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Abstract 11 

CD4+ T cells are key components of adaptive immunity. The cell differentiation equips CD4+ 12 

T cells with new functions. However, the effect of cell differentiation on T cell receptor (TCR) 13 

repertoire is not investigated. Here, we examined the features of TCR beta (TCRB) repertoire 14 

of the top clones within naïve, memory and regular T cell (Treg) subsets: repertoire structure, 15 

gene usage, length distribution and sequence composition. First, we found that memory subsets 16 

and Treg would be discriminated from naïve by the features of TCRB repertoire. Second, we 17 

found that the correlations between the features of memory subsets and naïve were positively 18 

related to differentiation levels of memory subsets. Third, we found that public clones presented 19 

a reduced proportion and a skewed sequence composition in differentiated subsets. Furthermore, 20 

we found that public clones led naïve to recognize a broader spectrum of antigens than other 21 

subsets. Our findings suggest that TCRB repertoire of CD4+ T cell subsets is skewed in a 22 

differentiation-depended manner. Our findings show that the variations of public clones 23 

contribute to these changes. Our findings indicate that the reduce of public clones in 24 

differentiation trim the antigen specificity of CD4+ T cells. The study unveils the physiological 25 

effect of memory formation and facilitates the selection of proper CD4+ subset for cellular 26 

therapy. 27 
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Introduction 30 

CD4+ T cells play critical roles in mediating adaptive immunity. Via T cell receptors 31 

(TCR), CD4+ T cells recognize the complex of epitopes and major histocompatibility complex 32 

II and then induce the activation of other cells in infections1,2, cancer3 and autoimmune diseases.  33 

To acquire mature functions, CD4+ T cells undergo differentiation. NT is the protype of 34 

CD4+ T cell and has the greatest potential among CD4+ T subsets to differentiate to other 35 

subsets. NT usually keep a serenity and can refresh themselves by proliferation. When NT 36 

encounters pathogens, it will home to lymphatic organs and receive the help from dendritic 37 

cells to initiate the polarization. The study on TCR repertoire suggests that NT has the most 38 

large scale of evenness of TCR repertoire among all CD4+ subsets4, which indicates the 39 

greatest potential to recognize antigens. In a classical differentiation model5,6, naive (NT) 40 

senses stimulations via TCR, polarizes and then differentiates to effector T (ET). ET plays the 41 

key role to mediate adaptive immune response, although the amount of ET in peripheral blood 42 

is limited. After few weeks’ activation, a small part of ET differentiates to memory. Memory is 43 

sensitive to antigens, while always keeps silent. In peripheral blood, central memory (CMT), 44 

effector memory (EMT) and stem-cell like memory T cell (Tscm) are main subsets of memory. 45 

CMT and Tscm have a potential to be self-renewal and is found to affect the infections. EMT, 46 

compared to CMT7 , is long-lived and has a lower threshold to reactivate to pathogens. 47 

Compared to NT, memory subsets have a lower diversity of TCRB repertoire8. However, it is 48 

unclear that large differences between NT and memory subsets exist in the functions of TCR 49 

repertoire or not. Treg is a special subset of CD4+ cell and usually plays a role to regulate 50 

functions, proliferation, and differentiation of conventional T cells9. 51 

TCR plays the key role to determine T cell functions10. For NT, signals via diverse TCRs 52 

reform the TCR repertoire, and skew their differentiation potential. For instance, strong TCR 53 

signals during viral infection correspond to helper T cell differentiation, and comparative lower 54 

signals facilitate the differentiation of memory and follicular T cell11. Memory’s TCR repertoire 55 

composition determines the possibility to provide a rapid protection for individuals to against 56 

former and, sometimes, novel antigens. For example, the architecture of the TCR repertoire 57 

contributes to the performance of the adaptive immune response against pathogens, such as 58 
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SARS-CoV-212. Cross-reactivation from memory can provide a rapid protection to a novel 59 

pathogen in some individuals, such as the case reports of COVID-1913. The importance of TCR 60 

repertoire for memory cell functions was found in tissues, where the differential composition 61 

of TCR repertoire of CD4+ memory among tissues equipped them with distinct functions14. 62 

The function of Treg was restricted by TCR repertoire. The optimal diversity of TCR was 63 

essential for the suppressive ability15, and limitations on TCR diversity disturbed the self-64 

tolerance of immune system16. Although evidences show that the features of TCR repertoire are 65 

distinct among CD4+ T subsets, the effect of differentiation on T cell receptor (TCR) repertoire 66 

of CD4+ T cells are not investigated. 67 

To unveil the influence of differentiation on TCR repertoire, we analyzed the sequencing 68 

data of TCR beta (TCRB) chain of NT, ET, EMT, CMT, Tscm and Treg. We detected repertoire 69 

structure, germline gene usage, sequence composition and public clones of TCRB repertoire of 70 

each subset. We found that NT, CMT, Tscm and Treg were discriminated from each other by 71 

repertoire structure, gene usage and sequence composition, independently. The TCRB 72 

repertoires of NT are similar to the TCRB repertoires of less-differentiated memory subset (for 73 

example, Tscm and CMT). The TCRB repertoires of ET and the TCRB repertoires of EMT are 74 

sensitive to the heathy state and have flexible relationships with other subsets. Public clones 75 

account for the main part of top clones of NT and reduce along the CD4+ cell differentiation. 76 

The enrichment of public clones shortens the length distribution of top clones in NT. Public 77 

clones are polyfunctional and broaden the antigen spectrum recognized by NT. Our findings 78 

disclose the differential functions of CD4+ cell subsets and the influence of differentiation on 79 

TCR repertoire. Our findings facilitate the selection of CD4+ subsets for cellular therapy. 80 
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Material and Methods 82 

Datasets 83 

In this study, we conducted analyses on high-throughput TCR repertoire datasets for 84 

CD4+ T cell subsets from publication described as follows.  85 

Dataset1 included Naïve (NT), central memory (CMT), stem-cell like memory (Tscm) 86 

and Treg from eight healthy individuals and eight type-one-diabetes (T1D) patients 17. CD4+ 87 

T cells were sorted into subsets by fluorescence-activated cell sorting (FACS), and then RNA 88 

was extracted and sequenced in parallel. For validation, we employed dataset2 of five CD4+ 89 

T cell subsets: NT, effector (ET), CMT, effector memory (EMT) and Treg from other ten 90 

rheumatoid arthritis patients (RA)18. Top1000 clones are referred as the 1000 clones with the 91 

highest frequency. The V-/J-segments used by top1000 clones were extracted for statistic. 92 

Statistical analysis and plots 93 

Statistical analyses were performed with R. Significance was examined by Willcox ranked 94 

test. The correlation coefficients and significance was tested using cor.test() in R with default 95 

parameters. Graphics were generated with R package ggplot2. Principle component analysis 96 

(PCA) was conducted with R package forcats. Data was treated with R package readr, dplyr 97 

and tidyr. 98 

Definition of a clone 99 

For all analyses, clones were defined as the amino acid sequence identity of CDR3 (TCRB) 100 

regions. CDR3s from dataset1 ware defined and annotated by IMonitor19, and CDR3s from 101 

dataset2 were reported by authors. 102 

Determination of diversity 103 

Renyi entropy was used in our study to evaluate the diversity with alpha value from 0 to 104 

20. When alpha is 1, the index equals to the Shannon index. Renyi entropy formula is 𝐻 =105 

 
1

1−𝑞
ln(∑ 𝑝𝑖

𝑞𝑅
𝑖=1 ), and Shannon diversity index formula is 𝐻 =  − ∑ 𝑝𝑖 ln 𝑝𝑖

𝑅
𝑖=1  , where H is 106 

the diversity index, q is alpha value, R is the total number of clones for analysis, and 𝑝𝑖 is the 107 

frequency of the ith clone. 108 

 109 
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Determination of Jessen-Shannon distance 110 

 Jessen-Shannon distance (JSD) is used to evaluate the similarity in repertoire architecture 111 

among subsets20. We calculated JSD with JSD(), a function included in philentropy ()21, a R 112 

package. A low JSD indicates that TCRB repertoire structures are similar. 113 

Identify the contribution of k-mer to PCA classification 114 

 We used prcomp() to calculate the principle components (PC) for data, and estimated the 115 

contribution of each k-mer to PC1 and PC2 with cos2(). 116 

KeBABS SVM analysis 117 

SVM analysis was performed using kernel-based analysis of biological sequences with a 118 

R package KeBABS22.  Amino acid sequence of clones was split into features with length k = 119 

3, and cost parameter C = 100 was used for the misclassification of a sequence. For all SVM 120 

analyses, data was split into training (80%) and test (20%) set. SVM training was performed on 121 

the training set, and class prediction was performed on the test set. Prediction accuracy of 122 

classification was qualified by calculating 𝐵𝐴𝐶𝐶 =  
1

2
× (𝑠𝑝𝑒𝑐 + 𝑠𝑒𝑛𝑠), where specificity was 123 

calculated as 𝑠𝑝𝑒𝑐 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
, and sensitivity was defined as 𝑠𝑒𝑛𝑠 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (where TN = 124 

true negative, FP = false negative, TP = true positive and FN = false negative). The area under 125 

the receiver operating characteristic curve (AUC) was calculated, where the AUC = 0.5 means 126 

a random classification (BACC = 50%), and AUC = 1 means a perfect classification (BACC = 127 

100%). 128 

Determination of epitope specificity of clones by GLIPH2 129 

GLIPH223 is a robust tool to predict the cluster of clones targeting the same epitope. Here, we 130 

use this method to unveil the diversity of potential epitopes targeted by top1000 clones in each 131 

subset. The reference of CD4+ T clones and their gene usage, the distribution of gene usage of 132 

CD4+ T and length distribution of CDR3 were included in ref_CD4.txt, ref_V_CD4.txt and 133 

ref_L_CD4.txt. These reference files were downloaded from the official website of GLIPH2 134 

(http://50.255.35.37:8080/). A filter with a high stringency (Fisher_score < 0.0001, 135 

number_subject >= 3 and number_unique_cdr3 >= 3) was used to improve the prediction 136 

accuracy. 137 
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Results 138 

The TCRB repertoire structure of NT is similar to The TCRB repertoire structure of CMT 139 

and Tscm  140 

Frequent clones affect the immune repertoire structure24. We thus performed the analyses 141 

on top1000 clones within each subset. Renyi entropy with alpha values from zero to twenty was 142 

used to evaluate the diversity. In dataset1, The TCRB repertoire of NT and Tscm present similar 143 

diversities at all alpha values, and are more diverse than the TCRB repertoire of CMT and the 144 

TCRB repertoire of Treg (Figure 1A). In dataset2, NT has the most diverse TCRB repertoire 145 

among all subset whereas ET has the lowest. The TCRB repertoire of CMT is more diverse 146 

than that of ETM and Treg. (Supplementary figure 1A). The similarity of TCRB repertoire 147 

structure of subsets was estimated by Jensen-Shannon distance. In dataset1, the TCRB 148 

repertoire structure of NT is similar to the TCRB repertoire structure of less-differentiated 149 

subsets (CMT and Tscm), but the TCR repertoire structures of Tscm and CMT are different 150 

from each other; the TCRB repertoire of Treg is different to the TCRB repertoire of NT and 151 

CMT with high JSDs. It indicates that Treg has a structure of TCRB repertoire like that of more-152 

differentiated memory subsets (Figure 1B). In dataset2, NT and CMT have similar TCRB 153 

repertoire structures, and the TCRB repertoire structure of Treg is similar to the TCRB 154 

repertoire structure of EMT rather than that of CMT (Supplemental Figure 1B). These findings 155 

fit with the trend found in dataset1. To consider the overlapping usage of CDR3 clones, we 156 

further evaluated the similarity of TCRB repertoire among subsets with the Morisita-Horn 157 

similarity index. In this analysis, NT keeps a similar TCRB repertoire like Tscm and CMT, 158 

while the TCRB repertoire of NT is different from the TCRB repertoire of EMT and Treg 159 

(Figure 1C; Supplemental Figure 1C). In conclusion, the TCRB repertoire structure of CD4+ T 160 

cells is skewed along with cell differentiation levels. 161 
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 162 

Figure 1. The diversity of TCRB repertoire of four subsets and the relationship of their 163 

TCRB repertoire structures. (A) The Renyi entropy index of all subsets with alpha value from 164 

0 to 20. When alpha is equal to 1, the index was calculated as Shannon-index. (B) The Jessen-165 

Shannon distance between subsets. The difference between NT and other subsets, and Treg and 166 

other subsets were tested. (C) The Morisita-Horn similarity between subsets. Paired Wilcox-167 

ranked test was used in B and C. 168 

Gene usage is distinct among subsets and a part of genes are skewed along subsets 169 

We used principle component analysis (PCA) to examine the discrimination of gene usage 170 

among subsets. NT, CMT, Tscm and Treg could be distinguished from each other by V- and J-171 

gene respectively (Figure 2A and B; Supplemental Figure 2A). However, EMT and ET could 172 

not be separated from other subsets in dataset2 (Supplemental Figure 2A). We examined the 173 

genes usage of each subset, and found that 24 of 72 genes were differently used by NT, Tscm 174 

and CMT in dataset1, 23 of 72 genes were differently used by NT and CMT in dataset2. There 175 

are 11 increased genes and 13 decreased genes in CMT, compared with NT in dataset1; and 3 176 
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increased genes and 20 decreased genes in dataset2, compared with NT in dataset2. Notably, 177 

these genes continuously changed according to NT, CMT, ET, EMT and Treg (Supplemental 178 

Figure 2C and D). 179 

With the correlations of V-gene usage among subsets, we found that NT, CMT and Tscm 180 

show high correlations with each other, while their correlations with Treg are low (Figure 2E; 181 

Supplementary Figure 2E). For J-gene, NT also shows a high correlation with CMT and Tscm, 182 

whereas a low correlation with Treg. In dataset2, the V-gene usage of NT highly correlates to 183 

the V-gene usage of CMT rather than EMT and Treg (Supplementary Figure 2F). Notably, the 184 

V-gene usage of Treg is similar to the V-gene usage of NT rather than to the V-gene usage of 185 

CMT in the T1D donors (p=0.0005, Supplementary Figure 4) but not in health donors (p=0.05). 186 

This phenomenon suggests Treg has a flexible relationship with NT depending on the heathy 187 

states of donors. In conclusion, NT, memory subsets and Treg have distinct gene usages, and 188 

the gene usage of NT is more similar to less-differentiated memory subsets (CMT and Tscm) 189 

rather than EMT. 190 

 191 

Figure 2. The V- and J-gene usage of CD4+ T subsets and the relationships of the gene 192 
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usage of subsets. (A) PCA for the frequency of V-genes of each subset. (B) PCA for the 193 

frequency of J-genes of each subset. (C) The frequency of V-genes of each subset. (D) the 194 

frequency of J-gene within each subset. (E) The Spearman correlation of V-gene usage between 195 

subsets. (F) The Spearman correlation of J-gene usage between subsets. Paired Wilcox-ranked 196 

test was used in E and F. 197 

CDR3 sequence composition are different among TCRB repertoire of subsets and indels 198 

contribute to these differences highly 199 

We examined the CDR3 sequence composition by decomposing kernels containing three 200 

amino acids. To identify the difference in the composition among subsets, we used PCA to 201 

discriminate subsets. In PCA plot, subsets are distinguished from each other. Treg is close to 202 

EMT, CMT mix with ET. NT has a clear boundary to others (Figure 3A; Supplemental Figure 203 

5A). To evaluate the correlation of k-mer among subsets, we used Spearman correlation method. 204 

The k-mer usage of NT exhibits weakened correlations with others according to Tscm, CMT 205 

and Treg in dataset1, and CMT, ET, EMT and Treg in dataset2 (Figure 3B; Supplemental Figure 206 

5B).  207 

To identify the subregions where the k-mers contributes to PCA, we extracted the top100 208 

k-mers by ranking their contributions to principle component 1 (PC1) and principle component 209 

2 (PC2). 6371 unique k-mers were used by both of PC1 and PC2. We ranked k-mers by their 210 

contributions to PC1 and PC2 respectively, and found that PC1 and PC2 shared 63 top100 k-211 

mers (Figure 3C; Supplemental Figure 5C). Then we aligned k-mer to references, and showed 212 

that 29 top100 k-mers located in V-region and 47 in J-region. However, after we removed the 213 

k-mer enriching in V-/J-segments, we found that NT, Tscm, CMT and Treg still kept distinctions 214 

to each other (Figure 3D). we further perform a same operation on dataset2 to remove the k-215 

mer in V- and J-segments, and showed a similar result that NT, CMT and Treg are able to be 216 

distinguished from each other (Supplemental Figure 5D). Since the gene usage, insertion and 217 

deletion (indel) are factors to skew the CDR3 sequence compositions25, these results suggests 218 

that indel in N1-D-N2 region rather than gene usage contribute to the difference of sequence 219 

composition among subsets.  220 
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 221 

Figure 3. The relationship of sequence composition among subsets. (A) PCA based on the 222 

sequence composition for samples. (B) Spearman correlations of k-mer usage between subsets. 223 

(C) The overlap of top100 k-mers which mostly contribute to principle component 1 (PC1) and 224 

PC2. (D) the PCA based on sequence composition without those located on V- and J-segments 225 

for samples. Paired Wilcox-ranked test was used in B. 226 

Top1000 clones within NT are shorter than those in other subsets and the shortness is little 227 

affected by V-/J-gene usage 228 

The entire repertoire of NT was reported to be longer than the repertoire of memory26. 229 

However, we found that the top clones in NT were shorter than clones in other subsets in all 230 

datasets (Figure 4A; Supplemental Figure 6). Via calculation of the Pearson correlations, the 231 

length distribution of NT is different to the length distribution of CMT and Tscm. It suggests 232 

that the length distribution of TCRB repertoire of NT is highly skewed in these less-233 

differentiated memory cells (Figure 4B). Since the naïve cells are sorted without antibody 234 

against CD27 in dataset2, the length distribution of NT can be affected by the contamination 235 

from cell sorting. We examined the length distribution in dataset 1.  236 
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To identify whether the gene usage affects the CDR3 length distribution, we calculated the 237 

mean length of clones for each gene. The mean length is different among clones by varied V- 238 

and J-genes (Figure 4C and D), however, clones using all of genes are shorter in NT than -239 

clones in CMT and Tscm. Therefore, for top clones, the clones of NT are shorter than the clones 240 

of other subsets, and the gene usage contributes less to the distinct length distributions among 241 

subsets. 242 

 243 

Figure 4. The correlations of length distribution among subsets and the influence of gene 244 

usage on length distribution. (A) The length distribution of CDR3s of each subset. (B) The 245 

correlation of length distribution between subsets. (C) The mean length of clones using each V-246 

gene. (D) The mean length of clones using each J-gene. Paired Wilcox-ranked test was used in 247 

A and B. 248 

Public clones enrich in NT and have more differences with private clones in memory 249 

subsets than in NT 250 

Public clones that are shared by individuals were shown to be different from private clones 251 

in sequence composition25. Our analyses showed that public clones were shorter than private 252 

ones within top1000 clones (Supplemental Figure 7A). It suggests that public clones may affect 253 

the features of top clones. We referred clones found in no less than two individuals as public 254 

clones. We found more public clones in NT than in other subsets: 1,400 in NT, 262 in Tscm, 255 

113 in CMT, and 72 in Treg from HD; 1544 in NT, 146 in Tscm, 128 in CMT and 92 in Treg 256 
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from T1D (Figure 5A; Supplemental Figure 7B). Via calculating abundance, we found that 257 

public clones were composed of ~70% of top1000 in NT, and ~5% in other subsets. It suggests 258 

that the public clones in NT have a larger effect on the repertoire of top clones than the public 259 

clones in others (Figure 5B). Most of public clones in NT were a little presented in other subsets 260 

(Figure 5C), and about 50% public clones in each subset could be found in NT. This result 261 

indicates that public clones in NT are less maintained than the top clones in other subsets. To 262 

detect the differences between public clones and private clones within each subset, support 263 

vector machine (SVM) was used. To avoid the influence of differential sample sizes, we 264 

randomly down-sampled 400 public clones and private clones for each subset, respectively. The 265 

prediction was repeated for 100 times. The prediction accuracy (BACC) in NT was found to be 266 

lower than BACC in other subsets (Figure 5D). It suggests that the differences between private 267 

and public clones in differentiated subsets are larger than the differences in naïve. Further 268 

analyses showed that the gene usage of public clones is similar to the gene usage of all top1000 269 

clones (Supplemental Figure 7C). It suggests that gene usage is not skewed in public clones. 270 

 271 

Figure 5. The differential usage of public clones among subsets and the discrimination of 272 

sequence composition between public clones and private clones. (A) The number of public 273 

clones shared by from two to eight HDs. (B) The percentage of unique public clones within top 274 

clones in each subset. (C) The overlap of public clones from HDs among subsets. (D) The 275 

prediction accuracy (BACC) of SVM (k = 3) for public clones and private clones based on 276 
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sequence composition within each subset. Paired Wilcox-ranked test was used in B, Wilcox-277 

ranked test was used in D. 278 

The sequence compositions of public clones and private clones are both skewed along 279 

differentiation 280 

 To identify that public clones or private clones account for the increased difference in 281 

memory and Treg, we performed SVM to discriminate public clones as well as private clones 282 

from different subsets separately25. For public clones, the BACC was from 50% to 60%;  NT 283 

was able to be discriminated from Treg, CMT and Tscm with ~ 55% BACC; whereas CMT was 284 

incapable of separating from Tscm with ~ 50% BACC (Figure 6A). For private clones, the 285 

BACC was from 50% to 70%. We were able to achieve a high prediction accuracy to 286 

discriminate private clones of TN from private clones of Treg, but we failed to separate private 287 

clones from CMT and Tscm (Figure 6B). When we increased the sample size of private clones 288 

from 400 to 2500 for training SVM model, we found that the varied BACCs to discriminate 289 

private clones from different subsets were still existed (Supplemental Figure 8A). These results 290 

suggest that the sequence compositions of public clones and private clones are both skewed in 291 

differentiation.  292 

The reduced number of public clones narrows the antigen spectrum recognized by 293 

differentiated subsets  294 

To unveil the functions of clones among subsets, we annotated clones by VDJdb27. 1885 295 

clones of CD4+ T cells targeting eight epitopes in total are recorded by this database. 296 

Comparing with CMT, Tscm and Treg, NT has more clones recognizing antigens (HA, H1 and 297 

NP) from influenza, pp65 from cytomegalovirus (CMV), CFP10 from M. tuberculosis and 298 

gliadin from Triticum Aestivum (Figure 6C; Supplementary figure 8B). To estimate the 299 

spectrum of antigens targeted by the top clones, we used GLIPH223 to predict the clusters 300 

recognizing diverse antigens for each subset. With a stringency filter (see Methods), we found 301 

out 806 clusters in NT from HC and 836 clusters in NT from T1D respectively; while less than 302 

200 clusters in whole of Tscm, CMT and Treg (Figure 6D). When public clones were removed 303 

from top clones, only 14.88% clusters remained in NT of HC and 13.25% clusters remained in 304 

T1D, whereas over 45% clusters remained in other subsets (Figure 6E). It suggests that the 305 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.11.01.364224doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.01.364224
http://creativecommons.org/licenses/by-nc/4.0/


public clones enlarge the antigen spectrum recognized by top clones in NT. In conclusion, NT 306 

recognizes a broader antigen profile contributed by public clones. 307 

 308 

Figure 6. public clones maintain stable composition across subsets and provide the large 309 

part of the ability to recognize antigens. (A) SVM for discriminating the composition of 310 

public clones among subsets. (B) SVM for discriminating the composition of private clones 311 

among subsets. (C) The enrichment of antigen-related clones in each subset. (D) the number of 312 

clusters targeting diverse antigens predicted by GLIPH2 within each subset. (E) The percentage 313 

of clusters of private clones predicted by GLIPH2 within each subset. Wilcox-ranked test was 314 

used in A and B. 315 

316 
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Discussion 317 

It is essential for CD4+ T cells to recognize antigens with TCR, which is primarily 318 

achieved by the CDR3 region. CD4+ T cells can acquire new functions via differentiation; 319 

however, it is unclear how differentiation affects their TCR repertoire. We detected the 320 

relationships among the TCRB repertoire of top1000 clones of naïve, memory and Treg subsets 321 

(including NT, ET, Tcm, Tem, Tscm ET and Treg) by estimating the repertoire structure, the 322 

germline gene usage, the sequence composition (K-mer) and public CDR3 clone usage. 323 

We derive that the TRBV repertoire features of memory subsets are tightly regulated in 324 

differentiation. We observed that 23 of 72 genes increased or decreased in an order of NT, Tscm, 325 

CMT and EMT. It indicates that a mechanism exists to regulate the variations across subsets. 326 

Furthermore, since Tscm is the least differentiated cell whereas EMT is the highest one among 327 

the tree memory subsets28, it indicates that the differentiation level is along with the mechanism.   328 

CMT is formally considered as the primary memory subset which ET prefer to differentiate to, 329 

and then part of CMT differentiates to EMT. In the past decade, Tscm has been found to mix 330 

phenotypes of naïve and memory. Tscm is able to self-renew and replenish more differentiated 331 

subsets of memory T cells, and therefore acts as the key intermediary of the generation of 332 

memory29,30. In together, differentiation levels of memory subsets reflect their differentiation 333 

order. However, memory cells can be directly generated from naïve cells by asymmetric cell 334 

division 31,32. It indicates that the differential order should not be the only factor skewing TCRB 335 

repertoire. Shown by X. L. Hou et al33, the early events in thymic T cell development are 336 

different for CD4+ naïve and memory cells. It suggests that genetic factors affect TCRB 337 

repertoire of CD4+ T cells in differentiation. In addition, events at the very early lifetime can 338 

be involved in manipulating TCRB repertoire. Observations in newborns show that memory in 339 

human develops at the very early period of lifetime34. Newborns less encounter pathogenic 340 

antigens. It implies that, for newborns, food, self-antigens and even cytokine driven clones 341 

compose the large part of TCRB repertoire of memory. Since the highly frequent clones in NT 342 

are self-antigen related, the features of frequent clones in NT will be delivered to memory at 343 

this period35. Furthermore, shown by Graeme et al, a half part of memory is maintained by self-344 

renewal influx during the lifetime36. S. Jaafoura et al showed that less-differentiated memory 345 

subset is more stable during pathogen infection28. It suggests that Tscm and CMT rather than 346 
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EMT maintain the features of TCRB repertoire inherited from NT at the early lifetime. In 347 

conclusion, it is reasonable to drive that events at the early lifetime, genetic factors and 348 

differentiation order regulate the TCRB repertoire of CD4+ T subsets with differentiated levels. 349 

Public clones are key components that affect the features of TCRB repertoire in 350 

differentiation. First, we found that public clone usage rather than gene usage shortens the 351 

length distribution of top clones within NT. Second, the sequence composition of public clones 352 

which is skewed in differentiated subsets contribute to the variations of TCRB repertoire in 353 

differentiation. Third, decreased public clones induce a reduction in antigen spectrum 354 

recognized by memory and Treg subsets. These results suggest that the skewed public clone 355 

usage highly affect top clones in differentiated subsets. Furthermore, we showed that factors 356 

affecting the generation of public clones in memory and Treg are different to that in NT. The 357 

generation of public clones were largely attributed to genetic factors and thymic positive 358 

selection in the previous study37. In our study, public clones from NT are less maintained in 359 

differentiated subsets, and SVM analyses indicate that sequence composition in memory 360 

subsets is different from that of NT. These results suggest that other factors, such as antigen, 361 

trim the sequence composition of public clones. However, there are uncertainties about public 362 

clones in NT. First, it is unclear to the cause that the promiscuous ability of public clones does 363 

not induce the clonality of the public clones in effector and memory subsets. Second, it is 364 

unclear that the physiological function of public clones in NT. As a hypothesis, the promiscuous 365 

public clones in NT , sensitive to many antigens, are important to initiate the primary immune 366 

response, and this function is forbidden in differentiated subsets. Further studies with single-367 

cell RNA-seq and paired sequencing of TCR alpha and beta chains will unveil the biological 368 

functions of the public clones in NT. 369 

In addition to the sample size, we identified that the T cell subset also affect the SVM 370 

prediction accuracy. Shown by Victor Grief et al25, public clones and private clones can be 371 

discriminated by SVM using k-mer distribution. SVM can obtain a better prediction accuracy 372 

(BACC) by using a larger sample size. We extended the detection in NT, Tscm, CMT and Treg. 373 

By normalizing the sample size for training, we found that the prediction accuracy for public 374 

clones and private clones in Tscm, CMT and Treg is higher than the prediction accuracy in NT. 375 
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It suggests that the difference between public clones and private clones is enlarged in the 376 

differentiated subsets. When we performed SVM on public clones and private clones among 377 

subsets respectively, the sequence compositions of public clones and private clones were 378 

skewed in differentiation. 379 

A small part of peripheral Treg differentiated from conventional Treg. Shown by Golding 380 

A. et al, the repertoire of Foxp3+ and Foxp3- cells did not overlap38. Although peripheral Tregs 381 

are differentiated from conventional T cells39 and can introduce the features of NT into Treg, 382 

the TCR repertoire of effector and memory subsets is similar to NT than to Treg. This 383 

phenomenon suggests that the influx from naïve just composed a minor part of Treg in blood, 384 

and comparing to Treg, the features of naïve are maintained in effector and memory subsets in 385 

the differentiation. Our study includes samples of three healthy states (heathy, RA and T1D 386 

individuals), and therefore highlights that our findings are consistent in heathy conditions and 387 

datasets.  388 

Acknowledgments 389 

The authors would like to thank Z.Q. Ding from Singapore institute of technology for edition 390 

of the manuscript; Y. Liu from BGI-Shenzhen and W. Zhang from department of computer 391 

science, City University of Hong Kong for comments on this manuscript.  392 

Conflicts of interest 393 

The authors declare no conflicts of interest. 394 

Author contributions 395 

SY. W. designed the study, performed the analyses, and drafted the manuscript; Y. L. supervised 396 

the study, and revised the manuscript. 397 

Financial support 398 

This work was supported by BGI-Shenzhen, China National GeneBank (CNGB), Science, 399 

Technology and Innovation Commission of Shenzhen Municipality under grant No. 400 

JCYJ20170817145845968, and Shenzhen Key Laboratory of Single-Cell Omics (NO. 401 

ZDSYS20190902093613831).  402 

403 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.11.01.364224doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.01.364224
http://creativecommons.org/licenses/by-nc/4.0/


References 404 

1 Wang, H. et al. TNF-alpha/IFN-gamma profile of HBV-specific CD4 T cells is associated 405 

with liver damage and viral clearance in chronic HBV infection. J Hepatol 72, 45-56, 406 

doi:10.1016/j.jhep.2019.08.024 (2020). 407 

2 Gray, J. I., Westerhof, L. M. & MacLeod, M. K. L. The roles of resident, central and effector 408 

memory CD4 T-cells in protective immunity following infection or vaccination. 409 

Immunology, doi:10.1111/imm.12929 (2018). 410 

3 Zander, R. et al. CD4(+) T Cell Help Is Required for the Formation of a Cytolytic CD8(+) T 411 

Cell Subset that Protects against Chronic Infection and Cancer. Immunity 51, 1028-1042 412 

e1024, doi:10.1016/j.immuni.2019.10.009 (2019). 413 

4 de Greef, P. C. et al. The naive T-cell receptor repertoire has an extremely broad 414 

distribution of clone sizes. Elife 9, doi:10.7554/eLife.49900 (2020). 415 

5 Mueller, S. N., Gebhardt, T., Carbone, F. R. & Heath, W. R. Memory T cell subsets, migration 416 

patterns, and tissue residence. Annu Rev Immunol 31, 137-161, doi:10.1146/annurev-417 

immunol-032712-095954 (2013). 418 

6 Kaech, S. M., Wherry, E. J. & Ahmed, R. Effector and memory T-cell differentiation: 419 

implications for vaccine development. Nat Rev Immunol 2, 251-262, doi:10.1038/nri778 420 

(2002). 421 

7 Jaigirdar, S. A. & MacLeod, M. K. Development and Function of Protective and Pathologic 422 

Memory CD4 T Cells. Front Immunol 6, 456, doi:10.3389/fimmu.2015.00456 (2015). 423 

8 Qi, Q. et al. Diversity and clonal selection in the human T-cell repertoire. Proc Natl Acad 424 

Sci U S A 111, 13139-13144, doi:10.1073/pnas.1409155111 (2014). 425 

9 Dowling, M. R. et al. Regulatory T Cells Suppress Effector T Cell Proliferation by Limiting 426 

Division Destiny. Front Immunol 9, 2461, doi:10.3389/fimmu.2018.02461 (2018). 427 

10 Li, M. O. & Rudensky, A. Y. T cell receptor signalling in the control of regulatory T cell 428 

differentiation and function. Nat Rev Immunol 16, 220-233, doi:10.1038/nri.2016.26 429 

(2016). 430 

11 Snook, J. P., Kim, C. & Williams, M. A. TCR signal strength controls the differentiation of 431 

CD4(+) effector and memory T cells. Science immunology 3, 432 

doi:10.1126/sciimmunol.aas9103 (2018). 433 

12 Gutierrez, L., Beckford, J. & Alachkar, H. Deciphering the TCR Repertoire to Solve the 434 

COVID-19 Mystery. Trends Pharmacol Sci 41, 518-530, doi:10.1016/j.tips.2020.06.001 435 

(2020). 436 

13 Grifoni, A. et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with 437 

COVID-19 Disease and Unexposed Individuals. Cell 181, 1489-1501 e1415, 438 

doi:10.1016/j.cell.2020.05.015 (2020). 439 

14 Schoettler, N., Hrusch, C. L., Blaine, K. M., Sperling, A. I. & Ober, C. Transcriptional 440 

programming and T cell receptor repertoires distinguish human lung and lymph node 441 

memory T cells. Commun Biol 2, 411, doi:10.1038/s42003-019-0657-2 (2019). 442 

15 Fohse, L. et al. High TCR diversity ensures optimal function and homeostasis of Foxp3+ 443 

regulatory T cells. Eur J Immunol 41, 3101-3113, doi:10.1002/eji.201141986 (2011). 444 

16 Adeegbe, D., Matsutani, T., Yang, J., Altman, N. H. & Malek, T. R. CD4(+) CD25(+) Foxp3(+) 445 

T regulatory cells with limited TCR diversity in control of autoimmunity. J Immunol 184, 446 

56-66, doi:10.4049/jimmunol.0902379 (2010). 447 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.11.01.364224doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.01.364224
http://creativecommons.org/licenses/by-nc/4.0/


17 Gomez-Tourino, I., Kamra, Y., Baptista, R., Lorenc, A. & Peakman, M. T cell receptor beta-448 

chains display abnormal shortening and repertoire sharing in type 1 diabetes. Nat 449 

Commun 8, 1792, doi:10.1038/s41467-017-01925-2 (2017). 450 

18 Jiang, X. et al. Comprehensive TCR repertoire analysis of CD4(+) T-cell subsets in 451 

rheumatoid arthritis. J Autoimmun, 102432, doi:10.1016/j.jaut.2020.102432 (2020). 452 

19 Zhang, W. et al. IMonitor: A Robust Pipeline for TCR and BCR Repertoire Analysis. Genetics 453 

201, 459-472, doi:10.1534/genetics.115.176735 (2015). 454 

20 Koch, H., Starenki, D., Cooper, S. J., Myers, R. M. & Li, Q. powerTCR: A model-based 455 

approach to comparative analysis of the clone size distribution of the T cell receptor 456 

repertoire. PLoS Comput Biol 14, e1006571, doi:10.1371/journal.pcbi.1006571 (2018). 457 

21 Drost, H.-G. Philentropy: Information Theory and Distance Quantification with R. Journal 458 

of Open Source Software 3, doi:10.21105/joss.00765 (2018). 459 

22 Palme, J., Hochreiter, S. & Bodenhofer, U. KeBABS: an R package for kernel-based analysis 460 

of biological sequences. Bioinformatics 31, 2574-2576, 461 

doi:10.1093/bioinformatics/btv176 (2015). 462 

23 Huang, H., Wang, C., Rubelt, F., Scriba, T. J. & Davis, M. M. Analyzing the Mycobacterium 463 

tuberculosis immune response by T-cell receptor clustering with GLIPH2 and genome-464 

wide antigen screening. Nat Biotechnol, doi:10.1038/s41587-020-0505-4 (2020). 465 

24 Miho, E., Roskar, R., Greiff, V. & Reddy, S. T. Large-scale network analysis reveals the 466 

sequence space architecture of antibody repertoires. Nat Commun 10, 1321, 467 

doi:10.1038/s41467-019-09278-8 (2019). 468 

25 Greiff, V. et al. Learning the High-Dimensional Immunogenomic Features That Predict 469 

Public and Private Antibody Repertoires. J Immunol 199, 2985-2997, 470 

doi:10.4049/jimmunol.1700594 (2017). 471 

26 Hou, X. et al. Shorter TCR beta-Chains Are Highly Enriched During Thymic Selection and 472 

Antigen-Driven Selection. Front Immunol 10, 299, doi:10.3389/fimmu.2019.00299 (2019). 473 

27 Bagaev, D. V. et al. VDJdb in 2019: database extension, new analysis infrastructure and a 474 

T-cell receptor motif compendium. Nucleic Acids Res 48, D1057-D1062, 475 

doi:10.1093/nar/gkz874 (2020). 476 

28 Jaafoura, S. et al. Progressive contraction of the latent HIV reservoir around a core of less-477 

differentiated CD4(+) memory T Cells. Nat Commun 5, 5407, doi:10.1038/ncomms6407 478 

(2014). 479 

29 Ahmed, R. et al. Human Stem Cell-like Memory T Cells Are Maintained in a State of 480 

Dynamic Flux. Cell Rep 17, 2811-2818, doi:10.1016/j.celrep.2016.11.037 (2016). 481 

30 Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat Med 482 

17, 1290-1297, doi:10.1038/nm.2446 (2011). 483 

31 Chang, J. T. et al. Asymmetric T lymphocyte division in the initiation of adaptive immune 484 

responses. Science (New York, N.Y.) 315, 1687-1691, doi:10.1126/science.1139393 (2007). 485 

32 Borsa, M. et al. Modulation of asymmetric cell division as a mechanism to boost CD8(+) T 486 

cell memory. Science immunology 4, doi:10.1126/sciimmunol.aav1730 (2019). 487 

33 Hou, X. et al. Preselection TCR repertoire predicts CD4(+) and CD8(+) T-cell differentiation 488 

state. Immunology, doi:10.1111/imm.13256 (2020). 489 

34 Qazi, K. R. et al. Extremely Preterm Infants Have Significant Alterations in Their 490 

Conventional T Cell Compartment during the First Weeks of Life. J Immunol 204, 68-77, 491 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.11.01.364224doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.01.364224
http://creativecommons.org/licenses/by-nc/4.0/


doi:10.4049/jimmunol.1900941 (2020). 492 

35 Madi, A. et al. T-cell receptor repertoires share a restricted set of public and abundant 493 

CDR3 sequences that are associated with self-related immunity. Genome research 24, 494 

1603-1612, doi:10.1101/gr.170753.113 (2014). 495 

36 Gossel, G., Hogan, T., Cownden, D., Seddon, B. & Yates, A. J. Memory CD4 T cell subsets 496 

are kinetically heterogeneous and replenished from naive T cells at high levels. Elife 6, 497 

doi:10.7554/eLife.23013 (2017). 498 

37 Khosravi-Maharlooei, M. et al. Crossreactive public TCR sequences undergo positive 499 

selection in the human thymic repertoire. J Clin Invest 129, 2446-2462, 500 

doi:10.1172/JCI124358 (2019). 501 

38 Golding, A., Darko, S., Wylie, W. H., Douek, D. C. & Shevach, E. M. Deep sequencing of the 502 

TCR-beta repertoire of human forkhead box protein 3 (FoxP3)(+) and FoxP3(-) T cells 503 

suggests that they are completely distinct and non-overlapping. Clin Exp Immunol 188, 504 

12-21, doi:10.1111/cei.12904 (2017). 505 

39 Kraj, P. & Ignatowicz, L. The mechanisms shaping the repertoire of CD4(+) Foxp3(+) 506 

regulatory T cells. Immunology 153, 290-296, doi:10.1111/imm.12859 (2018). 507 

 508 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.11.01.364224doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.01.364224
http://creativecommons.org/licenses/by-nc/4.0/

