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Abstract: Dedifferentiation and acquisition of chromosomal instability in renal cell carcinoma portends 

dismal prognosis and aggressive clinical behavior. However, the absence of reliable experimental 

models dramatically impacts the understanding of  mechanisms underlying malignant progression. Here 

we established an in vivo genetic platform to rapidly generate somatic mosaic genetically engineerd 

immune-competent mouse models of renal tumors, recapitulating the genomic and phenotypic features 

of these malignancies. Leveraging somatic chromosomal engineering, we demonstrated that ablation of 

the murine locus syntenic to human 9p21 drives the rapid expansion of aggressive mesenchymal clones 

with prominent metastatic behavior, characterized by early emergence of chromosomal instability , 

whole-genome duplication, and conserved patterns of aneuploidy. This model of punctuated equilibr ium 

provides a remarkable example of cross-species convergent evolution.  

Significance: To better understand the role of 9p21 in malignant progression, we generated a somatic 

mosaic GEMM of renal cancer, capturing the histological, genomic and evolutionary features of human 

disease. With this technology we demonstrated a critica role of 9p21 loss in metastatic evolution of RCC 

and provide a unique tool for testing new therapeutic treatments. 
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Introduction: Aggressive vantians renal cell carcinomas (avRCC) are characterized by rapid clinical 

evolution and lack of response to therapy. The presence of metastatic disease, specifically, is associate 

with a particularly poor prognosis, however the mechanisms driving the emergence of malignant clones 

with metastatic competencies are still elusive (1). The lack of experimental models that faithfully 

recapitulate the clinical and pathological features of aggressive variants of RCC has significant ly 

impacted our ability to understand the mechanisms underlying the malignant progression of this disease 

(2-5), to bridge these gaps in knowledge, we therefore developed an in vivo platform for the rapid 

generation of hight-throughput genetically engineered somatic mosaic mouse models (SM-GEMMs) of 

RCC. 

Results: 

Leveraging of CRISPR/Cas9-based genome editing method, we generated tissue specific somatic knock-

outs of the tumor suppressor genes (TSGs) orthologs to commonly mutated genes in avRCC 

(Supplementary Fig. S1A-E) (6-8). Remarkably, such combinations consistently yielded indolent tumors 

characterized by low penetrance, long latancy, and limited invasive potential, with histopathological 

features of well differentiated papillary and tubulo-papillary carcinomas (Supplementary Fig. S1F-I). In 

order to find out whether additional genomic events are required to drive metastatic dissemination , 

leveraging in vivo somatic chromosome engineering, we generated a set of single-guide RNAs (sgRNAs) 

targeting DNA sequences flanking a 40-kb region on murine chromosome 4 syntenic to human 9p21.3 

(4q9p21). Strikingly, somatic engineering of the 4q9p21 locus loss resulted in the emergence of rapidly fatal 

tumors with a prominent tendency for widespread systemic dissemination and extensive sarcomatoid 

differentiation (sRCC) (P < 0.0001) (Fig. 1A-E, Supplementary Fig. S1J). These features are consistent 

with avRCC, mirroring their patterns of distribution and burden of metastatic spread (Fig. 1F-G) (9). 

Remarkably, analysis of two publically available datasets of RCC (TCGA, TRACERx) and an 
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unpublished dataset of avRCC with clinical, pathological, and genomic annotations (MSKCC 2020), 

confirmed that the loss of genetic material on human chromosome 9p is associated with a significant 

increase in metastastic dissemination, presence of sarcomatoid features, and poor survival, particularly 

in NF2-mutant cancers (P = 0.0002 and P = 0.0048 for sarcomatoid features and metastatic disease, 

respectively) (Fig. 1H-K, Supplementary Fig. S2A-H, Supplementary Table S1) (10,11). 

To characterize the genomic events driving rapid cancer evolution upon targeting the 4q9p21 locus, 

we performed multiregional whole-exome sequencing (WES) on tumor bearing mice and multiregiona l 

whole-genome sequencing (WGS) on selected cases, with an average coverage of 147X and 55X, 

respectively. The extent and distribution of somatic indels generated by the Cas9 endonuclease 

demonstrated patterns consistent with previous reports, showing high efficiency of in vivo editing, 

regardless of number and position of the sgRNAs engineered within a package of guides (Supplementary 

Fig. S3A-C) (12,13). This suggests high selective pressure for multiple clonal drivers, as previously 

described (10,12,14). Spatial variant allele frequency (VAF) analysis of specific engineered indels across 

disease sites further demonstrated the presence of one or a few dominant clones highly abundant within 

the primary tumors and enriched at secondary sites (Supplementary Fig. S3D-E). These data, along with 

conserved histopathological features across anatomical sites (Supplementary Fig. S3F), favor a 

monophyletic or oligophyletic origin hypothesis for this cancer model, with most of the disease burden 

established by the rapid fixation and expansion of clones with high fitness (15). In contrast with a 

relatively low mutation burden [0.34 somatic, exonic mutations (VAF ≥ 0.1 per Mb)], further 

characterization of acquired somatic variants revealed rampant chromosomal instability (CIN) with 

conserved patterns of chromosomal aberrations among differerent mice and lesions (Fig. 2A, 

Supplementary Fig. S4A-C). Remarkably, mouse/human synteny data evidenced cross-species 

convergent genomic evolutionary trajectories with recurrent losses affecting the mouse genome regions 
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12q and 16q, syntenic to human chromosomes 14q and 3p, respectively, and gains of the murine 11q 

and 5q regions, syntenic to human chromosomes 7 and 17 (Fig. 2B) (11). WGS analysis of selected cases 

coupled with karyotyping further revealed genome polyploidization, suggesting that clones undergoing 

one or multiple whole-genome duplication (WGD) events are selected during malignant progression, 

potentially creating a permissive background to tolerate high degrees of CIN (Fig. 2C-E, Supplementary 

Fig. S5A-D). Supporting this hypothesis, distribution analysis of heterozygous SNPs across the genome 

revealed that WGD events preceded the emergence of specific aneuploid events (Supplementary Fig. 

S5E).  Further interrogation of TCGA, TRACERx and MSKCC RCC datasets confirmed a significant 

association between 9p loss, WGD, and high aneuploidy score (Supplementary Fig. S6A-C, 

Supplementary Table S1) with conserved patterns of genome evolution as demonstrated by the 

significant co-occurrence of 9p/14q losses (Fig. 2F, Supplementary Fig. S6D) (11,16). These results 

suggest that the loss of 9p is conductive to aneuploidy, promoting the rapid emergence of metastatic-

competent clones (17).  

Accordingly, multiregional sequencing (MRS) analysis of primary tumors and metastases 

displayed the rapid truncal emergence of recurrent copy number variation (CNV) events (12q-, 16q-, 

5q+, 11qE+) and a dramatic bias toward the accumulation of private over truncal single nucleotide 

variants (SNVs) (Fig. 3A-C, Supplementary Fig. S7A). This observation indicates that CIN emerges 

relatively early during the natural history of the disease in highly conserved patterns preceding 

exponential clonal expansion and metastatic seeding (Fig. 3D-E).  

Discussion:  

Altogether, these results establish functional proof of the central role of 9p loss in determining aggressive 

patterns of disease evolution in RCC. Integrated genomic analysis of human renal cancers has 
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highlighted a robust association between 9p loss, the presence of complex karyotypes and aggressive 

clinical behavior, across pathological and molecular subtypes of RCC, but there are still limited 

functional data supporting a role for 9p loss in malignant progression (10,11,18-20).  

Despite of the crucial role of proper research platforms in understanding cancer pathophysiology and 

performing preclinical test of new therapeutic options, there is only an handful of renal cancer models , 

none of which showing consistent metastatic potential (21,22). In the present study, by engineering 9p21 

loss in vivo, we generated the first somatic mosaic model of aggressive and metastatic RCC and captures 

the evolutionary features of human tumors. This platform ensures a rapid, high-throughput generation 

of different subtypes of RCC, harboring an intact immune system and therefore enabling future studies 

looking at the characterization tumor immune response, changes in tumor microenvironment and effects 

of treatment with immunotherapy agents.Here, we demonstrated that the loss of the murine ortholog of 

9p21 triggers the explosive expansion of aggressive sub-populations, with mesenchymal features and 

prominent metastatic behavior. This results, strongly suggest that 9p21 restrains the emergence of 

malignant clones with invasive potential in renal cancer. Furthermore, whole exome and genome 

sequencing analysis provides insight into the patterns and tempo of genetic evolution in 9p- driven 

tumors, revealing early emergence and rapid selection of clones defined by whole-genome duplication 

events, chromosomal instability, and conserved patterns of aneuploidy. These features are in line with a 

model of punctuated equilibrium, where bursts of macroevolutionary events driving explosive patterns 

of tumor growth are followed by periods of neutral evolution and stasis (23). Remarkably, mouse/human 

synteny data evidence cross-species convergent evolutionary trajectories, characterized by the 

spontaneous emergence of recurrent chromosome losses and gains. These findings point towards 

conserved evolutionary bottlenecks, shaping the natural history of RCC in both human and experimental 

models. 
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In conclusion, our somatic CRISPR-based chromosome engineering studies establish an efficient model 

recapitulating the main features of human cancer and functionally demonstrate a critical role for 9p21 

loss in the metastatic progression of aggressive RCC. Taken together, these findings may lead to better 

understanding of cancer evolution and pave the road for new therapeutic strategies, providing substantial 

contribution to the advancement of the field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.03.367433doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.03.367433


10 

 

Methods 

 

Mice  

The Pax8Cre strain was generated by Dr. Meinrad Busslinger and obtained through the Jackson 

Laboratory, Stock No: 028196 (24). The H11LSL-Cas9 strain was generated by Dr. Monte M. Winslow and 

obtained through the Jackson Laboratory, Stock No: 027632 (25). The Rosa26LSL-TdT was generated in 

Hongkui Zeng’s laboratory and obtained through the Jackson Laboratory, Stock No: 007908 (26). The 

Rosa26FSF-LSL-TdT was generated in Hongkui Zeng’s lab and obtained through the Jackson Laboratory, 

Stock No: 021875 (27). Rosa26LSL-Luc mice were generated by William G. Kaelin and obtained through 

the Jackson Laboratory, Stock No: 034320 (28). Strains were kept in a mixed C57BL/6 and 129Sv/Jae 

background. Embryo collection was performed at E14. All animal studies and procedures were approved 

by the UTMDACC Institutional Animal Care and Use Committee. All experiments conformed to the 

relevant regulatory standards and were overseen by the institutional review board. No sex bias was 

introduced during the generation of experimental cohorts. Littermates of the same sex were assigned 

randomly to experimental arms.  

 

Single-guide RNA design and validation  

Single-guide RNAs (sgRNAs) were designed with “GenScript CRISPR sgRNA Design Tool” 

(https://www.genscript.com/gRNA-design-tool.html?a=post). First, 5 -̀phosphorilated oligos were annealed 

and diluted 1:20. Then 1 uL of each annealed and diluted sgRNA was cloned in digested lentiCRISPR 

V2 (addgene #52961) according to Dr. Feng Zhang’s protocol 

(https://media.addgene.org/cms/files/Zhang_lab_LentiCRISPR_library_protocol.pdf). NEB® Stable 
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Competent E. coli (C3040I) colonies resistant to ampicillin antibiotic selection were amplified, and 

presence of sgRNA was confirmed by Sanger sequencing. Positive clones were transfected individually 

in 293 cells along with vectors for lentiviral packaging production, PAX2 (addgene #12260) and 

PMD2G (addgene #12259). MCT cells were infected by the lentivirus carrying a specific sgRNA and 

selected for puromycin resistance. Cut efficiency of sgRNA was tested by T7 Endonuclease I (NEB 

#M0302L) assay on the DNA of infected cells, according to the protocol 

(https://www.neb.com/protocols/2014/08/11/determining-genome-targeting-efficiency-using-t7-endonuclease-

i).. 

Single-guide RNA sequences: Nf2: GTATACAATCAAGGACACGG, Setd2: 

CTCGGGTGAAAGAATATGCA, Trp53: GACACTCGGAGGGCTTCACT, Cdkn2a: 

GTGCGATATTTGCGTTCCGC, Cdkn2b: GGCGCCTCCCGAAGCGGTTC, Bap1: 

GAATCGGTCTTGCTACTGCA. 

Primers list: Nf2 For: CCTGCTTGTCTGGGAAGTCTGT, Nf2 Rev: 

GTCTCACCAACTAGCCATCTTCC; Setd2 For: TTGATTGCTGAAGGGTGTAACTCA, Setd2 Rev: 

CTGGCCTCAAACTTCCTAAACAGA; Trp53 For: CCGCCATACCTGTATCCTCC, Trp53 Rev: 

GCACATAACAGACTTGGCTG; Cdkn2a For: AAGGGCAGGGTGTAGAGTAAC; Cdkn2a Rev: 

CAGGTGATGATGATGGGCAA; Cdkn2b For: GGAATTAAGTGCTGGGTTGGAG, Cdkn2b Rev: 

CAGGACGCTCACCGAAGCTA; Bap1 For: GCCAGAACCACGTCACCTTC, Bap1 Rev: 

CAGGCCACAGGCAACCTAAA. 

 

Recombinant DNA  
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Packages of two or more guide RNAs were designed according to the following scheme: EcorI 

restriction site – U6 promoter – gRNA1 sequence – gRNA scaffold – polyA – U6 promoter – gRNAn 

sequence – gRNA scaffold – polyA – AscI restriction site. The synthetic sequence was synthesized and 

assembled into the pEMS2158-FLEx-Flpo AAV vector (Genescript) into the EcorI and AscI restriction 

sites. The pEMS2158-FLEx-Flpo was generated by PCR amplification of FLEx(loxP)-FlpO from the 

pTCAV-FLEx(loxP)-FlpO vector (addgene # 67829) (29) and cloning into the AscI and BsrGI sites of 

the pEMS2158 vector (addgene #70119) (30). AAV PHP.eB (addgene #28304-PHPeB) carrying FLEX-

GFP sequence was used for injections in Pax8Cre/+-Rosa26LSL-TdT/+ mice (31). 

 

Virus production 

Plasmid DNA preparations were generated using endotoxin-free MIDI kits (Qiagen). Large-scale 

AAV particle production was outsourced to Vigene Biosciences (10^13 IU/mL). Viral preparations were 

stored in aliquots at -80°C. 

 

Imaging  

A 7T Bruker Biospec (BrukerBioSpin), equipped with 35mm inner diameter volume coil and 12 

cm inner-diameter gradients, was used for MRI imaging. A fast acquisition with relaxation enhancement 

(RARE) sequence with 2,000/39 ms TR/TE, 256x192 matrix size, r156uM resolution, 0.75 mm slice 

thickness, 0.25 mm slice gap, 40 x 30 cm FOV, 101 kHz bandwidth, and 4 NEX was used for acquired 

in coronal and axial geometries a multi-slice T2-weighted images. To reduce respiratory motion, the 

axial scan sequences were respiratory gated. All animal imaging, preparation, and maintenance was 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.03.367433doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.03.367433


13 

 

carried out in accordance with MD Anderson’s Institutional Animal Care and Use Committee policies 

and procedures. 

IVIS-100 procedure has been described elsewhere (32). 

 

Surgical procedures 

Orthotopic injection in kidney. First, 10^10 adeno-associated viral particles were resuspended in 

PBS (Thermo Fisher Scientific) and Matrigel matrix (Corning) 1:1 solution. Six- to nine-week-old mice 

were shaved and anesthetized using isoflurane (Henry Schein Animal Health). Analgesia was achieved 

with buprenorphine SR (0.1 mg/Kg BID) (Par Parmaceutical) via subcutaneous injection, and shaved 

skin was disinfected with 70% ethanol and betadine (Dynarex). A 1-cm incision was performed on the 

left flank through the skin/subcutaneous and muscular/peritoneal layers. Left kidney was exposed and 

20 uL of viral resuspension was introduced by Hamilton syringe into the organ by a subcapsular 

injection. Hemostasis was controlled with a bipolar cautery (Bioseb) if needed. The kidney was carefully 

repositioned into the abdominal cavity, and muscular/peritoneal planes were closed individually by 

absorbable sutures. The skin/subcutaneous planes were closed using metal clips. Mice were monitored 

daily for the first three days, and twice/week thereafter for signs of tumor growth by manual palpation, 

bioluminescence imaging, and/or MRI when appropriate.  

 

Euthanasia, necropsy, and tissues collection  

Mice were euthanized by exposure to CO2 followed by cervical dislocation. A necropsy form 

was filled in with mouse information, tumor size and weight, infiltrated organ annotations, and 

metastasis number and location.  
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Tumor cell isolation and culture  

Ex vivo cultures from primary tumor explants were generated by mechanical dissociation and 

incubation for 1 hour at 37°C with a solution of collagenase IV/dispase (2 mg/mL) (Invitrogen), 

resuspended in DMEM (Lonza) and filtered. Cells derived from tumor dissociation and digestion were 

plated on gelatin 0.1% (Millipore Sigma) coated plates and cultured in DMEM (Lonza) supplemented 

with 20% FBS (Lonza) and 1% penicillin–streptomycin, and kept in culture for less than 5 passages. 

 

Staining  

Immunohistochemistry (IHC) and immunofluorescence (IF) were performed as previously 

described (32). Antibodies list: RFP (Thermo Fisher, cat. #MA5-15257), GFP (Abcam, cat. #13970), 

vimentin (Abcam, cat. #ab8978), Pax8 (Proteintech, cat. #10336-1-AP), Ki67 (Thermo Fisher, cat. 

#MA5-14520).  

Multispectral imaging using the Vectra . Microwave treatment (MWT) was applied to perform 

antigen retrieval, quench endogenous peroxidases, and remove antibodies from earlier staining 

procedures. Akoya Biosciences AR6 antigen retrieval buffer (pH 6) was used for vimentin and RFP 

staining while Akoya Biosciences AR9 antigen retrieval buffer (pH 9) was used for Pax8 staining. The 

slides were stained with primary antibodies against RFP, Pax8, and vimentin, corresponding HRP 

conjugated secondary antibodies, and subsequently TSA dyes to generate Opal signal (vimentin, Opal 

570; RFP, Opal 620; and Pax8, Opal 690). The slides were scanned with the Vectra 3 image scanning 

system (Caliper Life Sciences), and signals were unmixed and reconstructed into a composite image 

with Vectra inForm software 2.4.8. 
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 Estimation of purity was calculated as percentage of positive area for Tdt IHC staining. Free 

online tool IHC profiler (33) was used for quantification. 

 

Metaphase spread and chromosome count 

IF on metaphasic spread was obtained as previously described with few modifications (34). 

Cultures were treated with 100 ng/mL−1 nocodazole for 8 hours overnight, collected by trypsinization, 

resuspended in 0.2% (w/v) KCl and 0.2% (w/v) trisodium citrate hypotonic buffer at room temperature 

(20–22°C) for 5 to 10 min, and cytocentrifuged onto SuperFrost Plus glass slides (MenzelGlaser) at 450g 

for 10 min in a Shandon Cytospin 4. Slides were fixed at room temperature for 10 min in 1× PBS with 

4% (v/v) formaldehyde, permeabilized for 10 min at room temperature in KCM buffer (120 mM KCl, 

20 mM NaCl, 10 mM Tris (pH 7.5) and 0.1% (v/v) Triton X-100), and blocked with 5% goat serum 

PBS1X 0.1%Triton 100x BSA 3% for 30 min at room temperature. Slides were incubated with primary 

antibody diluted in antibody dilution buffer (PBS1X 0.1%Triton 100x BSA 3%) for 1 hr at room 

temperature, washed in 1× PBST (1× PBS with 0.1% (v/v)), incubated with secondary antibody diluted 

in antibody dilution buffer for 30 min at room temperature, washed with 1× PBST and stained for DNA 

with DAPI. Primary antibody: anti-centromere (ACA) (1:250; Antibodies Incorporated). Secondary 

antibody: goat anti-human conjugated to Alexa Fluor 488 (A-11013). 

 

Karyotype analysis 

Exponentially growing cells in 10-cm petri dishes were treated with colcemid (0.04 ug/mL 

media) and incubated at 37°C for 2 to 3 hours. Cells were trypsinized and the single-cell suspension was 

collected in 15 mL conical centrifuge tubes. The cell suspension was centrifuged at 1500 rpm for 7 min. 

The supernatant was discarded, and the cell pellet was resuspended in 7 mL of hypotonic solution (0.075 
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M potassium chloride) and incubated for 20 min at room temperature. Then 2 mL of fixative (methanol 

and acetic acid, 3:1 v/v) was added to the cells, mixed, and centrifuged. The cells were washed thrice 

with fresh fixative and resuspended in about 1 mL of fixative. A few drops of cell suspension were 

placed on wet glass slides and allowed to air dry. 

G banding. Slides were optimally aged (3 days at 65°C) and then Giemsa banded using trypsin 

EDTA solution following routine laboratory techniques. G-banded metaphase spreads were 

photographed using an 80i Nikon microscope and Applied Spectral Imaging karyotyping system (ASI, 

Vista, CA). A minimum of ten metaphases were karyotyped (35). 

Spectral karyotyping (SKY). Spectral karyotyping was performed on these slides using the human 

SKY probe (Applied Spectral Imaging, Carlsbad, CA) according to the manufacturer’s protocol. Images 

were captured using 80i Nikon microscope and Applied Spectral Imaging (ASI) karyotyping system. A 

minimum of ten metaphases were karyotyped (36). 

 

Whole-exome sequencing of murine DNA 

 Illumina-compatible mouse exome libraries were prepared using the Agilent SureSelect protocol. 

Briefly, 1000 ng of Biorupter Ultrasonicator (Diagenode)–sheared, RNase-treated gDNA was used to 

construct sequencing libraries using the Agilent SureSelectXT Reagent Kit (Agilent Technologies). 

Libraries were prepared for capture with 6 cycles of PCR amplification, then assessed for size 

distribution on the 4200 TapeStation High Sensitivity D1000 ScreenTape (Agilent Technologies) and 

for quantity using the Qubit dsDNA HS Assay Kit (ThermoFisher). Exon target capture was performed 

using the Agilent SureSelectXT Mouse All Exon Kit. Following capture, index tags were added to the 

exon-enriched libraries using seven cycles of PCR. The indexed libraries were then assessed for size 

distribution using the Agilent TapeStation and quantified using the Qubit dsDNA HS Assay Kit 
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respectively. Libraries were pooled, quantified by qPCR using the KAPA Library Quantification Kit 

(KAPABiosystems), and sequenced on the NovaSeq6000 using the 150 bp paired-end format.  

 

Next-generation sequencing of murine DNA 

 Exome libraries and whole genome-libraries were prepared and sequenced using a modified 

protocol originally described in Msaouel et al (37). Modifications to he protocol for murine exome 

sequencing were use of 1000ng of treated gDNA, performing only 6 cycles of PCR amplification, and 

usage of the Agilent SureSelectXT Mouse All Exon Kit for exon target capture. For murine whole -

genome sequencing, after adapter ligation, libraries were only amplified by 2 cycles of PCR. Equimolar 

quantities of the whole-genome indexed libraries were multiplexed, with 18 libraries per pool. Results 

from 13 of the 18 libraries were used in our analysis. All pooled libraries were sequenced on an Illumina 

NovaSeq6000 using the 150 bp paired-end format.  

 

Bioinformatic processing of high-throughput sequencing data 

The bioinformatic processing pipeline of raw whole-exome (WES) and whole-genome (WGS) 

high-throughput sequencing data was adapted for murine data from the protocol used in Seth et al (38). 

Reads were aligned to the mouse genome reference (mm10) using Burrows-Wheeler Aligner (BWA) 

with a seed length of 40 and a maximum edit distance of 3 (allowing for distance % 2 in the seed) (39). 

BAM files were further processed according to GATK Best Practices, including removal of duplicate 

reads, realignment around indels, and base recalibration (40,41). 

 

Analysis of sgRNA performance 
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 Expected cut sites of sgRNAs were analyzed using CRISPResso2 (42). BAM files were first 

filtered with SAMtools (39) to contain reads spanning a 50-bp region centered around the expected 

sgRNA cut site and passed to CRISPResso2 in “CRISPRessoWGS” mode. The allele frequency of each 

base position around the cut site window was extracted from the CRISPResso2 results. An odds ratio for 

probability of a base position difference from the reference genome for each tumor sample and its 

respective matched normal sample was calculated by Fisher’s exact test by counting the number of base 

alterations observed at each cut site window position. The odds ratios were transformed by natural log 

and z-transformation against the average log-odds ratio for all base positions of the same gene (43). The 

z-transformed log-odds ratios were then averaged across all gene cut sites for a sample to summarize the 

overall editing efficiency of the sgRNAs delivered to each mouse (44). Genes were considered altered 

if at least 3 reads with the same pattern of base alteration were detected at the expected sgRNA cut site.  

 

Identification of somatic copy number profiles and events 

CNVkit (45) was used to derive somatic copy number profiles from WES data using a panel of 

normal samples consisting of all the matched normal samples across all mice sequenced in this study. 

The targeted exome bed file for the Agilent SureSelect All Mouse Exon V1 was downloaded from 

Agilent with the original mm9 coordinates and was then converted to mm10 using CrossMap v0.3.4 (46) 

for use by CNVkit. Occurrence of CNVs in focal regions of the genome (e.g., C11qE, Cdkn2a/b) were 

called if all exons spanning the region of interest had a absolute weighted average log2 read-depth ratio 

of ≥0.4. Otherwise, GISTIC2 was run with amplification and deletion thresholds of 0.2, using gene-level 

assumptions for significance, along with additional broad-level analysis. The GISTIC2 reference 

genome file for mm10 was acquired, and no marker file was necessary (47), (48).  
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Sequenza (49) was used to derive somatic copy number profiles from WGS data using each 

sample’s matched normal sample. A modified version of the “copynumber” R package 

(https://github.com/aroneklund/copynumber) was used to create the necessary support objects and 

allowed for usage of the mm10 genome in the deployment of Sequenza on the mouse BAM files. To 

assign ploidy to WGS samples, purity was first estimated by Ki67 fluorescence as previously described, 

and the ploidy with the largest predicted probability at the estimated purity was selected from the 

Sequenza cellularity-ploidy prediction table.  

 

Construction of tumor progression sample tree representation 

The sample progression tree representation of tumors was first constructed with hierarchical 

clustering using the complete linkage algorithm (50) and the hamming distance between samples. The 

hamming distance was calculated as the number of non-driver somatic mutations (as determined from 

WES) shared by any two samples as a fraction of the total number of non-somatic mutations contained 

by either sample. Visualizations of sample progression trees were manually generated. Branch lengths 

of 0 were collapsed to its direct ancestor node. Only mutations detected in all descendants of a branch 

were considered. 

 

Statistical analysis of clinical RCC cohort data 

 Processed clinical, copy number, somatic mutation, and molecular characterization data from 

The Cancer Genome Atlas’ (TCGA) pan-kidney (KIPAN) tumor sample cohort were obtained from 

Ricketts et al (51). TCGA profiling data was then augmented with arm-level copy number calls, 

aneuploidy score, and whole-genome doubling (WGD) status as determined by Taylor et al (16). The 

aneuploidy score was then transformed to calculate a fraction of genome altered (fCNA) as described in 
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Taylor et al (16). Only samples with copy number data and aneuploidy data were included in the analysis 

of TCGA pan-kidney cohort. TCGA tumors with sarcomatoid features were manually annotated as 

described in Bokouny et al (52). Clinical data used for confirmation of genomic effects of 9p loss on 

WGD and aneuploidy were acquired from the TRACERx renal cell cancer cohort and a renal cell 

carcinoma cohort from Memorial Sloan Kettering Cancer Center kidney cancer cohort (MSKCC, 

unpublished) (10,16,51). The aneuploidy score for TRACERx samples was calculated using the arm-

level chromosome alteration calls from TRACERx directly and then converted to an fCNA value as 

described in Taylor et al (16). 

 

Summary of methods for uRCC MSK cohort 

            RCC tumor specimens from 134 patients were procured from the Memorial Sloan Kettering 

(MSK) Pathology Department after Ethics Review Board approval. Primary and metastatic deposit 

specimens were reviewed by a specialized genitourinary pathologist (Y.B.C) and a diagnosis of high-

grade unclassified renal cell carcinoma was made. Clinicopathologic and molecular data for 62 of these 

patients have been reported in a previous publication (8).  

Macro-dissected tumor and paired adjacent normal kidney tissue or blood were sent for DNA 

extraction and sequencing at the Integrated Genomic Operations Core of MSK or Molecular Diagnostics 

Service laboratory of Department of Pathology. Sequencing was done on both the tumor and matched-

normal samples using the MSK-IMPACT gene panel (MSK-IMPACT®) (53). Samples were sequenced 

at an average depth of 500x. 

Raw sequencing data was aligned to a reference genome (b37) and somatic variants were called 

using a previously validated pipeline.  Briefly, four different variant calling tools were used for this 

purpose: MuTect2 (part of GATKv4.1.4.1 (40)), Strelka2 v2.9.10 (54), Varscan v2.4.3 (55) and Platypus 
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(56). Ancillary filters were then applied to obtain high-accuracy mutations, these included: a coverage 

of at least 10 reads in the tumor, with 5 or more supporting the variant of interest, a variant allele 

frequency (vAF) ≥5% in the tumor, and a vAF<7% in the matched normal sample. Only somatic 

nonsynonymous exonic mutations were considered, and single-nucleotide variants (SNVs) identified at 

a frequency >1% in dbSNP (57) or 1000Genomes project (57) were removed. All variant calls were 

manually reviewed by investigators (R.G.D) for additional accuracy.  

Allele-specific copy number analysis (ASCN) and purity estimation were done using the 

FACETS algorithm v0.5.6. (58). Finally, inference of arm-level and genome-doubling events was 

performed using a public R package (https://github.com/mskcc/facets-suite). All copy-number variations 

(CNVs) in autosomal chromosomes were considered, regardless of length. 

Informed consent was obtained after the nature and possible consequences of the studies were 

explained. 

 

B-allele frequency comparison 

Murine B-allele frequencies were calculated using the snp-pileup script from the FACETS 

software package on WGS samples (58). The VCF of identified murine SNP locations was obtained 

from the Wellcome Sanger Institute, Mouse Genome Project version 5, dbSNP142 (59,60). The snp-

pileup counts were then utilized to determine the allele frequency of these common murine SNPs. 

Heterozygous SNPs were identified if the B-allele (alternative nucleotide) frequency (BAF) was 0.2 < 

BAF < 0.8 with minimum coverage of 15x in the normal tumor sample. B-allele frequencies of 

heterozygous SNPs identified in each mouse’s normal tissue sample was plotted against corresponding 

tissue sample BAFs for the same SNP.  
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Statistical analysis 

Data are presented as the mean ± s.d and percentages. Comparisons between biological replicates 

were performed using a two-tailed Student’s t test or Mann-Whitney U test. Results from survival 

experiments were analyzed with a log-rank (Mantel–Cox) test and expressed as Kaplan–Meier survival 

curves. Results from contingency tables were analyzed using the two-tailed Fisher’s exact test or chi-

test for multiple comparisons. (GraphPad software). Group size was determined on the basis of the 

results of preliminary experiments. No statistical methods were used to determine sample size. Group 

allocation and analysis of outcome were not performed in a blinded manner. Samples that did not meet 

proper experimental conditions were excluded from the analysis. 
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Figure 1. 

 

Figure 1. Somatic ablation of 4q9p21 drives metastatic progression in Nf2-driven SM-GEMM of 

RCC. A) Upper panel: representative coronal T2 MRI scan at 3 months post-transduction in Nf2KO-

Setd2KO-4q9p21- mice. Red arrows: primary tumor mass, red dashed lines: lung metastasis. Bottom panels: 

representative post mortem luminescence scans of mouse organs. PT: primary tumor, LuM: lung 

metastasis, LiM: liver metastasis. B) Representative H&E section of Nf2KO-Setd2KO-4q9p21- tumors. 

Sarcomatoid features can be readily appreciated. C) Upper panel: deletion-specific PCR showing 

efficient deletion of the Cdkn2a-b locus on mouse 4q (single sgRNAs against Cdkn2a and Cdkn2b were 

used as negative controls). Bottom panel: schematic of the targeted  murine 4q region. D) Kaplan–Meier 
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survival analysis of Nf2KO-driven murine tumors with (N = 99) and without (N = 84) 4q9p21-targeting 

sgRNAs. Mice engineered with 4q9p21 alone do not develop tumors. E) Bar plot showing the metastatic 

burden in 4q9p21- (N = 69) vs 4qwt (N = 15) models. F-G) Cross-species comparison of site-specific 

metastasis (F), disease burden and distribution (G). sRCC patients were used as reference. Mus musculus 

(Mm), N = 79; Homo sapiens (Hs), N = 199. H) Odds plot showing the enrichment of NF2KO/9p- cases 

and stage III/IV features among MSKCC cohort patients. I) Bar chart showing the prevalence of 

metastasis features in NF2wt/9pwt, NF2KO/9pwt, NF2wt/9p-, and NF2KO/9p- cases in the MSKCC cohort 

(N= 52, 10, 51, and 21, respectively) J) Bar chart showing the prevalence of sarcomatoid features in 

NF2wt/9pwt, NF2KO/9pwt, NF2wt/9p- and NF2KO/9p- cases in the MSKCC cohort (N = 52, 10, 51, and 21, 

respectively). K) Representative H&E stained images from two MSKCC cohort cases. Upper panel: 

NF2KO/9pwt; bottom panel: NF2KO/9p-. In the latter, sarcomatoid features are readily observed. N.S.: not 

significant, ** P < 0.01, *** P < 0.001, **** P < 0.0001 by log-rank (Mantel–Cox) test (D), two-tailed 

unpaired t test (E) and Fisher’s exact test (H, I, J). Error bars represent the standard deviation of 

biological replicates. Scale bar: 100 µm. 

 

 

 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.03.367433doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.03.367433


32 

 

Figure 2. 

 

Figure 2. Convergent pattern of aneuploidy in murine and human aggressive RCC. A) Summary 

of segment-level amplification or deletion frequency across murine primary tumors or metastatic lesions 

as determined by GISTIC2. B) Circos plot of the human to mouse synteny map for chromosome regions 

significantly altered in SM-GEMM tumor-bearing mice generated by the SynCircos function of Synteny 

Portal (59,61). Remarkably similar patterns of syntenic chromosome gains and losses can be readily 

appreciated within TCGA dataset (51).  C) Most probable ploidy by log posterior probability at given 

sample’s cellularity as predicted by Sequenza from WGS data (respesentative mouse #7). D) 

Chromosome counts in sRCC SM-GEMM–derived short-term cultures. Malignant cells are 
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characterized by prominent polyploidy (N = 3/line tested). E) Representative co-staining of 

chromosomes (DAPI) and centromeres (ACA) in representative nuclei in metaphase from short-term 

cultures established from Nf2KO-Setd2KO-Trp53KO-4q9p21 tumor-bearing mice. Insert: G-banding 

analysis. F) Clinical and genomic annotation of specific features across the MSKCC RCC cohort (N = 

134). Pairwise patients characteristics statistics are in Supplementary table S1. Error bars represent the 

standard deviation of technical replicates (D). Scale bar: 100 µm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.03.367433doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.03.367433


34 

 

Figure 3. 
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Figure 3. Aneuploidy and early clonal dissemination are hallmarks of aggressive RCC evolution. 

A) Representative phylogenetic reconstruction from MRS analysis of two advanced cases with 

metastatic disease, using sample progression trees based on presence or absence of somatic events. B) 

Density plots displaying the VAF of observed somatic mutations detected by WGS between selected 

representative samples (mouse M#7). Engineered events are reported in color. C) Bar charts showing 

the percentage of private and truncal somatic events at primary (upper panel) and metastatic sites (bottom 

panel) in tumor-bearing mice with advanced disease as determined by MRS. D) Coronal T2 MRI scan 

of Nf2KO-Setd2KO-4q9p21- tumor showing explosive patterns of disease progression. Red arrows: 

primary tumor mass. E) Schematic summary of sRCC evolution proposing a central role of 9p loss in 

driving rapid disease evolution and systemic spread. 
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