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Abstract 
Viruses and their hosts can undergo coevolutionary arms races where hosts evolve increased 
resistance and viruses evolve counter-resistance. Given these arms race dynamics (ARD), each 
species is predicted to evolve along a single trajectory as more recently evolved genotypes 
replace their predecessors. Here, by coupling phenotypic and genomic analyses of coevolving 
populations of bacteriophage λ and Escherichia coli, we find conflicting evidence for ARD. 
Virus-host infection phenotypes fit the ARD model, yet whole genome analyses did not. Rather 
than coevolution unfolding along a single trajectory, cryptic genetic variation emerges during 
initial virus-host coevolution. This variation is maintained across generations and eventually 
supplants dominant lineages. Our observations constitute a new type of ‘leapfrog’ coevolutionary 
dynamics (LFD), revealing weaknesses in the predictive power of standard coevolutionary 
models. The findings shed light on the mechanisms that structure coevolving ecological 
networks and reveal the limits of using phenotypic assays alone in characterizing coevolutionary 
dynamics. 
 
 
Introduction 
Bacteria and their viruses (phages) are the two most abundant and genetically diverse groups of 
organisms on Earth1-3.  Together they form ecological communities with complex networks of 
interactions whose structures have important implications that extend beyond the microbial 
world. For example, in oceans, phages may be responsible for 10-40% mortality of bacteria (with 
significant variation in lineage-specific mortality4). When bacterial cells are lysed by viruses, 
their biomass is diverted away from the rest of the food web, reducing productivity of 
macroscopic organisms and the full ecosystem5-8. Thus, if interactions within the network were 
to substantially change, such as the bacteria evolving resistance to the phage, then productivity 
may increase causing rippling effects throughput the marine ecosystem. Bacteria and phages are 
known to engage in arms races where bacteria evolve phage resistance9, and phages evolve 
counter defenses10. This dynamic causes continual remodeling of the interaction network, which 
can impact ecosystem processes, the stability of ecological communities, and maintenance of 
microbial diversity11-14. There is a growing interest in characterizing the dynamics of phage-
bacterial coevolution and to understand the molecular and ecological mechanisms that shape 
their coevolving networks15. 
 
A starting point to study phage-bacterial coevolution is to learn how their interactions change 
over time16-19. Models of coevolution tend to predict two types of dynamics20,21. The first is arms 
race dynamics (ARD) where bacteria evolve resistance to an increasing number of phages and 
phages counter by expanding their host-range. For the bacteria, this leads to an escalation where 
increasingly resistant bacteria replace their less-resistant predecessors. This causes rapid 
bacterial genomic divergence and leads to an imbalanced phylogenetic pattern with a single 
pronounced branch. Similarly, as the phage broadens its host range, the most evolved type will 
supplant its predecessors, resulting in the formation of a similarly imbalanced phylogeny. A 
second model is based on the evolution of specialized interactions, often described as lock and 
key interactions. In this model, as coevolution progresses, bacteria gain resistance to 
contemporary phages, but lose resistance to phages encountered in the past. Likewise, as phages 
evolve counter-defenses, they lose the ability to infect other host genotypes. Under this model, 
host genotypes rise and fall according to how abundant their corresponding parasite genotypes 
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are, while parasite genotypes track the abundance of their hosts creating a feedback loop and 
fluctuating selection dynamics (FSD)22,23. FSD produces negative frequency-dependent selection 
that promotes diversification and the formation of a balanced phylogeny with multiple branches. 
ARD and FSD represent two ends of a spectrum of possible coevolutionary dynamics and 
notably models have been created that span the space between the two end points24. 
 
One way to gain insight on whether phage and bacteria coevolve according to ARD or FSD is to 
quantify their interaction networks (phage-bacterial interaction networks; PBINs) and test for 
nonrandom nested and modular patterns25. Nestedness measures the extent to which interaction 
patterns form strict hierarchical subsets, analogous to nesting Russian dolls26. This pattern is 
produced by ARD since at each step the phage adds on to its existing host-range, expanding its 
range in a way that encapsulates its ancestors’ ranges.  Modularity arises in networks when 
interactions form into nonrandom clusters such that groups of phages and bacteria tend to 
interact more often within clusters. This pattern is consistent with FSD where interactions are 
highly specialized. The majority of  PBINs are significantly nested supporting the prominence of 
ARD; however some PBINs are modular25, and while rare, specialized interactions have been 
documented to evolve during phage-bacterial coevolution27. Surprisingly, nested patterns at short 
spatial scales can give way to modular patterns at large spatial scales28, and ARD has been 
shown to give way to FSD during advanced stages of coevolution28,29. Together, this variation 
and scale-dependence provide a glimpse at how complicated phage-bacterial coevolution can be. 
 
While the phenotypic predictions for ARD and FSD are often tested, assessments of the 
phylogenomic predictions are not as common (ARD: imbalanced, FSD: balanced), and we are 
unaware of an example where PBINs have been coupled with phylogenomic analyses. Given 
this, we decided to study a model phage-bacterial coevolutionary system; bacteriophage λ and its 
host, Escherichia coli. When these species are cultured under certain laboratory conditions, they 
rapidly coevolve with one another30,31. E. coli is known to evolve resistance through mutations in 
the regulatory gene malT that suppress expression of the host receptor, the outer-membrane 
protein LamB. λ counters this by evolving mutations in the binding domain of its host 
recognition protein J that allows it to use a new receptor, OmpF. E. coli then evolves additional 
mutations in OmpF or in an inner-membrane protein complex, ManXYZ, that transports λ DNA 
into the cytoplasm32,33. While much is already known about the molecular details of their 
coevolution, PBIN or phylogenomic analyses have yet to be performed on this pair.  
 
For this study, we revived cryopreserved samples that were isolated from a coevolution 
experiment previously reported30. We focused our analyses on a single replicate; the first 
experimental community in which λ evolved to use OmpF. We isolated a total of 50 bacteria and 
44 phages spread across multiple time points. Next, we constructed a PBIN of all combinations 
of pairwise phage and bacteria interactions and used multiple analyses to characterize their 
coevolution based on phenotypes. All three phenotypic-based analyses suggested that viruses and 
microbes engage in ARD. Lastly, we sequenced the full genomes of each isolate and 
reconstructed the isolates’ phylogenetic relationships. The genome sequences revealed a 
phylogenetic pattern that was inconsistent with the ARD model. Our study demonstrates that 
phenotypic analyses are not sufficient to test hypothesis on coevolutionary dynamics and reveals 
a new type of coevolutionary dynamic we refer to as Leapfrog Dynamics (LFD). 
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Results 
Phage-bacterial infection network 
The pairwise interaction study revealed an incredible number of λ genotypes with phenotypically 
distinct host-ranges, and E. coli genotypes that vary in resistance (Fig. 1a). In line with the ARD 
model, we found that the interactions were highly nested (Fig. 1b) and had a low level of 
modularity (Fig. S1). Also in line with ARD, E. coli evolved increasing resistance (Fig. 1c, 
����
� � 0.5051, F1,48�= 51.01, P�=�4.453e-09 for linear model: response ~ time), and λ 

gained increasing host range and infectivity (Fig. 1d, ����
� � 0.8131, F1,42�= 188.1, P�=�2.2e-

16) through time. 
 
To further test between indicators of ARD and FSD, we performed a time-shift analysis using 
EOP values to determine how phages’ infectivity varies when presented with past, contemporary, 
or future bacteria (Fig. 2a)46. ARD predicts that phages will be able to infect past and 
contemporary, but not future hosts, while FSD predicts that phages will be best at infecting 
contemporary hosts. The time-shift analysis was conducted for each λ isolate by calculating its 
mean EOP value for all 10 bacterial isolates on each day (Fig. 2b). This analysis was repeated for 
the bacteria using the same EOP data but by calculating levels of resistance to λ isolates from 
different time points (Fig. 2c). In line with ARD, λ isolates from days 22 and 28 had higher 
infectivity on past hosts than contemporary or future hosts (Fig. 2b). The analysis for day 15 
phages was inconclusive because the EOP values across time were not statistically significant. 
The pattern for bacteria was also in line with ARD: isolates from days 8, 15 and 22, had lower 
resistance (higher EOP) for phage samples from the future versus the phage isolated from the 
same time or in the past (Fig. 2c). A full time-shift analysis could not be conducted for isolates 
from days 28 and 37 since the phage went extinct between days 28 and 37, however isolates 
from these time points were the most resistant.  
 
Note, all mean EOP values were zero for day 8 phages because all isolated hosts were resistant to 
all day 8 phages (Fig. 1a and 2a). Still, λ did not go extinct in the coevolution experiment 
because of a phenomenon known as ‘leaky-resistance’47. Leaky resistance denotes a 
phenomenon by which a small number of resistant hosts revert to sensitive, thereby sustaining 
phage in the population until they are able to evolve to gain access to a new receptor, e.g., OmpF 
in the case of phage λ30. 
 
Genome sequencing 
The genome sequencing revealed 22 unique E. coli genomes and 34 unique phage genomes. 
Among the E. coli strains, we found a total of 18 unique mutations; 6 missense mutations, 1 
nonsense mutation, 1 intergenic point mutation, 7 deletions and 3 duplications (Fig. 3a). The 
most abundant mutation that occurred in 38 out of 50 host genomes was a frameshift mutation 
caused by a 25-base duplication in the malT gene, in line with the original study30. Disruptions in 
malT interferes with the expression of LamB protein which ancestral λ needs to bind to E. coli 
cells. We also observed one isolate with a lamB mutation (1-base deletion) in lieu of the typical 
malT mutation. The most resistant E. coli strains on day 37 have a number of mutations that are 
expected to confer resistance; a malT deletion, a nonsynonymous change in ompF, and a deletion 
in manZ30. 
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One of the most common bacterial mutations observed in our dataset was a 777 bp deletion 
caused by the excision of an IS element. Despite occurring in 25 genomes, we had not observed 
the deletion in any previous studies and the deletion did not affect any genes known to protect 
against λ infection; insB-22 which encodes for IS1 protein InsB, insA-22 which encodes for IS1 
protein InsA, and ECB_02825 which encodes for a pyrophosphorylase48. Similar IS mutations 
are known to occur at high rates49 and the deletion was only observed in genomes with a malT 
mutation, so it might have just been a neutral genomic hitchhiker. However, a follow-up 
experiment that we report in the online materials revealed that the deletion enhances resistance 
when it cooccurs with the malT mutation, suggesting the deletion was adaptive and epistatic with 
malT mutations (Fig. S2, Supplementary Information). We are unsure of how the deletion 
confers resistance; however, our results suggest that there are more genes in the λ-E. coli 
interactome than previously known and that experimental evolution can help reveal them.  
 
In the λ genomes, we found a total of 176 unique mutations; 53 nonsynonymous point mutations, 
87 synonymous point mutations, 2 insertions, 3 deletions and 31 intergenic mutations (Fig. 3b). 
While this level of molecular evolution may seem surprising for such a short-term experiment, 
similar levels have been observed for other phages evolving in the laboratory50. 116 of these 
mutations were in the host-recognition gene J. The J protein is positioned at the end of the 
phage’s tail, and initiates infection by binding to E. coli’s LamB protein. Some of these J 
mutations have been shown to increase adsorption rates to LamB and allow λ to exploit a novel 
receptor, OmpF51-53. Interestingly, the extensive sequencing effort performed here revealed a 
mutation in another tail fiber protein called H (C→T substitution at nucleotide position 11,451). 
This mutation rises late in the experiment and likely plays a role in expanding λ’s host range. H 
is called the tape-measure gene because it helps determine the length of λ’s tail, and mutations in 
this gene have been shown to increase λ’s host-range in other experiments54.   
 
Phylogenomic reconstruction of coevolution 
Even though multiple analysis of the phenotypic data supported the ARD model for coevolution, 
the pattern produced by the phylogenies are in line with predictions of FSD (Fig. 4). The 
phylogenies of both E. coli and λ show that multiple lineages coexist for weeks, rather than a 
single dominant branch. A second unexpected observation was that the bacteria that had acquired 
the highest level of resistance at the end of the experiment on day 37 was not most closely 
related to isolates at previous time points (e.g., days 28, 22, or 15), instead it was most closely 
related to a common ancestor of isolates identified at the early stages of the experiment (on day 
8). This finding suggests that a rare lineage leapt ahead of the dominant lineage, a process we 
term leapfrog dynamics (LFD). Similarly, for λ, we found that that the clade dominant at the 
final timepoint with the broadest host-range was more closely related to wildtype λ than the 
clade dominant at preceding timepoints. For both species, the clades that win out later in the 
arms race appeared to exist as cryptic subpopulations early in the coevolutionary experiment. 
 
Whole population sequencing at an early stage of coevolution   
To test the key prediction of LFD that cryptic lineages coexist with dominant lineages and can 
supply the genetic reservoir used for later stages of coevolution, we sequenced full populations 
of E. coli and λ from day 8 and searched for mutations that rose to prominence at the end of the 
study. Given the low mutation rates of E. coli (8.9	10-11 base-1 replication-1(55)) and λ (7.7	10-8 
base-1 replication-1(56)), and  their average population sizes (109 and 107, respectively30) it is 
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unlikely that any single mutation would evolve twice, so the presence of these key mutations in 
an early sample would indicate that the lineages had established early in the coevolutionary LFD. 
 
For E. coli, we were specifically searching for two mutations: a Δ16 bp deletion at position 
1,882,915 in manZ and a non-synonymous mutation at 1,003,271 in ompF. These mutations are 
present in most of the day 37 isolates and are thought to confer resistance. The Δ16 bp deletion 
in manZ was detected, but not the ompF mutation (Table S1). We also found a 141 bp deletion in 
malT that cooccurs in the day 37 genomes with the manZ mutation. The malT deletion was at the 
same frequency, suggesting that these mutations were indeed linked and that they evolved 
sometime before day 8.    
 
For λ, we focused on the mutation in H that rises to dominance between days 22 and 28. Indeed, 
this specific H mutation was present at day 8 (Table S2). Unlike E. coli, we did not find any 
other mutations present in the day 28 isolates, suggesting that the H mutation was the first 
adaptation to occur in this lineage. 
 
Besides revealing the eventual winning lineages of the arms race, by sequencing populations we 
also discovered much more genetic diversity than through isolate sequencing. We found 52 
unique mutations in E. coli and 38 mutations in λ from full population sequencing compared to 7 
and 30 through isolate sampling, respectively. This shows that there is a significant amount of 
genetic diversity generated at the earliest phases of the arms race that can become the grist for 
subsequent adaptation as the host (for phage) or phage (for hosts) change as a result of 
coevolution.  
 
Discussion 
Through large scale phenotypic assays and whole genome sequencing, we were able to test 
existing paradigmatic models of coevolution and learn that each were inadequate to explain λ 
and E. coli’s coevolutionary dynamics. Three complimentary phenotypic analyses in Fig. 1 and 
Fig. 2 suggested that coevolution between λ and E. coli followed arms race dynamics (ARD). 
However, the phylogenetic pattern revealed by whole genome sequencing was in line with 
fluctuating selection dynamics (FSD) (Fig. 3). These observations lead us to develop a new 
model to characterize λ and E. coli’s coevolution: which we term leapfrog dynamics (LFD). In 
this model, selection operates similarly to the ARD model, where parasite genotypes with ever-
expanding host-ranges are selected and hosts with ever-increasing resistance are favored. 
However, the difference is that in the LFD model there is a genetically diverse pool of hosts and 
parasites that evolve early, and on occasion, rare individuals are drawn from this pool with 
advantageous phenotypes and replace the dominant strains.   
 
ARD models fall short in making accurate predictions for the phylogenies likely because of 
simplifying assumptions about the genetics of host-range expansion and resistance. Evolutionary 
models tend to assume that mutations have small additive effects on phenotypes (as highlighted 
in20). Applied to ARD, this would mean that the phage with the broadest host range is likely to 
expand its host-range faster than lagging genotypes, and for bacteria, the strain with the greatest 
resistance is most likely to acquire the next level of resistance and outcompete other strains. This 
genetic architecture favors the evolution of directed phylogenies with one dominant branch. 
Instead, λ J mutations are known to possess high-order epistasis and are nonadditive37,53. This 
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may allow rare lineages with an exceedingly beneficial combination of mutations to leap ahead. 
Non-additivity was also discovered in the bacteria in this study with respect to the interactions 
between malT– and the Δ777 mutations. A second problem with evolutionary models is the 
assumption of small effect-size mutations since mutations like the malT mutation can cause 
nearly complete resistance to some λs (Fig. 1a). Acquiring such large effect mutations could help 
lineages leap ahead.   
 
One question left unanswered by this study is how multiple lineages persisted in this population 
for long durations. We hypothesized that trade-offs between host-range and other viral traits for 
phage, and resistance and competitive fitness for bacteria, could explain the evolution of 
genomic diversity. Trade-offs between host-range and λ stability were previously observed52; 
however, we were unable to detect trade-offs in E. coli for phage resistance. A recent theoretical 
study showed that that there are many other mechanisms besides trade-offs that can select for 
genetic diversity during ARD, providing new hypothetical mechanism to pursue in the future57. 
 
Our findings also have important implications for understanding the mechanisms that structure 
nested PBINs. The nested pattern is ubiquitous in PBINs25, as well as many other ecological 
networks58-60, so it is important to understand the processes that produce this ordering. One 
hypothesis is that the structure is determined by the genetics of the interactions (gene-for-gene, 
see20). The second is ecological; nestedness emerges because of how the selection steadily shifts 
during an arms race to promote incremental increases in host-range and resistance. The 
conventional wisdom for which process controls the arms races is the underlying genetics. This 
stems from a pervasive idea that genetic mutation and evolution happen more slowly than 
changes in ecology, so coevolutionary systems must be constrained by their access to genetic 
variation. The coevolution experiment studied here was initiated with small population size of 
isogenic stocks of λ and E. coli. This should have favored genetic control because all of the 
variation had to evolve de novo. However, a tremendous amount of genetic variation was 
generated at the earliest phase of the arms race that was not deployed for many generations, 
suggesting that the ecology controlled the dynamics, not the availability of genetic variation.  
 
Lastly, our results provide a cautionary tale for over-interpreting phenotypic data based on the 
phage-bacteria infection networks. Our initial prediction before performing genomic analysis 
was that λ-E. coli coevolution under these laboratory conditions would fit the ARD model. 
However, this proved to be erroneous due to the large amount of cryptic genetic variation and its 
role in driving late stages of coevolution. Interestingly, this is the second time that we learnt 
about the limitations of PBIN data for making prediction. Based on the matrix in Fig. 1a one 
would predict that the phage should go extinct on day 8, however leaky resistance fueled by host 
cells too rare to be sampled allowed λ to persist. Together, the LFD and leaky-resistance results 
show that host-phage dynamics revealed from PBINs alone miss the rich dynamics occurring at 
lower frequencies in the population and offer insufficient information to predict dynamics. 
 
In studying this diversity with both phenotypic and genomic approaches we revealed that typical 
models of coevolution are insufficient to explain the complex dynamics in this community and 
that phenotypic assays alone fall short in characterizing coevolutionary dynamics. We also 
showed that highly organized ecological pattern like nestedness can emerge from the extremely 
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disordered population genomic pattern underlying them, demonstrating the power of selection in 
producing nonrandom ecological patterns.  
 
Methods 
Details on the initial coevolution experiment previously published 
Meyer et al.30 performed the original coevolution experiment with Escherichia coli B strain 
REL606 and a lytic bacteriophage λ strain, cI26. This λ strain was chosen because it cannot enter 
lysogeny, a life cycle phase where λ confers immunity to additional λ infections. By choosing a 
lytic strain, we forced the bacteria to evolve genetic resistance. E. coli and λ were cocultured in a 
carbon-limited minimal glucose media at 37 °C for 37 days30. At the end of each day, 1% of the 
community was transferred to new flasks with fresh media, and, weekly, 2 ml of the community 
was preserved by adding ~15% of glycerol and freezing the mixture at -80 °C.  
 
Isolation of host and phage clones 
We randomly isolated ten host and eleven phage individuals from different timepoints from the 
cryopreserved samples. In total, 50 strains of E. coli and 44 strains of λ were isolated from days 
8, 15, 22, 28 and 37 of the experiment (no phage were detected on day 37). Bacteria were 
isolated by streaking onto Luria-Bertani (LB) agar plates34 and randomly picking 10 colonies. 
These colonies were re-streaked three times to remove phage particles and grown overnight in 
liquid LB to create stocks. Phages were isolated by plating an appropriate dilution of the 
population onto overlay plates35 with the sensitive ancestral bacteria, REL606, and randomly 
picking 11 plaques. These plaques were grown overnight with REL606 in LBM9 medium and 
stocks were created using chloroform isolation technique30. All phage and bacteria stocks were 
stored at -80 °C with the addition of 15% v/v glycerol. 
 
Pairwise infection assays and efficiency of plating (EOP) 
We performed quantitative, pairwise infection assays for all combinations of host strains and 
phage strains that were isolated. Specifically, seven serial 1/10th dilutions were made of each 
phage isolate. 2 µl of each dilution plus undiluted phage stock was spotted on top of different 
host strain lawns including ancestor REL606. Thus, a total of 8*44 spots of phage were plated on 
51 different types of bacterial lawns, leading to a total of 17,952 pairwise infections. This 
allowed us to measure how well each phage isolate infects every host isolate. We quantified 
phage infectivity by calculating efficiency of plating (EOP), defined as the ratio of density of 
phage isolate calculated on a coevolved isolate to the density of phage calculated on the REL606 
ancestor. 
 
Analysis of PBIN nestedness and modularity 
BiMat was used to assess the nestedness and modularity of the PBIN36. The raw EOP value 
matrix was binarized into 0 for EOP = 0 and 1 for EOP > 0, and then BiMat was run with default 
settings. Here we report the statistics for a conservative version of the analysis where the rows 
and columns that contained all zeros were removed from the matrix to reduce any bias these 
entries cause in establishing significant nested patterns.  
 
Resistance and infectivity calculations 
For a total number of 
 host samples and � phage samples, we denote the EOP value for the �th 
host sample against th phage sample as ���  where � � �1, 
� and  � �1, ��;  
 � 50 and � �
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44. We denote the five checkpoint days of day 8, 15, 22, 28 and 37 for host by �, where � �
1,2,3,4,5, and the four checkpoint days of day 8, 15, 22 and 28 for phage by � where � � 1,2,3,4. 
Host resistance for a host sample � is calculated as 

�� � � ������	


�

���
 

which measures the number of phage strains that the host is resistant to. The host range of a 
phage sample  is calculated as 

�� � � �����	


�

���
 

which measures the number of host strains that the phage can successfully infect. The resistance 
percentage of host for each day is calculated as 

��� � ∑ ������

� 	 | �| 
where  �  denotes the range of the host sample that belongs to the �th day and | �| denotes the 
cardinality of the set  � , i.e. the number of host samples at the �th day. Likewise, the host-range 
percentage of phage for each day is calculated as 

!�� � ∑ ������


 	 |"�| 
where "� denotes the range of the phage sample that belongs to the �th checkpoint and |"�| 
denotes the cardinality of the set "�, i.e. the number of phage samples at the �th checkpoint. 
 
Genomic DNA preparation for sequencing 
λ genome extraction for whole genome sequencing were previously reported in37. To summarize, 
λ particles were concentrated using PEG precipitation, the phage were treated with DNase I to 
remove free-floating DNA not protected by phage capsids, the DNase is denatured with heat, 
which also releases capsid-enclosed phage DNA. The DNA was extracted using Invitrogen’s 
PureLink kit. E. coli genomic DNA was extracted and purified from a 1 ml sample of culture by 
using PureLink kit. 
 
Genomic DNA was further processed by fragmenting the DNA and attaching adapters and 
barcodes using a method outlined in38. Sequencing was done at UC San Diego IGM Genomics 
using paired-end Illumina HiSeq 4000 platform. 
 
Construction of mutation profile tables 
After collecting the raw sequencing reads, we removed the adapters using cutadapt39 and 
performed quality control (QC) for each isolated strain using FastQC40. The QC filtered 
sequencing reads were then analyzed using the breseq (v0.32.1)41. We ran breseq in the 
consensus mode with default parameters except for the consensus-frequency-cutoff, which was 
set to 0.5. 
 
Phylogenomics 
Due to the prevalence of large insertions and deletions in the host genomes, conventional 
nucleotide substitution models were not suitable for estimating the host phylogenetic tree. 
However, such models were suitable for estimating the maximum-likelihood phylogenetic tree 
for phage genomes. As a result, two different approaches were taken to reconstruct the 
evolutionary trajectories of the host and virus. 
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To construct the phage phylogeny, multiple sequence alignments were performed for all 
recovered genomes and the ancestral genome using mafft (v7.305b)42 with default settings except 
that ‘retree’ was set to 2 and ‘maxiterate’ was set to 1,000. A maximum likelihood tree was 
constructed using raxml-ng43. Finally, the TreeTime44 program was used to generate the 
phylogenetic tree. 
 
To reconstruct the host’s evolution, we constructed a Hamming distance matrix to calculate 
genetic distances between different host isolates. Neighbor-joining (NJ) trees were then built 
based on the hamming distance matrix using T-REX45. Finally, the TreeTime program was used 
to build the host phylodynamic tree.  
 
Whole genome whole population sequencing 
We sequenced the full population of phage and bacteria from Day 8 of the experiment to 3,726-
fold and 142-fold coverage, respectively. This allowed us to uncover alleles in the bacterial and 
phage populations that existed at lower frequencies than we could detect by isolating individuals. 
To do this, λ and E. coli populations were revived by growing 120 μl of frozen stock of the 
whole community in the laboratory conditions from the original experiment30. Phage and 
bacteria were then separated, and their genomic DNA was extracted in the same manner as 
described before for clonal stocks. Genomic libraries were prepared using NexteraXT kit at UC 
San Diego IGM Genomics. IGM also sequenced the samples using 75 base single reads on the 
Illumina HiSeq 4000 platform. breseq v0.32.1 was used to analyze whole population sequencing 
data of Day 8. We ran breseq in polymorphism mode with default settings to construct the 
mutation profile tables. 
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Fig. 1 Host resistance and phage infectivity measured by pairwise plaque assays. (A) Phage-
bacteria infection network where the color of each cell is determined by the EOP values obtained 
for that host-phage interaction pair; grey cells represent no infection by λ on the given E. coli 
strain, yellow represents low infectivity and red represents high infectivity. (B) The original 
network in a) but reassembled to maximize nestedness using the software BiMat. Filled squares 
indicate a combination of host and phage that result in successful interactions (EOP > 0), and the 
red line highlights the isocline using the NTC algorithm. The nestedness value of the network 
based on the NODF algorithm was significantly greater than the null expectation when 
constraining the fill of the bipartite network (measured value of nestedness 0.839 vs. null value 
of nestedness 0.638 ± 0.011 based on 200 trials). (C) Boxplots showing the total number of λ 
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isolates from all days that E. coli genotypes are resistant to across different sampling days. (D) 
Boxplots showing the total number of E. coli isolates from all days that λ genotypes can infect 
across different sampling days. Lowercase letters in c) and d) denote significant difference 
between different days via Tukey’s honest significance test: c) ANOVA: F4,45 = 13.3, P = 3.11e-
07), d) ANOVA: F3,40 = 67.05, P = 1.17e-15. A simple linear regression model with time as the 
predictor variable was also used to test if E. coli evolved increasing resistance in c) and λ 
evolved increasing host range in d) (statistics in the main text).   
 
 
 
  

 
 
Fig. 2 Time-shift analysis results from different checkpoints. (A) Schematic for the time-shift 
analysis that compares the mean EOP from hosts or phages interacting with their counterparts 
from the past, contemporary and the future. (B) Time-shift results from phage checkpoints day 8, 
15, 22 and 28 respectively. The gray dotted line shows the time-shift curve for each individual 
phage and the black line shows the average. The vertical dashed line represents the phage sample 
day. The P-values shown here are the maximum P-value from one-sided paired t-tests comparing 
the initial checkpoints with each of the later checkpoints. (C) Time-shift results from host 
checkpoints day 8, 15, 22, 28 and 37, respectively. The gray dotted line shows the time-shift 
curve for each individual host and the black line shows the average. The vertical dashed line 
represents the host sample day. The P-values shown here are the maximum P-value from one-
sided paired t-tests comparing the final checkpoints with each of the previous checkpoints. 
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Fig. 3 Genomic diversity in clones isolated from different days and full population 
sequencing for (A) E. coli and (B) λ. The outermost gray ring represents the reference genome 
with red bars indicating the placement of mutations uncovered by the whole-population 
sequencing at day 8. The inner colored rings represent the isolates sequenced from different time 
points (outer rings are genomes isolated from earlier time points). Shades within each color 
depict unique genomes sequenced from each time point. White gaps in the genomic rings 
indicate the location of mutations. All mutations found in clonal isolates have been labeled for E. 
coli in A); however, due to the large number of mutations in λ, only the gene names that harbor 
mutations have been identified (gray bars). The mutations that become dominant at later stages 
of coevolution and were also found in day 8 population sequencing have been highlighted with 
rectangular boxes. 
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Fig. 4 Reconstructed phylodynamic trees of the host and phage. (A) The host phylodynamic 
tree based on host mutation profiles. All completely-resistant host strains are located on the red 
branch. Bars above the time scale in (B) represents the proportion of host strains from each 
colored branch across different checkpoints. (C) The phage phylodynamic tree based on the 
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phage mutation profiles. All day 28 phage strains are located on the dark blue branch. Bars 
below the time scale in (B) represents the proportion of phage strains from each colored branch 
across different checkpoints. 
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