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6

Abstract Neurons respond selectively to stimuli, and thereby define a code that associates7

stimuli with population response patterns. Certain correlations within population responses8

(noise correlations) significantly impact the information content of the code, especially in large9

populations. Understanding the neural code thus necessitates response models that quantify the10

coding properties of modelled populations, while fitting large-scale neural recordings and11

capturing noise correlations. In this paper we propose a class of response model based on12

mixture models and exponential families. We show how to fit our models with13

expectation-maximization, and that they capture diverse variability and covariability in recordings14

of macaque primary visual cortex. We also show how they facilitate accurate Bayesian decoding,15

provide a closed-form expression for the Fisher information, and are compatible with theories of16

probabilistic population coding. Our framework could allow researchers to quantitatively validate17

the predictions of neural coding theories against both large-scale neural recordings and cognitive18

performance.19

20

Introduction21

A foundational idea in sensory neuroscience is that the activity of neural populations constitutes22

a “neural code” for representing stimuli (Dayan and Abbott, 2005; Doya, 2007): the activity pattern23

of a population in response to a sensory stimulus encodes information about that stimulus, and24

downstream neurons decode, process, and re-encode this information in their own responses.25

Sequences of such neural populations implement the elementary functions that drive perception,26

cognition, and behaviour (Pitkow and Angelaki, 2017). Therefore, by studying the encoding and de-27

coding of population responses, researchers may investigate how information is processed along28

neural circuits, and how this processing influences perception and behaviour (Wei and Stocker,29

2015; Panzeri et al., 2017; Kriegeskorte and Douglas, 2018).30

Given a true statistical model of how a neural population responds to (encodes information31

about) stimuli, Bayes’ rule can transform the encoding model into an optimal decoder of stim-32

ulus information (Zemel et al., 1998; Pillow et al., 2010). However, when validated as Bayesian33

decoders, statistical models of neural encoding are often outperformed by models trained to de-34

code stimulus-information directly, indicating that the encoding models miss key statistics of the35

neural code (Graf et al., 2011; Walker et al., 2020). In particular, the correlations between neu-36

rons’ responses to repeated presentations of a given stimulus (noise correlations), and how these37

noise correlations are modulated by stimuli, can strongly impact coding in neural circuits (Zohary38

et al., 1994; Abbott and Dayan, 1999; Sompolinsky et al., 2001; Ecker et al., 2016; Kohn et al., 2016;39

Schneidman, 2016), especially in large populations of neurons (Moreno-Bote et al., 2014; Montijn40

et al., 2019; Bartolo et al., 2020; Kafashan et al., 2021; Rumyantsev et al., 2020).41

Statistically validating theories of population coding in large neural circuits thus depends on42
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encoding models that support accurate Bayesian decoding, effectively capture noise-correlations,43

and efficiently fit large-scale neural recordings. There are at least two classes of neural record-44

ings for which established models have facilitated such analyses. Firstly, for recordings of binary45

spike-counts, pairwise-maximum entropy models (Schneidman et al., 2006; Lyamzin et al., 2010;46

Granot-Atedgi et al., 2013; Tkačik et al., 2013; Meshulam et al., 2017; Maoz et al., 2020) have47

been used to investigate the structure of the retinal code (Ganmor et al., 2015; Tkačik et al., 2015).48

Secondly, when modelling dynamic spike-train recordings, generalized linear models (GLMs) have49

proven effective at modelling spatio-temporal features of information processing in the retina and50

cortex (Pillow et al., 2008; Park et al., 2014; Runyan et al., 2017; Ruda et al., 2020).51

Nevertheless, many theories of neural coding are formulated in terms of unbounded spike-52

counts (Ma et al., 2006; Beck et al., 2011a; Ganguli and Simoncelli, 2014;Makin et al., 2015; Yerxa53

et al., 2020), rather than the binary spike-counts of pairwise maximum entropy models. Further-54

more, neural correlations are often low-dimensional (Arieli et al., 1996; Ecker et al., 2014; Goris55

et al., 2014; Rabinowitz et al., 2015; Okun et al., 2015; Semedo et al., 2019), in contrast with the56

correlations that result from the fully connected, recurrent structure of standard GLMs. Although57

there are extensions of theGLMapproach that capture shared-variability (Vidne et al., 2012;Archer58

et al., 2014; Zhao and Park, 2017), they seem unable to support exact Bayesian decoding. Similarly,59

methods such as factor analysis that model unbounded spike-counts as continuous variables have60

proven highly effective at modelling neural correlations in large-scale recordings (Yu et al., 2009;61

Cunningham and Yu, 2014; Ecker et al., 2014; Semedo et al., 2019), yet it also unknown if they can62

support accurate Bayesian decoding.63

Towardsmodelling spike-count responses and accurate Bayesian decoding in large populations64

of correlated neurons, we develop a class of encoding model based on finite mixtures of Poisson65

distributions. Within neuroscience, Poisson mixtures are widely applied to modelling the spike-66

count distributions of individual neurons (Wiener and Richmond, 2003; Shidara et al., 2005; Goris67

et al., 2014; Taouali et al., 2015). Outside of neuroscience, mixtures of multivariate Poisson distri-68

butions are an established model of multivariate count distributions that effectively capture corre-69

lations in count data (Karlis and Meligkotsidou, 2007; Inouye et al., 2017).70

Building on the theory of exponential family distributions (Wainwright and Jordan, 2008;Macke71

et al., 2011b), our model extends previous mixture models of multivariate count data in two ways.72

Firstly, we develop a tractable extension of Poisson mixtures that captures both over- and under-73

dispersed response variability (i.e. where the response variance is larger or smaller than themean,74

respectively) based on Conway-Maxwell Poisson distributions (Shmueli et al., 2005; Stevenson,75

2016). Secondly, we introduce an explicit dependence of the model on a stimulus variable, which76

allows themodel to accurately capture changes in response statistics (including noise correlations)77

across stimuli. Importantly, the resulting encoding model affords closed-form expressions for78

both its Fisher information and probability density function, and thereby a rigorous quantification79

of the coding properties of a modelled neural population (Dayan and Abbott, 2005). Moreover,80

the model learns low-dimensional representations of stimulus-driven neural activity, and we show81

how it captures a fundamental property of population codes known as information-limiting corre-82

lations (Moreno-Bote et al., 2014; Montijn et al., 2019; Bartolo et al., 2020; Kafashan et al., 2021;83

Rumyantsev et al., 2020).84

We apply our mixture model framework to both synthetic data and recordings from macaque85

primary visual cortex (V1), and demonstrate that it effectively models responses of populations86

of hundreds of neurons, captures noise correlations, and supports accurate Bayesian decoding.87

Moreover, we show how our model is compatible with the theory of probabilistic population cod-88

ing (Zemel et al., 1998; Pouget et al., 2013), and could thus be used to study the theoretical coding89

properties of neural circuits, such as their efficiency (Ganguli and Simoncelli, 2014), linearity (Ma90

et al., 2006), or information content (Moreno-Bote et al., 2014).91
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Results92

A critical part of our theoretical approach is based on expressing models of interest in exponen-93

tial family form. An exponential family distribution p(n) over some data n (in our case, neural re-94

sponses) is defined by the proportionality relation p(n) ∝ eθ⋅s(n)b(n), whereθ are the so-called natural95

parameters, s(n) is a vector-valued function of the data called the sufficient statistic, and b(n) is a96

scalar-valued, non-negative function called the base measure (Wainwright and Jordan, 2008). The97

exponential family form allows us to modify and extend existing models in a simple and flexible98

manner, and derive analytical results about the coding properties of our models. We demonstrate99

our approach with applications to both synthetic data, and experimental data recorded in V1 of100

anaesthetized and awake macaques viewing drifting grating stimuli at different orientations (for101

details see Materials and methods).102

Extended Poissonmixturemodels capture spike-count variability and covariability103

Our first goal is to define a class ofmodels of stimulus-independent, neural population activity, that104

model neural activity directly as spike-counts, and that accurately capture single-neuron variability105

and pairwise covariability. We base ourmodels on Poisson distributions, as they arewidely-applied106

to modelling the trial-to-trial distribution of the number of spikes generated by a neuron (Dayan107

and Abbott, 2005; Macke et al., 2011a). We will also generalize our Poisson-based models with108

the theory of Conway-Maxwell (CoM) Poisson distributions (Sur et al., 2015; Stevenson, 2016; Cha-109

nialidis et al., 2018). The two-parameter CoM-Poisson model contains the one-parameter Poisson110

model as a special case, however, whereas the Poissonmodel always has a Fano factor (FF; the vari-111

ance divided by the mean) of 1, the CoM-Poisson model can exhibit both over- (FF>1) and under-112

dispersion, and thus capture the broader range of Fano factors observed in cortex (Stevenson,113

2016).114

The other key ingredient in ourmodelling approach aremixtures of Poisson distributions, which115

have been used to model complex spike-count distributions in cortex, and also allow for over-116

dispersion (FF>1) (Shidara et al., 2005; Goris et al., 2014; Taouali et al., 2015) (Figure 1A). In our117

case we mix multiple, independent Poisson distributions in parallel, as such models can capture118

covariability in count data as well (see Karlis and Meligkotsidou (2007) for a more general formula-119

tion of multivariate Poisson mixtures than what we consider here). To construct such a model, we120

begin with a product of independent Poisson distributions (IP distribution), one per neuron. We121

then mix a finite number of component IP models, to arrive at a multivariate spike-count, finite122

mixture model (see Materials and methods). Importantly, although each component of this mix-123

ture is an IP distribution, randomly switching between components induces correlations between124

the neurons (Figure 1B,C).125

IP mixtures can in fact model arbitrary covariability between neurons (see Materials and meth-126

ods, Equation 7), however they are still limited because the model neurons in an IP mixture are127

always over-dispersed. To overcome this, it is helpful to consider factor analysis (FA), which is128

widely applied to modelling neural population responses (Cunningham and Yu, 2014). IP mixtures129

are similar to FA, in that FA represents the covariance matrix of neural responses as the sum of a130

diagonal matrix that helps capture individual variance, and a low-rank matrix that captures covari-131

ance (see Bishop, 2006), and FA and IP mixtures can be fine-tuned to capture covariance arbitrarily132

well. However, whereas FA has distinct parameters for representingmeans and diagonal variances,133

the means and variances in an IP mixture are coupled through shared parameters (see Materials134

andmethods, Equation 6). Our strategy will thus be to break this coupling betweenmeans and vari-135

ances by granting IP mixtures an additional set of parameters based on the theory of CoM-Poisson136

distributions.137

To do so we first show how to express an IPmixture as themarginal distribution of an exponen-138

tial family distribution. Note that an IP mixture with dK components may be expressed as a latent139

variable model over spike-count vectors n and latent component-indices k, where 1 ≤ k ≤ dK .140

In this formulation we denote the kth component distribution by p(n ∣ k), and the probability of141

3 of 37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2021. ; https://doi.org/10.1101/2020.11.05.369827doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.369827
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Poisson mixtures and Conway-Maxwell extensions exhibit spike-count correlations, and over- and
under-dispersion. A: A Poisson mixture distribution (red), defined as the weighted sum of three componentPoisson distributions (black; scaled by their weights). FF denotes the Fano Factor (variance over mean) of themixture. B,C: The average spike-count (rate) of the first and second neurons for each of 13 components (blackdots) of a bivariate IP mixture, and 68% confidence ellipses for the spike-count covariance of the mixture (redlines; see Equations 6 and 7). The spike-count correlation of each mixture is denoted by r. D: Same model as
A, except we shift the distribution by increasing the baseline rate of the components. E,F: Same model as A,except we use an additional baseline parameter based on Conway-Maxwell Poisson distributions toconcentrate (E) or disperse (F) the mixture distribution and its components.

realizing (switching to) the kth component by p(k). The mixture model over spike-counts n is then142

expressed as themarginal distribution p(n) = ∑dK
k=1 p(n ∣ k)p(k) =

∑dK
k=1 p(n, k), of the joint distribution143

p(n, k). Under mild regularity assumptions (see Materials and methods), we may reparameterize144

this joint distribution in exponential family form as145

p(n, k) ∝ eθN ⋅n+θK ⋅δ(k)+n⋅�NK ⋅δ(k)
∏dN

i=1 ni!
, (1)

where the vectors θN and θK , and matrix �NK are the natural parameters of p(n, k), and δ(k) =146

(�2(k),… , �dK (k)) is the Kronecker delta vector defined by �j(k) = 1 if j = k, and 0 otherwise.147

This representation affords an intuitive interpretation. In general, the natural parameters of148

an IP distribution are the logarithms of the average spike-counts (firing rates), and the natural149

parameters of the first component distribution p(n ∣ k = 1) of an IP mixture are simply θN . The150

natural parameters of the kth component for k > 1 are then the sum of the “baseline” parameters151

θN and column k − 1 from the matrix of parameters �NK (Equation 13, Materials and methods).152

Because the dimension of the baseline parameters θN is much smaller than the total number153

of parameters in a given mixture, the baseline parameters provide a relatively low-dimensional154

means of affecting all the component distributions of the given mixture, as well as the probability155

distribution over indices p(k) (Figure 1D; seeMaterials andmethods, Equation 12 for how the index-156

probabilities p(k) depend on θN ).157

We next extend Relation 1 with the theory of CoM-Poisson distributions, and define the latent158

variable exponential family159

p(n, k) ∝ eθN ⋅n+θ
∗
N ⋅lf (n)+θK ⋅δ(k)+n⋅�NK ⋅δ(k), (2)
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where lf (n) = (log(n1!),… , log(ndN !)) is the vector of log-factorials of the individual spike-counts, and160

θ∗
N are a set of natural parameters derived from CoM-Poisson distributions (see Materials and161

methods). Based on this construction, each component p(n ∣ k) is a product of independent CoM-162

Poisson distributions, and when θ∗
N = −1, we recover an IP mixture defined by Relation 1 with163

parameters θN , θK , and �NK . The first component of this model p(n ∣ k = 1) has parameters θN164

and θ∗
N , and as with the IP mixture, the parameters θN are translated by column k−1 of�NK when165

k > 1. However, the parametersθ∗
N are never translated, and remain the same for each component166

distribution (Equation 16, Materials and methods, and see Equation 15 for formulae for the index-167

probabilities p(k)). We refer to models defined by Relation 2 as CoM-based (CB) mixtures, and θ∗
N168

as CB parameters.169

Due to the addition of the CB parameters θ∗
N , a CB mixture breaks the coupling between the170

spike-count means and variances that is present in the simpler IP mixture (Equation 17, Materials171

and methods). In Figures 1D-F we demonstrate how changing the parameters of a CB mixture can172

concentrate or disperse both the mixture distribution and its components, and that a CB mixture173

can indeed exhibit under-dispersion.174

To validate our mixture models, we tested if they capture variability and covariability of V1 pop-175

ulation responses to repeated presentations of a grating stimulus with fixed orientation (dN = 43176

neurons and dT = 355 repetitions of 150ms duration in one awakemacaque; dN = 70 and dT = 1, 200177

of duration 70ms in one anaesthetized macaque). We fit our mixtures to the complete datasets178

with expectation-maximization (see Materials and methods). The CB mixture accurately captured179

single-neuron variability (Figure 2A-B, red symbols), including both cases of over-dispersion and180

under-dispersion. On the other hand, the simpler IP mixture (Figure 2A-B, blue symbols) cannot181

accommodate under-dispersion due to its mathematical limits, and demonstrated limited ability182

to model over-dispersion due to the coupling between the mean and variance (Equation 6).183

To understand how the CB parameters allow the CB mixture to overcome the limits of the IP184

mixture, we plot a histogram of the CB parameters θ∗
N for both fits (Figure 2C-D). If the CB parame-185

ter of a given CoM-Poisson distribution is < −1, > −1, or = −1, then the CoM-Poisson distribution is186

under-dispersed, over-dispersed, or Poisson-distributed, respectively. When a CB mixture is fit to187

the awake data (Figure 2C), we see that it learns a range of values for the CB parameters around -1,188

to accommodate the variety of Fano factors observed in the awake data (Figure 2A). On the anaes-189

thetized data, even though IPmixtures can capture over-dispersion, the IPmixture underestimates190

the dispersion of neurons due to the coupling between the mean and variance (Figure 2B). The CB191

mixture thus uses the CB parameters to further disperse its model neurons (Figure 2D).192

In contrast with individual variability, we found that both mixture models were flexible enough193

to qualitatively capture pairwise noise correlation structure in both awake and anaesthetized ani-194

mals (Figures 3A-B), and that the distributions ofmodelled neural correlations were broadly similar195

when compared to the data (Figures 3C-D). In Appendix 1 we rigorously compare IP mixtures, CB196

mixtures, and FA on our datasets, and show that although FA is better than our mixture models at197

capturing second-order statistics in training data, IPmixtures and CBmixtures achieve comparable198

predictive performance as FA when evaluated on held-out data.199

Extended Poissonmixturemodels capture stimulus-dependent response statistics200

So far we have introduced the exponential family theory of IP and CB mixtures, and shown how201

they capture response variability and covariability for a fixed stimulus. To allow us to study stim-202

ulus encoding and decoding, we further extend our mixtures by inducing a dependency of the203

model parameters on a stimulus. When there are a finite number of stimulus conditions and204

sufficient data, we may define a stimulus-dependent model with a lookup table, and fit it by fit-205

ting a distinct model at each stimulus condition. However, this is inefficient when the amount206

of data at each stimulus-condition is limited and the stimulus-dependent statistics have structure207

that is shared across conditions. A notable feature of the exponential family parameterizations208

in Relations 1 and 2 is that the baseline parameters influence both the index probabilities and all209

5 of 37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2021. ; https://doi.org/10.1101/2020.11.05.369827doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.369827
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. CoM-based parameters help Poisson mixtures capture individual variability in V1 responses to a single
stimulus. We compare Independent Poisson (IP) mixtures (Relation 1) and CoM-Based (CB) mixtures(Relation 2) on neural population responses to stimulus orientation x = 20◦ in V1 of awake (dN = 43 neuronsand dT = 355 trials) and anaesthetized (dN = 70 and dT = 1, 200) macaques; both mixtures are defined with
dK = 5 components for both data sets (see Materials and methods for training algorithms). A,B: EmpiricalFano factors of the awake (A) and anaesthetized data (B), comparing IP (blue) and CB mixtures (red). C,D:Histogram of the CB parameters θ∗

N for the CB mixture fits to the awake (C) and anaesthetized (D) data.Values of θ∗
N < −1 denote under-dispersed mixture components, values > −1 denote over-dispersedcomponents.

the component distributions of the model. This suggests that by restricting stimulus-dependence210

to the baseline parameters, we might model rich stimulus-dependent response structure, while211

bounding the complexity of the model.212

In general we refer to any finite mixture with stimulus-dependent parameters as a conditional213

mixture (CM), and depending on whether the CM is based on Relations 1 or 2, we refer to it as an IP-214

or CB-CM, respectively. Although there are many ways we might induce stimulus-dependence, in215

this paper we consider two forms of CM: (i) a maximal CM, which we implement as a lookup table,216

such that all the parameters in Relation 1 or 2 depend on the stimulus, and (ii) a minimal CM, for217

which we restrict stimulus-dependence to the baseline parameters θN . This results in the CB-CM218

p(n, k ∣ x) ∝ eθN (x)⋅n+θ∗
N ⋅lf (n)+θK ⋅δ(k)+n⋅�NK ⋅δ(k), (3)

where x is the stimulus, and θN (x) are the stimulus-dependent baseline parameters, and we re-219

cover a minimal, IP-CM by setting θ∗
N = −1.220

The IP-CM again affords an intuitive interpretation: The first component of an IP-CM p(n ∣ x, k =221

1) has stimulus-dependent natural parameters θN (x), and thus the stimulus-dependent firing rate,222

or tuning curve, of the ith neuron given k = 1 is �i1(x) = e�N,i(x), where �N,i(x) is the ith element223

of θN (x). The natural parameters of the kth component for k > 1 are then the sum of θN (x) and224

column k − 1 of �NK . As such, given k > 1, the tuning curve of the ith neuron �ik(x) = i,(k−1)�i1(x)225

is a “gain-modulated” version of �i1(x), where the gain i,(k−1) is the exponential function of element226
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Figure 3. IP and CB mixtures effectively capture pairwise covariability in V1 responses to a single stimulus. Here weanalyze the pairwise statistics of the same models from Figure 2. A,B: Empirical correlation matrix (upperright triangles) of awake (C) and anaesthetized data (D), compared to the correlation matrix of thecorresponding IP mixtures (lower left triangles). C,D: Noise correlations highlighted in A and B, respectively.
E,F: Highlighted noise correlations for CB mixture fit. G,H: Histogram of empirical noise correlations, andmodel correlations from IP and CB mixtures.

i of column k − 1 of �NK (see Equation 13, Materials and methods). For a CB-CM this interpreta-227

tion no longer holds exactly, but still serves as an approximate description of the behaviour of its228

components (see Equation 16 and the accompanying discussions).229

Towards understanding the expressive power of CMs, we study a minimal, CB-CM with dN =230

20 neurons, dK = 5 mixture components, and randomly chosen parameters (see Materials and231

methods). Moreover, we assume that the stimulus is periodic (e.g. the orientation of a grating), and232

that the tuning curves of the component distributions p(n ∣ x, k) have a von Mises shape, which is a233

widely appliedmodel of neural tuning to periodic stimuli (Herz et al., 2017). Wemay achieve such a234

shape by defining the stimulus-dependent baseline parameters as θN (x) = θ0
N +�NX ⋅vm(x), where235

θ0
N and �NX are parameters, and vm(x) = (cos 2x, sin 2x). Figure 4A shows that the tuning curves of236

the CB-CM neurons are approximately bell-shaped, yet many also exhibit significant deviations.237

We also study if CMs can be effectively fit to datasets comparable to those obtained in typical238

neurophysiology experiments. We generated 200 responses from the CB-CM described above —239

the ground truth CB-CM— to each of 10 orientations spread evenly over the half-circle, for a total240

of 2,000 stimulus-response sample points. We then used this data to fit a CB-CM with the same241

number of components. Towards this aim, we derive an approximate expectation-maximization242
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Figure 4. Expectation-maximization recovers a ground truth CoM-based, conditional mixture (CB-CM).Wecompare a ground truth, CB-CM with 20 neurons, 5 mixture components, von Mises-tuned components, andrandomized parameters to a learned CB-CM fit to 2,000 samples from the ground truth CB-CM. A,B: Tuningcurves of the ground-truth CB-CM (A) and learned CB-CM (B). Three tuning curves are highlighted for effect.
C,D: The orientation-dependent index probabilities of the ground truth CB-CM (C) and learned CB-CM (D),where colour indicates component index. Dashed lines indicate example stimulus-orientations used inFigures 4C,D.E,F: The correlation matrix of the ground truth CB-CM (upper right), compared to the correlationmatrix of the learned CB-CM (lower left) at stimulus orientations x = 85◦ (E) and x = 110◦ (F). G: The FFs of theground-truth CB-CM compared to the learned CB-CM at orientations x = 85◦ (blue circles) and x = 110◦ (redtriangles).

algorithm (EM, a standard choice for training finite mixture models (McLachlan et al., 2019)) to243

optimize model parameters (see Materials and methods). Figure 4B shows that the tuning curves244

of the learned CB-CM are nearly indistinguishable from those of the ground truth CB-CM (Figure 4B,245

coefficient of determination r2 = 0.998).246

To reveal the orientation-dependent latent structure of the model, in Figure 4C we plot the247

index probability p(k ∣ x) for every k as a function of the orientation x. In Figure 4D we show that248

the orientation-dependent index probabilities of the learned CB-CM qualitatively match the true249

index probabilities in Figure 4C. We also note that although the learned CB-CM does not correctly250

identify the indices themselves, this has no effect on the performance of the CB-CM.251

The orientation-dependent index-probabilities provide a high-level picture of how the complex-252

ity and structure of model correlations varies with the orientation. The vertical dashed lines in253

Figures 4C-D denote two orientations that yield substantially different index probabilities p(k ∣ x).254

When a large number of index-probabilities are non-zero, the correlation-matrices of the CB-CM255
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Model Parameter Formulae
Maximal Von Mises Discrete

Num. Params dS (dNdK + dK − 1) (dN + 1)(dK − 1) + 3dN (dN + 1)(dK − 1) + dSdNAdd. CB Params dSdN dN dN

Table 1. Parameter counts of CM models. First row is number of parameters in IP models, second row isnumber of additional parameters in CB extensions of IP models, as a function of number of stimuli dS ,neurons dN , and mixture components dK .

can exhibit complex correlationswith both negative and positive values (Figure 4E). However, when256

one index dominates, the correlation structure largely disappears (Figure 4F). In Figure 4G we257

show that the FFs also depend on stimulus orientation. Lastly, we find that both the FF and the258

correlation-matrices of the learned CB-CM are nearly indistinguishable from the ground-truth CB-259

CM (Figure 4E-G).260

In summary, our analyses show thatminimal CB-CMs can express complex, stimulus-dependent261

response statistics, and that we can recover the structure of a ground truth CB-CM from realistic262

amounts of synthetic data with expectation-maximization. In the following sections we rigorously263

evaluate the performance of CMs on our awake and anaesthetized datasets.264

Conditional mixtures effectively model neural responses in macaque V1265

A variety of models may be defined within the CM framework delineated by Relations 1, 2, and 3.266

Towards understanding how effectively CMs canmodel real data, we compare different variants by267

their cross-validated log-likelihood on both our awake and anaesthetized datasets; this is the same268

data used in Figures 2 and 3 but now including all stimulus-conditions. We consider both IP and CB269

variants of each of the following conditional mixtures: (i) maximal CMs where we learn a distinct270

mixture for each of dX stimulus conditions, (ii) minimal CMs with von Mises-tuned components,271

and (iii) minimal CMs with discrete-tuned components given by θN (x) = θ0
N +�NX ⋅ δ(x), where δ is272

the Kronecker delta vector with dX −1 elements, and x is the index of the stimulus. In contrast with273

the von Mises CM, the discrete CM makes no assumptions about the form of component tuning.274

In Table 1 we detail the number of parameters for all forms of CM.275

To provide an interpretable measure of the relative performance of each CM variant, we define276

the “information gain” as the difference between the estimated log-likelihood (base e) of the given277

CM and the log-likelihood of a von Mises-tuned, independent Poisson model, which is a standard278

model of uncorrelated neural responses to oriented stimuli (Herz et al., 2017). We then evaluate279

the predictive performance of our models with 10-fold cross-validation of the information gain.280

Table 2 shows that the CM variants considered achieve comparable performance, and perform281

substantially better than the independent Poisson lower bound on both the awake and anaes-282

thetized data. Figure 5 shows that a performance peak emerges smoothly as the model complex-283

ity (number of parameters) is increased. In all cases, the CB models outperform their IP counter-284

parts, and typically with fewer parameters. The discrete CB-CMs achieve high performance on both285

datasets. In contrast, von Mises CMs perform well on the anaesthetized data but more poorly on286

the awake data, andmaximal CMs exhibit the opposite trend. Nevertheless, vonMises CMs solve a287

more difficult statistical problem as they also interpolate between stimulus conditions, and somay288

still prove relevant even where performance is limited. On the other hand, even though maximal289

CMs achieve high performance, they simply do so by replicating the high performance of stimulus-290

independent mixtures (Figures 2 and 3) at each stimulus condition, and require more parameters291

than minimal CMs to maximize performance.292
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Encoding Performance
V1 Awake Data V1 Anaesthetized Data

CM Variant Inf. Gain (NatsTrial ) dK # Params. Inf. Gain (NatsTrial ) dK # Params.
Maximal IP 2.30 ± 0.32 5 1,971 8.77 ± 0.71 8 5,103
Maximal CB 2.44 ± 0.35 5 2,358 9.42 ± 0.70 7 5,094
Von Mises IP 2.01 ± 0.26 45 2,065 8.97 ± 0.70 40 2,979
Von Mises CB 2.10 ± 0.25 40 1,888 9.38 ± 0.69 35 2,694
Discrete IP 2.25 ± 0.28 40 2,103 9.17 ± 0.70 35 3,044
Discrete CB 2.35 ± 0.29 30 1,706 9.53 ± 0.68 30 2,689
Non-mixed IP 0 1 129 0 1 210

Table 2. Conditional mixtures models of neural responses in macaque V1 capture significant information about
higher-order statistics. We apply 10-fold cross-validation to estimate the mean and standard error of theinformation gain (model log-likelihood − log-likelihood of a non-mixed, independent Poisson model innats/trial) on held-out data, from either awake (sample size dT = 3, 168, from dN = 43 neurons, over dS = 9orientations) or anaesthetized (dT = 10, 800, dN = 70, dS = 9) macaque V1. We compare maximal CMs, minimalCMs with von Mises-tuned components, and minimal CMs with discrete-tuned components, and for eachcase we consider either IP or CB variants. For each variant, we indicate the number of CM components dKand the corresponding number of model parameters required to achieve peak information gain(cross-validated). For reference, the non-mixed, independent Poisson models use 129 and 210 parameters forthe awake and anaesthetized data, respectively.

Figure 5. Finding the optimal number of parameters for CMs to model neural responses in macaque V1. 10-foldcross-validation of the information gain given awake V1 data (A) and anaesthetized V1 data (B), as a functionof the number of model parameters, for multiple forms of CM: maximal CMs (green); minimal CMs with vonMises component tuning (blue); minimal CMs with discrete component tuning (purple); and for each case weconsider either IP (dashed lines) or CB (solid lines) variants. Standard errors of the information gain are notdepicted to avoid visual clutter, however they are approximately independent of the number of modelparameters, and match the values indicated in Table 2.

Conditionalmixtures facilitate accurate andefficient decoding of neural responses293

To demonstrate that CMs model the neural code, we must show that CMs not only capture the294

features of neural responses, but that these features also encode stimulus-information. Given an295

encoding model p(n ∣ x) and a response from the model n, we may optimally decode the informa-296

tion in the response about the stimulus x by applying Bayes’ rule p(x ∣ n) ∝ p(n ∣ x)p(x), where p(x ∣ n)297

is the posterior distribution (the decoded information), and p(x) represents our prior assumptions298

about the stimulus (Zemel et al., 1998). When we do not know the true encodingmodel, and rather299

fit a statistical model to stimulus-response data, using the statistical model for Bayesian decoding300

and analyzing its performance can tell us how well it captures the features of the neural code.301

We analyze the performance of Bayesian decoders based on CMs by quantifying their decoding302
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Decoding Performance
V1 Awake Data V1 Anaesthetized Data

Average Log-Post. Num. Params. Average Log-Post. Num. Params.
IP-CM −0.207 ± 0.039 2,103 −0.448 ± 0.026 3,044
CB-CM −0.206 ± 0.043 1,706 −0.441 ± 0.023 2,689
Non-mixed IP −0.272 ± 0.067 387 −0.967 ± 0.071 630
Linear −0.256 ± 0.053 352 −0.457 ± 0.019 568
Artificial NN −0.200 ± 0.032 527,108 −0.426 ± 0.015 408,008

Table 3. CMs support high-performance decoding of neural responses in macaque V1. We apply 10-foldcross-validation to estimate the mean and standard error of the average log-posteriors log p(x ∣ n) on held-outdata, from either awake or anaesthetized macaque V1. We compare discrete, minimal, CB-CM (CB-CM) andIP-CM (IP-CM); an independent Poisson model with discrete tuning (Non-mixed IP); a multiclass linear decoder(Linear); and a multiclass nonlinear decoder defined as an artificial neural network with two hidden layers(Artificial NN). The number of CM components dK was chosen to achieve peak information gain in Figure 5.The number of ANN hidden units was chosen based on peak cross-validation performance. In all cases wealso indicate the number of model parameters required to achieve the indicated performance.

performance, and comparing the results to other common approaches to decoding. We evaluate303

decoding performance with the 10-fold cross-validation log-posterior probability log p(x ∣ n) (base304

e) of the true stimulus value x, for both our awake and anaesthetized V1 datasets. With regards305

to choosing the number of components dK , we analyze the decoding performance of CMs that306

achieved the best encoding performance based as indicated in Table 2 and depicted Figure 5. We307

do this to demonstrate how well a single model can simultaneously perform at both encoding308

and decoding, instead of applying distinct procedures for selecting CMs based on decoding perfor-309

mance (see Materials and methods for a summary of trade-offs when choosing dK ).310

In our comparisons we focus on minimal, discrete CMs as overall they achieved high perfor-311

manceonboth datasets (Figure 5). To characterize the importance of neural correlations toBayesian312

decoding, we compare our CMs to the decoding performance of independent Poissonmodels with313

discrete tuning (Non-mixed IP). To characterize the optimality of our Bayesian decoders, we also314

evaluate the performance of linear multiclass decoders (Linear), as well nonlinear multiclass de-315

coders defined as artificial neural networks (ANNs) with two hidden layers and a cross-validated316

number of hidden units (for details on the training and model selection procedure, see Materials317

and methods).318

Table 3 shows that on the awake data, the performance of the CMs is statistically indistinguish-319

able from the ANN, and the CMs and the ANN significantly exceed the performance of both the320

Linear and Non-mixed IP models. On the anaesthetized data, the minimal CM approaches the per-321

formance of the ANN, and the minimal CMs and ANN models again exceed the performance of322

the Non-mixed IP and Linear models. Yet in this case the Linear model is much more competitive,323

whereas the Non-mixed IP model performs very poorly, possibly because of the larger magnitude324

of noise correlations in this data. In Appendix 2 we also report that a Bayesian decoder based on325

a factor analysis (FA) encoding model performed inconsistently, and poorly relative to CMs, as it326

would occasionally assign numerically 0 probability to the true stimulus, and thus score an aver-327

age log-posterior of negative infinity. In Appendix 2 we present preliminary evidence that this is328

because CMs capture higher-order structure that FA cannot.329

On both the awake and anaesthetized data the ANN requires two orders ofmagnitudemore pa-330

rameters than theCMs to achieve its performance gains. In addition, theCB-CMachievesmarginally331

better performance with fewer parameters than the IP-CM, indicating that although modelling in-332

dividual variability is not essential for effective Bayesian decoding, doing so still results in a more333

parsimonious model of the neural code. In Appendix 3 we report a sample complexity analysis of334

CM encoding and decoding performance. We found that whereas our anaesthetized V1 dataset335

11 of 37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2021. ; https://doi.org/10.1101/2020.11.05.369827doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.369827
http://creativecommons.org/licenses/by-nc-nd/4.0/


with (sample size dT = 10, 800) was large enough to saturate the performance of our models, a336

larger awake V1 dataset (dT = 3, 168) could yield further improvements to decoding performance.337

Wealso considerwidely used alternativemeasures of decoding performance, namely the Fisher338

information (FI), which is an upper bound on the average precision (inverse variance) of the poste-339

rior (Brunel and Nadal, 1998), as well as the linear Fisher information (LFI), which is a linear approx-340

imation of the FI (Seriès et al., 2004) corresponding to the accuracy of the optimal, unbiased linear341

decoder of the stimulus (Kanitscheider et al., 2015a). The FI is especially helpful when the posterior342

cannot be evaluated directly (such as when it is continuous), and is widely adopted in theoretical343

(Abbott and Dayan, 1999; Beck et al., 2011b; Ecker et al., 2014; Moreno-Bote et al., 2014; Kohn344

et al., 2016) and experimental (Ecker et al., 2011; Kafashan et al., 2021; Rumyantsev et al., 2020)345

studies of neural coding. As with othermodels based on exponential family theory (Ma et al., 2006;346

Beck et al., 2011b; Ecker et al., 2016), the FI of a minimal CMmay be expressed in closed-form, and347

is equal to its LFI (see Materials and methods), and therefore minimal CMs can be used to study FI348

analytically and obtain model-based estimates of FI from data.349

To study how well CMs capture FI, we defined 40 random subpopulations of dN = 20 neurons350

from both our V1 datasets, fit von Mises IP-CMs to the responses of each subpopulation, and used351

these learned models as ground-truth populations. We then generated 50 responses at each of352

10 evenly spaced orientations from each ground truth IP-CM, for a total of dT = 500 responses per353

ground-truth model. We then fit a new IP-CM to each set of 500 responses, and compared the FI354

of the re-fit CM to the FI of the ground-truth CM at 50 evenly spaced orientations. Pooled over355

all populations and orientations, the relative error of the estimated FI was −12.8% ± 18.6% on the356

awake data and −9.1% ± 22.4% on the anaesthetized data, suggesting that IP-CMs can recover and357

even interpolate approximate FIs of ground-truth populations from modest amounts of data.358

To summarize, CMs support accurate Bayesian decoding in awake and anaesthetizedmacaque359

V1 recordings, and are competitive with nonlinear decoders with two orders of magnitude more360

parameters. Moreover, CMs afford closed-form expressions of FI and can interpolate good esti-361

mates of FI from modest amounts of data, and thereby support analyses of neural data based on362

this widely applied theoretical tool.363

Constrained conditional mixtures support linear probabilistic population coding364

Having shown that minimal CMs can both capture the statistics of neural encoding and facilitate365

accurate Bayesian decoding, we now aim to show how they relate to an influential theory of neural366

coding knownas probabilistic population codes (PPCs), which describes howneural circuits process367

information in terms of encoding and Bayesian decoding (Zemel et al., 1998). In particular, linear368

probabilistic population codes (LPPCs) are PPCs with a restricted encoding model, that explain369

numerous features of neural coding in the brain (Ma et al., 2006; Beck et al., 2008, 2011a).370

In general, an exponential family of distributions that depend on some stimulus x may be ex-371

pressed as p(n ∣ x) = eθN (x)⋅sN (n)− N (θN (x))�(n), where sN is the sufficient statistic, � is the basemeasure,372

and  N (θN (x)) is known as the log-partition function (in Equations 1-3 we used the proportionality373

symbol ∝ to avoid writing the log-partition functions explicitly). A PPC is an LPPC when its en-374

coding model is in the so-called exponential family with linear sufficient statistics (EFLSS), which375

has the form p(n ∣ x) = eθN (x)⋅n�(n) for some functions �(n) and θN (x) (Beck et al., 2011a). If we376

equate the two expressions eθN (x)⋅sN (n)− N (θN (x))�(n) = eθN (x)⋅n�(n) we see that an EFLSS is a stimulus-377

dependent exponential family that satisfies two constraints: that the sufficient statistic sN (n) = n is378

linear, and that the log-partition function  N (θN (x)) = � does not depend on the stimulus, so that379

�(n) = e−��(n).380

As presented, the EFLSS is a mathematical model that does not have fittable parameters. We381

wish to express CMs as a form of EFLSS in order to show how a fittable model could be compatible382

with LPPC theory. If we return to the general expression for aminimal CM (Equation 3) and assume383
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that the log-partition function is given by the constant �, then we may write384

p(n ∣ x) =
∑

k
p(n, k ∣ x) = eθN (x)⋅n(eθ

∗
N ⋅lf (n)−�

∑

k
eθK ⋅δ(k)+n⋅�NK ⋅δ(k)

)

= eθN (x)⋅n�(n), (4)
where �(n) = eθ

∗
N ⋅lf (n)−�

∑

k eθK ⋅δ(k)+n⋅�NK ⋅δ(k), such that the given CM is in the EFLSS. Observe that this385

equation only holds due to the specific structure of minimal CMs: if the parameters θ∗
N , θK , or�NK386

would depend on the stimulus, then it would not be possible to absorb them into the function �(n).387

Ultimately, this equivalence between constrained CMs and EFLSSs allows LPPC theory to be388

applied to constrained CMs, and provides theorists working on neural coding with an effective389

statistical tool that can help validate their hypotheses.390

Minimal conditional mixtures capture information-limiting correlations391

Our last aim is to demonstrate that CMs can approximately represent a central phenomenon in392

neural coding known as information-limiting correlations, which are neural correlations that fun-393

damentally limit stimulus-information in neural circuits (Moreno-Bote et al., 2014; Montijn et al.,394

2019; Bartolo et al., 2020; Kafashan et al., 2021; Rumyantsev et al., 2020). To illustrate this, we395

generate population responses with limited information, and then fit an IP-CM to these responses396

and study the learned latent representation. In particular, we consider a source population of 200397

independent Poisson neurons p(n ∣ s)with homogeneous, vonMises tuning curves responding to a398

noisy stimulus-orientation s, where the noise p(s ∣ x) follows a vonMises distribution centred at the399

true stimulus-orientation x (see Materials and methods). In Figure 6A we show that, as expected,400

the average FI in the source population about the noisy orientation s grows linearly with the size of401

randomized subpopulations, although the FI about the true orientation x is theoretically bounded402

by the precision (inverse variance) of the sensory noise.403

Even though the neurons in the source model are uncorrelated, sensory noise ensures that404

the encoding model p(n ∣ x) = ∫ p(n ∣ s)p(s ∣ x)ds contains information-limiting correlations that405

bound the FI about x (Moreno-Bote et al., 2014; Kanitscheider et al., 2015b). Information-limiting406

correlations can be small and difficult to capture, and to understand howCMs learn in the presence407

of information-limiting noise correlations, we fit a von Mises IP-CM q(n ∣ x) with dK = 20 mixture408

components to dT = 10, 000 responses from the information-limited model p(n ∣ x). Figure 6A409

(purple) shows that the FI of the learned CM q(n ∣ x) appears to saturate near the precision of the410

sensory noise, indicating that the learned CM approximates the information-limiting correlations411

present in p(n ∣ x).412

To understand how the learned CM approximates these information-limiting correlations, we413

study the relation between the latent structure of the model and how it generates population ac-414

tivity. For an IP-CM, the orientation-dependent index-probabilities may be expressed as p(k ∣ x) ∝415

eθK ⋅δ(k)+
∑dN
i=1 �ik(x), where �ik(x) is the tuning curve of the ith neuron under component k. In Figure 6B416

we plot the sum of the tuning curves∑dN
i=1 �ik(x) for each component k as a function of orientation,417

and we see that each component concentrates the tuning of the population around a particular418

orientation. This encourages the probability of each component to also concentrate around a par-419

ticular orientation, and in figure 6C we see that, given the true orientation x = 90◦, there are 3420

components with probabilities substantially greater than 0.421

Because there are essentially three components that are relevant to the responses of the IP-422

CM to the true orientation x = 90◦, generating a response from the CM approximately reduces to423

generating a response from one of the three possible component IP distributions. In Figures 6D-F424

we depict a response to x = 90◦ from each of the three component IP distributions, as well as the425

optimal posterior based on the learned IP-CM (purple lines), and a suboptimal posterior based on426

the source model (i.e. ignoring noise correlations; green lines). We observe that the trial-to-trial427

variability of the learned IP-CM results in random shifts of the peak neural activity away from the428

true orientation, thus limiting information. Furthermore, when the response of the population is429

concentrated at the true orientation (Figure 6E), the suboptimal posterior assigns a high probability430
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Figure 6. CMs can capture information-limiting correlations in data. We consider a von Mises-tuned,independent Poisson source model (green) with dK = 200 neurons, and an information-limited, IP-CM (purple)with dK = 25 components, fit to 10,000 responses of the source-model to stimuli obscured by von Mises noise.In B-F we consider a stimulus-orientation x = 90◦ (blue line). A: The average (lines) and standard deviation(filled area) of the FI over orientations, for the source (green) and information-limited (purple) models, as afunction of random subpopulations, starting with ten neurons, and gradually reintroducing missing neurons.Dashed black line indicates the theoretical upper bound. B: The sum of the firing rates of the modulatedIP-CM for all indices k > 1 (lines) as a function of orientation, with three modulated IP-CMs highlighted (red,yellow, and orange lines) corresponding to the highlighted indices in C. C: The index-probability curves (lines)of the IP-CM for indices k > 1 and the intersection (red, yellow, and orange circles) of the stimulus with threecurves (orange, yellow, and orange lines). D-F: Three responses from the yellow (D; yellow points), red (E; redpoints), and orange modulated IP-CMs (F; orange points) indicated in C. For each response we plot theposterior based on the source model (green line) and the information-limited model (purple line).

to the true orientation, whereas when the responses are biased away from the true orientation431

(Figures 6D and 6F) the suboptimal posterior assigns nearly 0 probability to the true orientation.432

This is in contrast to the optimal posterior, which always assigns a significant probability to the true433

orientation.434

In summary, CMs can effectively approximate information-limiting correlations, and the simple435

latent structure of CMs could help reveal the presence of information-limiting correlations in data.436
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Discussion437

We introduced a latent variable exponential family formulation of Poisson mixtures. We showed438

how this formulation allows us to effectively extend Poisson mixtures both to capture sub-Poisson439

variability, and to incorporate stimulus dependence using conditional mixtures. Our analyses and440

simulations showed that these conditional mixtures (CMs) can be fit efficiently and recover ground441

truth models in synthetic data, capture a wide range of V1 response statistics in real data, and442

can be easily inverted to obtain accurate Bayesian decoding that is competitive with nonlinear443

decoders, while using orders of magnitude less parameters. In addition, we illustrated how the444

latent structure of CMs can represent a fundamental feature of the neural code, e.g. information-445

limiting correlations.446

Our framework is particularly relevant for probabilistic theories of neural coding based on the447

theory of exponential families (Beck et al., 2007), which include theories that address the linearity448

of Bayesian inference in neural circuits (Ma et al., 2006), the role of phenomena such as divisive449

normalization in neural computation (Beck et al., 2011a), Bayesian inference about dynamic stim-450

uli (Makin et al., 2015; Sokoloski, 2017), and the metabolic efficiency of neural coding (Ganguli and451

Simoncelli, 2014; Yerxa et al., 2020). These theories have proven difficult to validate quantitatively452

with neural data due to a lack of statistical models which are both compatible with their exponen-453

tial family formulation (see Equation 4), and can model correlated activity in recordings of large454

neural populations. Our work suggests that CMs can overcome these difficulties, and help con-455

nect this rich mathematical theory of neural coding with the state-of-the-art in parallel recording456

technologies.457

CMs are not limited to modelling neural responses to stimuli, and can model how arbitrary458

experimental variables modulate neural variability and covariability. Examples of experimental459

variables that have measurable effects on neural covariability include the spatial and temporal460

context around a stimulus (Snyder et al., 2014; Snow et al., 2016, 2017; Festa et al., 2020), as well461

as task-variables and the attentional state of the animal (Cohen andMaunsell, 2009;Mitchell et al.,462

2009; Ruff and Cohen, 2014;Maunsell, 2015; Rabinowitz et al., 2015; Verhoef and Maunsell, 2017;463

Bondy et al., 2018). Each of these variables could be incorporated into a CM by either replacing the464

stimulus-variable in our equations with the variable of interest, or combining it with the stimulus-465

variable to construct a CM with multivariate dependence. This would allow researchers to explore466

how the stimulus and the experimental variables mutually interact to shape variability and covari-467

ability in large populations of neurons.468

To understand how this variability and covariability effects neural coding, latent variablemodels469

such as CMs are often applied to extract interpretable features of the neural code fromdata (White-470

way and Butts, 2019). The latent states of a CM provide a soft classification of neural activity, and471

we may apply CMs to model how an experimental variable modulates the class membership of472

population activity. In the studies on experimental variables listed above, models of neural activity473

yielded predictions of perceptual and behavioural performance. Because CMs support Bayesian474

decoding, a CM can alsomake predictions about how a particular class of neurons is likely tomodu-475

late perception and behaviour, and wemay then test these predictions with experimental interven-476

tions on the neurons themselves (Panzeri et al., 2017). In this manner, we believe CMs could form477

a critical part of a rigorous, Bayesian framework for “cracking the neural code” in large populations478

of neurons.479

Outside of the framework of mixture models, there are broader possibilities for designing con-480

ditional, latent-variable models which have the minimal, exponential family structure of Relation 3,481

yet for which the latent variable is not a finite index. We make use of finite mixture models in482

this paper primarily because mixture models are analytically tractable, even when mixing Poisson483

distributions. In contrast, models with Gaussian latent variables are analytically tractable when484

the observations are also Gaussian, but not in general. Nevertheless, if the relevant formulae and485

computations can be effectively approximated, then many of the advantages of CMs could be pre-486
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served even when using continuous latent variables. For example, if the expectation step in our487

EM algorithm does not have a closed-form expression, it might be possible to approximate it with488

e.g. contrastive divergence (Hinton, 2002).489

In our applications we considered one-dimensional stimuli, and implemented the stimulus-490

dependence of the CM parameters with linearly parameterized functions. Nevertheless, this stim-491

ulus dependence can be implemented by arbitrary parametric functions of high-dimensional vari-492

ables such as deep neural networks, and CMs can also incorporate history-dependence via recur-493

rent connectivity (see Appendix 4). As such, CMs have the potential to integrate encoding models494

of higher cortical areas (Yamins et al., 2014) with models of the temporal features of the neural495

code (Pillow et al., 2008; Park et al., 2014; Runyan et al., 2017), towards analyzing the neural code496

in dynamic, correlated neural populations in higher cortex. Finally, outside of neuroscience, high-497

dimensional count data exists inmany fields such as corpus linguistics and genomics (Inouye et al.,498

2017), and researchers who aim to understand how this data depends on history or additional vari-499

ables could benefit from our techniques.500

Materials and methods501

Notation502

We use capital, bold letters (e.g. �) to indicate matrices; small, bold letters (e.g. θ) to indicate vec-503

tors; and regular letters (e.g. �) to indicate scalars. We use subscript capital letters to indicate the504

role of a given variable, so that, in Relation 1 for example, θK are the natural parameters that bias505

the index-probabilities, θN are the baseline natural parameters of the neural firing rates, and �NK506

is the matrix of parameters through which the indices and rates interact.507

We denote the ith element of a vector θ by �i, or e.g. of the vector θK by �K,i. We denote the508

ith row or jth column of � by θi or θj , respectively, and always state whether we are considering509

a row or column of the given matrix. When referring to the jth element of a vector θi indexed by510

i, we write �ij . Finally, when indexing data points from a sample, or parameters that are tied to511

individual data points, we use parenthesized, superscript letters, e.g. x(i), or θ(i)
N .512

Poisson mixtures and their moments513

The following derivations were presented in a more general form in Karlis and Meligkotsidou514

(2007), but we present the simpler case here for completeness. A Poisson distribution has the form515

p(n; �) = �ne−�

n!
, where n is the count and � is the rate (in our case, spike count and firing rate, respec-516

tively). We may use a Poisson model to define a distribution over dN spike counts n = (n1,… , ndN )517

by supposing that the neurons generate spikes independently of one another, leading to the in-518

dependent Poisson model p(n;λ) =
∏dN

i=1 p(ni; �i) with firing rates λ = (�1,… , �dN ). Finally, if we519

consider the dK rate vectors λ1,… ,λdK , and dK weights w1,… , wdK , where 0 ≤ wk for all k, and520

w1 = 1 −
∑dK

k=2wk, we then define a mixture of Poisson distributions as a latent variable model521

p(n) =
∑

k p(n ∣ k)p(k) =
∑

k p(n, k), where p(n ∣ k) = p(n;λk), and p(k) = wk.522

The mean �i of the ith neuron of a mixture of independent Poisson distributions is523

�i =
∞
∑

ni=0

dK
∑

k=1
p(ni ∣ k)p(k)ni =

dK
∑

k=1
p(k)

∞
∑

ni=0
p(ni ∣ k)ni =

dK
∑

k=1
wk�ik. (5)

The variance �2
i of neuron i is524

�2
i =

∞
∑

ni=0
p(ni)n2i − �

2
i =

dK
∑

k=1
p(k)

∞
∑

ni=0
p(ni ∣ k)n2i − �

2
i =

dK
∑

k=1
p(k)(�2

ik + �
2
ik) − �

2
i = �i +

dK
∑

k=1
wk(�ik − �i)

2, (6)
where �2

ik = �ik is the variance of the ith neuron under the kth component distribution, i.e. the525

variance of p(ni ∣ k), and where ∑∞
ni=0

p(ni ∣ k)n2i = �2
ik + �

2
ik, and ∑dK

k=1wk�2ik − �
2
i =

∑dK
k=1wk(�ik − �i)

2
526

both follow from the fact that a distribution’s variance equals the difference between its second527

moment and squared first moment.528
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The covariance �2
ij between spike-counts ni and nj for i ≠ j is then

�2
ij =

∞
∑

ni=0

∞
∑

nj=0
p(ni, nj)(ni − �i)(nj − �j) =

dK
∑

k=1
p(k)

∞
∑

ni=0

∞
∑

nj=0
p(ni, nj ∣ k)(ni − �i)(nj − �j)

=
dK
∑

k=1
p(k)

∞
∑

ni=0
p(ni ∣ k)(ni − �i)

∞
∑

nj=0
p(nj ∣ k)(nj − �j) =

dK
∑

k=1
wk(�ik − �i)(�jk − �j). (7)

Observe that if wk = 1
dK−1

, then �2
ij is simply the sample covariance between i and j, where the529

sample is composed of the rate components of the ith and jth neurons. Equation 7 thus implies530

that Poisson mixtures can model arbitrary covariances. Nevertheless, Equation 6 shows that the531

variance of individual neurons is restricted to being larger than their means.532

Exponential family mixture models533

In this section we show that the latent variable form for Poisson mixtures we introduced above534

is a member of the class of models known as exponential families. An exponential family distri-535

bution p(x) over some data x has the form p(x) = eθ⋅s(x)− (θ)b(x), where θ are the so-called natu-536

ral parameters, s(x) is a vector-valued function of the data called the sufficient statistic, b(x) is a537

scalar-valued function called the base measure, and  (θ) = log ∫ eθ⋅s(x)b(x)dx is the log-partition538

function (Wainwright and Jordan, 2008). In the context of Poisson mixture models, we note that539

an independent Poisson model p(n;λ) is an exponential family, with natural parameters θN given540

by �N,i = log �i, basemeasure b(n) = 1
∏

i n!
and sufficient statistic sN (n) = n, and log-partition function541

 N (θN ) =
∑dN

i=1 e
�N,i . Moreover, the distribution of component indices p(k) = wk (also known as a cat-542

egorical distribution) also has an exponential family form, with natural parameters �K,k = log wk+1
w1

543

for 1 ≤ k < dK , sufficient statistic δ(k) = (�2(k),… , �dK (k)), base measure b(k) = 1, and log-partition544

function  K (θK ) = log(1+
∑dK−1

k=1 e�K,k ). Note that in both cases, the exponential parameters are well-545

defined only if the rates and weights are strictly greater than 0 — in practice however this is not a546

significant limitation.547

We claim that the joint distribution of a multivariate Poisson mixture model p(n, k) can be repa-548

rameterized in the exponential family form549

p(n, k) = eθN ⋅n+θK ⋅δ(k)+n⋅�NK ⋅δ(k)− NK (θN ,θK ,�NK )
∏

i ni!
, (8)

where  NK (θN ,θK ,�NK ) = log
∑

k eθk⋅δ(k)+ N (θN+�NK ⋅δ(k)) is the log-partition function of p(n, k). To550

show this we showhow to express the natural parameters θN ,θK , and�NK as (invertible) functions551

of the component rate vectors λ1,… ,λdK , and the weights w1,… , wdK . In particular, we set552

θN = logλ1, (9)
where log is applied element-wise. Then, for 1 ≤ k < dK , we set the kth row θNK,k of �NK to553

θNK,k = logλk+1 − logλ1, (10)
and the kth element of θK to554

θK,k = log
wk+1

w1
+  (θN ) −  N (θN +�NK ⋅ δ(k)). (11)

This reparameterization may then be checked by substituting Equations 9, 10, and 11 into Equa-555

tion 8 to recover the joint distribution of the mixture model p(n, k) = p(n ∣ k)p(k) = wkp(n;λK ); for a556

more explicit derivation see Sokoloski (2019).557

The equation for p(n, k) ensures that the index-probabilities are given by
p(k) = wk = eθK ⋅δ(k)− NK (θN ,θK ,�NK )

∑

n

en⋅(θN+�NK ⋅δ(k))
∏

i ni!

= eθK ⋅δ(k)− NK (θN ,θK ,�NK )+ N (θN+�NK ⋅δ(k)). (12)
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Consequently, the component distributions in exponential family form are given by558

p(n ∣ k) =
p(n, k)
p(k)

= en⋅(θN+�NK ⋅δ(k))− N (θN+�NK ⋅δ(k))
∏

i ni!
. (13)

Observe that p(n ∣ k) is a multivariate Poisson distribution with parameters θN + �NK ⋅ δ(k), so559

that for k > 1, the parameters are the sum of θN and row k − 1 of �NK . Because the exponential560

family parameters are the logarithms of the firing rates of n, each row of �NK modulates the firing561

rates of n multiplicatively. When θN (x) depends on a stimulus and we consider the component562

distributions p(n ∣ x, k), each row of �NK then scales the tuning curves of the baseline population563

(i.e. p(n ∣ x, k) for k = 1); in the neuroscience literature, such scaling factors are typically referred to564

as gain modulations.565

The exponential family form has many advantages. However, it has a less intuitive relationship566

with the statistics of themodel such as themean and covariance. Themost straightforwardmethod567

to compute these statistics given a model in exponential family form is to first reparameterize it in568

terms of the weights and component rates, and then evaluate Equations 5, 6, and 7.569

CoM-Poisson distributions and their mixtures570

Conway-Maxwell (CoM) Poisson distributions decouple the location and shape of count distribu-571

tions (Shmueli et al., 2005; Stevenson, 2016; Chanialidis et al., 2018). A CoM Poisson model has572

the form p(n; �, �) ∝
( �n

n!

)� . The floor function ⌊�⌋of the location parameter � is themodeof the given573

distribution. With regards to the shape parameter �, p(n; �, �) is a Poisson distribution with rate �574

when � = 1, and is under- or over-dispersedwhen � > 1 or � < 1, respectively. A CoM-Poissonmodel575

p(n; �, �) is also an exponential family, with natural parameters θC = (� log �,−�), sufficient statistic576

sC (n) = (n, log n!), and basemeasure b(n) = 1. The log-partition function does not have a closed-form577

expression, but it can be effectively approximated by truncating the series ∑∞
n=0 e

sC (n)⋅θC (Shmueli578

et al., 2005). More generally, when we consider a product of independent CoM-Poisson distribu-579

tions, we denote its log-partition function by  C (θN ,θ∗
N ) =

∑dN
i=1 log

∑∞
n=0 e

n�N,i+log(n)!�∗N,i , where θC,i =580

(�N,i, �∗N,i) are the parameters of the ith CoM-Poisson distribution. In this case we can also approxi-581

mate the log-partition function  C by truncating the dN constituent series∑∞
n=0 e

n�N,i+log(n)!�∗N,i in par-582

allel.583

We define a multivariate CoM-based (CB) mixture as584

p(n, k) = eθN ⋅n+θ
∗
N ⋅lf (n)+θK ⋅δ(k)+n⋅�NK ⋅δ(k)− CK (θN ,θ∗

N ,θK ,�NK ), (14)
where lf (n) = (log(n1!),… , log(ndN !)) is the vector of log-factorials of the individual spike-counts,585

and  CK (θN ,θ∗
N ,θK ,�NK ) = log

∑

k e
θk⋅δ(k)+ C (θN+�NK ⋅δ(k),θ∗

N ) is the log-partition function. This form586

ensures that the index-probabilities satisfy587

p(k) = eθK ⋅δ(k)− CK (θN ,θ∗
N ,θK ,�NK )+ C (θN+�NK ⋅δ(k),θ∗

N ), (15)
and consequently that each component distribution p(n ∣ k) is a product of independent CoM588

Poisson distributions given by589

p(n ∣ k) = en⋅(θN+�NK ⋅δ(k))+θ∗
N ⋅lf (n)− C (θN+�NK ⋅δ(k),θ∗

N ). (16)
Observe that, whereas the parameters θN + �NK ⋅ δ(k) of p(n ∣ k) depend on the index k, the590

parameters θ∗
N of p(n ∣ k) are independent of the index and act exclusively as biases. Therefore,591

realizing different indices k has the effect increasing or decreasing the location parameters, and592

thus the modes of the corresponding CoM-Poisson distributions. As such, although the different593

components of a CB mixture are not simply rescaled versions of the first component p(n ∣ k = 1),594

in practice they behave approximately in this manner.595

The moments of a CoM-Poisson distribution are not available in closed-form, yet they can also596

be effectively approximated through truncation. We begin by computing approximate means �ik597
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and variances �2
ik of p(ni ∣ k) through truncation, and then the mean of ni is �i = ∑dK

k=1 p(k)�ik, and its598

variance is599

�2
i = �̄2

i +
dK
∑

k=1
p(k)(�ik − �i)

2, (17)
where �̄2

i =
∑dK

k=1 p(k)�
2
ik. Similarly to Equation 7, the covariance �ij between ni and nj is �ij =600

∑dK
k=1 p(k)(�ik − �i)(�jk − �j).601

By comparing Equations 6 and 17, we see that the CB mixture may address the limitations on602

the variances �2
i of the IP mixture by setting the average variance �̄2

i of the components in Equa-603

tion 17 to be small, while holding the value of the means �i fixed, and ensuring that the means of604

the components �ik cover a wide range of values to achieve the desired values of �2
i and �ij . Solving605

the parameters of a CB mixture for a desired covariance matrix is unfortunately not possible since606

we lack closed-form expressions for the means and variances. Nevertheless, we may justify the607

effectiveness of the CB strategy by considering the approximations of the components means and608

variances �ik ≈ �ik+
1

2�ik
− 1

2
and �2

ik ≈
�ik
�ik
, which hold when neither �ik or �ik are too small (Chanialidis609

et al., 2018). Based on these approximations, observe that when �ik is large, �2
ik is small, whereas610

�ik is more or less unaffected. Therefore, in the regime where these approximations hold, a small611

value for �̄2
i can be achieved by reducing the parameters �ik, without significantly restricting the612

values of �ik or �i.613

Fisher information of a minimal CM614

The Fisher information (FI) of an encoding model p(n ∣ x) with respect to x is I(x) =
∑

n p(n ∣
x)()x log p(n ∣ x))2 (Cover and Thomas, 2006). With regards to the FI of a minimal CM,
)x log p(n ∣ x) =

∑

k )xp(n, k ∣ x)
p(n ∣ x)

=
∑

k )xe
θN (x)⋅n+θ∗

N ⋅lf (n)+θK ⋅δ(k)+n⋅�NK ⋅δ(k)− CK (θN (x),θ∗
N ,θK ,�NK )

p(n ∣ x)

= )x(θN (x) ⋅ n −  CK (θN (x),θ
∗
N ,θK ,�NK ))

∑

k p(n, k ∣ x)
p(n ∣ x)

= )xθN (x) ⋅ (n − µN (x)),

where )x CK (θN (x),θ∗
N ,θK ,�NK ) = µN (x) ⋅)xθN (x) follows from the chain rule and properties of the

log-partition function (Wainwright and Jordan, 2008). Therefore
I(x) =

∑

n
p(n ∣ x)()xθN (x) ⋅ (n − µN (x)))

2 = )xθN (x) ⋅ �N (x) ⋅ )xθN (x),

where �N (x) is the covariance matrix of p(n ∣ x). Moreover, because )xθN (x) = �−1
N (x) ⋅ )xµ(x) (Wain-615

wright and Jordan, 2008), the FI of a minimal CM may also be expressed as I(x) = )xµN (x) ⋅ �−1
N (x) ⋅616

)xµN (x), which is the linear Fisher information (Beck et al., 2011b).617

Note that when calculating the FI or other quantities based on the covariance matrix, IP-CMs618

have the advantage that their covariance matrices tend to have large diagonal elements and are619

thus inherently well-conditioned. Because decoding performance is not significantly different be-620

tween IP- and CB-CMs (see Table 3), IP-CMs may be preferable when well-conditioned covariance621

matrices are critical. Nevertheless, the covariance matrices of CB mixtures can be made well-622

conditioned by applying standard techniques.623

Expectation-Maximization for CMs624

Expectation-maximization (EM) is an algorithm that maximizes the likelihood of a latent variable625

model given data by iterating two steps: generating model-based expectations of the latent vari-626

ables, and maximizing the complete log-likelihood of the model given the data and latent expecta-627

tions. Although the maximization step optimizes the complete log-likelihood, each iteration of EM628

is guaranteed to not decrease the data log-likelihood as well (Neal and Hinton, 1998).629

EM is arguably the most widely-applied algorithm for fitting finite mixture models (McLachlan630

et al., 2019). As a formof latent variable exponential family, the expectation step for a finitemixture631

model reduces to computing average sufficient statistics, and the maximization step is a convex632
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optimization problem (Wainwright and Jordan, 2008). In general, the average sufficient statistics,633

or mean parameters, correspond to (are dual to) the natural parameters of an exponential family,634

andwhere we denote natural parameters with �, we denote their correspondingmean parameters635

with �.636

Suppose we are given a dataset (n(1),… ,n(dT )) of neural spike-counts, and a CB mixture with
natural parameters θN , θ∗

N , θK , and �NK (see Equation 14). The expectation step for this model
reduces to computing the data-dependent mean parameters η(i)

K given by
θ(i)
K = θK + n(i) ⋅�NK , �(i)K,k =

e�
(i)
K,k

1 +
∑

l e
�(i)K,l

,

for all 0 < i ≤ dT . The mean parameters η(i)
K are the averages of the sufficient statistic δk(k) under637

the distribution p(k ∣ n(i)), and are what we use to complete the log-likelihood since we do not638

observe k.639

Given η(i)
K , the maximization step of a CB mixture thus reduces to maximizing the complete log-

likelihood ∑dT
i=1 (θK ,θN ,θ

∗
N ,�NK ,η

(i)
K ,n

(i)), where we substitute η(i)
K into the place of δ(k) in Equa-

tion 14, such that
(θK ,θN ,θ

∗
N ,�NK ,η

(i)
K ,n

(i)) =

θN ⋅ n(i) + θ∗
N ⋅ lf (n

(i)) + θK ⋅ η
(i)
K + n(i) ⋅�NK ⋅ η

(i)
K −  CK (θN ,θ

∗
N ,θK ,�NK ).

This objective may bemaximized in closed-form for an IPmixture (Karlis andMeligkotsidou, 2007),640

but this is not the case when the model has CoM-Poisson shape parameters or depends on the641

stimulus. Nevertheless, solving the resulting maximization step is still a convex optimization prob-642

lem (Wainwright and Jordan, 2008), and may be approximately solved with gradient ascent. Doing643

so requires that we first compute the mean parameters ηN , η∗
N , ηK , and HNK that are dual to θN ,644

θ∗
N , θK , and �NK , respectively.645

We compute the mean parameters by evaluating
�†K,k = �K,k +  C (θN +�NK ⋅ δ(k),θ

∗
N ) −  (θN ), �K,k =

e�
†
K,k

1 +
∑dK−1

k=1 e�
†
K,k

, �jk =
∞
∑

nj=0
nj p(nj ∣ k),

�∗N,j =
dK
∑

k=1
p(k)

∞
∑

nj=0
log nj! p(nj ∣ k), �N,j =

dK
∑

k=1
p(k)�jk, �NK,jk = �K,k�j(k+1),

where �K,k is the kth element of ηK , �N,j is the jth element of ηN , �∗N,j is the jth element of η∗
N ,and �NK,jk is the jth element of the kth column of HNK . Note as well that we truncate the series

∑

nj
nj p(nj ∣ k) and ∑

nj
log nj! p(nj ∣ k) to approximate �jk and �∗N,j . Given these mean parameters,

we may then express the gradients of (i) = (θK ,θN ,θ
∗
N ,�NK ,ηK,i,n(i)) as

)θN
(i) = n(i) − ηN , )θ∗

N
(i) = lf (n(i)) − η∗

N ,

)θK
(i) = η(i)

K − ηK , )�NK
(i) = n(i) ⊗ η(i)

K −HNK ,

where⊗ is the outer product operator, and where the second term in each equation follows from646

the fact that the derivative of  CK with respect to θN , θ∗
N , θK , or �NK yields the dual parameters647

ηN , η∗
N , ηK , and HNK , respectively. By ascending the gradients of ∑dT

i=1 
(i) until convergence, we648

approximate a single iteration of the EM algorithm for a CB mixture.649

Finally, if our dataset ((n(1), x(1)),… , (n(dT ), x(dT ))) includes stimuli x, and the parameters θN de-
pend on the stimulus, then the gradients of the parameters of θN must also be computed. For a
von Mises CM where θN (x) = θ0

N +�NX ⋅ vm(x), the gradients are given by
)θ0

N
(i) = )

θ
(i)
N
(i), )�NX

(i) = )
θ
(i)
N
(i) ⊗ vm(x(i)),

where θ(i)
N = θN (x(i)) is the output of θN at x(i). Although in this paper we restrict our applications650

to Von Mises or discrete tuning curves for 1-dimensional stimuli, this formalism can be readily651
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extended to the case where the baseline parameters θN (x) are a generic nonlinear function of652

the stimulus, represented by a deep neural network. Then, the gradients of the parameters of θN653

can be computed through backpropagation, and )
θ
(i)
N
(i) is the error that must be backpropagated654

through the network to compute the gradients.655

If we ignore stimulus dependence, the single most computationally intensive operation in each656

gradient ascent step is the computation of the outer product when evaluating )�NK(i), which has657

a time complexity of (dKdN ). As such, the training algorithm scales linearly in the number of658

neurons, and CMs could realistically be applied to populations of tens to hundreds of thousands659

of neurons. That being said, larger values of dK will typically be required to maximize performance660

in larger populations, and fitting the model to larger populations typically requires larger datasets661

and more EM iterations.662

CM initialization and training procedures663

To fit a CM to a dataset ((n(1), x(1)),… , (n(dT ), x(dT ))), we first initialize the CM and then optimize its664

parameters with our previously described EM algorithm. Naturally, initialization depends on ex-665

actly which form of CM we consider, but in general we first initialize the baseline parameters θN ,666

then add the categorical parameters θK and mixture component parameters �NK . When training667

CB-CMs we always first train an IP-CM, and so the initialization procedure remains the same for IP668

and CB models.669

To initialize a von Mises CM with dN neurons, we first fit dN independent, von Mises-tuned
neurons by maximizing the log-likelihood ∑dT

i=1 log p(n
(i) ∣ x(i)) of θN (x) = θ0

N + �NX ⋅ vm(x). This
is a convex optimization problem and so can be easily solved by gradient ascent, in particular by
following the gradients

)θ0
N

dT
∑

i=1
log p(n(i) ∣ x(i)) =

dT
∑

i=1
n(i) − log(θN (x(i))),

)�NX

dT
∑

i=1
log p(n(i) ∣ x(i)) =

dT
∑

i=1
log(n(i) − logθN (x(i)))⊗ vm(x(i)),

to convergence. For both discrete and maximal CMs, where there are dX distinct stimuli, we initial-670

ize θN (x) = θ0
N+�NX ⋅δ(x) by computing the average rate vector at each stimulus-condition and cre-671

ating a lookup table for these rate vectors. Formally, where xl is the lth stimulus value for 0 < l ≤ dX ,672

we may express the lth rate vector as λl = 1
∑dT
i=1 �(xl ,x

(i))

∑dT
i=1 �(xl, x

(i))n(i), where �(xl, x(i)) is 1 when673

xl = x(i), and 0 otherwise. We then construct a lookup table for these rate vectors in exponential674

family form by setting θ0
N = logλ1, and by setting the lth row θNX,l of�NX to θNX,l = logλl+1 − logλ1.675

In general we initialize the parameters θK by sampling the weights w1,… , wdK of a categorical676

distribution from a Dirichlet distribution with a constant concentration of 2, and converting the677

weights into the natural parameters of a categorical distribution θK . For discrete andmaximal CMs678

we initialize the modulations �NK by generating each element of �NK from a uniform distribution679

over the range [−0.0001, 0.0001]. For von Mises CMs we initialize each row θNK,k of �NK as shifted680

sinusoidal functions of the preferred stimuli of the independent von Mises neurons. That is, given681

θ0
N and �NX , we compute the preferred stimulus of the ith neuron given by �i = atan2(θ0

N + θNX,i),682

where θNX,i is the ith row of �NX . We then set the ith element �NK,k,i of θNK,k to �NK,k,i = 0.2 sin(�i +683

k
360

◦
). Initializing von Mises CMs in this way ensures that each modulation has a unique peak as a684

function of preferred stimuli, which helps differentiate the modulations from each other, and in685

our experience improves training speed.686

With regards to training, the expectation step in our EM algorithm may be computed directly,
and so the only challenge is solving the maximization step. Although the optimal solution strategy
depends on the details of themodel and data in question, in the context of this paper we settled on
a strategy that is sufficient for all simulationsweperform. For eachmodelweperforma total of dI =
500 EM iterations, and for each maximization step we take dS = 100 gradient ascent steps with the

21 of 37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2021. ; https://doi.org/10.1101/2020.11.05.369827doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.369827
http://creativecommons.org/licenses/by-nc-nd/4.0/


Adam gradient ascent algorithm (Kingma and Ba, 2014) with the default momentum parameters
(see Kingma and Ba (2014)). We restart the Adam algorithm at each iteration of EM and gradually
reduce the learning rate. Where �+ = 0.002 and �− = 0.0005 are the initial and final learning rates,
we set the learning rate �t at EM iteration t to

�t = exp
( (dI − 1 − t) log(�+) + t log(�−)

dI − 1

)

,

where we assume t starts at 0 and ends at dI − 1.687

Because wemust evaluate large numbers of truncated series when working with CB-CMs, train-688

ing times are typically one to two orders ofmagnitude greater. Tominimize training time of CB-CMs689

over the dI EM iterations, we therefore first train a IP-CM for 0.8dI iterations. We then equate the690

parameters θN , θK , and �NK of the IP-CM (see Equation 8) with a CB-CM (see Equation 14) and set691

θ∗
N = −1, which ensures that resulting CB model has the same density function p(n, k ∣ x) as the692

original IP model. We then train the CB-CM for 0.2dI iterations. We found this strategy results in693

practically no performance loss, while greatly reducing training time.694

Strategies for choosing the CM form and latent structure695

There are a few choices with regards to the form of the model than one must make when applying696

a CM: The form of the dependence, whether or not to use the CoM-based (CB) extension, and the697

number of components dK . The form of the dependence is very open-ended, yet should be fairly698

clear from the problem context: one should use a minimal model if one wishes to make use of its699

mathematical features, and otherwise a maximal model may provide better performance. If one700

wishes to interpolate between stimulus conditions, or the number of stimulus-conditions in the701

data is high, then a continuous stimulus-dependence model (e.g. von Mises tuning curves) should702

be used, otherwise discrete tuning curves may provide better performance. Finally, if one wishes703

to model correlations in a complex neural circuit, one may use e.g. a deep neural network, and704

induce correlations in the output layer with the theory of CMs.705

Similarly, CB-CMs have clear advantages for modelling individual variability, and as we show in706

Appendix 2, this includes higher-order variability. Nevertheless, from the perspective of decoding707

performance, IP-CMs and CB-CMs performmore-or-less equally well, and training CB-CMs is more708

computationally intensive. As such, IP-CMs may often be the better choice.709

The number of components dK provides a fine-grained method of adjusting model perfor-710

mance. If the goal is to maximize predictive encoding performance, then the standard way to711

do this is to choose a dK that maximizes the cross-validated log-likelihood, as we demonstrated712

in Figure 5. Nevertheless, one may rather aim to maximize decoding performance, in which case713

maximizing the cross-validated log-posterior may be a more appropriate objective. In both cases,714

for very large populations of neurons, choosing a dK solely to maximize performance may be pro-715

hibitively, computationally expensive. As demonstrated in Figure 5 and Appendix 3, a small dK can716

achieve a large fraction of the performance gain of the optimal dK , and choosing a modest dK that717

achieves qualitatively acceptable performance may prove to be the most productive strategy.718

CM parameter selection for simulations719

In the section Extended Poisson mixture models capture stimulus-dependent response statistics720

and the section Conditional mixtures facilitate accurate and efficient decoding of neural responses721

we considered minimal CB-CMs with randomized parameters θN (x), θ∗
N , θK , and �NK , which for722

simplicity we refer to asmodels 1 and 2, respectively. We construct randomized CMs piece by piece,723

in a similar fashion to our initialization procedure.724

Firstly, where dN is the number of neurons, we tile their preferred stimuli �i over the circle such725

that �i = i
dN

360◦. We then generate the concentration �i and gain i of the ith neuron by sampling726

from normal distributions in log-space, such that log �i ∼ N(−0.1, 0.2), and log i ∼ N(0.2, 0.1). Finally,727

for von Mises baseline parameters θN (x) = θ0
N + �NX ⋅ vm(x), we set each row θNX,i of �NX to728
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θNX,i = (�i cos �i, �i sin �i), and each element �0N,i of θ0
N to �0N,i = log i −  X(θNX,i), where  X is the729

logarithm of the modified Bessel function of order 0, which is the log-partition function of the von730

Mises distribution.731

We then set θK = 0, and generated each element �NK,i,k of the modulation matrix θNK in the732

samematter as the gains, such that �NK,i,k ∼ N(0.2, 0.1). Finally, to generate random CB parameters733

we generate each element �∗N,i of θ∗
N from a uniform distribution, such that θ∗

N,i ∼ U(−1.5,−0.8).734

Model 2 entails two more steps. Firstly, when sampling from larger populations of neurons,735

single modulations often dominate themodel activity around certain stimulus values. To suppress736

this we consider the natural parameters θ0
K (x) of p(k ∣ x) (see Equation 15), and compute the max-737

imum value of these natural parameters over the range of stimuli �+K,k = maxx{�0K,k(x)}. We then738

set each element �K,k of the parameters θK of the CM to �K,k = �̄+K − �+K,k, where �̄+K =
∑dK

i=1
�K,k
dK

,739

which helps ensure that multiple modulations are active at any given x. Finally, since model 2 is a740

discrete CM, we replace the von Mises baseline parameters with discrete baseline parameters, by741

evaluating θ0
N +�NX ⋅vm(x) at each of the dX valid stimulus-conditions, and assemble the resulting742

collection of natural parameters into a lookup table in themanner we described in our initialization743

procedures.744

Decoding models745

When constructing a Bayesian decoder for discrete stimuli, we first estimate the prior p(x) by com-746

puting the relative frequency of stimulus presentations in the training data. For the given encod-747

ing model, we then evaluate p(n ∣ x) at each stimulus condition, and then compute the posterior748

p(x ∣ n) ∝ p(n ∣ x)p(x) by brute-force normalization of p(n ∣ x)p(x). When training the encoding749

model used for our Bayesian encoders, we only trained them to maximize encoding performance750

as previously described, and not to maximize decoding performance.751

We considered two decoding models, namely the linear network and the artificial neural net-752

work (ANN) with sigmoid activation functions. In both cases the input of the network was a neural753

response vector, and the output the natural parameters θX of a categorical distribution. The form754

of the linear network was θX(n) = θX +�XN ⋅ n, and is otherwise fully determined by the structure755

of the data. For the ANN on the other hand, we had to choose both the number of hidden layers,756

and the number of neurons per hidden layer. We cross-validated the performance of both 1 and 2757

hidden layer models, over a range of sizes from 100 to 2000 neurons. We found the performance758

of the networks with 2 hidden layers generally exceeded that of those with 1 hidden layer, and that759

700 and 600 hidden neurons was optimal for the awake and anaesthetized networks, respectively.760

Given a dataset ((n(1), x(1)),… , (n(dT ), x(dT ))), we optimized the linear network and the ANN bymax-761

imizing ∑dT
i=1 log p(x

(i) ∣ n(i)) via stochastic gradient ascent. We again used the Adam optimizer with762

default momentum parameters, and used a fixed learning rate of 0.0003, and randomly divided763

the dataset into minibatches of 500 data points. We also used early stopping, where for each fold764

of our 10-fold cross-validation simulation, we partitioned the dataset into 80% training data, 10%765

test data, and 10% validation data, and stopped the simulation when performance on the test data766

declined from epoch to epoch.767

Experimental design768

Throughout this paper we demonstrate our methods on two sets of parallel response recordings769

in macaque primary visual cortex (V1). The stimuli were drifting full contrast gratings at 9 distinct770

orientations spread evenly over the half-circle from 0◦ to 180◦ (2◦ diameter, 2 cycles per degree,771

2.5 Hz drift rate). Stimuli were generated with custom software (EXPO by P. Lennie) and displayed772

on a cathode ray tube monitor (Hewlett Packard p1230; 1024 × 768 pixels, with ∼ 40 cd/m2 mean773

luminance and 100 Hz frame rate) viewed at a distance of 110 cm (for anaesthetized dataset) or774

60 cm (for awake dataset). Grating orientations were randomly interleaved, each presented for 70775

ms (for anaesthetized dataset) or 150 ms (for awake dataset), separated by a uniform gray screen776

23 of 37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2021. ; https://doi.org/10.1101/2020.11.05.369827doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.369827
http://creativecommons.org/licenses/by-nc-nd/4.0/


(blank stimulus) for the same duration. Stimuli were centered in the aggregate spatial receptive777

field of the recorded units778

Neural activity from the superficial layers of V1 was recorded from a 96 channel microelectrode779

array (400 �m spacing, 1 mm length). (400 �m spacing, 1 mm length). Standard methods for780

waveform extraction and pre-processing were applied (see Aschner et al., 2018). We computed781

spike counts in a fixed window with length equal to the stimulus duration, shifted by 50 ms after782

stimulus onset to account for onset latency. We excluded from further analyses all neurons that783

were not driven by any stimulus above baseline + 3std.784

In the first dataset the monkey was awake and performed a fixation task. Methods and proto-785

cols are as described in Festa et al. (2020). There were dT = 3, 168 trials of the responses of dN = 43786

neurons in the dataset. We refer to this dataset as the awake V1 dataset.787

In the second dataset the monkey was anaesthetized and there were dT = 10, 800 trials of the788

responses of dN = 70 neurons; we refer to this dataset as the anaesthetized V1 dataset. The789

protocol and general methods employed for the anaesthetized experiment have been described790

previously (Smith and Kohn, 2008).791

All procedures were approved by the Institutional Animal Care andUse Committee of the Albert792

Einstein College of Medicine, and were in compliance with the guidelines set forth in the National793

Institutes of Health Guide for the Care and Use of Laboratory Animals under protocols 20180308794

and 20180309 for the awake and anaesthetized macaque recordings, respectively.795

Code796

All code used to run the simulations and generate the figures, as well as the awake and anaes-797

thetizeddatasets, are available at theGit repository https://gitlab.com/sacha-sokoloski/neural-mixtures798

(Sokoloski, 2021). Instructions are provided for installation, and scripts are provided that may be799

run on alternative datasets with a similar structure to what we have considered in this manuscript800

without modifying the code.801
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Appendix 11033

Comparing conditional mixtures with factor analysis1034

In Conditional mixtures effectively model neural responses in macaque V1, we assess en-
coding performancewith the cross-validated, average log-likelihood of the given conditional
mixture (CM) on the given dataset. However in some cases one might only be concerned
with howwell amodel captures particular statistics of a dataset. In particular, responsemod-
els based onGaussian distributions treat spike-counts as continuous values, and assign pos-
itive probability to both negative and non-integer values. Although their log-likelihood per-
formance consequently tends to suffer relative to spike-count models, they can still prove
highly effective at capturing the mean and covariance of data.
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Here we compare CMs with factor analysis (FA), which is widely applied to modelling
neural responses (Santhanam et al., 2009; Cowley et al., 2016; Semedo et al., 2019). FAs
model data as Gaussian distributed, and have a latent structure that facilitates both inter-
pretability and predictive performance. The easiest way to design an encodingmodel based
on FA is with a simple lookup-table, so that we fit an independent FA model at each stim-
ulus condition. This is also how we define maximal CMs, and so to keep our comparison
straightforward we compare FA encoding models with maximal CMs. In particular, we com-
pare FA to both independent Poisson (IP) and CoM-Based (CB) maximal CMs on how well
they capture response statistics on the two datasets from the article (anaesthetized and
awake macaque V1). In general, we trained the CMs with expectation-maximization (EM) as
described in Materials and methods, and the FA model with standard EM.
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In Appendix 1 Figures 1A and B we depict scatter plots that compare the data noise cor-
relations from our awake and anaesthetized datasets at the stimulus orientation x = 40◦,
to the noise correlations learned by CB and IP mixtures, and FA trained on the complete
datasets. Each model was defined with dK = 5 latent states/dimensions. We also state
the coefficient of determination r2 for each model, and see that although all models per-
form comparably on the anaesthetized data, FA has a clear advantage over the mixture
models on the awake data. To see if this performance advantage holds on held-out data,
in Appendix 1 Figures 1C and D we depict the results of 10-fold cross-validation of the co-
efficient of determination r2 between the data noise correlations and the various model
noise correlations over all 9 stimulus orientations, as a function of the number of latant
states/dimensions dK . We see that the predictive performance advantage of FA is on the
awake data is small, and that CB-CMs exceed the performance of FA on anaesthetized data.
At the same time, FA achieves peak performance on both datasets with a smaller number
of parameters. Nevertheless, FA is designed precisely to capture second-order correlations,
and that our mixture models achieve comparable performance speaks favourably to the
overall strengths of the mixture model approach.
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1070

Appendix 1 Figure 1. Mixture models capture spike-count correlations. A,B: Scatter plots of the datanoise correlations versus the noise correlations modelled by IP (blue) and CB (red) mixtures, and FA(purple), in both the awake (A) and anaesthetized (B) datasets at orientation x = 40◦. Each pointrepresent a pair of neurons (dN = 43 and dN = 70 neurons in the awake and anaesthetized datasets,respectively). C,D:We evaluate the noise correlation r2 over all stimulus-orientations with 10-foldcross-validation. We plot the average (lines) and standard error (error bars) of the cross-validatednoise correlation r2 as a function of number of latent states/dimensions dK , in both the awake (C) andanaesthetized (D) datasets. We also indicate the peak performance achieved for each model, andrequisite number of latent states/dimensions dK .
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In Appendix 1 Figures 2A-B we depict scatter plots between the data Fano factors (FFs) and
learned FFs of our models at stimulus orientation x = 40◦, and find that both the CBmixture
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and FA almost perfectly capture the data FFs. In Appendix 1 Figures 2C-D we see that the CB
mixture and FA also achieve good cross-validated r2 scores on FFs. Unsurprisingly, however,
the IP mixture struggles to effectively capture FFs.
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Appendix 1 Figure 2. Mixture models capture spike-count Fano factors. We repeat the analyses fromAppendix 1 Figure 1 on Fano factors (FFs). A,B: Scatter plots of the data FFs versus the FFs modelledby IP (blue) and CB mixtures (red), and FA (purple) in both the awake (A) and anaesthetized (B)datasets at orientation x = 40◦. C,D: As a function of the number of latent states/dimensions we plotthe average (lines) and standard error (bars) of the cross-validated r2 between the data and modelledFano factors over all stimulus orientations, in both the awake (C) and anaesthetized (D) datasets.
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Appendix 21094

Neural decoding higher-order moments1095

FA-based encoding models are highly effective at capturing the first- and second-order
statistics of neural responses, yet in our simulationswe found that Bayesian decoders based
on FA encoding models perform poorly when compared to the other decoding models
considered in Conditional mixtures facilitate accurate and efficient decoding of neural re-
sponses. There we evaluate decoding performance by fitting a candidate model to training
data, and computing the mean and standard error of the log-posterior at the true stimulus
on held-out data. On the awake data FA scores −0.246 ± 0.066, which is comparable to an
optimal linear decoder, yet still significantly worse than a nonlinear decoder, or a Bayesian
decoder based on a CM. On the anaesthetized data FA scored −∞, as it would occasionally
assign numerically 0 posterior probability to the true stimulus; when we filtered out −∞
values from the average, the FA encoder still only achieved performance of −2.21 ± 0.31.
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Normal distributions — and the FA observable distribution by extension — are essen-
tially defined by their first- and second-order statistics, which suggests that there are higher-
order statistics that are important for decoding that FA cannot capture. The third and fourth
order statistics known as the skewness and excess kurtosis measure the asymmetry and
heavy-tailedness of a given distribution, respectively. Normal distributions have a skewness
and excess kurtosis of 0. Here we study how well this normality assumption is reflected in
our neural recordings, and how well our mixture models capture these higher-order statis-
tics.
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In Appendix 2 Figure 1 we present scatter plots of the empirical skewness and kurto-
sis of all the neurons in our datasets at orientation x = 40◦, and the model skewness and
kurtosis learned by our mixture models. Exactly quantifying the non-normality of higher
order moments in multivariate distributions is a complicated and evolving subject (Mardia
and El-Atoum, 1976; Cain et al., 2017), nevertheless in Appendix 2 Figure 1 the empirical
skewness and kurtosis of the recorded neurons appear to qualitatively deviate from zero.
On the awake data, both the CB and IP mixture achieves high r2 when compared with the
data skewness (Appendix 2 Figure 1A) and kurtosis (Appendix 2 Figure 1B), although the CB
mixtures achieves notably better performance. On the anaesthetized data (Appendix 2 Fig-
ures 1C and D), the CB mixture continues to achieve a high r2, but the IP mixture performs
extremely poorly; although the disparity in r2 is not immediately apparent in the scatter
plots, this is because some of the model skewness of the IP mixtures are outside the plot
bounds.
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1128

Appendix 2 Figure 1. CoM-Based mixtures capture data skewness and kurtosis. A,B: Scatter plots of thedata skewness (A) and kurtosis (B) versus the skewness and kurtosis modelled by IP mixtures (blue)and CB mixtures (red). The skewness and kurtosis of 1 of 43 neurons modelled by the IP mixture wereoutside the bounds of each scatter plot. C,D: Same as A-B but on the anaesthetized data; theskewness of 11 of 43, and kurtosis of 12 of 43 neurons modelled by the IP mixture were outside thebounds of each scatter plot.
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When fit to the complete datasets, and averaged over all stimulus conditions, the CB mix-
tures achieved a skewness r2 average and standard error of r2 = 0.87±0.08 and r2 = 0.94±0.03,
and a kurtosis r2 average and standard error of r2 = 0.61 ± 0.20 and r2 = 0.82 ± 0.13 on the
awake and anaesthetized data, respectively; in contrast, the presence of outliers caused
the average scores for the IP mixture to be dramatically negative in all cases. These results
suggest that the CoM-based parameters of the CB mixture provide important degrees of
freedom for capturing individual variability. That being said, when we cross-validated the r2
performance on the higher-order moments, the results were not significantly higher than
0 for the CB mixture, and as such, accurately estimating higher-order moments requires
larger datasets than what we have considered here.
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Nevertheless, in spite of the inability to capture predictive performance on these moments,
we speculate that when combined across higher-order moments and cross-moments, the
ability of mixture models to capture higher-order structure in the data is necessary for
maximizing decoding performance, and that these moments might play an important role
in neural coding. As the complexity of neural datasets increases, a careful study of such
higher-order statistics would become both feasible and warranted, and our mixture model
approach could prove to be a useful tool in such work.
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Appendix 31153

Sample complexity of conditional mixtures1154

To develop a sense of the sample complexity of CMs, we repeated the cross-validation sim-
ulations with discrete CMs on subsets of our two datasets (see Conditional mixtures effec-
tively model neural responses in macaque V1 and Conditional mixtures facilitate accurate
and efficient decoding of neural responses). In particular, we ran a 10-fold cross-validation
simulation on a single subsample of 25%, 50%, 75%, and 100%, of each of our datasets. On
our anaesthetized dataset this occasionally resulted in some neurons recording 0 spikes
in a giving training set, which tends to cause our training algorithm to diverge, and so we
filtered out neurons with low firing rates, leaving 50 neurons in our anaesthetized dataset.
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Appendix 3 Figure 1. Sample complexity of discrete CMs. 10-fold cross-validation of discrete CMs with3, 10, 20, and 40 components, on subsamples of 25%, 50%, 75%, and 100% of the awake andanaesthetized datasets, with dN = 43 and dN = 50 neurons, respectively. Left column: Cross-validatedaverage log-likelihood of the models given test data (i.e. encoding performance). Right column:Cross-validated average log-posterior (i.e. decoding performance). Error bars represent standarderror. In all panels, we added an offset on the abscissa for better visualization of the error bars.
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We present the results of our simulations in Appendix 3 Figure 1. In the left column (Ap-
pendix 3 Figures 1A-D) we present the cross-validated log-likelihood of the vanilla and CoM-
models, on the awake and anaesthetized data, respectively, and we see that, as we would
expect, models with fewer components maximize their performance on smaller datasets.
Even with large amounts of data, however, the performance difference between models
with more than 10 components is nearly statistically indistinguishable. In the right column
(Appendix 3 Figures 1E-H) we present the cross-validated log-posterior performance of the
models, and the results mirror those of the log-likelihood simulations, except the benefits
of larger models becomes even more marginal.

1171

1172

1173

1174

1175

1176

1177

1178

1179

36 of 37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2021. ; https://doi.org/10.1101/2020.11.05.369827doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.369827
http://creativecommons.org/licenses/by-nc-nd/4.0/


Appendix 41180

Conditional mixtures and generalized linear models1181

CMs are closely related to generalized linear models (GLMs), which are widely applied in
neuroscience. The application of GLMs to modelling stimulus-driven spike-trains was pi-
oneered in Pillow et al. (2008), in which the authors develop a Poisson encoding model
p(nt ∣ x,m1,… ,mdN ) ∝ e�N (x,m1 ,…,mdN )nt , where dN is the number of recorded neurons, nt is thespike-count of the modelled neuron in timebin t, x is the stimulus (here the stimulus is an
image and represented as a vector), and where eachmi is the spike-count history of the ithrecorded neuron up to time t−1. The log-rate �N of the modelled neuron at time t depends
linearly on the stimulus and the spike-history, and is given by

�N (x,m1,… ,mdN ) = x ⋅ k +
dN
∑

i=1
hi ⋅mi, (18)

where k and hi are vectors; in Pillow et al. (2008) both k and hi are represented by basis
functions with a manageable number of fittable parameters.
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This model may be trivially combined with a CM in order to extend the GLM formulation
with a latent source of shared-variability that affords analytic expressions for various quan-
tities of interest. The definition of a CB-CM is p(n, k ∣ x) ∝ eθN (x)⋅n+θ∗

N ⋅lf (n)+θK ⋅δ(k)+n⋅�NK ⋅δ(k), and
wemay simply replace the variable xwith all the independent variables in the GLM formula-
tion, namely x and m1,… ,mdN , and define the baseline log-firing rates θN (x,m1,… ,mdN ) as
dN copies of the function defined by Equation 18, each with its own independent parame-
ters. In principle, the expectation-maximization framework we have presented for training
CMs can be directly applied to a model with this structure. That being said, choosing the
right parameterization of k and h1,… ,hdN would pose a unique challenge in a combined
GLM-CMmodel, and whether such a model would be practically useful is an empirical ques-
tion that is beyond the scope of this paper.
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Here we also clarify that although a CM is closely related to both mixture models and
GLMs, it should not be confused with the models known as “mixtures of GLMs” (Grün and
Leisch, 2008). A mixture of GLMs has the form p(y ∣ x) =

∑dK
k=1wkp(y ∣ x;θk), where dK is the

number of GLMs to be mixed, wk are the weight parameters, and p(y ∣ x;θk) is a GLM with
parameters θk. This model differs from a CM in many subtle ways, and the easiest to note
is that the weights wk do not depend on the stimulus x as they do in a CM, which, as shown
in Figures 4 and 6 of the main paper, is critical to how how CMs represent data.
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