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Abstract 
 
The rise of multi-antibiotics resistant bacteria represents an emergent threat to human health. Here, we 
investigate antibiotic resistance mechanisms in bacteria of several species isolated from an intensive 
care unit in Brazil. We used whole-genome analysis to identify antibiotic resistance genes (ARGs) and 
plasmids in 35 strains of Gram-negative and Gram-positive bacteria, including the first genomic 
description of Morganella morganii and Ralstonia mannitolilytica clinical isolates from South America. 
We identify a high abundance of beta-lactamase genes in highly resistant organisms, including seven      
extended-spectrum β-lactamases shared between organisms from different species. Additionally, we 
identify several ARGs-carrying plasmids indicating the potential for fast transmission of resistance 
mechanism between bacterial strains, comprising a novel IncFII plasmid recently introduced in Brazil 
from Asia. Through comparative genomic analysis, we demonstrate that some pathogens identified here 
are very distantly related to other bacteria isolated worldwide, demonstrating the potential existence of 
endemic bacterial pathogens in Brazil. Also, we uncovered at least two couples of (near)-identical 
plasmids exhibiting multi-drug resistance, suggesting that plasmids were transmitted between bacteria 
of the same or different species in the hospital studied. Finally, since many highly resistant strains carry 
several different ARGs, we used functional genomics to investigate which of them were indeed 
functional. In this sense, for three bacterial strains (Escherichia coli, Klebsiella pneumoniae, and M. 
morganii), we identify six beta-lactamase genes out of 15 predicted in silico as the main responsible for 
the resistance mechanisms observed, corroborating the existence of redundant resistance mechanisms 
in these organisms.  
 
Importance 
 
 
Big data and large-scale sequencing projects have revolutionized the field, achieving a greater 
understanding of ARGs identification and spreading at global level. However, given that microbiota and 
associated ARGs may fluctuate across geographic zones, hospital-associated infections within clinical 
units still remain underexplored in Brazil – the largest country in South America; 210 million inhabitants 
– and neighboring countries. This work highlighted the identification of several ARGs shared between 
species co-occurring simultaneously into a Brazilian hospital, some of them associated with large 
plasmids, mostly endowed with transposable elements. Also, genomic features of clinically 
underrepresented pathogens such M. morganii and B. cepacia were revealed. Taken together, our results 
demonstrate how structural and functional genomics can help to identify emerging mechanisms of 
shared antibiotic resistance in bacteria from clinical environments. Systematic studies as the one 
presented here should help to prevent outbreaks of novel multidrug resistance bacteria in healthcare 
facilities.  
 
___________________________________________________________________________ 
 
Introduction 
 

Microbial resistance to antibiotics is a growing global concern. Established protocols in clinics 
to fight nosocomial infections include isolation of microorganisms from patient samples to allow its 
identification and to determine its antibiotic susceptibility (1). However, this process is time-					
consuming (48 h or more) and prone to pathogen misidentification (2). Therefore, the advent of next-					
generation sequencing (NGS) tools has allowed the rise of novel approaches to identify microbial 
pathogens and to fight infection (3). Thus, in the last two decades, whole-genome sequencing (WGS) 
of microbial pathogens has moved from being used as a basic research tool to understand pathogen’s 
biology and evolution (4, 5), to an almost routine diagnostic tool to investigate outbreaks in hospitals 
and nosocomial infection pathways (6–9). For diagnostics purposes, current WGS technologies could 
even be cost effective for slow-growing pathogens such as Mycobacterium tuberculosis, providing faster 
and accurate results even for antibiotic resistance determination (10). Additionally, culture independent 
methods based on clinical metagenomics can be used to identify several pathogens from nucleic acids 
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extracted from patient samples without the need for microbial isolation (11–13). Furthermore, recent 
progress on the use of artificial intelligence tools has allowed the construction of computational models 
that can predict with high accuracy antimicrobial susceptibility of microbial pathogens based on WGS 
data (14–16). 
 

While WGS analysis as routine for microbial identification is not a worldwide reality, it has 
been extensively used to investigate microorganisms' population structure at different scales. For 
example, Arias and coworkers using WGS analysis from 96 methicillin-resistant Staphylococcus aureus 
(MRSA) from 9 countries in Latin America demonstrated a high degree of variation in the genome of 
different isolates	from those countries (17). The same study indicated that among sampled hospitals, 
those in Brazil presented a higher incidence of MRSA strains (up to 62%). Similarly, a recent work by 
David and coworkers investigated the path for the nosocomial spread of Klebsiella pneumoniae in 244 
hospitals in 32 European countries (18). Using a well-defined sampling strategy and WGS analysis of 
more than 1700 K. pneumoniae strains, authors were able to quantify the role of intra-hospital pathogen 
dissemination, as well as some potential paths for the introduction of novel strains from the USA to 
Europe. In addition to those examples, large-scale WGS analysis has been used to investigate the 
molecular adaptation to different hosts, as in the work by Arimizu et al. in which authors analyzed 
Escherichia coli strains from human versus bovine samples (19). 

 
 Another key process playing a significant role in the rise of new microbial threats is the 
propagation of mobile virulence and antimicrobial resistance factors within these populations mediated 
especially by plasmids and transposons (5, 20). Therefore, the rapid evolution of plasmids through 
structural rearrangements, virulence genes acquisition, plasmid fusions, and propagation to pathogens 
can account for the fast dissemination of supervirulent or super-resistant bacteria (21–23). 
Understanding the very dynamic and complex processes could hold the potential to design new drugs 
aiming at reducing plasmid propagation between pathogens (24). While the use of WGS is currently 
growing worldwide, most studies (especially in Brazil) have been restricted to some particular species 
(such as K. pneumoniae or S. aureus) without considering their interplay with other species in hospital 
settings. Here, we investigate at the genomic level 35 strains from 18 different species (and 11 genera) 
isolated at the same two weeks in a reference public hospital in Brazil. WGS analysis indicates that 
many strains are only distantly related to those available at public databases. We aimed to identify 
antibiotic resistance genes (ARGs) and plasmids harboring these elements, as well as evidence for 
common resistance mechanisms shared between strains from the same or different species. We were 
able to identify several ARG-harboring plasmids, two of them present in both Gram-negative and Gram-
positive strains, and seven beta-lactamases located in multiple hosts with 100% identity at the nucleotide 
level, two of which were inferred to be active using functional genomic library screening. In addition, 
comparative sequence analysis identified a novel IncFII K. pneumoniae plasmid harboring two ARGs, 
potentially indicating a recent introduction from Asia to Brazil.  
 
 
 
Results and discussion 
 
WGS analysis of clinical strains isolated from the same two weeks 
 

We selected 35 bacterial strains isolated from different patient samples and performed WGS as 
represented in Fig. 1. While well-studied pathogens such as K. pneumoniae, E. coli, P. aeruginosa e S. 
aureus were well represented in the sampling, we were able to analyze pathogens with very few 
representative genomic information in March 2020. For example, two Ralstonia mannitolilytica strains 
were sequenced, but only nine complete or graft genomes were available at NCBI. Other 
underrepresented strains were Streptococcus gallolyticus (27 genomes available) and Morganella 
morganii (63 genomes). These numbers contrast with those from K. pneumoniae, E. coli, or S. aureus, 
where 8-20 thousand genome sequences are available. This evidence indicates that many clinically 
relevant pathogens have been underrepresented in WGS analysis efforts worldwide. For instance, 
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phylogenetic analysis of Burkholderia cepacia 540A against all 166 available genomes in NCBI (Fig. 
S2) indicates this strain is also very divergent but belongs to a branch formed by strains isolated from 
patients with cystic fibrosis in the UK and endophytic bacteria isolated from Australia (25). Therefore, 
some of the new WGSs generated here demonstrate a significant diversity of some underrepresented 
microorganisms and should serve as reference sequences for future studies on clinical isolates in Brazil 
and South America. 
 
Identification of resistance genes in clinical strains 
 

We next analyzed the existence of ARGs in the sequenced genomes. Analysis of ARGs using 
ARG-ANNOT database indicated a higher prevalence of beta-lactamase coding genes followed by 
amino-glycosidases (Fig. 2A), while analysis with DeepARG tool (26) showed the multidrug category 
as the most abundant on the genomes analyzed (Fig. S3). We next analyzed ARGs' distribution in the 
two most abundant groups, E. coli and Klebsiella. In the first case, each of the six E. coli strains displays 
a unique set of ARGs from different categories, and five particular beta-lactamases (blaTEM-105, blaOXA-

1, blaKPC-2, blaCTX-M-15, and blaCMY-111) were found in at least one genome (Fig. 2B). Only one strain (E. 
coli 456A) did not present any of these five bla genes, and this strain was sensitive to all antibiotics 
tested by Vitek 2 (Fig. 2B/Fig.3). For the Klebsiella group, we observed a much broader set of resistance 
markers (Fig. 2C), which was in accordance with the largest level of antibiotic resistance of this group 
compared to E. coli. Next, we investigated which beta-lactamase genes were conserved into the strains 
analyzed. For this, we compared all ~125 bla genes identified in Fig. 2 and searched for those coding 
proteins with 100% identity at the amino acid sequence (Fig. 3). Using this approach, we identified 
seven bla genes (blaOXA-1, blaOXA-10, blaCTX-M-1, blaKPC, blaTEM, blaHYDRO, and blaBLP) which have 100% 
aa identity between two or more strains. Notably, blaOXA-1, blaCTX-M-1, blaKPC, and blaTEM were present 
in 3 to 6 strains from different species. Interestingly, both blaOXA-1, and blaCTX-M-1 were found in E. coli, 
K. pneumoniae and M. morganii, which could reveal recent horizontal gene transfer between these 
strains. From these seven genes, 2 (blaOXA-1 and blaKPC) were functional in the library screening 
presented below. Taken together, since the analyzed strains were isolated from hospitalized patients in 
the same two weeks, this evidence would indicate a recent mobilization of antibiotic resistance 
determinants either in the environment or in the hospital settings, as was reported previously (27–29).  
 
Identification of ARGs located in plasmids 
 

We next aimed to identify ARGs with potential mobilization through plasmids in the analyzed 
species. For this, we crossed the data from ARG-ANNOT with the prediction of plasmid elements 
generated by PlasmidFinder. Using this approach, we were able to identify nine potential plasmids from 
7 species associated with at least one ARG. As shown in Fig. 4A, a ~42kb plasmid –(pKP98M3N42) – 
harboring a blaKPC-2 and a sat-2A resistance determinant were identified in K. pneumoniae 98M3, and 
this plasmid also carries transposases, recombinases, and type IV secretion system genes. An identical 
plasmid – (pKP125M3N44; 100% nucleotide sequence identity) – was also found in K. pneumoniae 
125M3 (Fig. 4A, Fig. S4A). As mentioned before, this blaKPC-2 gene was identical in these two K. 
pneumoniae strains and in E. coli 126M3, but it was not located in a plasmid in the latter case (Fig. 3). 
In two recent studies, authors demonstrate ARG-carrying plasmids transfer in clinical settings between 
bacteria of the same or different species, which emphasize the significance of revealing potential 
plasmid-mediated outbreaks to efficiently track ARGs horizontal transmission in hospitals (30, 31). 
 

Another strain, K. pneumoniae 508B, harbors two plasmids with ~136kb (pKP508BN15) and 
~62kb (pKP508BN34). Both plasmids harbor transposon elements, with the larger one harboring a sul2 
resistance gene and the smaller one with two ARGs (qnr-S1 and blaLAP-2, Fig. 4B-C). In general, ARGs'					 
coexistence with transposon elements was also observed for two plasmids identified in E. coli strains 
(Fig. S4B-C) and Staphylococcus capitis 732B (Fig. S5A). Finally, two almost identical small plasmids 
(~2.3kb; 99.94% nucleotide identity) were identified in S. capitis 732B and S. epidermidis 452B, which 
harbor an aadC and ermC resistance determinants (Fig. S5B). Taken together, these data demonstrate 
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the potential for dissemination of many ARGs genes identified here, and the existence of identical or 
near-identical plasmids between different species could indicate that these elements have been 
mobilizing among some of these species. 
 
Experimental validation of functional beta-lactamases from highly-resistance bacteria 
 

Once we distinguish several ARGs in the genomes analyzed, we decided to perform a functional 
screening to identify which of these genes could confer resistance into a heterologous host.  For this, we 
selected three strains (E. coli 126M3, K. pneumoniae 508B, and M. morganii 538A) to construct 
genomic libraries into laboratory E. coli DH10B (Table 1). The libraries were constructed into the broad 
host range vector pSEVA232, which contains a kanamycin resistance marker, a broad host range oriV 
with a medium-copy number, and a variant of the lacZα multiple cloning site with a Plac promoter (32–
34). In this way, the libraries generated during this study or individual plasmids of interest can be 
transferred to other bacterial strains for another screening or functional evaluation (Fig. 5A). The use of 
a medium copy-number plasmid allows a closer assessment of ARGs'  natural genetic context in contrast 
to other studies that use high copy plasmids (35). Accordingly, plasmids with lower copy-number and 
monomeric states also tend to be more stably inherited throughout bacterial populations (36). We 
screened ~750.000 clones of each library against each antibiotic (amoxicillin, oxacillin, and penicillin 
G) and obtained 44 clones with unique sequences containing ARGs (Fig. 5B and Table 2).  
 

Clones containing the blaKPC-2 were by far the more abundant in the screening (Table 2 and Fig. 
6). The genomic context of identified blaKPC-2 indicate that it is prone to suffer horizontal transfer, once 
it is flanked by transposases. Martínez et al. (37) describe a framework to prioritize the risk of ARGs, 
the Resistance Readiness Condition (RESCon). The RESCon algorithm considers the similarity of an 
ARG to known genes, functional evaluation, the clinical relevance of the antibiotic, presence of a mobile 
genetic element, and presence in a human pathogen. The characteristics of this ARG would categorize 
it as RESCon 1, an ARG with the highest possibility to thrive in a clinical setting (37). Although a 
framework better describing the impacts of gene transfer to prioritize risk is needed (38), the RESCon 
classification indicates clinical relevance of this ARG. With ARGs found in all 3 functional screenings, 
we were able to identify with high frequency six different bla genes using the functional approach 
presented here, being at least two of them present in plasmids – blaKPC-2 and blaLAP-2; see next section – 
(Fig. 6).  
 

We propose that functional genomics can be combined with current approaches based on large-
scale sequencing in order to better understand the functional aspects of ARGs. Recent developments in 
machine learning (26) have provided tools to find ARGs that can be used to detect ARGs that would not 
be otherwise identified with sequence similarity tools. Still, the databases used to train those tools are 
biased for specific antibiotic resistance classes, such as beta-lactam, bacitracin, MLS, and efflux-pumps. 
Indeed, we could only find just a fraction of ARGs annotated through bioinformatics tools with our 
functional approach. This paradox could be due to the other ARGs not being functional in the 
experimental conditions used here or because our screening was not exhaustive enough to cover those 
sequences.  

 
Mapping of plasmids in the Brazilian territory 
 

To evaluate the biogeographic distribution of functional ARGSs from K. pneumoniae, we 
performed genomic comparative analysis including 50 plasmids deposited in NCBI data bank and two 
of the plasmids identified in this study (pKP98M3N42, pKP508BN34). Distance-tree analysis showed 
the presence of two distinguishable groups. Plasmid pKP98M3N42 (identical to plasmid 
pKP125M3N44, also identified in this work) is located in the first group – comprising seven strains all 
reported in Brazilian cities from 2009 to 2015, but 1 in USA –, which should indicate that pKP98M3N42 
is sharing structural features with the other plasmids positioned in this group (Fig. 7A). Additionally, 
pKP98M3N42 shares 100-99.9% sequence identity with IncX3 plasmids of these seven strains that have 
been previously related to play an important function in mediating horizontal transmission of blaKPC-2  
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genes among hospital-associated members of the Enterobacteriaceae family (39, 40). Moreover, IncX3 
plasmids carrying blaKPC-2 genes were also reported in countries very distant geographically, such as 
United States (41), Brazil (42, 43), Australia (44), Italy (45), France (46), South Korea (47, 48), China 
(49), Israel and Greece (39), to cite some. Interestingly, although IncX3 self-transmissible plasmids are 
widespread globally, the evident diversification of plasmids in the first separated branch of the tree (Fig. 
7A) could indicate that plasmids from strains isolated in clinically relevant bacteria in Brazilian ground 
undergo their own structural reorganization.  
 

On the other hand, distance tree representation of the 50 close plasmids' sequences related to 
pKP508BN34 did not show the presence of evident different groups. BLAST analysis showed that 
plasmid pKP508BN34 is widely distributed in K. pneumoniae strains, with 100-99,9% sequence identity 
and with query coverage ranging from 84% to 100% to the 18 closest related plasmids, some of them 
associated to hypervirulent strains – such as strain KP58, bearing plasmid pKP58-3 – (Fig. 7B).  
Mortality due to infection of K. pneumoniae was very rare in the past. However, this pathogen's fast 
evolution due to the gaining of hypervirulence plasmids allowed this bacterium to cause severe 
community-transmitted infections in relatively young and healthy hosts since the late 1980s (54, 55). 
pKP508BN34, with 63.067 bp in size and harboring various mobile elements that contain antimicrobial 
resistance genes, including qnrS1 and blaLAP-2, belongs to the IncFII plasmid group. As seen in the 
branch highlighted in Fig. 7B, most of the strains carrying the closest related plasmids to pKP508BN34 
were described in different cities of China – but one in Germany, one in Japan, and three in Thailand –, 
and were associated with diverse host diseases, such as pneumoniae, pulmonary infection, urinary tract 
infection, intestinal infection, and diarrhea, according to the data deposited in the bioprojects of NCBI. 
In some cases, related strains were reported in asymptomatic patients (strains TH164 carrying plasmid 
pTH164-3 and strain TH114 bearing plasmid pTH114-3, both from Thailand), something reasonable 
since K. pneumoniae is also a member of the gut microbiota (50). To the best of our knowledge, this is 
the first time that this plasmid is reported in Brazil. 
 

As shown in Fig. 8A-B, plasmids pKP98M3N42 and pKP508BN34 are highly structurally 
conserved between K. pneumoniae strains available in the databank. However, plasmid pKP508BN15 
(which is present in K. pneumoniae 508B) presented a strong structural diversification in the region 
close to the antibiotic markers, and these changes seem to be related to the activity of the ISSpu21 
transposon element located in this region (Fig. 8C). Interestingly, most related sequences available in					 
the database are from strains worldwide including some isolated from Asia, Africa, North America, and 
Europe, but no example of sequences from South America.  
 
Conclusions 
 

Here, we sampled clinical bacterial strains to investigate the existence of ARGs and their 
association with mobile genetic elements. We could identify several ARGs shared between strains from 
different species, and some of these ARGs are associated with large plasmids, mostly endowed with 
transposable elements. Instead of focusing on strains from the same species or genus, our approach 
considered strains co-occurring simultaneously into a hospital setup, aiming to identify shared resistance 
mechanisms that could have been mobilizing in this environment. While our analysis does not provide 
unequivocal evidence that these resistance mechanisms are being mobilized among the strains analyzed, 
we found strongly conserved ARGs located in plasmids and associated with transposon elements that 
could represent potential mechanisms for the dissemination of antibiotic resistance among clinical 
strains.  

 
Additionally, by using functional genomics, it was possible to investigate which of the ARGs 

candidates identified in silico could be the main factors associated with the resistance to beta-lactam 
antibiotics. Furthermore, for many of the bacterial species analyzed here, we could find a low number 
of available complete genome sequences at the NCBI database. Therefore, while thousand genome 
sequences are available for classical pathogens (E. coli, K. pneumoniae, P. aeruginosa, etc.), other 
clinically relevant pathogens such M. morganii and B. cepacia are underrepresented, which makes 
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challenging to track genomic events associated with the acquisition of pathogenicity elements or 
resistance mechanisms in hospital-associated infections. Finally, analysis of plasmids from Klebsiella 
strains allowed the identification of both well-known circulating variants in Brazil as new variants that 
seem to be recently acquired from Asia. Thus, we argue that more systematic efforts should be made to 
monitor the introduction and propagation of mobile genetic elements harboring ARGs, especially in 
South America, in order to avoid outbreaks of novel multidrug resistance bacteria.  

 
Material and methods 
 
Sample collection 
 

Samples were taken at the Ribeirão Preto Clinics Hospital (HCRP, Ribeirão Preto, Brazil), a 
tertiary reference hospital in Latin America with 920 beds and 35,000 hospitalizations per year. Samples 
were isolated from different patients hospitalized at the weeks 44 and 48 of 2018. Strains were obtained 
from different samples, as indicated in Fig. 1A. Thirty-five strains were randomly selected from a total 
of 105 available and represent different species, which have a major prevalence for Klebsiella genus, E. 
coli, Pseudomonas aeruginosa, and the genus Staphylococcus. After strain characterization by Vitek 2, 
samples were inactivated and used for genomic DNA extraction and sequencing, as indicated below. 
 
DNA extraction and genome sequencing 
 

Total genomic DNA was extracted using Wizard Genomic DNA Purification Kit (Promega, 
Madison, WI, USA) following the manufacturer's instructions. Fig. 1B represents schematically the 
overall strategy used for WGS analysis. The DNA concentrations were measured fluorometrically 
(Qubit® 3.0, kit Qubit® dsDNA Broad Range Assay Kit, Life Technologies, Carlsbad, CA, USA). 
Purified DNA from 35 isolates was prepared for sequencing using Nextera XT DNA Library Prep Kit 
(Illumina). Libraries were quality assessed using 2100 Bioanalyzer (Agilent Genomics, Santa Clara, 
CA, USA) and subsequently sequenced using HiSeq 2x150 bp cycle kits (Illumina). On average, 5.5 
million reads were generated per library. Adapters were trimmed using Trimmomatic v0.36. Samples 
were filtered of possible human contamination by aligning the trimmed reads against reference 
databases using Bowtie2 v2-2.2.3 with the following parameters (-D 20 -R 3 -N 1 -L 20 –very-sensitive-
local). Overlapped reads were merged using Flash version 1.2.11. Merged and unmerged reads were 
assembled using Spades v3.12.0 with the following parameters (-k 21,33,55,77,99,127 --merge). 
Genome quality (completeness and contamination) was evaluated using CheckM v1.0.7 and QUAST. 
Genome annotations were performed using Prokka v1.11 with default parameters. Amino acid 
sequences of all genes identified using Prokka were aligned to the NDARO (National Database of 
Antibiotic Resistant Organisms) database obtained from NCBI (March, 2020). The alignment was 
performed using Diamond v0.8.24 with the following parameters (blastx -k 5 -f 6 –E value 0.001). 
Alignments with >= 60 similarity were selected for further analysis. Quality assessment of sequenced 
genomes is provided in Fig. S1. All genomes are available at NCBI under the BioProject number  
PRJNA641571. 

 
Identification of antibiotic resistance genes, plasmids and phylogenomic analysis 
 

The identification of antibiotic resistance genes was performed using the ABRicate pipeline by 
searching annotated genes using reference databases (ARG-ANNOT, NCBI AMRFinderPlus, CARD 
and ResFidner), as well as DeepARG (26). The identification of plasmid was performed using 
Plasmidfinder and contigs harboring ARGs and plasmid related genes were further analyzed in detail. 
For genomic comparison, reference and assembly genomic data were downloaded from NCBI databank. 					
Phylogenomic analyses were performed using Parsnp and Gingr (51) and phylogenetic trees visualized 
using iTOL (52). 
 
Genomic libraries construction 
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For the cloning of the genomic DNAs in the pSEVA232 (32–34) vector, 2µg of genomic DNA 
from each strain were digested with Sau3AI. While, pSEVA232 digestion using BamHI and further 
dephosphorylation were performed. Genomic fragments from 1.5 to 6 kb and the linearized pSEVA232 
vector were selected and incubated with the T4 DNA Ligase enzyme in a 2:1 insert/vector ratio. Then, 
ligations were transformed in the electrocompetent E. coli DH10B (53) with a MicroPulser 
electroporator (Bio-Rad - Hercules, USA). The resulting libraries were analyzed for the percentage of 
plasmids carrying genomic DNA and the average size of the insert they contained.  
 
Determination of Minimum Inhibitory Concentrations (MICs) 

 
The MICs were determined in the same culture medium (solid LB) and conditions of the 

screenings, employing serial dilution of the test antibiotics (Amoxicillin, Oxacillin, or Penicillin G). 
Solid medium plates supplemented with kanamycin (50 µg mL-1), IPTG (100 μM) and dilutions of each 
beta-lactam antibiotic were inoculated with approximately 2.5 × 106 CFUs of E. coli DH10B harboring 
the pSEVA232 vector. We performed dilutions of antibiotics and culture media according to the CLSI 
M100 supplement (54).  

 
Screening and phenotype confirmation 
	

Three pools of clones (2.5 × 106 clones per plate) were plated from each library on solid LB 
supplemented with kanamycin (50 µg µL-1), IPTG (100 µM) and inhibitory concentrations of each beta-
lactam antibiotic (8 µg mL-1 for amoxicillin, 32 µg mL-1 for penicillin G or 256 µg mL-1 for oxacillin). 
Positive clones were cultured in liquid LB medium supplemented with kanamycin (50 µg mL-1) for 
extraction of plasmid DNA with the Wizard Plus SV Minipreps DNA Purification System Kit (Promega 
- Madison, USA). Plasmids with unique EcoRI/HindIII restriction patterns were subjected to re-
transformation and phenotypic confirmation by streaking the clones in solid LB medium supplemented 
with kanamycin (50 µg mL-1), IPTG (100 µM) and the test antibiotics. 

 
Extraction of insert sequence from assembled genomes 
	

Plasmid DNA was sequenced on both strands by primer walking using the ABI PRISMDye 
Terminator Cycle Sequencing Ready Reaction kit (PerkinElmer) and an ABI PRISM 377 sequencer 
(Perkin-Elmer) according to the manufacturer’s instructions. A python script was developed to extract 
and annotate inserts from Sanger reads, which is available on GitHub. First, the algorithm converts .ab1 
files to the fasta format and searches for the read sequence in the assembled genome using BLAST+ 
(55). We then extract the inter-read region to a fasta file, which is then annotated by PROKKA (56). 
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Tables 

Table 1 – Features of the generated genomic libraries. 
 

Genomic library E. coli 
126M3 

K. pneumoniae 
508B 

M. morganii 
538A 

Total number of clones 13442 25693 11804 
Percentage of clones with insert (%) 90 90 90 
Number of clones with insert 12122 23124 10624 
Insert size variation (kb) 1.0 – 10.5 0.2 – 2.2 0.2 – 6.5 
Average insert size (kb) 5.2 1.4 3.0 
Total genomic library size (mb) 62.8 32.4 32.1 
Estimated genome coverage 11.9 × 5.8 × 7.8 × 
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Table 2 – Comparison of ARGs identification using in silico and functional approaches. 
 

Strain In silico (argannot) No. of sequenced 
resistant clones 

E. coli 126M3  Penicillin_Binding_Protein_Ecoli - 
 AmpC1_Ecoli - 
 blaKPC-2 28 
 AmpC2_Ecoli 1 
 blaOXA-1 - 

  ampH_Ecoli - 
K. pneumoniae 508B  blaSHV-11 - 

 Penicillin_Binding_Protein_Ecoli - 
 blaLAP-2 2 
 ampH - 
 blaCTX-M-15 8 

  blaOXA-1 1 
M. morganii 538A  blaCTX-M-15 - 

 blaOXA-1 - 
  blaMOR-2 4 
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Figure 1. Overall strategy used for the whole-genome analysis of clinical strains. A) In total, 35 bacterial 
strains were isolated from several samples, such as cerebrospinal fluid (I, 2 strains), bronchoalveolar 
lavage (II, 3 strains), ascitic fluid (III, 5 strains), and blood (IV, 25 strains). The four most common 
bacterial groups (K. pneumoniae, E. coli, P. aeruginosa, and S. genus) are colored. B) Schematic 
representation of the main bioinformatic pipeline used for genome sequencing, assembly, annotation, 
identification of ARGs, and virulence factors and genomics analysis. 
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Figure 2. Identification of ARGs in nearly sequenced genomes. A) Heatmap showing the presence of 
ARGs identified by ARG-ANNOT. Only B. cepacia did not present any identified ARG. Data was 
clustered using hierarchical mapping with Euclidian distance. Blue to red scale indicate number of ARG 
for each strain in each category, as indicated in the legend. B) Distribution of different ARGs per genome 
of E. coli, colored by antibiotic category. The maximum likelihood phylogeny for the strains was based 
on core-genome. C) Distribution of different ARGs per genome of K. pneumoniae, following the scheme 
in B. 
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Figure 3. Shared beta-lactamases with 100% identity at the protein level. Seven beta-lactamase coding 
genes were found as shared among gram-negative strains analyzed. Connected circles indicate that the 
genes are presented in those strains. On the right, the antibiotic resistance profile of the analyzed strains. 
Genes for blaOXA-1 and blaKPC are highlighted (red triangles) since these genes were identified in the 
functional screening carried out in this study. On the right, antibiotic resistance levels are indicated, with 
numbers indicating the resistance levels in µg/mL. Red indicates resistance to the antibiotic while blue 
denotes sensibility. The final column indicated if the strain is ESBL positive or negative. 
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Microorganism Strain AMP APS PIT CFX CFX-A CTX CAZ CPM CFO ERT IMP MER CIP GEN ESBL

Acinetobacter baumannii 112M3 - 2 16 - - - 8 8 - - 0,25 0,25 0,25 1 POS
Acinetobacter pittii 466A - - S - - - S S - - S S S S -

Burkholderia cepacia 540A - - - - - - 2 - - - - 4 - - -
E. coli 126M3 32 32 128 64 64 2 2 1 4 5 0,5 0,5 4 1 POS
E. coli 508A 32 32 16 32 32 1 1 1 16 0,5 0,25 0,25 4 2 NEG
E. coli 537B 32 32 8 32 32 16 16 1 64 0,5 0,25 0,25 0,25 1 NEG
E. coli 92M3 32 32 32 4 4 1 1 1 4 0,5 0,25 0,25 1 1 NEG
E. coli 522B 32 32 8 64 64 64 16 4 R 0,5 0,25 0,25 4 16 POS
E. coli 456A 2 2 4 4 4 1 1 1 4 0,5 0,25 0,25 0,25 1 NEG
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K. pneumoniae 508B 32 32 128 64 64 64 64 64 8 0,5 0,25 0,25 4 16 POS
K. pneumoniae 125M3 32 32 128 64 64 64 16 64 64 8 16 16 4 16 NEG

K. pneumoniae 457A 32 32 128 64 64 4 1 1 4 0,5 0,25 0,25 0,25 1 POS
Morganella morganii 538A 32 32 4 64 64 8 2 1 16 0,5 4 0,25 4 8 -

Pseudomonas aeruginosa 140M3 - - 8 - - - 4 1 - - 2 0,25 4 16 NEG
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Figure 4. Schematic representation of genes of three K. pneumoniae plasmids. A) Plasmid 
pKP98M3N42 (43 kb) from K. pneumoniae 98M3. This plasmid carries two ARGs (blaKPC-2 and sat-
2A), elements of a type IV secretion system, two resolvases, and a Tn3 transposase. This plasmid is very 
similar to pKP125M3N44 from K. pneumoniae 125M3 (Fig. S4A). Whole-plasmid visualization was 
performed using a python module for prokaryotic genome analyses – DnaFeaturesView – and matplotlib 
module combined, as well as ARG-ANNOT and Prokka's results (57).B) Plasmid pKP508BN15 (136.8 
kb) from K. pneumoniae 508B transports a sul2 and an rRNA adenine n-6-methyltransferase (ermC) 
resistance markers. A transposase, a xerC recombinase, and a type IV secretion system virB8 protein 
are also found in this plasmid. C) Plasmid pKP508BN34 (63 kb) is also from K. pneumoniae 508B and 
carries several transposases and two resistance determinants, qnr-S1 and blaLAP-2. Legends represent the 
colors code for the identified genes. 

Fig. 4

K. pneumoniae 98M3 (pKP98M3N42)A

B K. pneumoniae 508B (pKP508BN15)

C K. pneumoniae 508B (pKP508BN34)
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Figure 5. Experimental design for functional genomics analysis. A) Strains and backbone used to 
construct the library and features of the obtained libraries. B) Functional screening for beta-lactam 
resistant clones, phenotypic confirmation, and sequence identification. CFU – colony forming unit, 
RFLP - restriction fragment length polymorphism, KmR - kanamycin resistance marker, pBBR1 - a 
broad host range oriV, lacZα - lacZα gene with multiple cloning site, Plac - Plac promoter, pFGRnnnn 
– plasmid naming schema. 
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Figure 6. Features found in identified clones conferring resistance to antibiotics. A) ampC-2 gene 
identified from E. coli 126M3. B) blaKPC-2 gene identified from E. coli 126M3. C) blaLAP-2 gene 
identified from pKP508BN34 plasmid from K. pneumoniae 508B. D) blaCTX-M-15 gene identified 
from K. pneumoniae 508B. E) blaOXA-1 gene identified from K. pneumoniae 508B. F) blaMOR-2 gene 
identified from M. morganii 538A. ORFs were colored according to its function: red – ORFs directly 
related to antibiotic resistance; orange – ORFs related to virulence; yellow – ORFs related to horizontal 
transfer of the ARG; blue – ORFs with no identified relation to pathogenesis. The cloned region 
represents contig regions that were identified in our screenings. Overlapping cloned regions are darker, 
while dim regions have fewer overlapping identified clones. 
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Figure 7. Distance relationship analysis for two plasmids from K. pneumoniae. A) Distance relationship 
of the 7 closest plasmids’ nucleotide sequences to pKP98M3N42 showing an E-value of less than 0.0 
and a minimal sequence cover of 70% in BLAST analysis. The tree was produced using pairwise 
alignments by means of the Fast-minimum evolution method. Year denotes the collection data and the 
asterisk indicates the data reported in the public database. B) Distance relationship of the 18 closest 
plasmids’ nucleotide sequences to pKP508BN34 showing an E-value of less than 0.0 and a minimal 
sequence cover of 50% in BLAST analysis. The tree was produced using pairwise alignments by means 
of the Fast-minimum evolution method. Year states the collection data and the asterisk indicates the 
data reported in the public database, informed when collection data was not available. iTOL 
(https://itol.embl.de) was used for tree visualization. 
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Figure 8. Structural comparison of plasmids from K. pneumoniae strains. Nearly identified plasmids 
were analyzed using blast, and the best hits were used for comparison using BLAST Ring Image 
Generator (BRIG) (58). For simplification, only divergent regions between the plasmids are shown. A) 
pKP98M3N42 (black) and pKP1253N44 (magenta) are most similar to plasmids found in K. 
pneumoniae and E. coli, which have been frequently reported in Brazil (as in Fig. 7A). B) pKP508BN34 
(black) was most similar to plasmids only isolated from K. pneumonia, mostly identified in Asia (shown 
in Fig. 7B) with a high degree of conservation. C) pKP508BN15 (black) was most similar to plasmids 
found in several different bacterial species (K. pneumoniae, P. damselae subsp. piscicida, Vibrio 
alginolyticus, and V. cholerae) reported in Asia, Africa, and North America. Both sul2 and rRNA 
adenine n-6-methyltransferase (ermC) resistance markers are located in a highly divergent region of the 
plasmid and are not present in most related plasmids.  
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Figure S1. General features of genomes sequenced in this study.  
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Figure S2. Phylogenetic tree of B. cepacia 540A and total number of available B. cepacia genomes 
(166) in NCBI at March 2020. For simplicity, branch with high similarity were compressed (gray 
triangles). NCBI accession number are indicated for B. cepacia strains compared in the figure. Blue 
branches are two B. cepacian endophytic strains isolated in Australia, while red branches are B. cepacian 
isolated from patients. 
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Figure S3. Heatmap showing the presence of ARGs identified by DeepARG in nearly sequenced 
genomes.  
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Figure S4. Schematic representation of genes in identified plasmids exposing the coexistence of ARGs 
with transposon elements. A) Plasmid pKP125M3N44 (43 kb) from K. pneumoniae 125M3. This 
plasmid is identical to plasmid pKP98M3N42 from K. pneumoniae 98M3 (Fig. 4A). B) Plasmid 
pEC126M3N22 (73,9 kb) from E. coli 126M3. C) Plasmid pEC537BN37 (43,3 kb) from E. coli 537B. 
Legends represents the colors code for the identified genes. 
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Figure S5. Schematic representation of plasmids identified in Staphylococcus strains showing the 
coexistence of ARGs with transposon elements. A) Plasmid pSW732BN27 (10.5 kb) from S. capitis 
732B. B) Plasmid pSW732BN43 (~2.3kb) from S. capitis 732B.  
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