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ABSTRACT9

The plasma membrane is the interface between cells and exterior media. While its existence has been known for a long time,
organization of its constituent lipids remain a challenge. Recently, we have proposed that lipid populations may be controlled
by chemical potentials of different lipid species, resulting in semi-grand canonical thermodynamic ensembles. However, the
currently available molecular dynamics software packages do not allow for molecule-based chemical potentials. Here, we pro-
pose a variation on existing algorithms that allow defining chemical potentials for molecules. Additionally, we allow coupling with
collective variables and show that it can be used to dynamically create asymmetric membranes. We release an implementation
of the algorithm for the HOOMD-Blue molecular dynamics engine.
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SIGNIFICANCE We demonstrate an algorithm that allows for simulations of molecules in the semi-grand canonical
ensemble. It also allows coupling the chemical potential values to collective variable and create asymmetric membranes.
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INTRODUCTION19

Membranes in eukaryote cell are mostly comprised of lipids,20

with particularly complex chemistry and organization. A typ-21

ical mammal cell has hundreds of different lipids types in22

any of its membranes, distributed asymmetrically between23

both leaflets (1, 2). The chemical nature of lipids — overall24

headgroup composition, acyl tail length, unsaturation — is25

maintained by the Lands’ cycle in the endoplasmic reticulum.26

The asymmetric distribution is maintained by type IV P-type27

ATPase (P4-ATPAse) proteins, also known as flippases, em-28

bedded in the membrane itself, which consume ATP in order29

to move lipids from one leaflet to the other. Given the length30

to which cells go to maintain their lipid composition, one can31

ask: why do cells require such a complex chemistry ? Com-32

puter simulations have proven excellent to garner insights33

into behavior of simple model membranes, and is moving34

towards realistic biological chemistry (3). For instance, the35

MARTINI model (4) has been used to model realistic sim-36

ulations of plasma membranes (5). However, understanding37

the underlying fundamental reasons for membrane compo-38

sition and asymmetry requires systematic variations of the39

myriad of potential compositions. Moreover, simulations in-40

volving asymmetric compositions must be done carefully as41

differential stress can exist in the membrane (6).42

A related question is: how do membrane regulate their43

composition ? Giant plasma membrane vesicles—vesicles44

extracted from plasma membranes that retain composition—45

are known to possess a miscibility transition temperature just46

under cell growth temperature (7), which is in all appear-47

ance critical (8), clearly showing that lipid composition is48

responsive to environmental changes. Computer simulations49

are moving towards biologically relevant compositions (3);50

yet are still unable to correctly model regulation as it involves51

chemical reactions and lipid diffusion between membranes in52

cells. The problem appears enigmatic in experiments as well:53

no sophisticated sensing mechanism has been observed to54

precisely control the large amount of lipids types in mem-55

branes. We recently hypothesized that regulation of phospho-56

lipids in cells may be loose, and controlled by their chemical57

potential, while other components such as cholesterol may58

be tightly regulated (9). We named this configuration regu-59

lated ensembles, and it thermodynamically corresponds to60

mixtures of canonical and semi-grand canonical (SGC) en-61

sembles — the thermodynamic ensemble where chemical po-62

tential differences between molecules is fixed. In simulations,63

some components can change their chemical nature over time,64

while their overall number is constrained. Subsequently, we65

have shown that this naturally self-regulates towards critical66

points, in a robust fashion (10).67

Here, we present the software we employed to simulate68

lipids in SGC ensembles in (9). There already exists a highly69

parallel algorithm for SGC (11), available in multiple molec-70

ular dynamics packages, e.g. LAMMPS and openMM (12).71

However, it lacks two features for membrane simulations.72
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First, it is unable to capture chemical potentials of molecules.73

Second, it does not allow coupling to collective variables.74

This is important for biological membranes as chemical po-75

tentials on the two leaflets are different. In order to resolve76

this, we extend the method to associate a chemical potential77

to any arbitrary combination of chemistry, charge state and78

collective variable. We release an implementation running79

on graphical processing units in the HOOMD-Blue molec-80

ular dynamics engine (13, 14). We use this implementation81

to simulate a lipid bilayer with an asymmetric composition.82

In order to do this, we postulate that P4-ATPAse induces a83

chemical potential difference that only depends on headgroup84

nature (phosphatidylcholine (PC) vs phosphatidyletholamine85

(PE)). This proxy allows us to dynamically create the asym-86

metry and relate the work done by P4-ATPAse on lipids to87

create the asymmetric profile.88

METHODS89

The algorithm employed here makes use of a simulation do-90

main checkerboard decomposition (see Fig 1A) in the same91

fashion as (11). The simulation box is decomposed into cells92

of minimal thickness 𝜎, where 𝜎 is the largest interaction93

range in the system. Particles located at least two cells away94

from each other are therefore non-interacting. Every update95

step, the algorithm selects a set of non-interacting cells (de-96

picted in blue in Fig 1A). Within this set of active cells,97

one particle is randomly selected and a swap is attempted,98

with acceptance determined by the usual Metropolis crite-99

rion exp(−𝛽(Δ𝑈 − Δ𝜇)), where 𝛽 = (𝑘𝐵𝑇)−1, Δ𝑈 is the100

internal energy change and Δ𝜇 the chemical potential differ-101

ence between the two species.102

To associate a chemical potential to a given molecule, we103

need to assign a unique number—a hash—to a given chemi-104

cal structure. This hash needs to include collective variables,105

such as leaflet, if they are relevant to chemical potential val-106

ues. To construct this hash, we simply aggregate all potential107

chemical states of beads in a molecule. As a relevant example,108

let us consider the coarse-grained lipid depicted in Fig. 1B.109

For this particular lipid, which we depict using the coarse-110

grained MARTINI force field (4), seven beads can change111

their chemical type. First the headgroup (red) can change be-112

tween PC (Q0 MARTINI beadtype) and PE (Qd). The green113

beads can either correspond to saturated (C1) or unsaturated114

(C3) states. The last bead, in blue, is used to change the115

length of the acyl tail: it can either be saturated, unsaturated116

or "ghost" (empty). The hash is constructed from the mini-117

mal binary representation: a two-state bead occupies one bit,118

while a three-state bead occupies two bits. Some of the hash119

values may correspond to unphysical states, for instance the120

same binary representation is used for both three- and four-121

state beads. Additionally, some states may be chemically un-122

available, e.g. non-contiguous unsaturations in biologically123

relevant lipids. Both unphysical and chemically unavailable124

states are assigned a chemical potential 𝜇 = −∞ to forbid any125
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Figure 1: SGC algorithm employed. A) 2D representation of
the checkerboard decomposition for a lipid membrane; lipids
are drawn in MARTINI representation with standard MAR-
TINI coloring, checkboard is in green and active cells in blue.
A random particle is chosen within each active cell for an
alchemical transformation. Since the red molecule stretches
across multiple active cells, it is pathological and can lead to
data races. B) Calculation of the molecule hash for a typical
molecule in a bilayer, with colour indicative of SGC repre-
sentation. Every bead in the molecule is assigned an offset
in the hash so that changes in hash can be directly computed
by changing the relevant bits. For instance, an alchemical
transformation of bead labeled 5 from green (state 0) to gold
(state 1) results in a change of bit 5 of the hash. Discrete,
finite-valued collective variables such as leaflet side can be
directly incorporated into the hash as well, represented here
with a value of 1 for the upper leaflet.
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Semi-grand canonical ensembles

alchemical transformation involving these states.126

The Monte-Carlo procedure (see Alg. 1) is similar to (11),127

but require a few more memory transactions. Effectively, af-128

ter picking a random particle, the algorithm must resolve to129

which molecule the particle belongs, followed by retrieving130

the hash of the molecule. A new random state for the particle131

is then generated, as well as its associated hash. Computing132

the new hash requires resolving the hash offset of the cur-133

rent bead. Additionally, this procedure implies that parallel134

transformations on the same molecule result in data races for135

hashes — read and write commands occurring at the same136

time from multiple threads resulting in corrupt data states.137

Therefore, large molecules, which span multiple active cells138

(see red molecule on Fig 1), are pathological. To solve this,139

we add a molecular lock to prevent multiple changes to the140

same molecule within a single Monte-Carlo step.141

Algorithm 1 Monte-Carlo Procedure
for c in active cells do

𝑝 ← random particle ∈ 𝑐
mol← MoleculeIndex[𝑝]
molHash← Hash[mol]
𝑜 ← Offset[𝑝]
𝑠← States[𝑝]
𝑠′← Random state ≠ 𝑠
molHash’← (Hash & ∼ (mask ≪ 𝑜)) | (𝑠′ ≪ 𝑜)
Δ𝑈 ← 𝑈 [𝑠′] −𝑈 [𝑠]
Δ𝜇← 𝜇[molHash’] − 𝜇[molHash]
if 𝑅(0, 1) < exp(−𝛽(Δ𝑈 − Δ𝜇)) then

lock← atomicCAS(&Lock[mol], 0, 1)
if lock then return
Hash[mol] ← molHash’
States[𝑝] ← 𝑠′

The base-2 representation for chemical states ensures142

high numerical performances as alchemical changes can be143

directly computed through bitwise operations. This comes at144

the cost of chemical space; for instance, in Fig 1B, the fourth145

state of the blue bits (11) does not represent a meaningful146

physical state. Since we use 32-bit integers for hashes, the147

worst case scenarios involve either losing a chemical state148

every two bits (e.g. a molecule composed of only blue bits in149

Fig1), leading to 316 = 4.3 · 106 chemical species, or using150

beads with more than 216 + 1 = 65537 chemical states; in151

which case there can be only a single such bead per molecule.152

To our knowledge, no simulation has attempted mixtures of153

more than 216 components yet and we believe that this is154

sufficient.155

If the chemical potential is dependent on a collective vari-156

able, for instance if chemical potentials are different on the157

two leaflets of a membrane, then the system is out of equilib-158

rium. These systems can exhibit peculiar properties, such as159

net flows, which tend to depend on kinetic rates in the system.160

In order to use chemical potentials to describe the system,161

the natural relaxation timescale of the system (e.g. flip-flop162

for asymmetric phospholipids bilayers) must be much longer163

than simulation timescales. If the natural relaxation timescale164

is similar to simulation timescales, then the system will ex-165

hibit properties that are dependent on simulation condition166

choices, and particularly the SGC relaxation timescale which167

creates the out-of-equilibrium conditions.168

RESULTS169

In order to demonstrate the value of our method, we take170

a look at a biologically relevant system: a membrane with171

an asymmetric lipid composition. We simulate a membrane172

comprised of PC and PE. On the lower leaflet, we impose173

Δ𝜇 = 0 between any two chemical species. This results in a174

higher proportion of PE present due to hydrogen bonds form-175

ing between their headgroups, with ≈ 88% of lipids being176

PE. On the upper leaflet, we impose a difference between177

PC and PE molecules of Δ𝜇 to proxy effects of P4-ATPase178

proteins. As outlined in the introduction, this assumes that179

P4-ATPAse binds all PC molecules equally, independently180

of acyl tail nature.181

To measure asymmetry, we define the headgroup asym-182

metry parameter 𝛿± = (𝑁±PC − 𝑁±PE)/𝑁 , which measures how183

different the headgroup populations are on each leaflet (see184

Fig2). As expected 𝛿+ shows a sigmoid-like behavior, where185

the free energy is largely dominated by the mixing entropy186

at large values of Δ𝜇. The value of 𝛿± = 0 is not reached187

at Δ𝜇 = 0, due to hydrogen bonding occurring between PE188

heads. The composition of the lower leaflet barely changes,189

indicative of absence of coupling between headgroup com-190

positions of both leaflets. The two curves intersect at Δ𝜇 = 0,191

as expected.192

Beyond resulting in asymmetric membranes, this simula-193

tion also yields an important result: P4-ATPAse proteins need194

to exert ⪆ 20 kJ/mol of work on lipids to create a strongly195

PC-dominated upper leaflet. This value is compatible with196

free energy release during hydrolysis of ATP (≈ 30 kJ/mol).197

This algorithm has O(𝑁 log 𝑁) time-complexity since198

the amount of Monte-Carlo attempts in a single step grow lin-199

early with system size. This means that it can be used to study200

large-scale systems, for instance to do finite-size scaling of201

critical membranes. Additionally, if the membrane has only202

a single SGC ensemble and no unregulated components —203

molecules whose chemistry cannot change, e.g. cholesterol —204

, equilibration becomes independent of long-range diffusion.205

This is similar to the molecular dynamics coupled with al-206

chemical steps, where two lipid chemical states are swapped207

in composition-conserving non-equilibrium transformations208

(15, 16). However, only a single non-equilibrium move can be209

attempted per update, which in turn implies a O(𝑁2 log(𝑁))210

time complexity.211
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(A)

(B)

Figure 2: Asymmetric membrane properties. A) Snapshot of
a typical configuration at Δ𝜇 = 10 kJ/mol. Cholesterol is
coloured in white, while PC and PE are coloured according
to their unsaturation level on different color scales to dif-
ferentiate them. B) Resulting headgroup asymmetry 𝛿±. At
Δ𝜇 = 0, PE molecules dominate both layers, with ≈ 88% of
molecules being PE. The composition of the lower leaflet is
nearly unaffected by the changes of the upper leaflet.

CONCLUSION212

We developed a molecule-wise SGC algorithm that enables213

simulation of lipid membranes with distinct sets of chemi-214

cal potentials on different leaflets. This results in membranes215

with asymmetric composition between the two leaflets. We216

hope that the simulation tools deployed here will enable re-217

search into regulated ensembles proposed in (9) and into218

properties of asymmetric membranes.219
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SOFTWARE231

Molecular dynamics simulations make use of the HOOMD-232

Blue engine (13, 14, 17), a DPD thermostat (18) and the233

MARTINI force-field (4). Initial topologies are built using234

the hoobas molecular builder (19). The SGC HOOMD-Blue235

plugin for HOOMD-version 2.9.3 is available in supplemen-236

tary material, as well as on https://gitlab.mpcdf.mpg.237

de/mgirard/SGC-molecules.238
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