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SUMMARY 

Aberrant methylation is a hallmark of cancer, but bulk tumor data is confounded by 

admixed normal cells and copy number changes. Here, we introduce Copy number-Aware 

Methylation Deconvolution Analysis of Cancers (CAMDAC; https://github.com/VanLoo-

lab/CAMDAC), which outputs tumor purity, allele-specific copy number and deconvolved 

methylation estimates. We apply CAMDAC to 122 multi-region samples from 38 

TRACERx non-small cell lung cancers profiled by reduced representation bisulfite 

sequencing. CAMDAC copy number profiles parallel those derived from genome 

sequencing and highlight widespread chromosomal instability. Deconvolved 

polymorphism-independent methylation rates enable unbiased tumor-normal and tumor-

tumor differential methylation calling. Read-phasing validates CAMDAC methylation 

rates and directly links genotype and epitype. We show increased epigenetic instability in 

adenocarcinoma vs. squamous cell carcinoma, frequent hypermethylation at sites carrying 

somatic mutations, and parallel copy number losses and methylation changes at imprinted 

loci. Unlike bulk methylomes, CAMDAC profiles recapitulate tumor phylogenies and 

evidence distinct patterns of epigenetic heterogeneity in lung cancer.  
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INTRODUCTION  

Like DNA mutations, epigenetic alterations, such as disruption of DNA methylation and 

chromatin architecture, are now acknowledged as a universal feature of tumorigenesis 

(Baylin and Jones, 2016; Feinberg et al., 2016; Shen and Laird, 2013). These changes 

accumulate in normal cells throughout their lifetime (Hannum et al., 2013; Hao et al., 2016; 

Horvath, 2013) and while most have no effect, a small subset may provide a selective 

advantage for the cell (Feinberg et al., 2006; Flavahan et al., 2017). Through successive 

gains of hallmark cancer cellular capabilities (Hanahan and Weinberg, 2011), cells may 

ultimately acquire a fully malignant phenotype, while continuing to evolve in response to 

environmental pressures (Quail and Joyce, 2013). 

DNA methylation is a mitotically heritable covalent DNA modification. In vertebrates, 

cytosines (C) can be methylated to form 5-methylcytosines (5mC), mostly in a CpG context 

(Bird, 2002; Smith and Meissner, 2013). This methylation occurs throughout the entire 

genome where it may aid to suppress cryptic transcription (Costello et al., 2010) and keep 

mobile genetic elements in check (Deniz et al., 2019). Active regulatory regions often 

contain unmethylated CpG-islands, irrespective of the expression level of associated genes 

(Deaton and Bird, 2011; Eckhardt et al., 2006; Ziller et al., 2013), although methylation of 

these CpG-rich features is usually anti-correlated with transcription factor binding. 

Genomic alterations removing binding sites enable DNA methyltransferase activity to 

spread and deplete gene expression (Smith and Meissner, 2013); vice versa, aberrations 

creating new binding sites can stimulate transcription (Huang et al., 2013; Mansour et al., 

2014). 

The cancer methylome displays characteristics from its cell of origin in addition to somatic 

DNA methylation changes (Greger et al., 1989; Wen et al., 2009). As methylation profiling 

provides insight into (disease) cell states and other aspects of biology, with a readout that 

is not reliant on live cells nor large amounts of high quality material, it may yield powerful 

biomarkers (Feber et al., 2017; Heyn and Esteller, 2012; Koch et al., 2018). 

Massively parallel sequencing efforts by the Cancer Genome Atlas (TCGA) and the 

International Cancer Genome Consortium (ICGC) have revealed somatic alterations across 
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thousands of cancer genomes (ICGC/TCGA Pan-Cancer Analysis of Whole Genomes 

Consortium, 2020; Hutter and Zenklusen, 2018). Although whole-genome (WGBS, Lister 

et al., 2009) and reduced-representation bisulfite sequencing (RRBS, Meissner, 2005) are 

gaining in popularity (Hansen et al., 2011; Hu et al., 2021; Pfister et al., 2014; Sun et al., 

2015; Zhao et al., 2020; Ziller et al., 2013), the cancer methylome is considerably less well 

charted. Intra-tumor DNA methylation heterogeneity has been widely reported (Brocks et 

al., 2014; Hua et al., 2020; Klughammer et al., 2018; Mazor et al., 2015), however the 

interpretation of bulk tumor methylation data is hampered by the admixture of normal cells 

(Chakravarthy et al., 2018) and the occurrence of somatic copy number alterations (CNAs) 

in most cancers (Martin-Trujillo et al., 2017). While a number of methods have been 

developed to assess normal cell contributions (Barrett et al., 2017; Guo et al., 2017; 

Teschendorff et al., 2017; Zheng et al., 2014), research focus has generally been restricted 

to high purity samples and CNA-quiet cancer types such as Ewing sarcoma (Sheffield et 

al., 2017) and malignancies of the central nervous system (Capper et al., 2018) or lymphoid 

origins (Kulis et al., 2012; Landau et al., 2014; Nordlund et al., 2013; Oakes et al., 2016). 

Similarly, accurate estimates of purity and copy number are critical when querying intra-

tumor heterogeneity and reconstructing tumor evolutionary histories (Tarabichi et al., 

2021). Current metrics to quantify tumor heterogeneity from bisulfite sequencing data also 

assume high tumor content and/or the absence of CNAs (Chen et al., 2021; Landan et al., 

2012; Landau et al., 2014; Li et al., 2016; Sheffield et al., 2017). 

To address these issues, we developed a tool for Copy number-Aware Methylation 

Deconvolution Analysis of Cancers (CAMDAC). CAMDAC provides accurate allele-

specific copy number and purity estimates from tumor RRBS data. Formalizing the 

relationship between methylation rates, copy number and tumor purity, CAMDAC extracts 

purified tumor methylomes from bulk tumor and tissue-matched normal bisulfite 

sequencing data. The corrected tumor methylation rates allow for accurate quantification 

of differential methylation, both between tumor and normal cells and between different 

tumors or sampled regions. Phasing to sequence variants, we assess epigenetic instability 

and the interplay between DNA methylation and somatic copy number and single-

nucleotide variants. CAMDAC deconvolved (allele-specific) tumor methylation profiles 
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reveal intra-tumor subclonal relationships and allow to quantify allele-specific methylation 

signals. 

 

RESULTS 

Bulk tumor methylation rates are confounded by tumor purity and copy number 

To study epigenetic inter- and intra-tumor heterogeneity in non-small cell lung cancer, we 

obtained surgically resected primary tumor samples from 24 lung adenocarcinoma 

(LUAD) and 14 squamous cell lung carcinoma (LUSC) patients (Table S1) from the 

TRACERx 100 cohort, and performed multi-region RRBS of 122 tumor regions in total 

(2-7 per patient, Table S2). As a normal reference, we included samples of adjacent normal 

tissue for 37/38 patients.  

We hypothesize that normal cell admixture (tumor purity) and somatic copy number 

alterations affect the methylation rate of bulk tumor samples (Figure 1A). We set out to 

assess this effect knowing that previous work using whole-exome sequencing (WES) of 

the same samples revealed considerable variability in purity and copy number (Jamal-

Hanjani et al., 2017). We selected CpG loci that are confidently unmethylated in the 

adjacent normal sample (posterior 99% highest density interval on methylation rate HDI99 

⊆ [0, 0.2], Methods), stratified them by allele-specific copy number state in three tumor 

regions with different purity, and evaluated their bulk methylation rates (Figure 1B). The 

majority of these loci exhibit bulk methylation rates close to 0 (88% with HDI99 ⊆ [0, 0.2]), 

suggesting that most sites are not differentially methylated in the tumor. A second 

population of CpG sites is visible across all samples, the modal methylation rate of which 

shifts with tumor purity and copy number. We observed a similar effect evaluating CpG 

loci that are confidently methylated in the adjacent normal sample (Figure S1). These 

observations confirm that normal cell admixture and copy number changes confound tumor 

methylation signals. We therefore set out to infer tumor purity and copy number from bulk 

tumor RRBS data, and extract purified tumor methylation rates, unpolluted with signals 

from non-tumor cells. 
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Allele-specific copy number analysis from tumor bisulfite sequencing data 

We modeled our approach of purity and copy number inference on existing methods that 

simultaneously obtain allele-specific copy number and purity estimates from array or 

sequencing data (Carter et al., 2012; Van Loo et al., 2010; Nik-Zainal et al., 2012). These 

approaches rely on measures of coverage (LogR) and allelic imbalance (B-allele frequency, 

BAF) at single nucleotide polymorphisms (SNPs). As CpG islands captured by RRBS are 

enriched for SNPs (Neininger et al., 2019), we anticipated the data to be highly amenable 

to allele-specific copy number analysis. 

The LogR at SNP loci is readily computed from the normalized read coverage of matched 

tumor and normal RRBS data. Where patient-matched normal data were not available, the 

median SNP coverage across all sex-matched normal lung samples in this cohort was used 

instead. This metric of total copy number suffers from a number of biases in RRBS (Figure 

S2). (i) MspI digestion used during library preparation results in a heterogeneous insert size 

distribution, with fragments ranging from just a few base pairs to hundreds of base pairs in 

length, depending on the distance between two CCGG recognition sequences (Sun et al., 

2015). (ii) Bisulfite conversion alters the GC content of sequences, potentially breaking 

standard GC-correction for the biases introduced during PCR amplification and Illumina 

sequencing (Benjamini and Speed, 2012). (iii) Replication timing differs across the genome 

and between cell types (Ryba et al., 2010). Sequences that replicate early during S-phase 

tend to have higher coverage than those that replicate later. We correct our LogR estimates 

for each of these three biases (Methods, Figure S2). 

Due to the bisulfite conversion, compiling reference and alternate allele read counts at SNP 

loci to obtain BAF values is challenging. Unmethylated cytosines are converted to thymine, 

yielding four possible bisulfite DNA strands: (complementary to) original top and 

(complementary to) original bottom (Figure 2A). However, most current single-end 

bisulfite sequencing protocols are directional, yielding only reads from the original top and 

bottom strands. In addition, as ~50% of the SNPs captured by RRBS are found at CpG 

dinucleotides, methylation further complicates BAF calculation. 
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Addressing these issues, we propose a set of allele counting and BAF calculation rules for 

all SNP types, following similar reasoning as Liu et al. (Liu et al., 2012). We illustrate our 

derivation for C>A and C>T SNPs. Readout bases are reported as original top (+) or 

complementary to original bottom strand (-) (Figure 2A-C). For a C>A SNP at a CpG, all 

reads reporting A on the + or - strand, i.e. A(+) and A(-), can be uniquely attributed to the 

alternate allele. Likewise, C(-) derives from the reference allele, together with C(+) and 

T(+) reads from the methylated and unmethylated cytosine, respectively. As a result, 

BAFC>A can be calculated as A
A	+	C	+	T(+)

 (Figure 2B). The situation is more complex for 

C>T SNPs, since the + strand cannot be used to distinguish between the alternate allele and 

the bisulfite converted unmethylated reference, as both yield T(+) (Figure 2C). However, 

reads from the - strand do distinguish the (un)methylated reference, C(-), from the alternate 

allele, T(-). Therefore, it is still possible to quantify BAFC>T as T(–)
T(–)	+	C(–)

. Through similar 

reasoning, we propose a set of BAF calculation rules for all types of SNPs (Figure 2D). 

The same principles are generalizable to non-CpG cytosine methylation, known to occur 

at low percentages in the mammalian genome (Schultz et al., 2015). Therefore, our BAF 

calculation rules are robust to both CpG and non-CpG cytosine methylation. Note that, 

since only one strand is informative with regard to the allelic imbalance at C>T, T>C, A>G 

and G>A SNPs, BAF estimates at these sites are based on lower effective sequencing depth. 

We validated our approach by comparing genotype calls and BAF estimates at SNP loci 

on a subset of adjacent normal samples subjected to both RRBS and whole-genome 

sequencing (WGS, Methods). We calculated false positive rates (FPR) and false negative 

rates (FNR) for SNP calling on RRBS data using the WGS-derived genotypes as ground 

truth. The average FPR across all SNP types and samples was 0.3% whilst the mean FNR 

was 25% (Figure S3A,B). Polymorphic CCGGs perturbing or creating an MspI recognition 

motif, resulting in allele-specific fragments during RRBS library preparation, and thereby 

skewing allelic coverage, were the main cause of false negatives (49%) (Figure S3C,D). 

Within the false negative calls, we saw a bias towards SNPs erroneously called 

homozygous reference (72%) compared to homozygous alternate (28%) (Figure S3B), 
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which points towards an alignment bias, likely due to the limited mappability of short MspI 

fragments with alternate alleles.  

Leveraging the BAF and LogR values, we infer tumor purity and allele-specific copy 

number profiles. We call this CAMDAC module ASCAT.m, as our approach relies on 

ASCAT (Van Loo et al., 2010), but alternative methods such as Battenberg (Nik-Zainal et 

al., 2012) or ABSOLUTE (Carter et al., 2012) may equally be used. Evaluating ASCAT.m 

copy number calling by comparing segmented BAF and LogR, and final allele-specific 

copy number calls to those obtained through WGS of the same tumor samples, confirms 

the accuracy and robustness of the ASCAT.m estimates (Figure 2E). 

Comparison of the ASCAT.m RRBS-derived (mean coverage 97x) tumor purity (r) and 

ploidy (y) values with those inferred from WGS (mean coverage 67x) and whole-exome 

sequencing (WES, mean coverage 464x) performed on the same samples (Table S3, Jamal-

Hanjani et al., 2017) shows excellent agreement (WGS: 𝑐𝑜𝑟" = 0.996, 	𝑐𝑜𝑟# = 0.991, 

WES: 𝑐𝑜𝑟" = 0.984 , 𝑐𝑜𝑟# = 0.978 ) (Figures 2F-G). On average, 89.1% of RRBS-

derived allele-specific copy number estimates exactly matched those obtained from WES- 

and WGS data (Figure 2H). This percentage increased to 98.4% when allowing a single 

allele to differ by one copy. Profiling the fraction of the genome with loss of heterozygosity 

(LOH) and ploidy confirms that whole-genome doubling was a frequent event across the 

cohort (LUAD: 72%, LUSC: 89%, Figure 2I, Dentro et al., 2021; Jamal-Hanjani et al., 

2017). In addition, despite low sample sizes, cohort-wide copy-number profiles closely 

resembled those derived from TCGA LUAD and LUSC cases (Figure 2J). 

In conclusion, CAMDAC’s ASCAT.m module allows accurate allele-specific copy 

number profiling and tumor purity estimation from methylation data, obviating the need to 

perform separate copy number profiling experiments. 

 

SNP-independent methylation rate estimation 

Similar to methylation at CpG SNPs affecting BAF calculations, polymorphisms confound 

methylation rate estimation (Liu et al., 2012). Polymorphisms at CpGs account for 49.9% 
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of SNPs, 83.3% of which are CpG>TpG polymorphisms, and methylation rates at these 

positions using standard approaches show markedly different distributions (Figure 3A-C). 

In tumor samples, this effect shows copy number dependence (Figure 3D-F). 

To address these biases, we developed an approach to obtain methylation rates independent 

of SNP genotype (Figure 3G-I, Methods). A number of considerations need to be made 

for this. (i) The original top and original bottom strand in directional protocols encode 

methylation information for the first and second position of a CpG, respectively. As a 

result, in case of a CpG>TpG SNP, the unmethylated reference and alternate alleles are 

distinguishable only on the bottom strand. Likewise, at CpG>CpA SNPs, only the top 

strand may be used. (ii) Computing the methylation rate at the non-polymorphic position 

in the CpG, only dinucleotides allow to separate the respective contributions from the 

unmethylated CpG allele and the alternative allele. (iii) To ensure copy number 

independence of methylation rate estimates, we define them as the average methylation 

rate per CpG allele. This enables the methylation rate at a heterozygous CpG to vary 

between 0 and 1, rather than between 0 and 0.5 in a diploid sample, and ensures further 

independence between methylation rate and copy number estimates. Methylation rates per 

CpG are thus computed by aggregating strand-specific dinucleotides as follows: 𝑚 =
CG

CG + TG(+) + CA(–)
, except at C>T and G>A SNPs, where only reads from the bottom strand 

and top strand, respectively, contribute to the estimates (Figure 3G-I).  

When accounting for these confounders, the observed biases disappear (Figures 3A-F, S4), 

confirming that CAMDAC CpG methylation rate calculation is robust to the presence of 

polymorphisms. 

 

Deconvolving tumor methylation profiles 

Building upon the allele-specific copy number, tumor purity and methylation rate obtained 

with CAMDAC, we aim to separate tumor and normal methylation signals. When a tumor 

clone is methylated at a CpG site that is unmethylated in the admixed normal cells (Figures 

S1A-G), the fraction of methylated reads at that locus observed from bulk bisulfite 
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sequencing increases along with tumor purity and copy number (Figure 1B). Vice versa, 

if the tumor clone lost methylation compared to the normal, the observed methylation rate 

will decrease with increasing purity and copy number (Figure S1H). We formally modeled 

this effect, realizing that the bulk tumor methylation rate (𝑚$ ) is the sum of a tumor 

component (with methylation rate 𝑚%) and a normal component (with methylation rate 

𝑚&), weighted by their relative DNA proportions, which can be calculated as the product 

of purity and copy number ( 𝜌  and 1 − 𝜌 , and 𝑛%  and 𝑛&  for tumor and normal, 

respectively): 

𝑚$ =	
𝜌𝑛%𝑚% 	+ 	𝑛&𝑚&(1 − 𝜌)

𝜌𝑛% + 𝑛&(1 − 𝜌)
																																																					𝐸𝑞(1) 

Applying this equation to our non-small cell lung cancer RRBS data, using the adjacent 

patient-matched normal samples (or a pooled unmatched normal lung reference for sample 

CRUK0047, Methods) as a proxy for the admixed normal cells, enables interpretation of 

the observed bulk methylation signals. Indeed, the positions of peaks of clonal bi-allelic 

tumor-normal differential methylation align closely with those predicted under this model, 

for different values of tumor purity and copy number (Figures 1B, S1H), and this 

relationship holds across all tumor samples (Figure S5A,B).  

While these data show that our CAMDAC model can account for copy number and tumor 

purity, not all CpG methylation values appear at the expected peaks. Allele-specific 

methylation is known to be widespread, not only on the inactive X chromosome in females 

and at imprinted genes, but also at polymorphic regulatory sequences (Kerkel et al., 2008; 

Reik and Walter, 2001), and this signal is also apparent in the overall methylation rates 

(Figures 1B, S1G-H). In addition, intra-tumor heterogeneity is expected to contribute 

intermediate methylation rate signals (Sheffield et al., 2017).  

Considering the above, (i) we have formalized the relationship between the bulk and 

purified tumor methylation rates; (ii) we can directly estimate tumor purity and copy 

number for each CpG from the bisulfite converted data; and (iii) an adjacent normal sample 

can be used as a proxy for the methylation rate of the admixed normal cells. We therefore 

have the necessary information to solve Eq(1) for the purified tumor methylation rate: 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2022. ; https://doi.org/10.1101/2020.11.03.366252doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.03.366252
http://creativecommons.org/licenses/by/4.0/


 

11 
 

𝑚% =
𝑚$8𝜌𝑛% + 𝑛&(1 − 𝜌)9 −	𝑛&𝑚&(1 − 𝜌)	

𝜌𝑛%
																																																𝐸𝑞(2) 

Taken together, bulk tumor methylation rates are confounded by sample purity and local 

tumor copy number in a way that can be modeled. Formalizing these effects, and inferring 

purity and copy number from bisulfite sequencing data, CAMDAC corrects bulk 

methylation rates to yield deconvolved tumor methylation rate estimates. 

Post-deconvolution, we observe CpGs that have become methylated on all chromosome 

copies in all tumor cells to have purified tumor methylation rates approaching the expected 

maximum 𝑚% = 1 . Vice versa, tumor-normal hypomethylated loci approach 𝑚% = 0 

(Figure S5C). Note that the noise on these estimates is proportional to tumor purity and 

hence statistical power (Figures S5D-E).  

To evaluate the use of an adjacent normal sample as a proxy for the tumor-admixed normal 

cell, we used Fluorescent-Activated Cell Sorting (FACS) by DNA content to 

experimentally separate diploid “normal” cell populations from five bulk tumor samples 

with clonal whole-genome doubling (average ploidy = 3.53) and performed RRBS on each 

sorted population (Methods). The FACS-purified and adjacent normal methylomes were 

highly correlated overall (Figures 4A, S6A). We next classified CpGs into three groups:  

(i) confidently unmethylated (UM, HDI99 ⊆ [0, 0.2]), (ii) intermediate (IM, HDI99 ⊆ [0.2, 

0.8]) and (iii) fully methylated (FM, HDI99 ⊆ [0.8, 1]) and evaluated correspondence across 

patient-matched FACS-purified and adjacent normal sample pairs (Figures 4B, S6B,C). 

We observed minimal differential methylation and a gene set enrichment analysis did not 

reveal any clear gene signatures, suggesting comparatively small differences in cellular 

composition. These results confirm that in non-small cell lung cancer and at the scale of 

our biopsies, an adjacent normal sample is an appropriate proxy for the tumor admixed 

normal. 

We evaluated the purified tumor methylation profiles by comparing Pearson distances 

between pairs of methylation profiles. Compared to bulk signals, CAMDAC deconvolved 

tumor methylomes show increased distances in inter-patient and tumor-adjacent normal 
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comparisons, while different tumor regions of the same patient remain similar (Figure 4C). 

Distances observed between purified tumor profiles computed with CAMDAC and those 

obtained experimentally by FACS were low and comparable to those observed between 

samples taken from the same patient. These observations are in line with admixed normal 

signals being removed from the bulk tumor and tumor-specific signals being retained in 

CAMDAC-deconvolved methylation profiles. 

Leveraging single nucleotide variant (SNV) calls from additional WGS and previously 

published WES (Jamal-Hanjani et al., 2017), we validate CAMDAC purified tumor 

methylation rates by phasing CpG methylation to clonal SNVs present on all chromosome 

copies in regions with loss of heterozygosity (Figure 4D). At these sites, any read reporting 

the variant allele can directly be assigned to the tumor cells, and methylation rates obtained 

from this subset of reads should be an unbiased estimate of the purified tumor methylation 

rate. Overall, RRBS-derived variant allele frequency (VAF) estimates of somatic SNVs 

(computed analogously to BAF values of germline SNPs, Figure 2D) were highly 

correlated with matched WGS/WES data (Pearson correlation = 0.86, Figure 4E). In total, 

we obtained phased methylation estimates at 4,485 CpG loci across our dataset and 

observed strong correlation between these SNV-purified 𝑚%  values and CAMDAC 

estimates (Pearson correlation = 0.97, Figure 4F), but not bulk tumor methylation rates 

(Figure 4G). These results confirm that CAMDAC can accurately deconvolute tumor 

methylation rates from bulk RRBS data. 

 

Inferring differential methylation from CAMDAC methylation rates 

We next set out to formally identify differentially methylated CpGs. For tumor-normal 

comparisons, we directly compute the probabilities 𝑃(𝑚% > 𝑚&)  and 𝑃(𝑚% < 𝑚&)  of 

hyper- and hypomethylation, respectively. Substituting 𝑚%  by Eq(2) and modelling the 

observed bulk and normal methylated read counts in a Bayesian fashion using beta-

binomial distributions, the resulting probability density is a scaled difference of two beta 

posteriors (𝑚&  and 𝑚$~	𝐵𝑒𝑡𝑎(#𝑟𝑒𝑎𝑑𝑠'(%) , #𝑟𝑒𝑎𝑑𝑠*&'(%) )), which we can compute 

exactly (Methods):  
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𝑃(𝑚% > 𝑚&) = 𝑃(𝐶 × (𝑚& −𝑚$) < 0)					with	𝐶 = 	
𝜌𝑛% + 𝑛&(1 − 𝜌)

𝜌𝑛%
											𝐸𝑞(3) 

Equations 2 and 3 reveal how coverage, copy number and tumor purity affect the power to 

infer tumor–normal differentially methylated positions (DMPs). Directly, the variance of 

𝑚& and 𝑚$	decreases with increasing normal and tumor coverage, respectively. Indirectly, 

increasing tumor copy number results in higher local coverage but also, together with 

increasing purity, shifts 𝑚$ away from 𝑚& at DMPs. To identify tumor–tumor DMPs, we 

similarly compute 𝑃(𝑚%+ > 𝑚%,)  and 𝑃(𝑚%+ < 𝑚%,)  by resampling 𝑚%  from the 

posterior distributions of 𝑚& and 𝑚$ in Eq(2) (Methods).  

For differential methylation analysis, it is customary to set a minimal effect size threshold, 

which we set to Δ𝑚 > 0.2. In contrast to 𝑚$ , setting this threshold using 𝑚%  removes 

dependence on purity and copy number. Simulations based on our observed data (Figure 

S7, Methods) reveal that true positive bi-allelic and mono-allelic DMPs (in balanced 

regions) indeed show absolute 𝑚%−𝑚&  methylation rate differences near 1 and 0.5 

respectively (Figures 5A and S7D, Methods). Thresholding on 𝑚% reduces the number of 

false negative tumor–normal DMP calls in impure tumors and at loci with lower copy 

number states, while retaining a low false positive rate (Figures 5B-C and S7E-F). 

Similarly, failure to adjust 𝑚$ for purity and copy number can readily inundate tumor-

tumor differential methylation results with false positive DMPs. Use of CAMDAC 𝑚% 

values reduces false positives in tumor-tumor comparisons while retaining a similarly low 

rate of false negatives (Figures 5D and S7G). 

To gauge performance on real data, we measured the overlap between tumor-normal DMP 

calls based on CAMDAC 𝑚% and those obtained from FACS-purified tumor RRBS data of 

the same tumor regions (𝑚-,%, Methods). While samples were processed from different 

tissue cuts of the same tumor regions and sequenced to different depths, DMP calls showed 

77.3% agreement (Figure 5E).  

We next compared intra-tumor DMPs called using 𝑚$  or 𝑚%  for patient CRUK0062, 

selected for its large number of samples with varying tumor purity (Figure 5F). In this 
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setting, 80.9% of CAMDAC 𝑚%-based calls are also identified using 𝑚$ and the effect of 

tumor purity on power can readily be seen as an increase in the number of DMPs identified 

with sample purity. Using 𝑚%, more DMPs are called when both samples are high purity, 

i.e. statistical power is the highest. In contrast, when using 𝑚$, more DMPs are called when 

two samples differ more in purity, suggesting the majority are false positives. These 

findings are in line with our simulation results and suggest that also in real data, controlling 

methylation rates for tumor purity and copy number greatly reduces the number of false 

positive DMP calls, while maintaining low false negative rates. 

To get a global overview of the performance of CAMDAC 𝑚% and bulk 𝑚$ for tumor-

tumor differential methylation analysis, we randomly selected CpG loci from samples with 

a low or high tumor purity both within and between patients and obtained DMP calls 

(Methods). As expected, results showed a greater number of DMPs for inter-patient 

comparisons than between samples of shared clonal origins (Figure 5G). Furthermore, 

DMP calls unique to the bulk tumor were frequent between samples of differing purities 

taken from the same patient, in line with the high false-positive rate of DMP calling without 

deconvolution. 

When investigating disease-related DNA methylation changes, researchers commonly look 

for differentially methylated regions (DMRs) as opposed to individual CpGs (Robinson et 

al., 2014). Building on DMP calls, CAMDAC can identify DMRs by binning CpGs into 

neighborhoods and identifying DMP hotspots within these clusters (Methods).  

Taken together, analyses of both simulated and observed data show that CAMDAC enables 

accurate calling of both tumor-normal and tumor-tumor differential methylation from 

RRBS data.  

 

Quantifying allele-specific methylation 

While most CpGs are either fully methylated or fully unmethylated in the tumor, others 

show intermediate 𝑚% values (Figures 1B, 4G, S1G). We hypothesize that, in addition to 

intra-tumor epigenetic heterogeneity, part of this is due to allele-specific differential 
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methylation, and we set out to quantify this phenomenon. Note that, by construction, allele-

specific methylation at heterozygous CpGs does not contribute to this intermediate 𝑚% 

signal (Figure 3H-I). 

To assess CAMDAC sensitivity for intermediate methylation signals, we first evaluated 

methylation rates at the imprinted IGF2/H19 locus (Frevel et al., 1999). As expected, the 

normal methylation rate around the imprinting control region is confidently around 𝑚&= 

0.5, whilst the CpG island shore is fully methylated (e.g. CRUK0073, Figure 6A). Since 

imprinting results in allele-specific methylation, we aimed to validate this across known 

imprinted loci (Geneimprint database, Methods) by phasing CpGs to nearby germline 

heterozygous SNPs. In total, we detected allele-specific methylation at 100/106 (94%) loci 

in normal samples with phased methylation rates and leveraged the CAMDAC equations 

to deconvolve allele-specific tumor methylation rates (Methods).  

In line with previous reports (Cui et al., 2002; Ogawa et al., 1993), we observed frequent 

loss of imprinting in tumors and report cases with or without loss of heterozygosity, 

accounting for 74/276 (26.8%) and 102/276 (37.0%) loci, respectively (Figure 6A,B). Loss 

of imprinting without loss of heterozygosity showed a preference for both parental alleles 

losing (IGF2/H19, MIMT1/ZIM2/PEG3, SRNPN) or gaining methylation (GNAS/GNASAS, 

BLCAP/NNAT, Figure 6B). Overall, somatic alterations at imprinted loci were frequently 

ubiquitous among samples from the same patient (39/60, 65%, Figure S8A). Interestingly, 

we report 7 cases with distinct subclonal alterations affecting the same locus. We map these 

epimutations to phylogenies of the same samples published in Jamal-Hanjani et al. (Jamal-

Hanjani et al., 2017), and find evidence of 4 parallel and 2 sequential evolutionary events 

(Figure S8B). We therefore posit that deregulation of imprinted loci may play a role in 

shaping a subset of non-small cell lung cancers.  

Next, we evaluated allele-specific methylation signals in adjacent normal samples from 

females. Dosage compensation in females by X-chromosome inactivation involves 

extensive DNA methylation of promoter-associated CpGs on the inactive copy (Lyon, 

1962). Unexpectedly, intermediate methylation values on X were consistently below 0.5 

(median 𝑚& = 0.384) for the 13 normal female samples in this cohort (Figure 6C). We 
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observed decreased sequencing coverage on X compared to the rest of the genome in 

females (Figure 6D) while BAF of heterozygous SNP loci did not show any deviation from 

0.5 (Figure 6E). As this effect was absent from WES data (data not shown), this suggests 

that the RRBS library preparation may be biased against the methylated Barr body. Due to 

the mosaic nature of X chromosome inactivation in females, at the scale of our adjacent 

normal bulk lung samples, both parental X chromosomes are inactivated in an 

approximately equal number of cells, and no enrichment of allele-specific methylation on 

chromosome X was observed compared with autosomes (t-test, p = 6.36 × 10/,). 

Leveraging allele-specific pure tumor methylation rates at CpG loci that were confidently 

unmethylated in the matched normal (HDI99 [0, 0.2], Methods), we demonstrate that allele-

specific CpG hypermethylation contributes to intermediate 𝑚%  values and confirm the 

presence of bi-allelic alterations (Figure 6F,G). In addition, direct comparison of average 

and allele-specific methylation rates at the same CpGs between sample pairs allows 

visualization of (sub)clonal allele-specific methylation clusters (Figures 6H). These 

clusters recapitulate the previously reported SNV-derived phylogeny of the same tumor, 

but also enable detection of further subclones (Figure 6I,J). Through uniform manifold 

approximation and projection (UMAP) analysis of allele-specific and average pure tumor 

methylation rates across samples from the same patient, followed by clustering, we 

classified epimutations as (sub)clonal bi-allelic and mono-allelic (Methods, Figure 6K).  

Interestingly, while varying widely for individual tumors, we observed that the extent of 

allele-specific vs. bi-allelic and subclonal vs. clonal methylation changes differed between 

LUSC and LUAD and stage I vs. stage II/III tumors (Figure 6L,M). This suggests distinct 

roles and mechanisms underlying DNA methylation heterogeneity and evolution in these 

tumor types. The fraction of clonal bi-allelic DMPs was the strongest indicator of relapse 

and could present a unique opportunity for early patient stratification.  

 

Interplay of somatic mutations and methylation changes 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2022. ; https://doi.org/10.1101/2020.11.03.366252doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.03.366252
http://creativecommons.org/licenses/by/4.0/


 

17 
 

To gain insight into the relationship between somatic mutations and epimutations, we next 

performed DMR calling on the SNV-purified tumor methylation rate estimates. In total, 

4,406 methylation bins comprised of 3 or more CpGs could be phased to SNVs, of which 

610 were differentially methylated (Figure 7A, Table S4). These SNV-phased DMRs were 

more frequently hyper- than hypomethylated, potentially resulting from the disruption of 

transcription factor binding sites and thus decreased enhancer binding affinity (Morova et 

al., 2020; Zhao et al., 2017).  

Supporting the functional consequences of mutations and/or increased mutability of 

methylated cytosines, 114 vs. 36 hypermethylated SNV-phased DMRs without loss of the 

wild type allele were specific to the mutant (in-cis) and the wild-type (in-trans) allele, 

respectively (p-val = 1.22 × 10/+0 , two-sided Binomial test). For example, patient 

CRUK0082 harbors a clonal CDKN2A promoter mutation, where, in regions with phased 

methylation information, only the mutant allele is hypermethylated (Figure 7B).  

In-trans hypermethylation events may occasionally constitute inactivation of genes due to 

deleterious mutation of one allele and hypermethylation of the other. In one potential 

example, enhancer GH06F037648, which is intragenic to MDGA1, was found to be 

clonally hypermethylated on one copy of the wild type allele in all regions from patient 

CRUK0071 (Figure 7C). 

In regions where the wild type allele is lost, it is not possible to determine whether in-cis 

DMRs were originally restricted to the mutant allele and thus potentially linked to the 

genetic alterations, or on all copies, suggesting the two events were independent. As an 

example of this, we observe clonal loss of the wild type allele, combined with a missense 

mutation and hypomethylation of surrounding CpGs at the CDH10 locus in patient 

CRUK0072 (Figure 7D).  

Taken together, CAMDAC deconvolution and phasing enables deeper understanding of 

the interplay between aberrant DNA methylation and genetic mutations. In our non-small 

cell lung cancer cohort, we observed frequent phasing of the hypermethylated allele to the 

mutant SNV allele, potentially through ablation of adjacent transcription factor binding 

sites. 
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Relationships between purified methylation profiles  

To gain insight into similarities and differences between samples, we clustered genome-

wide methylation profiles. We focused on tumor-normal promoter DMRs, selected for 

being enriched in gene regulatory driven differential methylation, and performed UMAP 

of deconvolved tumor and normal methylation rate profiles (Figures 8A,B). We identified 

four main clusters: two clusters of cancer samples and two clusters of adjacent normal 

samples. Normal lung epithelium samples clustered by sex (Figure 8A), indicating that 

differences are dominated by female-to-male differential methylation. These sex-based 

differences were less dominant in the tumor samples, likely in part because many female 

samples showed complete (34%) or at least partial (52%) LOH of chromosome X. In 

contrast, non-small cell lung cancer samples mostly separated by histology (Figure 8B), 

pointing towards large methylation differences between adenocarcinoma and squamous 

cell carcinoma, possibly reflecting a different cell of origin (Sutherland and Berns, 2010). 

Different tumor samples from the same patient consistently clustered together (Figure 

8C,D).  

 

Purified methylation profiles reveal phylogenetic relationships 

We next focused more closely on the relationship between methylation profiles of different 

samples from the same patient. For each patient, we select CpG sites that are differentially 

methylated compared to the normal in at least one sample. After deconvolution, tumor 

signals show reduced correlation with adjacent normal methylation rates, and tumor purity 

is no longer the main driver of inter-sample correlations (Figure 8E).  

Instead, CAMDAC pure tumor methylation profiles may encode evolutionary relationships 

between subclones. Indeed, sample phylogenetic trees constructed from methylation rates 

at (hypermethylated) tumor-normal DMPs recapitulate clonal phylogenetic relationships 

inferred from matched WES (Jamal-Hanjani et al., 2017, Methods, Figures 8F,G and S9). 

In contrast, bulk methylation profiles were unable to reproduce these relationships, and 

generally clustered by tumor purity. Overall, methylation trees based on CAMDAC 𝑚% 
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outperformed 𝑚$ in reproducing phylogenetic relationships (combined empirical p-values 

= 1.61	 ×	10/1 and 0.109, respectively, Fisher’s method, Figures 8H and S10, Methods). 

Epigenetic alterations typically outnumber somatic mutations, and may accumulate early 

in tumor evolution (Baylin and Jones, 2016), creating a permissive state for tumor 

initiation. As such, we expected longer trunk lengths (relative to subclonal branches) in 

DMP- than SNV-based patient trees. We calculated the relative trunk length difference 

between DMP and SNV tree pairs and saw longer trunks in CAMDAC 𝑚%-derived DMP 

trees than in SNV trees, but only in patients with low SBS4 smoking signature exposure 

(Pearson correlation = −0.64, p-value = 6.72	 ×	10/1, Methods, Figure 8I). This trend 

was lost in the bulk tumor data, where virtually all DMP trees had shorter trunks compared 

to SNV trees due to signal from normal contaminating cells. 

We therefore conclude that CAMDAC provides unique opportunities to study intra-tumor 

heterogeneity in solid tumors, unconfounded by signals from admixed normal cells. 

 

DISCUSSION 

Bulk tumor methylation signals are confounded by copy number aberrations and normal 

cell admixture. CAMDAC determines tumor purity and allele-specific copy number from 

bulk tumor-normal matched RRBS data and uses this to reconstruct the true tumor (allele-

specific) methylation rate from the bulk tumor and matched normal rates. Use of these 

purified methylomes increases the accuracy of tumor-normal and tumor-tumor differential 

methylation calling and can reveal the phylogenetic relationships between subclones. In 

addition, they provide insight into tumor biology and the taxonomy of cancer.  

While a few studies have considered either the effect of sample purity (Hua et al., 2020; 

Zheng et al., 2017) or copy number (Martin-Trujillo et al., 2017) on bulk tumor methylation 

rates, CAMDAC is – to our knowledge – the first approach to estimate and leverage both 

confounders to reconstruct the tumor methylation signal. We demonstrate that tumor-

normal differential methylation produces predictable intermediate methylation values 

given local copy number states. This explains, at least in part, why bulk cancer methylomes 
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exhibit an increased proportion of intermediately methylated regions compared to normal 

tissues (Lister et al., 2009).  

After purification, most differentially methylated CpGs are either fully methylated or 

unmethylated. Nevertheless, a significant subset remains intermediately methylated. 

Allele-specific CAMDAC-purified tumor methylation rates allow us to decipher this signal 

and classify epimutations as (sub)clonal bi- or mono-allelic. From these data, we suggest 

two potential classes of DNA methylation changes: (i) gene regulatory differential 

methylation and (ii) allele- (and copy-) specific stochastic methylation changes. Regulatory 

changes typically affect all copies indiscriminately, with possible exceptions at 

heterozygous loci, while stochastic methylation changes arise due to errors in the DNA 

methylation maintenance machinery, aberrant TET activity, or spontaneous deamination 

of methylated cytosines (Coulondre et al., 1978; Goyal, 2006; Kohli and Zhang, 2013). 

Assuming faithful replication thereafter, these changes become discernable after clonal 

expansion, generating intermediate methylation signals. 

CAMDAC methylation profiles recapitulate the phylogenetic relationships between 

subclones and unlock a wealth of information on intra-tumor heterogeneity. CAMDAC 

also recovers the clonal DMP signals that are lost in bulk methylation data due to normal 

cell contamination. Additionally, CAMDAC DMP trees of both LUSC and LUAD cases 

had longer relative trunk lengths than SNV trees in the absence of highly mutagenic 

processes such as smoking, which suggests that DNA methylation may have a role in early 

tumor evolution. We envisage further development will enable reconstruction of subclones 

within single samples and accurate clone trees (as opposed to sample trees, Alves et al., 

2017) from bisulfite sequencing data, akin to current methods leveraging single-nucleotide 

variants (Dentro et al., 2017; Nik-Zainal et al., 2012; Tarabichi et al., 2021). As such, 

application of CAMDAC will help elucidate the role of epimutations in the evolutionary 

histories of different cancer types.  

As in previous studies (Gaiti et al., 2019; Hua et al., 2020), we infer differential methylation 

compared to adjacent normal tissue and use this as a proxy for the admixed normal cells in 

the tumor sample. Where matched normal tissue samples are not available, a tissue-
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matched normal reference may be constructed for use with CAMDAC. Outside our cohort, 

the DNA methylation data flowing from large-scale initiatives such as the International 

Human Epigenome Consortium (IHEC, Stunnenberg et al., 2016) and the ENCODE 

(Feingold et al., 2004) and BLUEPRINT (Fernández et al., 2016) projects, enable 

construction of reference profiles for a wide range of tissues.  

In low purity samples and in regions with lower tumor copy number, fewer reads report on 

the methylation state of the tumor. CAMDAC incorporates this greater uncertainty in its 

estimates for the tumor methylation rates in such cases, greatly reducing the number of 

false positive hits when inferring differential methylation. Bulk tumor methylomes of low 

purity samples are dominated by signals from the admixed normal cells, as evidenced by 

the high false negative rate at simulated tumor-normal epimutations based on bulk profiles. 

In tumor-tumor differential methylation analyses based on bulk tumor methylomes, more 

DMPs are identified when two samples differ more in purity, suggesting a high false 

positive rate. In contrast, when using CAMDAC pure tumor methylation rate increases, the 

number of DMPs increases with statistical power. 

DNA methylation heterogeneity has been linked to clonal progression in several tumor 

types (Hao et al., 2016; Mazor et al., 2015). Various metrics have been conceived to 

quantify intra-tumor methylation heterogeneity from bulk data and some have shown 

prognostic value in leukemia and Ewing sarcoma (Landau et al., 2014; Li et al., 2016; 

Sheffield et al., 2017), but not in glioblastoma (Klughammer et al., 2018). While 

heterogeneity estimates from bulk tumor methylomes are likely accurate in tumor types for 

which high purity samples are readily obtained, we hypothesize these metrics are similarly 

confounded by normal cell admixture and copy number aberrations in most other cases. 

Applying CAMDAC principles to adjust these metrics accordingly may yield powerful 

prognosticators and shed further light on the role of DNA methylation heterogeneity in 

solid tumors.  

In summary, CAMDAC enables us to mine a wealth of information contained in bulk tumor 

bisulfite sequencing data, combining purity and copy number profiling with accurate 

differential methylation analysis based on the purified tumor methylation rate estimates. 
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CAMDAC uniquely unlocks insights into intra-tumor heterogeneity and the biology and 

taxonomy of cancer. We expect CAMDAC will further our understanding of the interplay 

between genetic and epigenetic mutations and their roles in tumor evolution.  
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FIGURES 

Figure 1. Tumor purity and copy number affect methylation rates.  

 

(A) Multi-region RRBS was performed on surgically resected non-small cell lung cancers 

and adjacent normal lung tissue. Sampled regions may differ both in tumor purity and copy 

number. The observed methylation rate of a differentially methylated CpG is expected to 

be influenced by purity, copy number and the methylation rate of the normal contaminating 

cells. (B) Bulk methylation rate histograms for tumor regions 1-3 of patient CRUK0062, 

for CpGs which are confidently unmethylated in the adjacent normal sample. CpGs are 
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stratified by copy number. A dashed line indicates the expected mode of the methylation 

rate peak corresponding to clonal differentially methylated CpGs on all copies (𝒎𝒕 = 𝟏). 
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Figure 2. Allele-Specific copy number profiling of RRBS data. 
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(A) Transformation of (un)methylated reference CpG, and alternate ApG and TpG allele 

dinucleotides during bisulfite sequencing. (B-C) Derivation of BAF rules from strand 

specific base counts C>A (B) and C>T (C) SNP loci. (D) BAF formulae for all SNP types. 

(E) Direct comparison of allele-specific copy number estimates derived by ASCAT.m from 

RRBS and WGS for sample CRUK0069-R1. (F-G) ASCAT.m RRBS-derived ploidy (F) 

and purity (G) estimates compared with matched whole-exome (WES; blue squares) and, 

where available, whole-genome sequencing data (WGS; purple diamonds). (H) Percentage 

overlap between RRBS- and WES- or WGS-derived allele-specific copy number segments. 

Exact overlaps (orange) and approximate overlaps (±1 copy on a single allele, green) are 

both displayed. (I) Tumor ploidy and the fraction of the genome with loss of heterozygosity 

define whole-genome doubling status. (J) Frequency of gains (red) and losses (blue) across 

the genome of lung adenocarcinoma (LUAD) and squamous cell lung cancer (LUSC). The 

black line represents gains and losses across 297 LUAD and 444 LUSC samples in TCGA. 
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Figure 3. Calculating polymorphism-independent methylation rates with CAMDAC. 

 

(A-C) Naïve versus CAMDAC normal methylation rate estimates at (A) all CpGs, (B) 

polymorphic CpGs and (C) CpG>TpG SNPs, selected from a random sample of 3,000,000 

CpGs from this cohort’s 37 normal lung samples. (D-F) Naïve versus CAMDAC bulk 

tumor methylation rate estimates for CpG>TpG SNPs in segments with total copy number 

(D) 1, (E) 2 and (F) 3, pooling the data from all 3 sampled regions from patient CRUK0084 

of near-equal and high tumor purity (range 0.85-0.87). The data points highlighted by the 

orange, green and yellow circles indicate heterozygous C>T SNPs with CpG allele copy 

number 1 and the pink circle CpGs with copy number 2. (G) Derivation of methylation rate 
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estimates at non-polymorphic CpGs. (H) Derivation of the CpG-forming allele-specific 

methylation rate at a CpG>TpG SNP. (I) Methylation rate formulae for all possible 

polymorphic CpGs. 
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Figure 4. CAMDAC purified methylation profiles. 

 

(A) CpG-wise comparison of the adjacent (𝒎𝒏 ) and FACS-purified (𝒎𝒇,𝒏 ) normal 

methylation rates with Pearson correlation annotates. (B) CpG classification based on 𝒎𝒏 

and 𝒎𝒇,𝒏 . (C) Correlation between bulk tumor, CAMDAC deconvolved tumor, and 

adjacent normal methylation profiles. Lollipops represent distances between patient-

matched adjacent and FACS-purified normal pairs (green) and between CAMDAC- and 

FACS-purified tumor methylomes of the same samples (blue). (D) Phasing CpGs to SNVs 

in regions of LOH enables separation of tumor and normal reads. SNV-purified tumor 

methylation rates are readily obtained from mutant allele read counts methylated and 

unmethylated. Remaining reads may be assigned to the wild type allele. (E) Comparison 

of variant allele frequencies (VAF) of single-nucleotide variants (SNV) derived from 

RRBS and whole genome/exome sequencing in regions of LOH. (F-G) Validation of 

CAMDAC methylation rates (F) through phasing of SNVs in regions of LOH and 

comparison to bulk tumor methylation rates (G). 
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Figure 5. Differential methylation calling using CAMDAC.  

 

(A-C) Tumor-normal DMP simulation results. Average methylation difference (A), false 

negative (B) and false positive rates (C), comparing low versus high simulated tumor 

purities. (D) Tumor-tumor DMP simulation results. False negative and false positive rates 

as a function of the copy number state, averaged across simulated sample pairs of low (left 

panel), low versus high (middle panel) and high (right panel) tumor purities with 
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CAMDAC deconvolved (top row) and bulk (bottom row) tumor methylation rates. (E) 

Venn diagrams of the overlap between real CAMDAC- and FACS-purified tumor-normal 

DMPs. The value shown is the percentage of FACS-purified tumor-normal DMPs also 

called by CAMDAC. Samples are ordered by decreasing power. (F) Comparing observed 

tumor-tumor differential methylation calls between CRUK0062 regions from bulk (grey) 

and CAMDAC (blue) approaches. Samples are ordered by fraction tumor DNA content. 

(G) Venn diagrams showing the overlap of tumor-tumor DMPs between bulk and 

CAMDAC calls for intra- and inter-tumor DMPs. 
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Figure 6. Quantifying allele-specific methylation.  

 

(A) CRUK0073 normal (CRUK0073-N, top) and CAMDAC purified tumor (CRUK0073-

R2, middle) CpG methylation rate along the H19 locus with methylation rate point 

estimates shown as black dots, HDI99 displayed as a grey ribbon and genomic annotations 

showing the transcript and promoter region as well as neighboring CpG islands, enhancers 
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and the imprinting control region (ICR, bottom panel). Phased methylation rates to both 

parental alleles are shown (purple and yellow). (B) Overview of somatic changes at known 

imprinted loci with phased methylation information across tumor samples. LOI: loss of 

imprinting; LOH: loss of heterozygosity. (C) Allele-specific methylation signals on 

chromosome X in adjacent normal lung samples across female and male patients. (D, E) 

Comparison of (D) sequencing depth and (E) mean BAF at heterozygous SNPs on 

chromosome X to that on autosomes in males and females. (F) Deconvolved pure tumor 

methylation rates from CRUK0084-R1, including only phaseable CpGs which are 

confidently unmethylated in the matched adjacent normal sample and located on segments 

with allele-specific copy number 1+1. (G) Scatter plot of the allele-specific pure tumor 

methylation rates of the CpGs loci in (F). (H-I) Comparison of (H) pure tumor methylation 

rate differences and (I) average pure tumor methylation rates between alleles across 

samples pairs for the same patient reveals subclonal relationships. (J) SNV-based 

phylogenetic clone tree for CRUK0084 taken from Jamal-Hanjani et al. (Jamal-Hanjani et 

al., 2017). (K) UMAP of allele-specific pure tumor methylation rates including CpGs that 

are hypermethylated in at least 1 sample. Hierarchical clustering and analysis of cluster 

methylation rates enables epimutation assignments, taking copy number into account. (L) 

Total number of unique epimutations per class (top panel) and their ratio (bottom panel) 

per patient, colored by clonality and allele-specificity. (M) Allele-specific (left) and clonal 

(middle) and clonal bi-allelic only (right) DMP odds ratio given clinical features including 

histological subtypes (LUAD and LUSC), stage (1a and 1b against later stages) and 

genomic annotations, including whole genome doubling status and smoking signature 

SBS4 exposure (high > 0.35, low otherwise) and number of samples sequenced (high > 3, 

low otherwise). 
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Figure 7. The interplay of somatic mutations and methylation changes.   

 

(A) Overview of phasing results of 4,406 methylation bins to somatic SNVs. DMRs are 

annotated as either in-trans or in-cis to the SNV, on both alleles, or showing loss of the 

wild type (WT) allele. Each DMR category is further sub-divided into hyper- and 

hypomethylated subgroups. (B-D) Examples of SNV-phased, CAMDAC deconvolved 

tumor and matched normal methylation rates across genes harboring SNVs and DMRs in-

cis (B), in-trans (C), and with loss of the WT allele (D). 
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Figure 8. CAMDAC deconvolved tumor methylation rates inform clustering and 

intra-tumor heterogeneity analyses. 

 
(A-B) UMAP of the mean purified tumor methylation rates at CpGs in tumor-normal 

promoter DMRs, (A-B) annotated with sex (A) and sample histology (B). (C-D) Zoom in 

of UMAP clusters 3 (C) and 4 (D), annotated with patient IDs. (E) Correlations between 

bulk (upper triangle) and purified methylation rates (lower triangle) and matched normal 

(upmost and right-most columns) using all tumor-normal DMPs in one or more of the seven 

tumor samples from CRUK0062. Samples are ordered by tumor purity. (F) Neighbor-

joining phylogenetic sample tree for CRUK0062 based on binarized bulk tumor and 

CAMDAC deconvolved tumor methylation estimates at tumor-normal DMPs or using 

binarized CCF at SNVs. (G) SNV-based phylogenetic clone tree for CRUK0062 from 
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Jamal-Hanjani et al. (Jamal-Hanjani et al., 2017). (H) Empirical p-value obtained when 

fitting (hyper)methylation data to the matched SNV tree for each patient. Patients are 

grouped by the number of sampled tumor regions with RRBS data (excluding the adjacent 

normal). (I) Difference in the trunk to longest branch length ratio between DMP and 

matched SNV sample trees. Left: CAMDAC pure tumor DMP vs. SNV sample trees; 

Right: bulk tumor DMP vs. SNV sample trees. 
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SUPPLEMENTARY FIGURES 

Figure S1. Tumor purity and copy number affect methylation rates. 
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(A) Normal and bulk tumor methylation rate density for sample CRUK0062-R3 and 

adjacent patient-matched normal showing most CpGs are either fully methylated or 

unmethylated. An increased number of CpGs with intermediate methylation levels is found 

in the bulk tumor. (B) Simulated 99% Highest Density Interval (HDI99) at example 

unmethylated CpGs with variable number of methylated and unmethylated read counts and 

total CpG coverage. (C-F) Normal and bulk tumor methylation rate (𝑚&  and 𝑚$ , 

respectively) density plot for CpGs labelled as confidently unmethylated in the normal 

(HDI99 ⊆ [0,0.2]). The majority of these loci are also unmethylated in the bulk tumor. (D-

F) Zoom-in, highlighting CpGs with gained methylation in the tumor cells across all copy 

numbers (D), and in regions of copy number states 2+0 (E) and 2+2 (F). (G) Bulk tumor 

methylation rate histograms of CRUK0084-R3, having an estimated tumor purity (ρ) of 

87%, for CpGs in diploid regions confidently unmethylated (left) and methylated (right) in 

the patient-matched adjacent normal. Hyper- and hypomethylated CpGs can be found in 

peaks that vary with the mutation copy number. (H) Bulk methylation rate histograms of 

CRUK0062 tumor regions 1-3, for CpGs which are confidently methylated in the adjacent 

normal sample, stratified by allele-specific copy number state. A dashed line indicates the 

expected mode of the methylation rate peak corresponding to clonal differentially 

methylated CpGs on all copies.  
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Figure S2. RRBS-derived tumor LogR biases and correction.  

 

(A-C) MspI fragment length (A), GC content (B) and replication timing (C) affect tumor 

LogR. (D) A linear combination of three natural splines, modelling the effect of each of 

the three biases described in (A-C) is used to correct the raw LogR.  
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Figure S3.  CAMDAC genotyping validation and evaluation of sources of bias 

affecting heterozygous SNP calling from RRBS data.  

 

(A-B) False positive (A) and false negative (B) heterozygous call numbers (scaled radii) 

and rates (%) stratified by SNP type and sequence context (top) and histograms showing 

the distribution of CAMDAC BAF estimate errors and noise (bottom). SNPs are considered 

heterozygous when 0.1 ≤ BAF ≤ 0.9. (C) Performance of heterozygous SNP identification 

from normal tissue RRBS data at different sequencing coverages and BAF heterozygosity 

boundaries. (D) Fractions of true positive and false negative heterozygous SNP calls 

stratified by their location (i) at/or within one read length of a heterozygous CCGG, (ii) 

covered by only short reads (< 67bp) and (iii) by reads with low reference read mapping 

quality.	𝝌𝟐 tests show enrichment of false positives at each of these three types of regions. 
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The data shown is from the adjacent normal sample of CRUK0062.  
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Figure S4. Comparison of CAMDAC and naïve bulk CpG methylation rate.  

 

(A-B) Difference between CAMDAC and naïve bulk methylation rate estimates at 50,000 

random (A) heterozygous CpGs and (B) non-polymorphic CpGs in a normal sample. (C) 

Distribution of SNP types at CpGs. (D-E) Difference between CAMDAC and naïve bulk 

methylation rate values at (D) homozygous vs. (E) heterozygous CpG, stratified by type as 

in (C). All data was taken from the adjacent normal sample of patient CRUK0069, which 

constitutes a representative example of normal lung methylation in this cohort.  
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Figure S5. Validation of CAMDAC equations as a function of purity and copy 

number.  

 

(A) Comparison of the predicted methylation rate under the CAMDAC equations as a 

function of tumor purity and copy number state, and the observed peak position for clonal 

bi-allelic tumor-normal hypermethylated CpGs (Methods). (B) As in A, but for 

unmethylated CpGs that are methylated in the adjacent normal sample. (C) Observed minus 

expected CAMDAC pure tumor methylation rate at clonal hypo- (blue) and 

hypermethylated (red) DMPs across samples (purity) and tumor copy numbers. (D-E) 

Observed minus expected CAMDAC pure tumor methylation rates at clonal hyper- (D) 

and hypomethylated (E) CpGs across copy number states and tumor samples. 
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Figure S6. Comparing FACS-purified and adjacent normal methylomes.  

 

(A) CpG-wise comparison of the adjacent (𝑚& ) and FACS-purified (𝑚-,& ) normal 

methylation rates with Pearson correlation. (B) Methylation rate difference histogram for 

loci classified as confidently unmethylated (UM, HDI99 ⊆ [0, 0.2], blue), intermediate (IM, 

HDI99 ⊆ [0.2, 0.8], turquoise) and fully methylated (FM, HDI99 ⊆ [0.8, 1], yellow) in at 

least one sample for a given patient-matched normal pair (first column). Zooming in on the 

CpGs classed as IM (second column). (C) CpG classification based on 𝑚& and 𝑚-,&.  
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Figure S7. DMP simulation framework and results of tumor-normal and tumor-

tumor mono-allelic DMP simulations. 
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(A) Tumors are ranked by purity and the top 20 (high purity; 𝜌6 ≥ 0.58) and bottom 20 

(low purity; 𝜌6 ≤ 0.3) cases are considered for simulations. Sample 𝑠 with purity 𝜌6  is 

randomly chosen from either group, for example, 𝜌6 = 0.6. Autosomal CpGs are separated 

into groups based on total copy number 𝑛%,6,7 = 1, 2, 3, 4, 5 or ≥6. We then sample the bulk 

tumor coverage, 𝑐𝑜𝑣$,6,7 , and (allele-specific) tumor copy numbers of CpG	𝑖 with total, 

major and minor allele copy number, 𝑛%,6,7, 𝑛8,%,6,7 	and 𝑛9,%,6,7, respectively. The matched 

normal copy number is 𝑛&,6,7 = 2. We obtain the pure tumor coverages for alleles A and 

B, 𝑐𝑜𝑣:,%,6,7, where X is either A or B, by sampling from a binomial with the number of 

trials set to 𝑐𝑜𝑣$,6,7 and the likelihood of obtaining a tumor read equal to the tumor fraction, 

𝑓:,%,6,7, estimated as a function of copy numbers and tumor purity. The matched normal 

coverage, 𝑐𝑜𝑣&,6,7, is taken as the difference between the bulk and pure tumor coverages, 

𝑐𝑜𝑣&,6,7 = 𝑐𝑜𝑣$,6,7 − 𝑐𝑜𝑣%,6,7. (B) We take confidently unmethylated and methylated loci 

and collate their methylation rate values into vectors 𝑣*&'(%) and 𝑣'(%), respectively. We 

sample a normal methylation rate prior, 𝑝&,6,7  from 𝑣*&'(%)  or 𝑣'(%) . Leveraging the 

inferred normal coverage (see A), we sample the counts methylated from a binomial, 𝑀&,6,7. 

The unmethylated reads counts, 𝑈𝑀&,6,7 , is the difference between the normal coverage and 

the number of methylated reads, 𝑈𝑀&,6,7 = 𝑐𝑜𝑣&,6,7 −𝑀&,6,7. We then repeat these steps for 

tumor allele A and B. (C) Possible combinations of normal and allele-specific tumor 

methylation priors and associated ground truth tumor-normal DMP calls to be compared 

with CAMDAC DMP calls. (D-F) Results of tumor-normal DMP simulations. (D) Mean 

methylation difference across false negatives (FN), false positives (FP), true negatives 

(TN) and true positives (TP) at mono-allelic differentially methylated and non-

differentially methylated CpGs. (E-F) False negative rates as a function of tumor copy 

number (E) and coverage (F) for the purified (solid line) and bulk tumor (dashed line) for 

low vs. high tumor purity samples (pale and dark orange lines respectively) at mono- (left 

panel) and bi-allelic (right panel) epimutations. (G) Results of tumor-tumor DMP 

simulations. False negative and false positives rates as a function of tumor copy number 

for low (left panel), low versus high (middle panel) and high purity (right panel) sample 

pairs at mono-allelic epimutations. 
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Figure S8. Loss of imprinting ubiquity analysis reveals instances of parallel evolution.  

 
 
(A) Intra-tumor heterogeneity overview of somatic changes at known imprinted loci. (B) 

Mapping of heterogeneous loss of imprinting events to patient phylogenies. 
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Figure S9. DMP- and SNV-derived sample trees. 
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Phylogenetic sample trees created by calculating the pairwise hamming distance between 

samples using SNVs from WES or (hypermethylated) tumor-normal DMPs from RRBS, 

followed by neighbor-joining (Methods).  
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Figure S10. Methylation-SNV tree fit scores. 

 

(A) Scoring concordance between phylogenies derived from aberrant methylation and 

somatic sequence alterations. We leveraged binarized (hypermethylated) tumor-normal 

DMP data and, based on the ancestral states given by either the SNV (𝑠) or DMP (𝑑) multi-

sample tree topologies, counted the number of state changes per DMP locus from the 

normal root to all leaves (methylated to unmethylated or vice versa). Counts were 

combined into a single score by taking the total absolute difference in the number of 

ancestral DMP state changes based on the SNV (𝑠7 ) and DMP tree topologies (𝑑7 , 

| ∑ 𝑠7&
7;+ − 𝑑7|) as a fraction of all events given by the DMP tree (∑ 𝑑7&

7;+ ). Here, a score of 

0 indicates a perfect topology match, with the score increasing with the number of 

inconsistent per-DMP evolutionary trajectories between the two trees. Hence, the score 

indicates how closely the methylation events support sample relationships inferred from 

somatic sequence alterations. (B) A schematic of how ancestral state changes are calculated 

given the SNV tree by counting edges that switch from methylated to unmethylated (bold). 

Internal node states are inferred using ancestral reconstruction and, for all calculations, 

nodes with intermediate methylation are replaced with the state of the first ancestor without 

intermediate methylation. (C) Methylation-SNV fit scores calculated for DMPs using 𝑚$ 
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and CAMDAC 𝑚%. Boxplots show the distribution of scores for permutated topologies in 

place of the SNV tree, as used for empirical p-value calculations. A color bar indicates the 

number of tumor regions per patient (excluding the patient-matched normal). 
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METHODS  

TRACERx methylation study  

 

Samples from the first 100 patients of the TRACERx lung cancer study were selected for 

reduced representation bisulfite sequencing (RRBS). Patients with sufficient material 

remaining from 2 or more tumor regions and the adjacent matched normal were considered 

for bisulfite sequencing. Samples with purity below 15% were discarded with the exception 

of CRUK0062-R6 included for comparison with the other 6 tumor regions sampled for this 

patient. Patients with tumor samples of high purity were prioritized as well as those with 

matched RNA-Seq data (Rosenthal et al., 2019). We also chose samples from both lung 

adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) subtypes, genders and 

smoking status. 

The TRACERx WES, WGS and RRBS data generated, used or analyzed in this study are 

not publicly available and restrictions apply to the availability of these data. These data are 

available through the Cancer Research UK & University College London Cancer Trials 

Centre (ctc.tracerx@ucl.ac.uk) for academic non-commercial research purposes upon 

reasonable request, and subject to review of a project proposal that will be evaluated by a 

TRACERx data access committee, entering into an appropriate data access agreement and 

any applicable ethical approvals. 
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Reduced representation bisulfite sequencing 

RRBS was obtained for roughly a third of the NSCLC patients from the TRACERx 100 

cohort (122/327 tumor regions from 38/100 patients, 37 with matched normal). The 

NuGEN Ovation RRBS Methyl-Seq System, adapted by the manufacturer for automation 

on Agilent Bravo liquid handling robot, was used to generate sequencing libraries by 

enzymatically digesting 100 ng of gDNA using MspI, which recognizes 5′-CCGG-3′ 

sequences and cleaves the phosphodiester bonds upstream of CpG di-nucleotide, leaving a 

2bp overhang suitable for adaptor ligation and then a final end repair step. Generated 

libraries were bisulfite converted using Qiagen’s EpiTect Fast DNA Bisulfite Kit. 

Converted libraries were amplified by PCR using 12 cycles and purified using Agencourt® 

RNAClean® XP magnetic beads. Purified libraries were quantified by Qubit dsDNA HS 

Assay (Invitrogen) and quality was evaluated using Agilent Bioanalyzer High Sensitivity 

DNA Assay (Agilent Technologies). Eight samples were multiplexed per flow cell and 

sequenced on HiSeq2500 system using HiSeq SBS Kit v4 in paired-end 100bp runs for 

CRUK0062 and single end 100 bp runs for the others yielding an average of 150M raw 

sequencing reads per sample.  

Sequencing outputs were converted to FASTQ files using Illumina’s bcl2fastq Conversion 

Software, quality checked with FastQC v0.11.2 (Babraham Institute, 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and adapter sequences and 

diversity bases were trimmed with Trim Galore! version v0.3.7 (Babraham Institute, 

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), a wrapper around 

Cutadapt, (Martin, 2011) and NuGEN’s trimRRBSdiversityAdaptCustomers.py v1.0 

(https://github.com/nugen technologies/NuMetRRBS). Reads are aligned to the UCSC 

hg19 reference assembly using Bismark v0.14.4 (Krueger and Andrews, 2011) and 

deduplication was carried out using NuDup, leveraging NuGEN’s molecular tagging 

technology (https://github.com/nugentechno logies/nudup). Binary alignment map (BAM) 

files were then sorted and indexed using SAMtools v1.2 (https://github.com/ 

samtools/samtools/releases/tag/1.2). 
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On average 1.88 x 108 reads per sample remained post-processing and alignment (Table 

S2), resulting in an average of 4.5 million CpGs being supported by at least one read in any 

one sample.  

Whole genome sequencing 

Whole genome sequencing was performed on 8 samples from 3 patients included in the 

TRACERx100 cohort. Simultaneous extraction of DNA and RNA was performed using 

the AllPrep DNA/RNA Mini Kit (Qiagen, UK). Frozen samples were transferred onto cold 

petri dishes on dry ice and were manually dissected into 20-30mg pieces. Immediately prior 

to extraction, the freshly dissected tissue was transferred directly into homogenization 

tubes containing RLT plus lysis buffer. Homogenization of tissues was carried out using a 

TissueRuptor II probe or using a bead method and by passing the lysate through a 

QIAshredder column (Qiagen, UK). The extracted DNA was eluted with 200 µl of EB (no 

EDTA) buffer and RNA was eluted with 200µl of nuclease-free water and stored 

immediately at -80°C. The DNA and RNA samples were quantified using a Qubit™ 3.0 

Fluorometer (Lifetechnology, UK) and TapeStation system (Agilent, UK) respectively. 

The integrity of the DNA/RNA was assessed using the Agilent TapeStation system.  

Whole genome sequencing experiments were conducted by Edinburgh Genomics. Samples 

were sequencing on Illumina HiSeq X in paired-end 100bp runs. FASTQ outputs 

sequencing reads were quality checked with FastQC v0.11.5 (Babraham Institute, 

https://www.babraham.ac.uk/) and then aligned to the UCSC hg19 reference assembly 

(including unknown contigs) obtained from GATK bundle 2.8 using bwa-mem v0.7.15 

(http://bio-bwa.sourceforge.net). Picard tools v1.107 was used to clean, sort, de-duplicate 

and merge files from the same patient region and to remove duplicate reads 

(http://broadinstitute.github.io/picard). Binary alignment map (.bam) files were sorted and 

indexed with SAMtools v1.3.1 (http://github.com/samtools/) setting both the minimum 

base and mapping quality to 20. 
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Copy-number aware methylation deconvolution analysis of cancers (CAMDAC) 

As depicted below, CAMDAC requires RRBS data prepared from bulk tumor and matched 

adjacent normal samples. CAMDAC is only compatible with human (directional) RRBS 

data. The input must be quality and adapter trimmed with PCR duplicates removed and 

subsequently aligned to hg19 (hg38, GRCH37 and GRHCH38 formats also compatible). 

The tumor and matched normal data must be provided in .bam file format. The files must 

be sorted and indexed using SAMtools (http://github.com/samtools/). The input tumor and 

matched normal sequencing data is used to compute tumor purity and allele-specific copy 

numbers as well as bulk tumor and normal methylation rates. From this, we extract purified 

tumor methylation rates and carry out tumor-normal and tumor-tumor differential 

methylation analysis.  

 

We created a reference RRBS genome listing all genomic regions supported by at least 5 

reads in at least one of the 37 germlines from this study. Genomic regions which fail to 

reach this criterion are unlikely to achieve minimum depth thresholds required for copy 

number and differential methylation analysis and can be excluded, ultimately to speed up 

computation.  

 

Tumor copy number profiling from RRBS data 

First, we used CAMDAC get_allele_counts() command (https://github.com/VanLoo-

lab/CAMDAC, build="hg19", mq=0, n_cores=12) to compile base counts for SNP loci 
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described by the 1000 Genomes project (1000g) (Auton et al., 2015) which overlap with 

the above-mentioned list of genomic regions. By default, no mapping quality threshold is 

set to avoid creating a bias against the alternate allele at SNPs. Allele counts are obtained 

for each of these SNP to calculate the BAF and LogR.  

The LogR value at SNP 𝑖 represents the base-2 logarithm of the ratio of the coverage in the 

tumor (𝑐𝑜𝑣%,7) to that of the normal at that SNP (𝑐𝑜𝑣&,7), divided by the average ratio. This 

is easily computed from RRBS data, as shown in Eq(4). 

log 𝑅 = 	 log,^
𝑐𝑜𝑣%,7 𝑐𝑜𝑣&,7⁄

∑ (𝑐𝑜𝑣%,< 𝑐𝑜𝑣&,<⁄ )&
<;+

𝑛

	`			 																																																																	𝐸𝑞(4) 

Normalization with the adjacent normal SNP coverage, removes germline copy number 

variants. Next, we correct these germline normalized LogR values for fragment length, GC 

content and replication timing biases (Figure S2). This is a necessary process post-

normalization as technical and biological biases affecting the sequencing output can vary 

between the normal and bulk tumor data. In the first instance, we reconstruct the underlying 

MspI fragment distribution from the sequencing output for each patient. Assuming, and 

confirming, complete enzymatic digestion, MspI fragment ends can be found at CCGG 

motifs, taking into account SNP forming/destroying cleavage sites. A CCGG is confirmed 

when supported with a 5’ read starting with one of the following trinucleotides: CGG(+), 

TGG(+), CCG(-) or CCA(-). Having identified the MspI fragments, we can readily annotate 

the fragment length. Then, we compute the replication timing estimate at every 1000g 

SNPs leveraging Repli-seq data from 15 cell lines produced by the ENCODE project 

(Dataset GEO Accession: GSE34399), generating 15 reference profiles. The profile which 

best fits the LogR data in a given tumor sample is then used to calculate the replication 

timing for each MspI fragment in that sample. To compute the GC content of all fragments, 

we leverage information from the bulk tumor reads, adjusting the reference GC content for 

methylation rate and bisulfite conversion. Where the fragments are longer than 2x read 

length, we assume that all reference cytosines are converted to thymines unless they are at 

CpG where we assume a probability equal to the mean of all informative CpGs loci in the 
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fragment. Finally, we fit the observed LogR to a linear combination of the natural splines 

(df = 5) of MspI fragment length, replication timing and GC content. The model residuals 

provide corrected LogR values. 

The BAF value at the ith 1000g SNP is the ratio of the alternate allele counts to the total 

counts at the ith SNP locus, 𝐵𝐴𝐹 = =>%(?&=%(	=>>(>(	@A*&%6
?(-(?(&@(	=>>(>(	@A*&%6B=>%(?&=%(	=>>(>(	@A*&%6

. The strand-

specific BAF rules for every SNP type are shown in Figure 2D. Here, we make the 

reasonable assumption that all reference cytosines are converted into thymines (under-

conversion rate <0.5%). Note that where a variant makes up more than 5% of the total 

allele counts at a given SNP, it is excluded from downstream analyses in order to ensure 

that SNVs or mis-alignments do not affect BAF estimates and subsequent copy number 

profiling. 

Where allelic imbalance is such that two distinct band are generated, CAMDAC can assign 

heterozygous SNPs (0.3 ≤ BAF ≤ 0.7) to either the gained or lost alleles. SNP phasing 

information can then be shared between tumor samples from the same patient. This can be 

used to identify mirrored subclonal allelic imbalance (Jamal-Hanjani et al., 2017), but most 

importantly, it allows us to rescue signal in tumors where there was no clear separation 

before haplotyping. 

With partially phased BAF and corrected logR estimates in hand, CAMDAC then uses 

ASCAT (Van Loo et al., 2010) piece-wise constant segmentation (penalty = 200) 

leveraging germline heterozygous SNPs (0.3 ≤ BAF ≤ 0.7) and copy number fitting 

functions (gamma = 1) to obtain allele-specific copy number profiles and purity estimates 

for each tumor region. Note that we set the minimum germline coverage for SNP inclusion 

to 10 whilst one read is deemed sufficient in the tumor. To remove outliers and further 

reduce noise without introducing a bias against homozygous deletions, we remove 

singletons with coverage below 10 in the tumor if and only if their nearest neighbors within 

a 10kb moving window all pass the above threshold.  

There were 6 patients which showed large intra-tumor differences in their CAMDAC 

ploidy estimates. In each of those cases, we looked for evidence supporting an alternative 
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ploidy solution. If such a solution existed and was better suited the overall tumor ploidy 

profile, the ASCAT copy number fitting step was re-run forcing the solution to the ploidy 

towards a diploid or tetraploid solution (see MINPLOIDY and MAXPLOIDY variables, 

from the runASCAT() function in ascat.R script; available from 

https://github.com/VanLoo-lab/ascat). We refit 7 tumor copy number profiles in total. This 

is an improvement from the 17 samples which were manually curated and re-run in the 

matched exome sequencing data (Jamal-Hanjani et al., 2017). 

 

Copy number gains and losses summary 

We calculated the fraction of gains and losses in LUAD and LUSC samples using copy 

number alterations called with CAMDAC. The genome was partitioned into 10MB bins, 

each of which were classified per sample: a “gain” if the major allele is above the baseline 

ploidy and a “loss” if the minor allele falls below the baseline ploidy and the total tumor 

copy number is lower than 5. A given genomic bin can therefore be classified as both a 

gain and loss. The baseline ploidy is defined as diploid or tetraploid dependent on ASCAT 

solution. Fractions of each class were calculated across the cohort, with 99.99% (530 / 536) 

of bins with coverage in all samples. For TCGA samples, copy number alterations were 

obtained from SNP array data with ASCAT. TCGA gains and losses were obtained as 

above and compared with those of the TRACERx cohort by taking the average fractions at 

the corresponding 10MB bins. Where TCGA SNP array data did not cover RRBS regions 

(bins on chromosome 1 and 9), the value of the previous segment is taken as an estimate. 

 

Comparing RRBS- and WGS-derived genotypes 

First, we compiled allele counts at all 1000g SNPs with coverage in the matched RRBS 

data using alleleCount v4.0.0 (http://cancerit.github.io/alleleCount/). We compared 

CAMDAC RRBS-derived genotypes with the output from standard alleleCount v4.0.0 

pipeline on WGS data for the 3 germline samples of patients CRUK0031, CRUK0062 and 

CRUK0069. Positive calls are heterozygous SNPs (0.1 ≤ BAF ≤ 0.9) and WGS is 
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considered to provide ground truth with a minimum SNP read depth of 10 required on both 

platforms for inclusion. We compute the average false positive rate (FPR) as the sum of all 

false positives over the sum of false positives and true negatives across samples. Similarly, 

the mean false negative rate (FNR) is calculated as the sum of all false negatives divided 

by the sum of false negatives and true positives. The FPR allows us to evaluate allele-

specific biases introduced by the approach, while the FNR assesses the influence of 

methylation status on BAF calculation, as well as biases introduced during the RRBS 

protocol. For all SNP types, we consider three different contexts: (i) SNPs at CCGG, the 

recognition motif of the MspI restriction enzyme used during library preparation, (ii) SNPs 

at CpGs (excluding CCGG motifs), and (iii) all other. A chi-square analysis is performed 

to test whether or not the FNR is context dependent. Next, we recompute FNR and FPR 

aggregating FP, TP, FN and TN across all samples for a range of heterozygosity boundaries 

and minimum coverage thresholds (Figure S4A). Next, we measure the number of false 

negatives due to (i) allele-specific Msp1 fragments, (ii) additional reference mismatches 

from neighboring SNPs, and (iii) short fragments yielding invalid alignments given 2 or 

less reference mismatches (Figure S4B).  

The mean ASCAT.m FPR across all SNPs and samples was 0.3% and was always below 

2%. The average FNR was 25% and was highly context dependent (𝜒, test, p-val < 2.2 x 

10-16, FNRCCGG = 83%, FNRCG = 20%, FNRother = 15%). Higher sequencing coverage 

results in only modest improvements in FNR: by requiring a minimum SNP coverage of 

30 instead of 10 reads, the average FNR dropped to 20% (Figure S4A). As expected, the 

majority of heterozygous SNPs perturbing or creating an MspI recognition motif are missed 

(49% of all false negatives, Figure S4B). These polymorphisms result in allele-specific 

fragments during RRBS library preparation that skew allelic coverage. Heterozygous SNPs 

on the same MspI fragment as a heterozygous CCGG are similarly affected. Finally, within 

the false negative calls, we see a bias towards SNPs erroneously called homozygous 

reference (72%) compared to homozygous alternate (28%), and this effect is present in all 

three contexts, although less pronounced at CCGGs. This points towards an alignment bias, 

possibly explained by limited mappability of short MspI fragments with alternate alleles. 

Supporting this theory, SNPs with lower reference allele read mapping quality scores were 
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more likely to yield homozygous reference false negatives (Wilcoxon test, p < 2.2 x 10-16), 

especially outside CCGG context. 

 

Tumor copy-number profiling from whole genome sequencing data 

First, we compiled allele counts at all 1000g SNPs with coverage in the matched RRBS 

data using alleleCount v4.0.0 (http://cancerit.github.io/alleleCount/). We then we ran 

ASCAT GC and replication timing LogR correction steps, fed the output into ASCAT 

piece-wise constant segmentation (penalty = 200) and obtained copy number and purity 

(gamma = 1). Comparing WGS and RRBS-derived profiles, even with the higher FNR on 

SNP calling in RRBS data, CAMDAC BAF estimates enable ASCAT to correctly identify 

separation of the BAF bands on several occasions where the WGS BAF does not seem to 

provide sufficient power. Likewise, comparison of the LogR tracks indicates that RRBS 

protocol-induced biases in the coverage are adequately modelled and removed by 

CAMDAC. Unsurprisingly, final allele-specific copy number segments are virtually 

indistinguishable between the two data types. 

 

Methylation rate calculation from RRBS data 

The bulk tumor and matched normal methylation rate is readily computed by taking the 

ratio of methylated CpG read counts to the sum of methylated and unmethylated read 

counts, 𝑚 = '(%)C>=%(D	?(=D	@A*&%6
'(%)C>=%(D	?(=D	@A*&%6B*&'(%)C>=%(D	?(=D	@A*&%6

. CAMDAC uses strand-

specific dinucleotide counts to distinguish between methylated and unmethylated CpGs, m 

= CG
CG + TG(+) + CA(–)

. At CpG>TpG (TpG>CpG) and CpG> CpA (CpA> CpG) SNPs, only 

reads from the bottom strand and top strand, respectively, contribute to CAMDAC 

methylation rate estimates. In addition, only the CG-forming allele contributes to the 

methylation rate at polymorphic CpGs. This enables the methylation rate at a heterozygous 

CpG to vary between 0 and 1, rather than between 0 and 0.5 in a diploid sample and ensures 

further independence between methylation rate and copy number estimates.  
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We compiled bulk tumor and normal methylation rates for all CpGs which fell within the 

above-mentioned reference RRBS genomic regions list. For each patient, we discarded all 

CpGs that failed to reach a minimum coverage of 10 in the matched normal RRBS data. 

CpGs that had less than 3 reads in a given tumor sample were also filtered out from that 

sample. 

 

CAMDAC purified tumor methylation rates from RRBS data 

Bulk tumor methylation rate (𝑚$) could be expressed as a function of the methylation rate 

in the tumor cells (𝑚%) and contaminating normal cells (𝑚&), scaled for the purity of the 

sample (𝜌) and the local copy number state (i.e. 𝑛& = 2 in the normal and 𝑛% in the tumor): 

𝑚$ =	
𝜌𝑛%𝑚% 	+ 	𝑛&𝑚&(1 − 𝜌)

𝜌𝑛% + 𝑛&(1 − 𝜌)
																																																																						𝐸𝑞(1) 

Taking estimates of the total copy number at each CpG and tumor purity from the RRBS 

copy number profile and assuming the matched normal is a reasonable proxy for the 

contaminating normal, we can calculate the deconvolved tumor methylation rate 𝑚%:  

𝑚% =
𝑚$8𝜌𝑛% + 𝑛&(1 − 𝜌)9 −	𝑛&𝑚&(1 − 𝜌)	

𝜌𝑛%
																																													𝐸𝑞(2) 

An important distinction is made at heterozygous polymorphic CpGs, where only one copy 

in the diploid normal contains methylation information (i.e. 𝑛& = 1). Similarly, if the SNP 

is CG-destroying and its BAF is smaller than 0.5 or likewise if the SNP is CG-forming and 

BAF is above 0.5 the major copy informs the methylation (i.e. 𝑛% = 𝑛'=<A?). Vice versa, 

if the tumor BAF is larger than 0.5 and the SNP is CG-destroying or the BAF lower than 

0.5 and the SNP is CG-forming, the minor allele only informs the methylation rate (i.e. 

𝑛% = 𝑛'7&A?).  

Finally, 𝑚% must be between 0 and 1. However, due to both technical and biological noise, 

values can fall outside of these boundaries. For downstream analyses, we set negative 

methylation rates up to 0 and values sitting above the upper boundary are rounded down to 

1. In virtually all cases, the 𝑚% 99% HDI overlaps with allowed values. 
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Nuclei extraction and FACS analysis 

We followed the ‘Frankenstein’ protocol (Martelotto, 2020) to extract nuclei from seven 

fresh frozen tissue samples taken from five different patients: CRUK0050-R4, 

CRUK0062-R5, CRUK0070-R2 and R4, CRUK0079-R1 and R4 and CRUK0090-R1. 

Samples were taken from different tissue cuts of the same sampled tumor region as the 

matched WES and RRBS samples. The bulk tumor tissue samples were minced and put 

into a lysis buffer. The lysate was homogenized with a pestle and the mixture was then 

passed through a 70μm filtered. The isolated nuclei mixture was washed and suspended 

into a buffer containing propidium iodide (PI) stain (70 μg/mL PI, 1% BSA, 1×PBS) and 

passed through a smaller 35μm filter. 

The stained nuclei were then passed through the FACS machine. Nuclei were separated 

according to the side scatter, a measure of cell morphology and the PI chromophore 

intensity, representing the quantity of chromatin in each nucleus. We first sorted a small 

number of nuclei to adjust the sorting parameters to ensure that debris was removed. We 

also discarded superfluous ploidy populations, including nuclei having originated from 

replicating diploid or aneuploid cells. We then collected nuclei from both the major 

aneuploid population, 𝑝𝑜𝑝𝐴, and the diploid population, 𝑝𝑜𝑝𝐷, into separate tubes each 

with 200 μL PBS and 2% FCS. We counted between 100-300 thousand events per 

population. DNA extraction for each sample and nuclei subpopulation was performed using 

the Zymo Research Quick DNA-microprep plus kit (D4074) following the indications from 

manufacturer. The DNA samples were finally eluted in 12μL of elution buffer. 

 

RRBS of FACS-purified samples 

The NuGEN Ovation RRBS Methyl-Seq System protocol was followed for library 

preparation and for subsequent bisulfite sequencing, as above-described for the bulk tumor 

RRBS data, but without any automation.  

Libraries were prepared by enzymatically digesting ∼100ng of gDNA with MspI. Qiagen’s 

EpiTect Fast DNA Bisulfite Kit was used for bisulfite conversion of the resulting DNA 
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fragments. Bisulfite converted libraries were then amplified by PCR using 12 cycles and 

purified using Agencourt® RNAClean® XP magnetic beads. Library quantification was 

performed by Qubit dsDNA HS Assay (Invitrogen) and quality control was carried out 

using Agilent Bioanalyzer High Sensitivity DNA Assay (Agilent Technologies). In cases 

with two samples from the same patient, both popA and only one popD were made into 

libraries and sequenced to save on costs. We therefore sequenced 7 tumor aneuploid and 5 

(presumably) normal diploid populations.  

RRBS was performed by at the Francis Crick Institute sequencing facility. The 12 samples 

were multiplexed across 4 lanes on HiSeq 4000 using the HiSeq® 3000/4000 SBS Kit. As 

for the bulk tumor samples, 100bp SE and 10bp reads were generated for the NuGEN 

RRBS library insert and unique molecular identifiers, respectively. We aimed to sequence 

120,000,000 reads per sample.  

Sequencing reads were QC’ed, adapter trimmed, aligned to hg19, PCR-deduplicated and 

output binary alignment map (BAM) files were sorted and indexed following the same 

procedure as described for the TRACERx bulk tumor RRBS dataset (Methods, section 

2.4.2.1).  

On average, 109,864,415 raw sequencing reads were obtained per samples. Mapping 

efficiency averaged around 70.5%, as expected for bisulfite sequencing data aligned with 

Bismark. However, samples had very high duplication rates (average 57.18%), leaving 

only 31,533,497 reads per sample post-processing. This is potentially due to lower DNA 

inputs and combined bisulfite- and FACS-driven DNA degradation. This effect was not 

observed on the previous cohort generated using the same protocol, but without FACS.  

 

SNV calling from whole-exome and -genome sequencing data 

SNV calls from TRACERx 100 patients are readily obtained Jamal-Hanjani et al. (Jamal-

Hanjani et al., 2017). The same protocol is followed to identify SNVs from newly 

generated WGS data and is detailed below. In short, SAMtools mpileup (v1.3.1) was used 

to locate alternate alleles in tumor and germline samples (minimum base quality ≥ 20 and 
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mapping quality ≥ 20). The output was processed with VarScan2 v2.3.6 processSomatic 

and used to identify somatic variants (VAF ≥ 0.01, purity = 0.5), filtering out germline 

SNPs using the matched germline samples. The resulting single nucleotide variant (SNV) 

calls were filtered for false positives using Varscan2's associated fpfilter.pl script, initially 

with default settings then repeated again with min-var-frac = 0.02, having first run the data 

through bam-readcount v0.5.1 (https://github.com/genome/bam-readcount). SNVs were 

also identified using MuTect v1.1.4, filtered for passing SNVs (“PASS”) and annotated 

using the GATK bundle 2.8. SNVs were deemed true positives if (A) VAF ≥ 2% and the 

SNV was called by both VarScan2, with a somatic p-value ≥ 0.01, and MuTect, (B) VAF 

≥ 5% and the mutation was only called in VarScan2, again with a somatic p-value ≤ 0.01. 

A minimum total and mutant allele coverage of 30 and 5 reads was required for inclusion. 

The number of reads supporting the variant in the germline data must to be < 5 and the 

VAF ≤ 1%. SNVs were also removed if they were found to match a germline 

polymorphisms with population frequency > 1% across the TRACERx 100 cohort. SNVs 

overlapping with a blacklist of genomic regions including reports by the ENCODE project 

(both DAC and Duke list), simple repeats, segmental duplications and microsatellite 

regions were obtained from the UCSC Genome Table Browser.  

By sharing mutations calls between samples from the same patient, and reassessing mutant 

reads at each position, we can reduce the possibility of over-representing the mutational 

heterogeneity. Where a somatic variant was not called ubiquitously across tumor regions, 

but was called in one or more sample, reads were re-extracted from the original alignment 

file using bam-readcount v0.5.1 (https://github.com/genome/bam-readcount). In these 

instances, minimum VAF requirements were decreased to VAF ≥ 1%, thereby rescuing 

low frequency variants that would otherwise have been missed.  

 

SNV-phased methylation rate estimates 

Leveraging SNV calls from newly obtained WGS data and previously published WES 

(Jamal-Hanjani et al., 2017), we phased CpG methylation to all SNVs, excluding loci 

with	VAF ≤ 0.1 in a tumor sample or VAF > 0 in the patient-matched adjacent normal 
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tissue. Allele-specific methylation counts were compiled for all reads that could be phased 

to exactly one SNV. Phased methylation rates were obtained for 32,874 CpGs and 6,529 

SNVs across samples (14,514 and 2,984 unique CpGs and SNVs respectively across 

patients). The VAF was derived from the mutant (mut) and wild type (WT) reads counts: 

VAF = @A*&%6!"#
@A*&%6!"#B@A*&%6$%

. RRBS-derived VAF estimates were compared with those 

obtained from the WES/WGS (Pearson correlation = 0.86).  

The mutation copy number, 𝑛'*%, was then computed as a function of the variant allele 

frequency, tumor purity and copy number: 𝑛'*% =
+
"
× 𝑉𝐴𝐹 × 𝜌𝑛% + 𝑛&(1 − 𝜌). The wild 

type allele copy number, 𝑛EF ,  is obtained by subtracting 𝑛'*%  from 𝑛% : 𝑛EF = 𝑛% −

𝑛'*% . The mutant allele methylation rate, 𝑚'*% , is extracted by taking the counts 

methylated (𝑀'*%) and unmethylated (𝑈𝑀'*%) divided by all counts phased to the variant 

allele: 𝑚'*% = 𝑀'*%/(𝑀'*% + 𝑈𝑀'*%). The wild type allele methylation rate, 𝑚EF, is 

confounded by signal from normal contaminating cells and must be deconvolved. For this, 

we use a modified version of the CAMDAC equations 2 and 3, where the tumor 

methylation rate and copy number are expressed in terms of the mutant and wild type 

alleles. 

𝑚$ =	
𝜌(𝑛'*%𝑚'*% + 𝑛EF𝑚EF) 	+	𝑛&𝑚&(1 − 𝜌)

𝜌(𝑛'*% + 𝑛EF) + 𝑛&(1 − 𝜌)
																																																								𝐸𝑞(5) 

𝑚EF =
𝑚$8𝜌(𝑛'*% + 𝑛EF) + 𝑛&(1 − 𝜌)9 −	𝑛&𝑚&(1 − 𝜌) − 𝜌𝑛'*%𝑚'*%

𝜌𝑛EF
												𝐸𝑞(6) 

We validate CAMDAC 𝑚%  by comparison with methylation estimates phased to clonal 

SNVs present on all copies in regions with loss of heterozygosity across our cohort 

(𝑛'*% = 𝑛%). At these sites, all reads reporting the variant allele can directly be assigned to 

the tumor cells, and methylation rates obtained from this subset of reads should be an 

unbiased estimate of the purified tumor methylation rate (i.e. 𝑛'*% = 0	). Overall, 4,485 

CpG loci met these criteria. A high correlation was observed between these SNV 

deconvoluted 𝑚% values and CAMDAC estimates (Pearson correlation = 0.97). 
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Tumor-normal differential methylation analysis 

We designed a statistical test to robustly identify DMPs between tumor and normal. The 

number of methylated reads at a CpG is often described as a Beta-Binomial distribution 

where the mean of the probability distribution, the methylation rate, follows a Beta 

distribution. We can therefore model the observed bulk tumor and matched normal 

methylation rate at CpG locus i as follows: 

𝑚G,7 	~	𝐵8𝛼G,7 , 𝛽G,79	        𝐸𝑞(7) 

where:   𝑚G,7 is the methylation rate at the ith CpG locus  

  𝛼G,7 is the counts methylated at the ith CpG locus 

  𝛽G,7 is the counts unmethylated at the ith CpG locus   

  𝑥 is 𝑏 for the bulk tumor, 𝑛 for the normal and 𝑡 for the purified tumor 

Our statistical design aims to test whether or not the tumor methylation rate at the ith CpG 

locus, 𝑚%,7 , is different from the normal methylation rate, 𝑚&,7 . This is depicted in 

equations 8 and 9.  

𝑚&,7 =	𝑚%,7                                            𝐸𝑞(8) 

∆𝐵		 = 	𝑚%,7 −𝑚&,7                                   𝐸𝑞(9) 

We recall from Eq(2) that the tumor methylation rate, 𝑚%, can be expressed as a function 

of 𝑚$	and 𝑚&. By substituting Eq(2) into Eq(9), we obtain: 

∆𝐵 =
𝑚$,7 p𝜌𝑛%,7 + 𝑛&,7(1 − 𝜌)q −	𝑛&,7𝑚&,7(1 − 𝜌)

𝜌𝑛%,7
−𝑚&,7 																													𝐸𝑞(10) 

Which can be simplified to: 

									∆𝐵 = 8𝑚$,7 −	𝑚&,79 	× 	𝐶									𝑤ℎ𝑒𝑟𝑒					𝐶 =
𝜌𝑛%,7 +	𝑛&,7(1 − 𝜌)	

𝜌𝑛%,7
														𝐸𝑞(11) 

Expression (11) demonstrates that our statistical model is independent of copy number and 

tumor purity, which are constant for the ith CpG site. However, the power to call DMPs 
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will intrinsically depend on purity, local copy number and CpG coverage. The former two 

will affect the magnitude of the difference between 𝑚$ and 𝑚& whilst the latter will affect 

the width of each beta distribution. Since there is a closed-form solution for testing P(𝑚$,7 

> 𝑚&,7), but not for P(𝑚$,7 = 𝑚&,7) (Robinson, 2017), the null and alternate hypotheses are 

written as follows: 

𝐻0:	𝑚$,7 =	𝑚&,7 	      The methylation rate of the ith CpG is identical in normal and tumor 

𝐻+:	𝑚$,7 >	𝑚&,7       The tumor is hypermethylated at this locus  

𝐻,:	𝑚$,7 <	𝑚&,7 The tumor is hypomethylated at this locus 

where 𝑃8𝑚$,7 >	𝑚&,79 = ∑ 9HI&,(B<,J&,(BJ),(K
(J),(B<)B9H+B<,J),(KB9HI&,(,J&,(K

(I),(/+)
<;0                	𝐸𝑞(12) 

and  𝑃8𝑚$,7 <	𝑚&,79 = ∑ 9HI),(B<,J),(BJ&,(K
(J&,(B<)B9H+B<,J&,(KB9HI),(,J),(K

HI&,(/+K
<;0  

                                                   = 1 − 	𝑃8𝑚$,7 >	𝑚&,79             𝐸𝑞(13) 

Eq(12) can be rewritten as follows, incorporating our 𝐵𝑒𝑡𝑎(0.5, 0.5)  prior to each 

methylation count variable. The prior informs on the underlying methylation rate 

distribution and ensures finite logarithms:  

𝑃8𝑚$,7 > 𝑚&,79 = ∑ log𝐵8𝛼$,7 + 𝑗 + 0.5, 𝛽$,7 + 𝛽&,7 + 19 − log(𝛽&,7 + 𝑗 +
HI),(/+K
<;0

0.5) − log𝐵81 + 𝑗, 𝛽&,7 + 0.59	– log𝐵8𝛼$,7 + 0.5, 𝛽$,7 + 0.59		            𝐸𝑞(14) 

We compute the probability that a CpG site is hypo- or hypermethylated and for easier 

interpretation, we express these probabilities as their complement (C = 1-P), which is a 

measure the overlap between 𝑚$,7 and 𝑚&,7. If C(𝑚$,7 > 𝑚&,7) or C(𝑚$,7 < 𝑚&,7) ≤ 0.01 we 

accept H1 or H2 respectively.  

Differential methylation analyses incorporating a beta distribution model reportedly show 

higher true positive and lower false discovery rate are obtained compared with Fisher’s and 

z-score methods (Raineri et al., 2014). Nevertheless, given high enough coverage, even a 

small difference in methylation can become statistically significant. In order to focus our 

analysis of biologically significant methylation changes, we require a minimum effect size 
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of 0.2 between the purified tumor methylation rate, 𝑚%,7, and the matched normal, 𝑚&,7, for 

DMP calling. In theory, this allows for subclonal or allele specific changes to be picked up 

whilst removing spurious signal. We obtained a second set of DMPs by applying the 

minimum effect size threshold on the difference between the bulk tumor methylation rate, 

𝑚$,7, and the normal methylation rate, 𝑚&,7 as is customary (Dolzhenko and Smith, 2014; 

Hansen et al., 2012; Klein and Hebestreit, 2016; Robinson et al., 2014; Wu et al., 2015), 

and compared the output with CAMDAC calls. The threshold of 0.2 was deemed 

sufficiently low to capture most mono-allelic aberrations whilst be sufficiently high to 

remove false positives and filter noise from the heterogeneous normal contaminating cells. 

 

Validation of CAMDAC purified tumor methylation rates at tumor-normal DMPs 

For a given tumor sample, we validate our model by comparing observed and expected 

clonal bi-allelic DMPs modal methylation peak position. Beta regression was used to 

estimate the mode of the peak generated by hyper- and hypomethylated bi-allelic DMP 

populations in the bulk tumor (𝑚$ ) and CAMDAC pure tumor methylation rates 

distribution, stratified by tumor purity, copy number and matched normal methylation 

status. Tumor-normal hyper- and hypomethylated CpGs were included if confidently 

unmethylated (99% HDI ⊆ [0, 0.2]) and methylated (99% HDI ⊆ [0.8, 1]) in the adjacent 

patient-matched normal, respectively. Note that allele-specific copy number states with ≤ 

10,000 loci in a given sample were ignored (inter-quartile range of the number of CpGs per 

allele-specific copy number state is [180 125, 807 774]). CpGs on sex chromosomes were 

also excluded due to coverage biases against the inactive chromosome X copy shifting 

methylation estimates. CpGs meeting these criteria across samples had total tumor copy 

number ranging from 1 to 8.  

The expected values of hypo- (𝑚0) and hypermethylated (𝑚+) clonal bi-allelic DMPs were 

derived from the modal methylation rate of the peaks at 0 and 1 in the patient-matched 

normal as estimated by beta regression as opposed to using exactly 0 and 1. The predicted 

CAMDAC 𝑚% are set to exactly 𝑚0 and 𝑚+ for CpGs having lost and gained methylation, 
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respectively. The expected bulk tumor modal methylation rates at hypermethylated loci 

was computed by feeding sample purity, tumor copy number, 𝑛& = 2, 𝑚& = 𝑚0 and 𝑚% =

𝑚+ into Eq(2). Vice versa, 𝑚& and 𝑚% were substituted with 𝑚+ and 𝑚0, respectively, to 

calculate the expectation at hypomethylated loci. 

 

Tumor-tumor differential methylation analysis 

The purified tumor methylation rate is not a beta distribution but rather the difference 

between two betas, the bulk tumor and normal methylation rate, scaled for tumor purity 

and copy number. As such, there is no exact solution to compute the highest density interval 

for 𝑚%,7. To address this, we simulate a credible 99% HDI for 𝑚%,7 at every CpG. We use 

the tumor purity and CpG copy number and simulate 2000 data points for the bulk tumor 

(𝑚$,7) and matched normal methylation rate (𝑚&,7), given 𝑚G,7 	~	𝐵8𝛼G,7 , 𝛽G,79. Substituting 

these into Eq(2), we obtain a vector of values for 𝑚%,7 and readily extract the 99% HDI. If 

the purified tumor methylation rate HDI does not overlap between any two tumor regions 

at a given CpG and the minimum effect size, 0.2, is reached, a tumor-tumor DMP is 

identified.  

 

Tumor-normal and tumor-tumor differential methylation rate simulation framework 

To appreciate the effect of tumor purity on both tumor-normal and tumor-tumor differential 

methylation analysis, we extracted the 20 lowest and highest purity samples in our cohort, 

𝜌 < 0.3  and 𝜌 > 0.58 , respectively. We combined the methylation information at all 

overlapping autosomal CpGs from these samples including the patient-matched normal of 

selected samples. The normal methylation rate at confidently unmethylated and methylated 

CpGs was extracted. Confidently unmethylated and methylated CpGs are respectively 

defined as having their methylation rate 99% highest density interval (HDI) boundaries in 

the 0.0-0.2 and 0.8-1.0 intervals (Figure S1A-B). This vector of values incorporates 

information for both distributions such as mean methylation rate and deviation as well as 
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their respective contribution to the overall bimodal normal methylation rate profile. 

Sampling from this vector will yield our simulation priors. 

Next, we randomly selected intra- and inter-tumor CpG pairs from samples within or across 

purity categories and of equal or differing total copy numbers (1, 2, 3, 4, 5 or  ≥6). For each 

168 possible combination of these simulation parameters, we sampled 10,000 loci from 

each tumor samples randomly assigned as 𝑥 and 𝑦 as well as their matched normal.  

For each locus, we begin by obtaining the coverage information from 𝑖%) selected CpGs in 

sample 𝑠 = 𝑥 or 𝑦. We know the bulk tumor coverage (𝑐𝑜𝑣$,6,7), the tumor copy number 

(𝑛%,6,7), the normal copy number (𝑛&,6,7 = 2) and the global tumor purity (𝜌6) and so the 

tumor DNA fraction (𝑓%,6,7) is 𝑓%,6,7 =
&#,*,(×"*

&#,*,(×"*B(,×(+/"*)
. We can work out the purified tumor 

coverage as 𝑐𝑜𝑣%,6,7 = 𝑐𝑜𝑣$,6,7 × 𝑓%,6,7  where 𝑐𝑜𝑣%,6,7 	~	𝐵𝑖𝑛𝑜𝑚8𝑐𝑜𝑣$6,7 	, 	𝑓%,6,79 . The 

matched normal coverage (𝑐𝑜𝑣&,6,7) is therefore 𝑐𝑜𝑣&,6,7 = 𝑐𝑜𝑣$,6,7 − 𝑐𝑜𝑣%,6,7.  

We then sample a normal methylation rate prior (𝑝&,6,7) from the confidently unmethylated 

(𝑣*&'(%)) and methylated CpGs (𝑣'(%)) from the matched normal data which is used to 

simulate the normal methylation rates of normal contaminating cells from both tumor 

samples 𝑥  and 𝑦 . For each sample, we obtain the counts methylated (𝑀&,6,7 ) and 

unmethylated (𝑈𝑀&,6,7): 𝑀&,6,7 	~	𝐵𝑖𝑛𝑜𝑚8𝑐𝑜𝑣&,6,7 , 𝑝&,6,79 and 𝑈𝑀&,6,7 = 𝑐𝑜𝑣&,6,7 −𝑀&,6,7 .  

The purified tumor methylation rate is obtained by randomly selecting from the same 

vector as the matched normal (y𝑝&,6,7 , 𝑝%,6,7z 	 ∈ 	 𝑣*&'(%) or y𝑝&,6,7 , 𝑝%,6,7z 	 ∈ 𝑣'(%)) or from 

opposite vector states (𝑝%,6,7 ∈ 	𝑣*&'(%)  and 𝑝&,7 ∈ 	𝑣'(%)  or 𝑝%,6,7 ∈ 	𝑣'(%)  and 𝑝&,7 ∈

	𝑣*&'(%) ). We obtain the counts methylated (𝑀%,6,7 ) and unmethylated (𝑈𝑀%,6,7 ) as 

𝑀%,6,7 	~	𝐵𝑖𝑛𝑜𝑚8𝑐𝑜𝑣%,6,7 , 𝑝%,6,79 and 𝑈𝑀%,6,7 = 𝑐𝑜𝑣%,6,7 −𝑀%,6,7. The bulk methylation counts 

for both samples are easily calculated by adding the tumor and normal counts: 𝑀$6,7 =

𝑀&,6,7 +𝑀%,6,7 and 𝑈𝑀$,6,7 = 𝑈𝑀&,6,7 + 𝑈𝑀%,6,7. In balanced copy number regions, we also 

simulate allele-specific DMPs whereby one allele is in the normal ground state and the 

other is differentially methylated. We obtain the counts methylated from the minor allele, 
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allele A, and for the major allele, allele B, and combine them to obtain total counts 

methylated and unmethylated. 

The expected absolute tumor-normal methylation difference at simulated bi-allelic DMPs 

is |𝑚% −𝑚&| ≈	0.95 (Figure 5A). In the bulk, the magnitude of the difference depends on 

sample tumor purity and CpG copy number. The purified methylation rate at mono-allelic 

DMPs usually depends on the copy number of the mutated allele, however, in balanced 

copy number regions, where 𝑛8  = 𝑛9  and given that one copy is clonally differentially 

methylated and the other is in ground, 𝑚% =
O#,+B	O#,,

HO#,+BPO#,+KB	HO#,,BPO#,,K
≈ 0.5. The expected 

tumor-normal difference at simulated mono-allelic DMPs is thus |𝑚% −𝑚&| ≈ 0.5 

(Figure S10A). 

Tumor-normal and tumor-tumor differential methylation calls were made using CAMDAC 

differential methylation analysis and the output compared with the ground truth. False 

negative and positive rates are obtained for the bulk and deconvolved tumor simulated data 

(Figures 5B-D and S7B-D).  

 

Tumor-normal and tumor-tumor differential methylation analysis on real data 

We compare tumor-normal DMP calls based on CAMDAC- and FACS-purified tumor 

methylation rates and the bulk tumor-adjacent normal. We compute the overlap between 

both DMP calls, taking the ratio of DMPs called by both approaches divided by total 

number of FACS-purified DMPs. The overlap was 77.3% across combining DMPs across 

samples and the per sample overlap is displayed in (Figure 5E). Note that for tumor-normal 

DMP calling of FACS-purified data, we replace bulk tumor methylation counts, 𝑀$ and 

𝑈𝑀$  for 𝑀-,%  and 𝑈𝑀-,%  in Eq(14) and apply the minimum effect size on }𝑚-,% −𝑚&}. 

DMP calling power is measured as the number of tumor reads per chromosome copy 

(nrpcc, Dentro et al., 2021) in the bulk RRBS data, 𝑛𝑟𝑝𝑐𝑐 = 𝑐𝑜𝑣$𝑛%𝜌
𝑛%𝜌 + 𝑛&(1 − 𝜌)~ . 

To evaluate the impact of CAMDAC bulk tumor methylation deconvolution, we compared 

deconvolved with bulk tumor-tumor DMP calls between all 21 sample pairs from 
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CRUK0062, taken for having the most tumor regions. Both DMP call sets were obtained 

by calculating the exact overlap between the 99% HDI of the methylation rate at the ith 

CpG (𝑚$,7) between sample pairs and applying a minimum effect size of 0.2.  

To appreciate the effect of tumor purity on both inter- and intra-tumor-tumor differential 

methylation, we extracted the bulk and CAMDAC deconvolved tumor methylation profiles 

from the 20 lowest and highest purity samples in our cohort, 𝜌 < 0.3  and 𝜌 > 0.58 , 

respectively. We randomly selected 1 million CpG loci from samples with the same or 

different purity categorical assignments both within and between patients and obtained 

tumor-tumor DMP calls from 𝑚$ and CAMDAC	𝑚%.  

 

Quantifying allele-specific methylation 

For all 37 normal samples in our cohort, we obtained allele-specific normal methylation 

rates where possible by phasing to nearby heterozygous SNPs. The normal methylation 

rate for the reference allele, 𝑚&,?(- , is computed from the methylated (𝑀&,?(- ) and 

unmethylated (𝑈𝑀&,?(-) reads phased to the reference allele: 𝑚&,?(- = 𝑀&,?(-/(𝑀&,?(- +

𝑈𝑀&,?(-). Vice versa, the alternate allele normal methylation rate, 𝑚&,=>%, is calculated as: 

𝑚&,=>% = 𝑀&,=>%/(𝑀&,=>% + 𝑈𝑀&,=>%). We then compute the exact beta posterior HDI99 for 

each allele.  

Next, we assess allele-specific methylation in tumor samples. As above, we calculate bulk 

tumor methylation rates at the reference and alternate alleles, 𝑚$,?(-  and 𝑚$,=>% , 

respectively, directly from phased reads counts (un)methylated. We assign ASCAT.m 

clonal allele-specific copy numbers to each allele based on the BAF of the heterozygous 

locus used for phasing. Where multi-samples BAF phasing information is available, the 

segmented BAF value of the corresponding haplotype is used. If the BAF < 0.5, then major 

allele, 𝑛8, is the reference allele copy number, 𝑛?(- = 𝑛8 and the minor allele, 𝑛9, is the 

alternate allele, 𝑛=>% = 𝑛9. If BAF > 0.5,	𝑛=>% = 𝑛8 and 𝑛?(- = 𝑛9. Both the reference and 

alternate allele methylation rates are confounded by signal from normal contaminating cells 
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and must be deconvolved. We modified CAMDAC equations 2 and 3 for this purpose, 

where 𝑥 is either the reference or alternate allele: 

𝑚$,G =	
𝜌𝑛G𝑚%,G 	+ 	𝑛&,G𝑚&,G(1 − 𝜌)
𝜌𝑛G𝑚%,G + 𝑛&,G(1 − 𝜌)

																																																																															𝐸𝑞(15) 

𝑚%,G =
𝑚$,G8𝜌𝑛G𝑚%,G + 𝑛&,G(1 − 𝜌)9 −	𝑛&,G𝑚&,G(1 − 𝜌)

𝜌𝑛&,G
																																									𝐸𝑞(16) 

 

Genomic imprinting in normal samples 

We collated allele-specific methylation rate estimates at confirmed human imprinting loci 

from the Geneimprint database (Status="Imprinted", https://www.geneimprint.com). In 

total, 106 imprinted gene loci (2.9 genes per patient, 11 unique genes) had at least 3 non-

polymorphic CpGs phased to one or more heterozygous SNPs. On average, 8.4 CpGs were 

close enough to be phased. We tested these CpGs for allele-specific methylation signal, 

requiring at least 2 consecutive CpGs with non-overlapping phased methylation rate HDI99 

(i.e. 𝐻𝐷𝐼	'),-./
QQ ∩ 𝐻𝐷𝐼'),01#

QQ = ϕ) and a minimum methylation rate difference between 

alleles greater than 0.5 (i.e.	}𝑚&,?(- −𝑚&,=>%} > 0.5). Overall, we detect allele-specific 

methylation at 100 out of the 106 loci with phased methylation information (94.3%).   

 

Somatic alterations at known imprinted loci 

We then evaluate allele-specific pure tumor methylation at those 100 normal imprinted 

loci, requiring phased tumor methylation information for 3 or more non-polymorphic CpGs 

for inclusion.  

As above, we classify tumor samples has having retained normal imprinting when at least 

2 consecutive CpGs had |𝑚%,?(- −𝑚%,=>%| > 0.5 .  Tumor samples exhibiting loss of 

imprinting were divided into cases with and without loss of heterozygosity based on 

ASCAT.m allele-specific copy numbers and then further divided based on the methylation 

rate of the remaining allele(s). Methylated genes have mean methylation rates such that 
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 where the average phased tumor methylation rate, 𝐵%,7 ,	is set to 𝐵%,7 =

𝑚%,G,7  where 𝑥  is the remaining allele in cases with loss of heterozygosity and 𝐵%,7 =
'#,-./,(B'#,01#,(

,
 in cases without. The average allele-specific normal methylation rate at 

imprinted loci, 𝐵&,7, is set to   '),-./,(B'),01#,(

,
 . Vice versa, loci with loss of methylation have 

∑ 9#,(
(23
(24
S

≤ ∑ 9),(
(23
(24
S

.   

Where distinct spatially separated genomic bins had phasing information for the same 

imprinted gene across tumor samples from the same patient, the most altered bin across 

tumor samples from the same patient was selected.  For five gene loci, all but one tumor 

sample had phased methylation information at ≥ 3 CpGs. The imprinting status of the latter 

was annotated using at least one phaseable CpG and assignments were manually verified. 

Assignments were obtained for a total of 276 loci across genes and samples (85 genes 

across patients, 2.4 genes per patient, 10 unique genes). 

Overall, 100/276 loci retained allele-specific methylation in tumor samples (43 loci across 

patients, 25/43 clonal). Loss of heterozygosity resulted in gain of methylation at 43 loci 

(14 loci across patients, 9/14 clonal) and demethylation at 31 loci (13 loci across patients, 

8/13 clonal). Loss of imprinting without loss of heterozygosity was observed at 56 

methylated loci (21 loci across patients, 10/21 clonal) and 46 unmethylated loci (20 loci 

across patients, 10/20 clonal). These data are summarized in a gene-wise manner for 5/10 

normal imprinted genes, chosen for having phased methylation information in at least 10 

tumor samples. 

 

Allele-specific differentially methylated CpG 

Next, we obtain allele-specific pure tumor methylation rates for all CpG loci with reads 

overlapping with a heterozygous SNP, subset to CpGs that are confidently unmethylated 

in the matched normal. We compute 99% methylation rate HDI for each the reference and 

alternate alleles. We also evaluate the power to call an allele-specific hypermethylation on 

either allele for each locus given coverage, copy number and an unmethylated normal state 
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(sampled from confidently unmethylated 𝑚& values, 	𝐻𝐷𝐼	')
QQ ⊆ [0,0.2] ). CpGs were 

deemed allele-specifically methylated when (1) there was sufficient power at the loci, (2) 

the methylation rate 99% HDIs for each allele did not overlap and (3) the between allele 

methylation rate difference was greater than 0.25.  

For a given patient, we selected loci that were hypermethylated based on 𝑚% and/or allele-

specifically methylated based on 𝑚%,G in one or more sample and powered in at least one 

other sample. Copy number states with less than 100 CpGs were filtered out to reduce 

noise. We then performed UMAP based on a matrix of the allele-specific methylation rates 

at these loci (R library, https://github.com/tkonopka/umap). We required at least two tumor 

sample per patient and a minimum of 40 CpGs for clustering (32 / 38 patients pass this 

criteria). The UMAP output was fed through hierarchical clustering to identify epimutation 

clusters (n=20), and then clusters were merged based on mean 𝑚%  and 𝑚%,G  values. 

Clusters with mean between allele difference 𝑚%,+ −𝑚%,, < 0.125 were classed as bi-

allelic. Of these, groups with 𝑚% > 0.85	 ± 0.125 were classed as clonal bi-allelic. We 

refer to the mean methylation rate of clonal bi-allelic alterations as 𝑚�@>A,$7 . Of the 

remaining, only those where one allele was fully unmethylated (𝑚%,7 < 0.125) and the 

other was methylated on at least one copy (𝑚%,< >	
𝑚�@>A,$7 𝑛<~ , where 𝑛<  is the allele 

specific copy number of allele 𝑗) were classed as clonally allele-specifically methylated. 

Those where less than one copy was methylated were classed as subclonal allele-specific 

epimutations (𝑚�@>A,$7 𝑛<~ < 𝑚%,< < 0.125). Epimutations where both alleles were partially 

and differentially methylated were unclassified and warrant further investigation. These 

may represent dynamic loci with variable methylation.  

Excluding unclassified clusters, we readily obtain the relative number of (sub)clonal mono- 

and bi-allelic epimutations. The allele-specificity ratio is defined as the fraction of 

alterations that are mono-allelic and the clonality or intra-tumor heterogeneity score is the 

fraction of DMPs that are clonal. We fit a binomial generalized linear model (glm v4.0.5) 

to each of these 3 dependent variables: the fractions of allele-specific, clonal and clonal bi-

allelic mutations based on histological subtype, tumor stage (IA and IB = “early”, “late” 
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for all later stages), recurrence, SBS4 exposure (exposure > 0.35 = “high”, “low” 

otherwise), WGD status (majority vote) and the number of sequenced tumor samples (n ≤ 

3 samples : “high”, low otherwise). We get the odds ratio for each covariate and the 95% 

confidence interval. 

 

Identifying tumor-normal differential methylated regions 

First, CpGs are grouped into bins. CpGs which fall within 100bp of one another are 

grouped together. For each bin, we compute the number of consecutive DMPs with effect 

size 0.2 and p < 0.01 and the total number of DMPs. Genomic bins with 4 or more 

consecutive DMPs and at least 5 DMPs in total are deemed differentially methylated. Each 

bin is annotated for downstream analyses. Annotated gene features include CpG Islands, 

shores and shelves, exons, introns, 5'UTR, 3'UTR, promoters and enhancers. CpG islands, 

intragenic features and enhancers genomic coordinates are pulled from Ensembl via 

biomaRt. CpG island shores and shelves are respectively defined as the regions 0-2kb and 

2kb-5kb either side of a CpG island. Intragenic annotations are simplified for each gene to 

the GENCODE basic transcript set. Each gene transcript promoter is defined as starting 

2.5kb upstream and ending 250bp downstream of the transcription start site. For this work, 

we used CAMDAC with hg19 annotation set, but hg38 is also available. Note that any 

given CpG cluster can be associated to several features.  

To validate our DMR calls, we leverage SNV purified tumor methylation rates. First, we 

perform tumor-normal DMP calling following the same logic as in 𝐸𝑞(14), but this time 

computing the probability that 𝑃(𝑚'*% > 𝑚&), 𝑃(𝑚EF > 𝑚&) and their complements. 

Due to the reduced power but increased accuracy of phased methylation estimates, we 

decreased the threshold for DMR calling to at least 2 consecutive DMPs and obtained 

tumor-normal DMP calls for each allele. To confirm that DMRs that were only detected on 

one allele were indeed allele-specific and not due to lack of power on one allele, we 

identified allele-specific differentially methylated regions (AS-DMRs). CpGs were 

deemed allele-specifically methylated when (1) there was sufficient power at the loci, (2) 

the methylation rate 99% HDIs for each allele did not overlap and (3) the between allele 
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methylation rate difference was greater than 0.2. Genomic regions with 2 or more 

consecutive non-polymorphic CpGs with allele-specific methylation were deemed allele-

specific. Combining per allele tumor-normal DMR and AS-DMR calls, we then classified 

DMRs. Bins which were not AS-DMR and which where differentially methylated on both 

the mutant and wild type alleles were confirmed to be present on both alleles where both 

alleles, only the mutant allele (in-cis) or only the wild type allele (in-trans). DMRs in 

regions with loss of the wild type allele (𝑛EF < 0.5) are categorized separately as it is not 

possible to determine whether the DMR was in-cis, in-trans or on both alleles prior to the 

loss.  

 

Dimensional reduction of CAMDAC pure tumor methylation profiles  

We compiled a list of all CpGs which fell within a promoter-associated tumor-normal 

DMR in at least one sample based on CAMDAC purified methylomes (totaling 8,570 gene 

promoters) and obtained mean methylation rates across CpGs for each of those genomic 

regions for each sample in this cohort (122 tumor and 37 normal lung samples). We applied 

UMAP dimensionality reduction with the R package umap (https://github.com/tkonopka/ 

umap) to the resulting promoter methylation profile of each sample. We map histologies 

(LUAD, LUSC, normal), sex and patient IDs to UMAP coordinates. We repeated this 

analysis selecting promoter regions based on the bulk tumor-normal DMR calls (totaling 

8,387 gene promoters) feeding the mean bulk tumor methylation rates into the UMAP.  

 

Phylogenetic analysis 

To construct phylogenetic trees for each patient, we first selected CpGs hypermethylated 

in at least one sampled tumor region and binned methylation rates: "0" for rate ≤ 0.3 to 

indicate unmethylated, "1" for rate ≥ 0.6 to indicate hypermethylated and the ambiguous 

character "-" in all other cases to represent intermediate methylation. Additionally, we 

applied a CCF threshold to previously published SNV data for each patient (Jamal-Hanjani 
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et al. 2017): "0" for CCF ≤ 0.2, "1" for CCF > 0.2. Neighbor-joining trees were constructed 

based on binarized bulk and CAMDAC pure tumor methylation rates at DMPs and for 

SNVs using the pairwise hamming distance between samples with ape v5.4.1 (Paradis et 

al., 2004). All trees were outgroup-rooted on the normal sample. 

We quantified the concordance between DMP and SNV trees using a score based on 

ancestral methylation states (Figure S12A). Unlike common topology measures such as 

the Robinson-Foulds distance, this score incorporates (epi)mutational events. A perfect 

topology match between the SNV and DMP trees grants a score of 0, whereas scores 

increase above 0 with greater inconsistencies between ancestral methylation states given 

by the SNV tree and DMP tree topologies (Figure S12B). To determine the significance 

of our observed DMP-SNV tree fit, we computed p-values by scoring each DMP tree using 

all possible branched rooted topologies in place of the patient’s SNV tree. For CRUK0062, 

our permutation is a random sample of up to n=10,395 possible topologies for 

computational feasibility. The resulting empirical p-value is interpreted as the probability 

of observing a DMP tree score given all possible SNV tree topologies – except for 

CRUK0062 where of subset of possible topologies is sampled – under the null hypothesis 

that there is no relationship between DMP and SNV tree topologies. This enables 

comparison between scores calculated using 𝑚$ and CAMDAC 𝑚%. 

To compare DMP and SNV tree trunks, we calculated the relative trunk lengths for each 

pair taking the trunk length (from normal to the most recent common ancestor) divided by 

the total length from the normal to the furthest leaf. The mutational signature (Alexandrov 

et al., 2013) deconvolution software deconstructSigs (Rosenthal et al., 2016) was used to 

extract exposures for unique mutations given SBS1, SBS2, SBS4, SBS5 and SBS13 

signature profiles (COSMIC v2). A minimum of 50 mutations was required for sample 

inclusion. 
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We were unable to sequence a patient-matched tumor-adjacent normal sample for 

CRUK0047. Leveraging this cohort’s 37 normal lung samples, we built a healthy lung 

tissue reference RRBS profile using the median normal SNP coverage and methylation 

counts which we fed into CAMDAC alongside tumor sample CRUK0047-R2. The ploidy 

and purity values (𝜓TT9U = 2.15, 𝜌TT9U = 0.40) obtained were in agreement with the 

matched exome data (𝜓EVU = 2.29 , 𝜌EVU = 0.31 ). UMAP performed on CAMDAC 

purified tumor methylomes found CRUK0047-R2 in the same cluster as other LUAD 

samples. We conclude that genome-wide RRBS relative SNP coverage and methylation 

levels in normal lung are consistent between different patients and that tissue-matched 

normal RRBS data is a suitable alternative reference for CAMDAC when patient-matched 

data is unavailable. 
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