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Abstract

Human brain plastically adapts to environmental demands. Here, we propose that naturally 

occuring plasticity in certain brain areas should be reflected by higher environmental influence 

and therefore lower heritability of the structure of those brain areas. Mesulam’s (1998) seminal 

overview proposed a hierarchy of plasticity, where higher-order multimodal areas should be 

more plastic than lower-order sensory areas. Using microstructural and functional gradients as 

proxies for Mesulam’s hierarchy, we seek to test whether these gradients predict heritability of 

brain structure. We test this model simultaneously across multiple measures of cortical structure 

and microstructure derived from structural magnet resonance imaging. We also account for 

multiple other explanations of heritability differences, such as signal-to-noise ratio and spatial 

autocorrelation. We estimated heritability of brain areas using 984 participants from the Human 

Connectome Project. Multi-level modelling of heritability differences demonstrated that 

heritability is explained by both signal quality, as well as by the primary microstructural 

gradient. Namely, sensory areas had higher heritability and limbic/heteromodal areas had lower 

heritability. Given the increasing availability of genetically informed imaging data, heritability 

could be a quick method assess brain plasticity.
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Highlights (up to 85 chars)

Cortical areas vary in heritability. This is seen across structural measures.

Heritability differences could be explained by plasticity, topography, or noise.
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HERITABILITY AND PLASTICITY 3

We build a comprehensive model testing many explanations across 5 measures. 

Heritability is explained by noise and 1st structural gradient reflecting plasticity.

Heritability could be a method to study brain plasticity.

Introduction

The human brain is plastic: over time, experience alters brain structure. This alteration 

can be detected at the level of cortical morphometry and white matter microstructure and 

connectivity. An extreme example is early-onset blindness which is associated with widely 

distributed changes in gray and white matter (Leporé et al., 2010). More every-day life examples 

include observations that people with different jobs, body size, or socio-economic status also 

vary in brain structure (Farah, 2017; Maguire et al., 2000; Vainik et al., 2018; Wu et al., 2020). 

Similarly, brain structure can change after cognitive training (Zatorre et al., 2012). However, 

theoretical proposals have outlined that brain areas could differ in their propensity for plasticity –

that is, they differ in how they respond to typical environmental influences.

Such differences can be understood in the theoretical framework of synaptic plasticity 

outlined by Mesulam (1998). The brain is organised according to a synaptic hierarchy that 

follows a sensory-fugal gradient. This gradient spans from sensory-motor and unimodal areas 

interacting with the external world towards heteromodal and paralimbic areas that are 

increasingly dissociated from the here and now. It has been argued that this hierarchical 

segregation allows for the formation of multimodal abstract representations that underpin higher-

order and self-generated cognition (Margulies et al., 2016; Murphy et al., 2018). Mesulam’s 

seminal model suggested furthermore that at the sensory synaptic level, plasticity is likely to be 

constrained, as “the accurate registration of new inputs necessitates a rapid return to a narrowly 
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tuned baseline (Mesulam, 1998, p. 1023)”. At the same time, durable neuronal changes “would 

be highly useful at more downstream levels, where synaptic plasticity, induced by life 

experiences, could play a critical role in the adaptive modification of response patterns” 

(Mesulam, 1998, p. 1023). Therefore, blindness-induced plasticity is possible under certain 

circumstances, but the perceptual areas are likely to be less plastic than higher-order areas when 

observing sighted humans. On the other hand, environmental influences on brain structure are 

more likely to be present for higher-order regions.

It is likely, that such naturally-occurring variability in plasticity of brain structures could 

be reflected by variability of the heritability estimates of these structures. Heritability 

characterises, how much of the variation in a phenotype can be attributed to genetic factors. 

Phenotypic variance that is not explained by genetic factors is assumed to be explained by 

environmental factors and measurement error. In its simplest form, heritability can be estimated 

by correlating phenotype scores between monozygotic twins. Contemporary approaches use twin

modelling for a more precise estimate (Visscher et al., 2008). Many studies have demonstrated 

differences in heritability coefficients of brain structures across multiple imaging measures, such 

as cortical thickness, surface area, functional connectivity, and myelination (T1w/T2w ratio) 

(Haak & Beckmann, 2019; Liu et al., 2019; Patel et al., 2018; Schmitt et al., 2008, 2019; Strike 

et al., 2019; Wright et al., 2002). Heritability estimates replicate across datasets (Guen et al., 

2019; Strike et al., 2019) and across different heritability estimation methods (Guen et al., 2019).

These observed differences in heritability of regional brain measures have been proposed 

to reflect differences in plasticity (Haak & Beckmann, 2019; see discussion in Strike et al., 

2019). The reason is that lower heritability likely marks greater environmental influence over the

expression of a phenotype (Harden, 2021). In the behavioural domain, one example of 
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environmental influence is lower socio-economic status. Lower socio-economic status can 

suppress the emergence of genetic potential for higher intelligence (Tucker-Drob & Bates, 2016) 

but supports the emergence of genetic potential for higher obesity (Silventoinen et al., 2019). In 

the brain, as per Mesulam (1998), the environmental suppression of heritability likely depends 

on the function of the brain area. 

Here, we seek to empirically test, whether the plasticity potential, as outlined by 

Mesulam’s proposed hierarchy, could be reflected in heritability differences between cortical 

areas. To quantify plasticity potential, we use the functional connectivity and microstructural 

gradients (Margulies et al., 2016; Paquola et al., 2019). These gradients come from data driven 

dimensionality reduction of the whole brain functional connectomes (Margulies et al., 2016; Vos

de Wael et al., 2020) and microstructural covariance patterns (Paquola et al., 2019). They both 

exhibit a general sensory-fugal organization (Mesulam, 1998) placing sensory/motor areas at one

end and transmodal and paralimbic systems at the other. However, the microstructural gradient 

describes decreasing laminar differentiation, more in line with Mesulam’s notion of synaptic 

distance from external input, whereas the functional gradient depicts a transition from locally-

connected sensory regions towards a default mode core with longer-rage connectivity (Valk et 

al., 2020).

Other indicators of variation in brain morphometry could include brain development and 

evolution. Hill et al. (2010) showed how postnatal brain development is non-uniform – the 

surface area of lateral temporal, parietal, and frontal cortex expands almost twice as much as 

other regions. Similar expansion profiles are also seen when comparing human to macaque brain,

suggesting recent human evolution of those areas. It is possible that areas showing greater 

expansion during development and evolution could be more sensitive to postnatal experience, 
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that is the demands of the environment (Buckner & Krienen, 2013; Hill et al., 2010). Cortical 

maps reflecting development and evolution have indeed both been related to the genetic 

correlation map of cortical surface area (Schmitt et al., 2019). We therefore use those brain maps

as additional predictors of heritability.

Variation in heritability estimates may also reflect measurement error. For example, 

smaller brain regions display lower heritability (Patel et al., 2018) because they are noisier, 

which reduces the ability to detect genetic effects. At the same time, heritability is unrelated to 

test-retest reliability of brain parcels (Haak & Beckmann, 2019; Strike et al., 2019), suggesting 

that noise pertains to aggregation of vertices and not to variations in signal-noise-ratio across the 

cortex.

Another explanation of heritability differences between regions is spatial autocorrelation. 

It is likely that brain parcels that are physically close together have similar features (Alexander-

Bloch et al., 2018; Burt et al., 2020), including heritability estimates. In geography, this is 

highlighted by Tobler’s first law – “everything is related to everything else, but near things are 

more related than distant things” (Tobler, 1970, p. 237). This law may account for descriptions of

heritability differences along the antero-posterior (Y) axis in the sagittal plane (Liu et al., 2019; 

Patel et al., 2018). Therefore, we account for spatial autocorrelation (Burt et al., 2020; Miller, 

2004).

In sum, we seek to test the link between heritability estimates and plasticity, as indicated 

by the sensory-fugal brain hierarchy. We focus on cortical brain structure including cortical 

thickness and surface area as most widely used measures of gray matter morphology (Winkler et 

al., 2018), intracortical T1w/T2w ratio, a proxy for intracortical myelin content (Glasser & 

Essen, 2011), as well as diffusion MRI based neurite imaging that is sensitive to the 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.03.366419doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.03.366419
http://creativecommons.org/licenses/by/4.0/


HERITABILITY AND PLASTICITY 7

microstructural context within a given voxel (NODDI; Fukutomi et al., 2018). Our primary 

indicators of plasticity are functional and microstructural gradients, as they are theoretically 

linked to Mesulam’s hierarchy of plasticity. However, we will consider several alternative 

explanations of heritability differences, such as evolution and developmental patterns, noise, 

antero-posterior axis, and spatial autocorrelation.

Methods

Data were provided by the Human Connectome Project, S1200 release, WU-Minn 

Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) 

funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience 

Research; and by the McDonnell Center for Systems Neuroscience at Washington University 

(David C. Van Essen et al., 2013). 

Visual inspection of T1w images by X.W. excluded 26 participants with suspected 

intracranial arachnoid cyst. We further excluded single monozygotic twins, and people with 

missing data on control variables, leaving 984 individuals. This included 274 monozygotic twins,

and 629 dizygotic twins or siblings, altogether nested in 341 families (162 with 2 members, 142 

with 3 members, 33 with 4 members, 3 with 5 members, and 1 with 6 members), as well as 81 

single individuals. Age range was 22-37, mean = 28.81, SD = 3.66. Education year range was 11-

17, mean = 15, SD = 1.77. The sample included 528 females and 456 Males. 755 identified 

themselves as white, 122 as Black/African American, 6 as Asian /Native Hawaiian/Other Pacific 

islander, and 44 used either other label or were unknown. 93 identified themselves to have 

Hispanic ethnicity, whereas 891 did not. Ethics statement: current analysis is secondary data 
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analysis of publicly available Human Connectome Project, all authors have been authorised to 

access the database.

Data preparation

Heritability of cortical brain structure has previously been studied across multiple 

structural MRI imaging measures, such as cortical thickness, surface area, and ratio of T1w/T2w 

images (Liu et al., 2019; Patel et al., 2018; Strike et al., 2019). We further include neurite 

orientation dispersion and density imaging (NODDI) to capture brain microstructure (Fukutomi 

et al., 2018). Altogether, computed the heritability estimates of five structural MRI measures: 1) 

cortical thickness and 2) cortical surface area, characterising respectively radial and tangential 

neuronal expansion during development (Winkler et al., 2018); 3) T1w/T2w ratio reflecting 

myelination (Glasser & Essen, 2011); 4) intra-cellular volume fraction (ICVF) reflecting 

neuronal density, and 5) orientation dispersion (OD) reflecting angular heterogeneity of neurites 

(Fukutomi et al., 2018).

T1w and T2w images were co-registered using rigid body transformations, non-linearly 

registered to MNI152 space and cortical surfaces were extracted using FreeSurfer 5.3.0-HCP 

(Dale et al., 1999; Fischl, 2012), with minor modifications to incorporate both T1w and T2w 

(Glasser & Essen, 2011). Cortical surfaces in individual participants were aligned using MSMAll

(E. C. Robinson et al., 2014, 2018) to the hemisphere-matched conte69 template (D. C. Van 

Essen et al., 2012). T1w images were divided by aligned T2w images to produce a single 

volumetric T1w/T2w image per subject (Glasser & Essen, 2011). Notably, this contrast nullifies 

inhomogeneities related to receiver coils and increases sensitivity to intracortical myelin. 

Cortical thickness, surface area and T1w/T2w intensity at the midsurface were estimated for each

subject.
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To measure the microstructural variations of each region, neurite imaging profiles (ICVF 

and OD) of cerebral cortices were adopted based on the HARDI dataset (Fukutomi et al., 2018). 

In brief, all neurite imaging profiles were first estimated voxel-by-voxel at individual-level by 

using Accelerated  Microstructure Imaging via Convex Optimization (Daducci et al., 2015) 

(intrinsic free diffusivity = 1.7 × 10−3 mm2/s), and then, the profiles on 32k fs_LR surface were 

extracted using individual midthickness surfaces from the HCP dataset. By adopting the HCP 

workbench (https://www.humanconnectome.org/software/connectome-workbench), we execute:

https://www.humanconnectome.org/software/workbench-command/-volume-to-surface-

mapping notably, we used the option -ribbon_constrained for ribbon-constrained mapping 

algorithm by inner and outer surfaces. 

As vertex-based estimates were likely noisy, we used the 7 network version of Schaefer-

200 parcellation (Schaefer et al., 2018) on the 32k fs_LR surface 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/

Schaefer2018_LocalGlobal/Parcellations/HCP/fslr32k/cifti), and for each measure, average 

values for each of the 200 regions were computed. We replicated our analysis on the 68 parcel 

Desikan–Killiany–Tourville (DKT) parcellation (Klein & Tourville, 2012), as this parcellation is 

commonly used and shared as default across large neuroimaging studies, such as ABCD and UK 

Biobank (Casey et al., 2018; Elliott et al., 2018).

Brain maps

For both parcellations, we generated brain maps, providing a number for each parcel. 

Parcel location was determined by midpoint xyz coordinates. Parcel size was characterised by 

number of vertices forming the parcel. As another estimate of noise, we used parcel signal-to-
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noise ratio (Fukutomi et al., 2018), which was estimated as parcel mean divided by parcel’s 

standard deviation. This statistic was estimated for each of the MRI measures separately across 

the same Human Connectome participants as used for heritability estimation. 

The principle microstructural and functional gradients were generated in a previous study

of 100 Human Connectome Project subjects (Paquola et al., 2019). Structural gradients were 

derived from T1w/T2w maps while functional gradients were based on resting state fMRI 

connectivity. In brief, we generated 14 equivolumetric surfaces within the cortical ribbon and 

sampled T1w/T2w intensities along 64,984 linked vertices from the outer to the inner surface. 

Microstructure profile covariance matrices were generated by averaging depth-wise intensity 

profiles within parcels and calculating pairwise product–moment correlations, controlling for the 

average whole-cortex intensity profile. Resting-state functional connectivity matrices were 

generated by averaging preprocessed timeseries within parcels, correlating parcel-wise timeseries

and converting them to z scores. Group-average microstructure profile covariance and resting-

state functional connectivity matrices were independently subjected to row-wise thresholding 

(90%) and transformed into cosine similarity matrices. Finally, diffusion map embedding was 

applied to each cosine similarity matrix to identify the principle axes of microstructural or 

functional differentiation. In line with previous work, we focused on the first two eigenvectors, 

based on identifying the inflection point in the scree plot. The first functional and structural 

gradients (G1FN and G1MPC) characterise the major gradient from sensation to cognition – from 

sensory-motor and unimodal areas to heteromodal and paralimbic areas. The second functional 

gradient (G2FN) ranges from somatosensory and auditory areas to visual areas, and the second 

structural gradient (G2MPC) ranges from somatosensory and ventral prefrontal areas to visual 

areas. 
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Additionally, we downloaded developmental and evolutionary surface expansion maps 

(Hill et al., 2010) from http://brainvis.wustl.edu/wiki/index.php/Sums:About and averaged 

values within cortical parcels. 

Analysis

Heritability of the parcel-wide features was estimated in R 3.6.3 (R Core Team, 2013) 

using SOLAR-Eclipse 8.4.2 (Kochunov et al., 2015) (http://www.nitrc.org/projects/se_linux   ;   

http://solar-eclipse-genetics.org/index.html) via the solarius package (Ziyatdinov et al., 2016) 

controlling for background variables: age, sex, race, ethnicity, and proxy brain volume. The 

categorical variables were recoded as dummies, with white or nonhispanic as reference category. 

The solarPolygenic() formula was parcel~age+sex+black+asian+other+ethnicity+proxy brain 

volume. Proxy brain volume was the sum of Freesurfer variables: CorticalWhiteMatterVol + 

CSF + SubCortGrayVol) (Karama et al., 2011).

Product moment correlations between brain maps across parcels was presented using 

ggcorrplot (Kassambara, 2019). Predictors of heritability were compared with linear mixed 

models with crossed random effects and spatial autocorrelation using glmmTMB 1.0.2.1 (Brooks

et al., 2017). Crossed random effects account for correlation of parcels across different MRI 

estimates. Because the same parcels are analysed with multiple structural imaging estimates, the 

current study has essentially a repeated measures design. In repeated measures, the subject and 

the measurement point are analysis factors, and they are crossed, because every subject is in 

every measurement point. In our current analysis, instead of participants there are individual 

brain parcels. Spatial autocorrelation accounts for similarity of parcels due to physical proximity.

We used a random intercept model without modelling random slopes, as we were mainly 
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interested in global effects across multiple measures and we tried to avoid making the model 

overtly complex. The formula for final model was:

Heritability ~ control variables + theoretical variables + exp( position + 0 | measure) + 

exp( position + 0 | parcel)

Control variables were number of vertices, signal-to-noise, and xyz coordinates. 

Theoretical variables were structural and functional gradients, developmental, and evolutionary 

maps. Position refers to coordinates of the parcel in MNI space. Exp stands for exponential 

modelling of spatial autocorrelation, as used in other brain imaging analyses (Burt et al., 2020). 

We applied False Discovery Rate (FDR; Benjamini & Yekutieli, 2001) correction to highlight the

individual predictors in the final model. 

We tested step-by step, whether it made sense to add the spatial autocorrelation, random 

effects, control variables, and predictor variables. The improved model fit was assessed in terms 

of AIC, BIC change. Here, lower is better, with a meaningful difference of ~4 units (Burnham & 

Anderson, 2004). Once fixed effects, that is control and explanatory variables were introduced, 

improvement was assessed in terms of marginal R2, higher is better. Marginal R2 characterises 

the R2 of fixed effects (Nakagawa et al., 2017). Model fit statistics were extracted with the 

anova() function in R, and marginal R2 estimated with the performance::r2 function (Lüdecke et 

al., 2020). To get a sense, whether certain MRI measures are more important than others, we 

conducted leave-one-out cross-validation, leaving out one MRI measure and repeating the 

analysis. We also relied on several other useful packages, such as WriteXLS, broom, ggpmisc, 

vroom, patchwork, psych, data.table, synthpop, tidyverse, cowplot, magick (Aphalo & 

Slowikowski, 2020; Dowle et al., 2020; Hester & Wickham, 2020; Nowok et al., 2016; Ooms, 
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2020; Pedersen, 2020; Revelle, 2014; D. Robinson et al., 2020; Schwartz, 2020; Wickham & 

RStudio, 2017; Wilke & Wickham, 2016).

Data/code availability statement: individual-level data can be accessed from Human 

Connectome Project. We provide preprocessing scripts, analysis scripts, synthetic individual-

level data, and summary statistics at https://osf.io/dwjr5/.

Results

We found that brain parcels differ in heritability (Guen et al., 2019; Liu et al., 2019; Patel 

et al., 2018; Wright et al., 2002). Fig. 1a provides the average heritability estimates across the 

five studied MRI measures. At a glance, it seemed that primary areas tend to be more heritable 

than multimodal areas. The potential control and theoretical variables explaining heritability are 

shown in Fig. 1b. Visually, the heritability appeared to overlap with most other variables such as 

signal to noise, Y axis, developmental and evolutionary patterns, as well as with the hierarchical 

gradients. Numeric estimates of all variables, their per parcel means, and global means are 

presented in Tables S2-S4. 
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Fig. 1a. Average heritability of Schaefer-200 parcels across five measures. Top row displays 

lateral left and right views, and bottom row medial left and right views. Fig. 1b. Brain maps 

across Schaefer-200 parcels of analysed variables, using left-lateral view. We omitted X and Z 

axes as the visualisations are conceptually similar to Y-axis visualisation. Signal-to-noise is 

average signal to noise ratio across five measures. Abbreviations: G1FN – first functional 

gradient; G2FN – second functional gradient; G1MPC – first structural gradient; G2MPC – second 

structural gradient.

To quantify this impression, we estimated spatial correlations between parcels in terms of

heritability of different MRI measures, control variables, and theoretical variables (Fig. 2 and 3). 

Control variables were number of vertices, signal-to-noise, and coordinates. Theoretical variables

were structural and functional gradients, developmental, and evolutionary maps. The heritability 

estimates were fairly independent from each other, but they were all associated with various 

control variables, mostly signal-to-noise ratio, Y-axis (antero-posterior), and Z axis (left-right). In

addition, heritability estimates related to structural and functional gradients, and evolution and 

developmental patterns. These control and theoretical variables also related to each other. This 

relatedness suggests that there were multiple competing explanatory mechanisms and a single 

model was needed to obtain the most parsimonious explanation.
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Fig 2. Spatial correlations between brain maps of heritability across five measures, brain maps of

control variables, and brain maps of theoretical variables, using the Schaefer-200 parcellation. 

Abbreviations: Corr – correlation; CT – cortical thickness; Devo – developmental; Evo – 

evolutionary; G1FN – first functional gradient; G2FN – second functional gradient; G1MPC – first 

structural gradient; G2MPC – second structural gradient; ICVF – intra-cellular volume fraction; N 

vertices – number of vertices in a parcel; OD – orientation dispersion; SA – surface area; SNR – 

average signal to noise ratio across five measures; T1/T2 – T1w over T2w ratio (myelination); 

X,Y, Z – axis coordinates on the cortex.
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Fig. 3. Scatterplots between mean heritability of Schaefer-200 parcels and key control and 

theoretical variables. Abbreviations: G1FN – first functional gradient; G1MPC – first structural 

gradient.

To find the independent factors that influence heritability estimates, we fitted a multi-

level model accounting for crossed random effects for parcels across different MRI measures and
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parcel spatial autocorrelation. We performed a step-by-step model comparison to show that 

modelling spatial autocorrelation (M.auto) is better than the null model (M0), and that modelling 

crossed random effects further improves the model fit (M.cross.auto), in terms of lower AIC and 

BIC (Table 1). We tried other spatial autocorrelation modelling methods, such as Gaussian, but 

they were not as good (M.cross.auto.gau in Table 1). We then added control variables, which 

considerably improved the model in terms of BIC and AIC (M.ctl.cross.auto in Table 1). We also 

tried removing spatial autocorrelation. While this removal made the Y axis effect very clear 

(standardised estimate = 0.23, p < 0.001), the overall model fit and fixed effects’ R2 dropped 

considerably (M.ctl.mod vs M.ctl.cross.auto in Table 1), suggesting that modelling spatial 

autocorrelation is better than just having xyz coordinates as covariates. The final step added all 

discussed theoretical variables (M.ctl.theo.cross.auto in Table 1). As the model became more 

complex, BIC improved very little. However, the R2 and AIC still improved, suggesting that we 

are able to explain more heritability on top of control variables (delta marginal R2 = 0.06). 

Table 1. Summary of models tested. 

Model name Model content Df AIC BIC Marginal R2

M0 Null model 3 2838.9 2853.6

M.auto

M0+ exponential spatial 

autocorrelation 4 2728.1 2747.7

M.cross.auto M.auto+crossed random effects 6 2397.6 2427.0

M.cross.auto.gau

Like M.cross.auto, but with 

gaussian spatial autocorrelation 6 2417.4 2446.9

M.ctl.cross.auto M.cross.auto + control variables 11 2311.1 2365.1 0.35

M.ctl.cross

Like M.ctl.cross.auto, but without 

spatial autocorrelation 9 2668.0 2712.1 0.17
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M.ctl.theo.cross.auto M.ctl.cross.auto + predictors 17 2296.9 2380.3 0.41

Note. AIC = Akaike Information Criterion. BIC = Bayes Information Criterion. The formula for 

final glmmTMB model (M.ctl.pred.cross.auto) was Heritability ~control variables + theoretical 

variables + exp( position + 0 | measure)+ exp( position + 0 | parc), and is summarised in Fig. 4. 

Marginal R2 characterises the R2 of fixed effects only (Nakagawa et al., 2017).

Fig. 4 summarises the effects of the final model. As suggested in the introduction, control

variables, such as higher number of vertices per parcel and better signal to noise ratio improved 

heritability estimates. The MNI coordinates had low effects, as they were likely accounted for by

spatial autocorrelation. Altogether, the control variables without spatial autocorrelation explained

17% and with spatial autocorrelation 35% of the variance, suggesting that control variables 

explain substantial part of heritability differences between parcels.

The hypothesised theoretical variables increased model R2 to 41%. The strongest effect 

was a negative relation between heritability and the first microstructural gradient ranging from 

sensation to cognition. This supports Mesulam’s theory that higher-order structures have lower 

heritability due to greater plasticity (Mesulam, 1998). There was a slight additional effect of the 

evolutionary brain map, supporting the notion that recently evolved areas may have lower 

heritabilities. Heritability was also linked with G1FN and G2MPC at uncorrected p-value thresholds,

but the associations became p > 0.05 once FDR correction was applied.
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Fig 4. Independent effects of variables explaining heritability, based on Schaefer-200. XYZ axes 

are presented, but their effect is zero, as we account for spatial autocorrelation structure. See 

Supplementary Fig. 4S for DKT replication. Abbreviations: G1FN – first functional gradient; 

G2FN – second functional gradient; G1MPC – first structural gradient; G2MPC – second structural 

gradient. Numeric values are presented in Table S5. 

To get a sense of robustness of the results with respect to preprocessing choices, we 

repeated the main analysis pipeline using the DKT parcellation (supplementary Fig. S1-S4, Table

S1). The DKT parcellation follows sulco-gyral folding patterns, has fewer parcels (68) and parcel

sizes are more unequal. Expectedly, there is variability in heritability and in other analysed 

variables (Fig. S1, Tables S6-S8). As can be seen in Fig. S2-S3, the heritability of parcels is more

similar to each other across MRI measures, and heritability estimates have associations with 

control variables and several theoretical variables.
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Model fit procedure was very similar (Table S1). The final model similarly outlined the 

relatively strong effects of number of vertices and signal-to-noise on heritability (Fig. S4). This 

is expected, as DKT parcels sizes are more unequal. The first microstructural gradient had even 

stronger negative effect size estimate than in the Schaefer-200 parcellation (standardised 

estimate: -0.28 in DKT vs -0.13 in Schaefer-200). Other variables had no detectable effects on 

heritability.

Leave-one-measure out analysis showed that associations with larger effect size are less 

vulnerable to leaving out one MRI measure. The effects of control variables generally replicated 

across all leave-one-out iterations for both Schaefer-200 and DKT parcellations (Fig. S5 and S6, 

Tables S5 and S9). The effect of the first structural gradient needed the inclusion of cortical 

thickness, T1w/T2w and intra-cellular volume fraction to survive when using Schaefer-200 (Fig. 

S5), but was more robust when using DKT, as the effect was stronger (Fig. S6). The effect of 

evolutionary brain map only survived when orientation dispersion was excluded (Fig. S5). While

DKT estimates seemed more robust, DKT modelling did not converge when cortical thickness or

surface area were excluded. These results suggest that diverse MRI measures and parcellation 

schemes with more parcels may be needed to show heritability effects.

Discussion

We demonstrated that heritability could reflect brain plasticity, as indexed by the microstructural 

sensory-fugal gradient. This association held across multiple imaging measures of gray matter 

morphology and microstructure and two parcellation schemes, while accounting for several other

factors, such as signal-to-noise ratio of parcels and spatial proximity. Therefore, heritability 
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could be considered as a marker for naturally occurring propensity for experience-dependent 

change in cortical morphometry.

The heritability patterns ultimately characterise the individual’s response to the 

environment. As outlined in the introduction, all brain areas can display plasticity. However, our 

environment usually does not require their constant reconfiguration. In response to typical 

demands of the environment, some areas may be more plastic than others, particularly the ones 

processing higher-order information (Mesulam, 1998). In particular, Mesulam suggests that it is 

desirable to limit plasticity in unimodal sensory areas, where faithfully transcribing information 

from the sense organs is paramount, while allowing experience-dependent changes in brain areas

involved in cognition, emotion, planning and adaptive behaviour. This is also supported by 

recent findings that structure-function relationships in the brain are region-specific, with greater 

correspondence in primary sensory areas compared to association areas (Baum et al., 2020; 

Paquola et al., 2019; Preti & Van De Ville, 2019; Vázquez-Rodríguez et al., 2019). Put another 

way, it appears to be adaptive to favour predictable, less environmentally influenced 

transformations of input data in primary areas, but to allow the association cortices to be more 

flexible to the demands of the environment. 

We have shown that heritability could be a useful metric to measure the potential 

plasticity of the brain. While the structural heritability patterns of the brain of contemporary free-

living humans tend to be similar across datasets, this does not mean it would always have to be 

this way. Like plasticity, heritability is a function of the environment of the participants in the 

study (Visscher et al., 2008). For example, if some siblings were accidentally blind and others 

not, we could likely observe much higher plasticity and lower heritability in the sensory areas 

(Leporé et al., 2010). Luckily, this is not the case for most people. 
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Position on the sensory-fugal microstructural gradient was the best theoretical explainer 

of heritability differences. This microstructural gradient depicts a transition in myeloarchitecture 

across the cortex, from overall high intracortical myelin in sensory areas towards infragranular 

heavy microstructure profiles in paralimbic regions (Paquola et al., 2019). Intracortical myelin is 

thought to enhance stability by insulating fibres from making new synaptic connections 

(Braitenberg, 1962; Braitenberg & Schüz, 2014; Micheva et al., 2016), providing a plausible 

biological mechanism that links the sensory-fugal gradient to degree of plasticity. Furthermore, 

within the prefrontal cortex, intracortical myelin is inversely correlated with markers of 

plasticity, and this balance of stability/plasticity also aligns with changes in laminar 

differentiation (García-Cabezas et al., 2017). In line with these findings, our results further 

support the relationship between the cortical architecture, synaptic distance from external input 

and plasticity as proposed by Mesulam. 

Still, the microstructural gradient is not a direct measure of plasticity. In the future, we 

would like to relate the heritability map to other potential indicators of plasticity, such as aerobic 

glycosis (Goyal et al., 2014). Among other tested brain maps, the evolutionary brain map had a 

detectable effect when using the Schaefer-200 parcellation. Given it did not replicate across 

DKT, more research is needed to understand its robustness. We suggest considering other tested 

brain maps in future analyses alongside the first microstructural gradient. It may also be that all 

those brain maps offer different nuances of the same general phenomenon, and once the 

plasticity-related brain maps are found, some integration of them is necessary.

Besides reflecting plasticity, heritability also depends on the noisiness of the estimates. 

Here, we showed heritability is higher for larger parcels with higher signal-to-noise ratio. This 

suggests that heritability estimates are most easily compared when parcel sizes are uniform. 
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However, parcellations also have anatomical relevance, which may require non-uniform parcels. 

Nonetheless, even if parcels are more uniform, as they were in Schaefer-200 compared to DKT 

parcellation, variability in signal to noise ratio should still be taken into account.

Brain topography is another factor explaining variation in heritability. As parcels are not 

islands but relate to each other, neighbouring parcels also have similar heritability coefficients. 

For instance, the antero-posterior axis of brain heritability (Liu et al., 2019; Patel et al., 2018) is 

largely explained by spatial autocorrelation, already used for decades among geographers 

(Miller, 2004). While the spin test has also been proposed (Alexander-Bloch et al., 2018), that 

approach does not readily support multiple simultaneous predictors. Recently, spatial 

autocorrelation modelling has been specifically adapted for the brain – using the exponential 

function to model spatial autocorrelation (Burt et al., 2020), as done here.

Current analysis is limited to one sample – the Human Connectome Project composed of 

mostly healthy young adults. As previous comparisons of heritability across datasets and 

methods suggest that the heritability measures converge (Guen et al., 2019; Strike et al., 2019), 

we believe our results are robust. However, further analysis would allow an exploration of the 

generalizability of our findings to older cohorts or those affected by disease. Ideally, the 

noisiness of the parcel should be estimated from test-retest reliability data, as it would account 

for sources of measurement error beyond parcel size. Current signal-to-noise ratio may also 

partly capture brain plasticity, as plasticity could genuinely introduce more variance in the brain. 

Assessing methodological influences on our results, our main results held over two different 

parcellation schemes. However, more parcellations could be analysed to verify replication. 

Further, it would be interesting to conduct a search for parcel size / noise trade-off (e.g., Urchs et 

al., 2019) to determine the optimal parcel size for heritability analysis. Possibly, a richer set of 
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brain maps could emerge as predictors if more fine-grained parcellation is used. Similarly, it 

would be intriguing to widen the analysis to functional data (e.g., Arnatkevičiūtė et al., 2020) to 

see if the outlined structural principles hold.

Taken together, we have shown that the primary microstructural gradient explains part of 

the inter-regional heritability differences of brain morphology and microstructure. This 

association held across multiple structural imaging measures and two different parcellation 

schemes, while accounting for noisiness and spatial autocorrelation of the parcels. We also 

outlined the general principles of using multiple brain maps to explain a patterns of interest. As 

genetically informed brain imaging samples become larger and more available, heritability could 

become an important window into brain plasticity.
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