consent, and corresponding institutional review boards and the National Genetic 

Committee of the Israeli Ministry of Health approved the studies. DNA was extracted from whole blood 

and genotyped for ~1 million genome-wide SNPs using Illumina HumanOmni1-Quad arrays. We 

performed the following quality control steps. First, we removed samples with (1) genotyping call rate 
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<95%; (2) one of each pair of related individuals (total shared identical-by-descent (IBD) segments 

>700cM); and (3) sharing of less than 15cM on average with the rest of the cohort (indicating non-

Ashkenazi ancestry). We removed SNPs with (1) call rate <97%; (2) minor allele frequency <1%; (3) 

significantly different allele frequencies between males and females (P-value threshold = 0.05/#SNPs); 

(4) differential missingness between males and females (P<10
-7

) based on a χ
2
 test; (5) deviations from 

Hardy-Weinberg equilibrium in females (P-value threshold = 0.05/#SNPs); (6) SNPs in the HLA region 

(chr6:24-37M); and (7) (after phasing) SNPs having A/T or C/G polymorphism, as we could not 

unambiguously link them to corresponding effect sizes in the summary statistics. We finally used 

autosomal SNPs only. The remaining number of individuals was 2,526 (897 cases and 1629 controls), and 

the number of SNPs was 728,505. We phased the genomes using SHAPEIT v2 (Delaneau et al., 2013). 

The Mt Sinai Crohn’s disease cohort: Samples from subjects with Crohn’s disease were recruited 

from clinics by Mt Sinai providers. All subjects provided written, informed consent in studies approved 

by the Mt Sinai Institutional Review Board. Genotyping was performed at the Broad Institute using the 

Illumina Global Screening Array (GSA) chip, as previously described (Gettler et al., 2021). We phased 

the genomes using Eagle v2.4.1 (Loh et al., 2016). We then removed SNPs having A/T or C/G 

polymorphism. The remaining number of individuals was 257 (154 cases and 103 controls) and the 

number of SNPs was 560,612.  

Simulating couples and embryos: For each disease, we generated 5,000 unique couples by randomly 

pairing individuals (regardless of their sex) according to the population prevalence of the disease. For 

example, for schizophrenia, assuming a prevalence of 1%, a proportion 0.99
2
 of the couples were both 

controls. Given a pair of parents, we simulated 20 offspring (embryos) by specifying the locations of 

crossovers in each parent. Recombination was modeled as a Poisson process along the genome, with 

distances measured in cM using sex-averaged genetic maps (Bhérer et al., 2017). Specifically, for each 

parent and embryo, we drew the number of crossovers in each chromosome from a Poisson distribution 

with mean equal to the chromosome length in Morgan. We then determined the locations of the 

crossovers by randomly drawing positions along the chromosome (in Morgan). We mixed the phased 
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paternal and maternal chromosomes of the parent according to the crossover locations, and randomly 

chose one of the resulting sequences as the chromosome to be transmitted to the embryo. We repeated for 

the other parent, in order to form the diploid genome of the embryo. 

Developing a polygenic risk score for schizophrenia: We used summary statistics from the most 

recent schizophrenia GWAS of the Psychiatric Genomics Consortium (PGC) (Schizophrenia Working 

Group of the Psychiatric Genomics et al., 2020). Note that we specifically used summary statistics that 

excluded our Ashkenazi cohort. We used the entire cohort (2526 individuals) to estimate linkage 

disequilibrium (LD) between SNPs, and performed LD-clumping on the summary statistics in PLINK 

(Chang et al., 2015), with a window size of 250kb, a minimum 𝑟2 threshold for clumping of 0.1, a 

minimum minor allele frequency threshold of 0.01, and a maximum P-value threshold of 0.05. The P-

value threshold was chosen based on results from the PGC study. After clumping, the final score included 

23,036 SNPs. To construct the score, we used the effect sizes reported in the GWAS summary statistics, 

without additional processing. 

Developing a polygenic risk score for Crohn’s disease: We used summary statistics derived from 

European samples available from https://www.ibdgenetics.org/downloads.html (Liu et al., 2015), which 

did not include our cohort. We estimated LD using the entire Crohn’s disease cohort, and performed LD-

clumping and P-value thresholding using the same parameters as for the schizophrenia cohort, as 

described above. The final score included 9,403 SNPs.  

Calculating the PRS and the risk of an embryo: For each disease, we calculated polygenic scores for 

each parent and simulated embryo in PLINK, using the --score command with default parameters. Using 

the polygenic scores of the parents, we fitted a logistic regression model for the case/control status as a 

function of the polygenic scores. We did not adjust for additional covariates: for schizophrenia, genetic 

ancestry is homogeneous in our Ashkenazi cohort, and age and sex contributed very little to predictive 

power (increased AUC from 0.695 only to 0.717). For Crohn’s, age was not available, and sex did not 

contribute to predictive power (increased AUC from to 0.693 to 0.695). We adjusted the intercept of the 
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logistic regression models to account for the case-control sampling (Rose & van der Laan, 2008). We then 

used the model to predict the probability that a simulated embryo would develop the disease. 

To determine the percentiles of the PRS for each disease, we derived an approximation to the 

distribution of the PRS in the population by fitting a normal distribution to the scores in our dataset. To 

take into account the case/control ascertainment, we weighted the case and control samples according to 

the population prevalence of the disease (1% for schizophrenia (Perälä et al., 2007) and 0.5% for Crohn’s 

(GBD 2017 Inflammatory Bowel Disease Collaborators, 2020). We calculated the weighted mean and 

variance of the scores using the wtd.mean and wtd.var functions in the HMisc package in R. A normal 

distribution with the resulting mean and variance was used to calculate percentiles of the scores. The 

percentiles were then used to select (simulated) embryos under the high-risk exclusion strategy (see 

below). 

Calculating the risk reduction: For each disease, we performed the following simulations. For each 

selection strategy (either high-risk exclusion or lowest-risk prioritization), we selected one embryo for 

each couple according to the strategy, and computed the probability of disease for the selected embryo. 

We then averaged the risk over all couples. We similarly computed the risk under selection of a random 

embryo for each couple. We computed the relative risk reduction based on the ratio between the risk 

under PRS-based selection and the risk under random selection. To compare to the theoretical 

expectations, we estimated the variance explained by the score on the liability scale using the method of 

Lee et al. (Lee et al., 2012). Specifically, we first computed the correlation between the observed 

case/control status (coded as 1 and 0, respectively) and the PRS, and then used Eq. (15) in Lee et al to 

convert the squared correlation to the variance explained. We obtained 𝑟𝑝𝑠
2 = 6.8% for schizophrenia, 

which is close to the 7.7% reported in the original GWAS paper (Schizophrenia Working Group of the 

Psychiatric Genomics et al., 2020), and 𝑟𝑝𝑠
2 = 5.6% for Crohn’s disease. We then substituted this value 

and prevalence of 𝐾 = 0.01 for schizophrenia and 𝐾 = 0.005 for Crohn’s in our formulas for the relative 

risk reduction. 
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Code availability: Code for these analyses is at https://github.com/dbackenroth/embryo_selection.  
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Figure 1. A schematic of the liability threshold model and polygenic embryo screening. (A) An illustration of 

the embryo selection strategies considered in this report. In the figure, each embryo is shown as a filled circle, and 

embryos are sorted based on their predicted risk, i.e., their polygenic risk scores. Excluded embryos are shown in 

pink, and embryos that can be implanted in green. The risk reduction (RR) is indicated as the difference in risk 

between a randomly selected embryo (if no polygenic scoring was performed) and the embryo selected based on one 

of two strategies. In high-risk exclusion (HRE), the embryo selected for implantation is random, as long as its PRS is 

under a high-risk cutoff (usually the top few PRS percentiles). If all embryos are high-risk, a random embryo is 

selected. In lowest-risk prioritization (LRP), the embryo with the lowest PRS is selected for implantation. As we 

describe below, the LRP strategy yields much larger disease risk reductions. (B) An illustration of the liability 

threshold model (LTM). Under the LTM, each disease has an underlying (unobserved) liability, and an individual is 

affected if the total liability is above a threshold. The liability is composed of a genetic component and an 

environmental component, both assumed to be normally distributed in the population. For a given genetic risk 

(represented here by the polygenic risk score), the liability is the sum of that risk, plus a normally distributed 

residual component (environmental + genetic factors not captured by the PRS). For an individual with high genetic 

risk (bottom curve), even a modestly elevated (and thus, commonly-occurring) liability-increasing environment will 

lead to disease. For an individual with low genetic risk (top curve), only an extreme environment will push the 

liability beyond the disease threshold. Thus, disease risk reduction can be achieved with embryo screening by 

lowering the genetic risk of the implanted embryo. (Note that for the purpose of illustration, panel (B) displays three 

discrete levels of genetic risk, although in reality, the PRS is continuously distributed.) 
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Figure 2. The relative risk reduction across selection strategies and disease parameters. The relative risk 

reduction (RRR) is defined as (𝐾 − 𝑃(disease))/𝐾, where 𝐾 is the disease prevalence, and 𝑃(disease) is the 

probability of the implanted embryo to become affected. The RRR is shown for the high-risk exclusion (HRE) 

strategy in the upper row (panels (A)-(C)), and for the lowest-risk prioritization (LRP) in the lower row (panels (D)-

(F)). See Figure 1 for the definitions of the strategies. Results are shown for values of 𝐾 = 0.01, 0.05, and 0.2 

(panels (A)-(C), respectively), and within each panel, for variance explained by the PRS (on the liability scale) 

𝑟𝑝𝑠
2 = 0.05, 0.1, and 0.3 (legends). Symbols denote the results of Monte-Carlo simulations (Materials and Methods), 

where PRSs of embryos were drawn based on a multivariate normal distribution, assuming PRSs are standardized to 

have zero mean and variance 𝑟𝑝𝑠
2 , and accounting for the genetic similarity between siblings (Eq. (4) in Materials 

and Methods). In each simulated set of 𝑛 sibling embryos (𝑛 = 5 for all simulations under HRE), one embryo was 

selected according to the selection strategy. The liability of the selected embryo was computed by adding a residual 

component (drawn from a normal distribution with zero mean and variance 1 − 𝑟𝑝𝑠
2 ) to its polygenic score. The 

embryo was considered affected if its liability exceeded 𝑧𝐾, the (upper) 𝐾-quantile of the standard normal 

distribution. We repeated the simulations over 106 sets of embryos and computed the disease risk. In each panel, 

curves correspond to theory: Eq. (31) in Materials and Methods for the HRE strategy, and Eq. (20) in Materials and 

Methods for the LRP strategy. Black straight lines correspond to the RRR achieved when excluding embryos at the 

top 2% of the PRS (for HRE, upper panels) or for selecting the lowest risk embryo out of 𝑛 = 5 (for LRP, lower 

panels). 
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Figure 2 - Figure Supplement 1. The relative risk reduction for the high-risk exclusion strategy, with 𝒏 = 𝟏𝟎 

available embryos. All details are exactly as in panels (A-C) in Figure 2 of the main text, except that we simulated 

𝑛 = 10 embryos. 
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Figure 2 – Figure Supplement 2. The relative risk reduction under the high-risk exclusion (HRE) strategy, 

using two different rules for how an embryo is selected when all embryos are high risk. All details are similar 

to those of Figure 2 of the main text, except the following. We used 𝑛 = 5 embryos, 𝑟𝑝𝑠
2 = 0.1, and 𝐾 = 0.01, 0.05, 

and 0.2 (panels (A)-(C), respectively). For both sub-strategies, we first determined whether there were any non-

high-risk embryos. If such embryos existed, one of them was randomly selected. If all embryos were high risk, the 

pink symbols and lines correspond to selecting an embryo at random (symbols: simulations; line: theory; see 

Materials and Methods). The cyan symbols correspond to selecting the embryo with the lowest PRS (simulations 

only). The blue dashed horizontal line corresponds to the theoretical relative risk reduction for the lowest-risk 

prioritization (LRP) strategy. When all embryos are designated as high risk (percentile PRS to exclude is 100%), the 

random selection sub-strategy reduces to a completely random selection and thus yields no risk reduction, whereas 

the lowest PRS sub-strategy becomes equivalent to the regular LRP strategy. 
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Figure 2 – Figure Supplement 3. The relative risk reduction under the lowest-risk prioritization strategy for a 

dichotomized trait. In panel (A), we define a hypothetical individual as “affected” (or having an intellectual 

disability) if that individual has IQ<70. Assuming IQ is normally distributed with a mean of 100 and a SD of 15, this 

implies that the prevalence is 𝐾 = 2.3%. We plot the predicted relative risk reduction (computed as in Figure 2) vs 

the number of embryos 𝑛 under the LRP strategy (note that here, the embryo with the highest score is selected). We 

used 𝑟𝑝𝑠
2 = 0.052 (Savage et al., 2018). In panel (B), we show the predicted RRR under the LRP strategy for a “high 

LDL cholesterol” binary trait. Here, we fixed 𝑛 = 5 and varied the prevalence of our hypothetical “high LDL” trait. 

Given a prevalence 𝐾, an individual is defined as having “high LDL” if its LDL value in the top 𝐾-percentiles. We 

used 𝑟𝑝𝑠
2 = 0.12 (Weissbrod et al., 2021). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2021. ; https://doi.org/10.1101/2020.11.05.370478doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.370478
http://creativecommons.org/licenses/by-nc-nd/4.0/


46 
 

 

Figure 3. The relative risk reduction when the polygenic risk scores of the parents are known. Panels (A)-(D) 

are for the high-risk exclusion (HRE) strategy, while panels (E)-(H) are for the lowest-risk prioritization (LRP) 

strategy. All details are as in Figure 2, except the following. First, we fixed the prevalence to 𝐾 = 5%. Second, in 

the simulations, we drew the PRS of each embryo as 𝑠𝑖 = 𝑥𝑖 + 𝑐 (𝑖 = 1, … , 𝑛), where 𝑥𝑖 is an embryo-specific 

component (independent across embryos) and 𝑐 is the shared component, also representing the mean parental PRS 

(Materials and Methods). This is so far as in Figure 2; however, here we assumed that 𝑐 is given, equal to the 

average PRSs of the two parents. In each panel, we consider a different pair of PRSs for the parents. For example, in 

panels (A) and (E), both parents ("par. 1" and "par. 2") have PRS equal to the 50% percentile of the PRS 

distribution; in panels (B) and (F), one parent has PRS equal to the 98% percentile of the PRS distribution, while the 

other has PRS equal to the 25% percentile; and so on. Third, in the simulations, we computed the risk reduction 

(according to either strategy) relative to a baseline, obtained from the same sets of simulations, when we always 

selected the first embryo. The baseline risk is indicated in each legend as “bl”. Note that the baseline risk depends on 

the variance explained by the PRS, because the parental PRSs are determined as percentiles of the population 

distribution of the score, which has variance 𝑟𝑝𝑠
2 . Finally, we computed the theoretical disease risk for the HRE 

strategy using Eq. (29) from Materials and Methods, the disease risk for the LRP strategy using Eq. (23), and the 

relative risk reduction (shown in curves) for both strategies using Eq. (36). 
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Figure 3 - Figure Supplement 1. The relative risk reduction when the parental disease status is known. Panels 

(A)-(C) are for the high-risk exclusion (HRE) strategy, while panels (D)-(F) are for the lowest-risk prioritization 

(LRP) strategy. The details are as in Figure 2, except the following. First, we fixed the prevalence to 𝐾 = 5% and 

the heritability to ℎ2 = 0.4 (note that the heritability was not needed in previous figures). Second, in the simulations, 

we first drew the parental genetic components: 𝑠𝑚 and 𝑤𝑚 for the mother, and 𝑠𝑓 and 𝑤𝑓 for the father, where 

𝑠𝑚 ∼ 𝑠𝑓 ∼ 𝑁(0, 𝑟𝑝𝑠
2 ) are the polygenic scores and 𝑤𝑚 ∼ 𝑤𝑓 ∼ 𝑁(0, ℎ2 − 𝑟𝑝𝑠

2 ) represent non-score genetic factors 

(Materials and Methods). We drew the environmental component for each parent as 𝜖𝑚 ∼ 𝜖𝑓 ∼ 𝑁(0,1 − ℎ2) and 

computed the liability of each parent as 𝑠 + 𝑤 + 𝜖. If the liability of a parent exceeded 𝑧𝐾 (the upper 𝐾-quantile of 

the standard normal distribution), we designated that parent as affected. We then stratified the risk reduction results 

based on the number of affected parents: 0 (panels (A) and (D), 1 (panels (B) and (E)), and 2 (panels (C) and (F)). 

Note that as expected, the number of families in which both parents are affected is small, and thus, the results in 

panels (C) and (F) are noisy. For each set of parents, we drew the PRS of each embryo as 𝑠𝑖 = (𝑠𝑚 + 𝑠𝑓)/2 + 𝑥𝑖 

(𝑖 = 1, … , 𝑛), where 𝑥𝑖 ∼ 𝑁(0, 𝑟𝑝𝑠
2 /2) is an embryo-specific component of the score (independent across embryos). 

We then selected one embryo from each family based on either selection strategy. We computed the liability of the 

selected embryo as 𝑠𝑖 + (𝑤𝑚 + 𝑤𝑓)/2 + 𝑣𝑖 + 𝜖𝑖, where 𝑣𝑖 ∼ 𝑁(0, (ℎ2 − 𝑟𝑝𝑠
2 )/2) is the embryo-specific component 

of the non-score genetic factors, and 𝜖𝑖 ∼ 𝑁(0,1 − ℎ2) is the environmental component of the embryo (Materials 

and Methods). The embryo was designated as affected or unaffected as described above for the parents. We 

computed the risk reduction (according to either strategy) relative to a baseline, obtained from the same sets of 

simulations when we always selected the first embryo. The baseline risk is indicated on top of each panel. We 

computed the theoretical relative risk reduction for the two strategies as summarized in Appendix Section 6.9 of the 

Materials and Methods. 
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Figure 3 - Figure Supplement 2. The absolute risk reduction when the polygenic risk scores of the parents are 

known. All details are the same as in Figure 3, except that the absolute (rather than the relative) risk reduction is 

shown. The absolute risk reduction is defined as the difference between the baseline disease risk (given the parental 

PRSs; legends) and the risk following either strategy of embryo selection. It is plotted as percentage points. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2021. ; https://doi.org/10.1101/2020.11.05.370478doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.370478
http://creativecommons.org/licenses/by-nc-nd/4.0/


49 
 

 

Figure 4. The variability in the relative risk reduction across couples. We considered only the lowest-risk 

prioritization strategy. In panels (A)-(C), we computed the theoretical distribution of the per-couple relative risk 

reduction, as explained in the Materials and Methods, Appendix Section 5. Briefly, the per-couple RRR is defined as 

1 − 𝑃𝑠(disease | 𝑐)/𝑃𝑟(disease | 𝑐), where 𝑃𝑠(disease | 𝑐) is the probability of an embryo selected based on its PRS 

to be affected and 𝑃𝑟(disease | 𝑐) is the probability of a randomly selected embryo to be affected. Our modeling 

suggests that 𝑐, which is the average of the paternal and maternal PRSs, is the only determinant of the relative risk 

reduction of a given couple. We computed the distribution of the per-couple RRR based on 10
4
 quantiles of 𝑐, thus 

covering all hypothetical couples in the population. The number of embryos was set to 𝑛 = 5 in all panels. Panels 

(A)-(C) correspond to prevalence of 𝐾 = 0.01, 0.05, and 0.02, respectively. In panels (D)-(F), we plot the 

theoretical RRR vs the quantile of the average parental PRS 𝑐 (see Materials and Methods Section 5.1). 
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Figure 5. The increase in the risk of a negatively correlated disease due to polygenic embryo screening. We 

simulated two diseases that have genetic correlation 𝜌 < 0. We assumed that the prevalence 𝐾 is equal between the 

two diseases (𝐾 = 0.01, 0.05 and 0.2: panels (A)-(C), respectively), and that 𝑟𝑝𝑠
2 = 0.1 for both diseases. We 

simulated polygenic scores for the two diseases in 𝑛 embryos in each of 10
6
 couples. For each couple, we selected 

the embryo either randomly or based on having the lowest PRS for the target disease. We then computed the risk of 

the embryo to have each disease as in the main analyses, by drawing the residual component of the liability and 

designating the embryo as affected if the total liability exceeded a threshold. The relative risk reduction of the target 

disease is shown as gray squares (and connecting lines) at the top of each plot. The relative risk increase for the 

correlated disease is shown in colored circles (and connecting lines), with different colors corresponding to different 

values of 𝜌 (see legend). Note that the risk reduction for the target disease is independent of 𝜌.  
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Figure 6. The empirical relative risk reduction in simulated embryos based on genomes from case-control 

studies of schizophrenia and Crohn’s disease. We used ≈900 cases and ≈1600 controls for schizophrenia, and 

≈150 cases and ≈100 controls for Crohn’s. For each disease, we drew 5,000 random “virtual couples”, regardless of 

sex, but correcting for case/control ascertainment. For each such random couple, we simulated the genomes of up to 

𝑛 = 20 embryos (children) based on Mendelian segregation and published recombination maps. For each embryo, 

we computed the PRS for the given disease (schizophrenia or Crohn’s) using the most recent summary statistics that 

exclude our cohort. We computed the risk of each embryo to be affected based on a logistic regression model we 

learned in the “parental” cohort. Panels (A) and (B) show results for schizophrenia, while panels (C) and (D) show 

results for Crohn’s. In panels (A) and (C), we plot the relative risk reduction (RRR) under the high-risk exclusion 

(HRE) selection strategy, in which an embryo was randomly selected (out of 𝑛 = 5 embryos), unless its PRS was 

above a given percentile. The RRR was computed against a baseline strategy of selection of an embryo at random, 

and is plotted vs the exclusion percentile. In panels (B) and (D), we show the relative risk reduction under the 

lowest-risk prioritization (LRP) strategy, in which the embryo with the lowest PRS was selected. We plot the RRR 

vs the number of embryos 𝑛. In all panels, dots correspond to the results of simulations, and solid lines correspond 

to the theory. The theory was computed assuming prevalence of 1% for schizophrenia and 0.5% for Crohn’s, and 

variance explained on the liability scale of 𝑟𝑝𝑠
2 = 0.068 for schizophrenia 𝑟𝑝𝑠

2 = 0.056 for Crohn’s (calculated using 

the method of (Lee et al., 2012)). Further details are provided in Materials and Methods. 
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Figure 6 – Figure Supplement 1. The variance of the PRS across simulated embryos. Panels (A) and (B) are for 

schizophrenia, while panels (C) and (D) are for Crohn’s disease. Panels (A) and (C) show the variance of the PRS 

across the 𝑛 = 20 embryos of each simulated family, vs the quantile of the average parental PRS. The plots show 

results for 5,000 simulated families for each disease. The solid line shows smoothing cubic splines, fitted using a 

generalized additive model. The horizontal gray lines in (A) and (C) show the variance of the PRS in the parental 

population. According to the theory, the variance should be independent of the average parental PRS. Indeed, the 

variance is constant across average parental PRSs for Crohn’s disease. However, the variance is slightly decreasing 

with the average parental PRSs for schizophrenia, although the deviation is prominent only at the lowest decile. 

Panels (B) and (D) show the distribution of the variances across the same simulated families. The theoretical 

distribution is 𝜒2 with 𝑛 − 1 = 19 degrees of freedom, scaled by 𝑛 − 1 and multiplied by half the variance of the 

PRS in the “parental” cohort. The empirical distribution (red) is very close in location and in shape to the expected 

distribution (cyan), although slightly shifted to lower variances. 
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