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Abstract: Microorganisms can potentially colonize volcanic rocks using the chemical energy in 19 
reduced gases such as methane, hydrogen (H2) and carbon monoxide (CO). In this study, we 20 
analysed soil metagenomes from Chilean volcanic soils, representing three different successional 21 
stages with ages of 380, 269 and 63 years, respectively. A total of 19 metagenome-assembled 22 
genomes (MAGs) were retrieved from all stages with a higher number observed in the youngest soil 23 
(1640: 2 MAGs, 1751: 1 MAG, 1957: 16 MAGs). Genomic similarity indices showed that several 24 
MAGs had amino-acid identity (AAI) values >50% to the phyla Actinobacteria, Acidobacteria, 25 
Gemmatimonadetes, Proteobacteria and Chloroflexi. Three MAGs from the youngest site (1957) 26 
belonged to the class Ktedonobacteria (Chloroflexi). Complete cellular functions of all the MAGs 27 
were characterised, including carbon fixation, terpenoid backbone biosynthesis, formate oxidation 28 
and CO oxidation. All 19 environmental genomes contained at least one gene encoding a putative 29 
carbon monoxide dehydrogenase (CODH). Three MAGs had form I coxL operon (encoding the large 30 
subunit CO-dehydrogenase). One of these MAGs (MAG-1957-2.1, Ktedonobacterales) was highly 31 
abundant in the youngest soil. MAG-1957-2.1 also contained genes encoding a [NiFe]-hydrogenase 32 
and hyp genes encoding accessory enzymes and proteins. Little is known about the 33 
Ktedonobacterales through cultivated isolates, but some species can utilize H2 and CO for growth. 34 
Our results strongly suggest that the remote volcanic sites in Chile represent a natural habitat for 35 
Ktedonobacteria and they may use reduced gases for growth.  36 

 37 
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1. Introduction 45 
Volcanic eruptions provide a model for understanding soil-forming processes and the roles of 46 

pioneer bacteria during early biotic colonization. Recently, it has been demonstrated that the 47 
structure of microbial communities can play a key role in the direction of plant community succession 48 
pathways [1]. This is due in part to bacterial contributions to weathering of volcanic rocks, which 49 
releases nutrients resulting in some of the most fertile soils in the world.  50 

After lava and other volcanic deposits (i.e. ash and tephra) cool sufficiently, mineral surface 51 
areas become accessible for microbial colonization [2-5]. In fact, microbes, and especially bacteria, are 52 
among the first colonizers of volcanic deposits and thereby initiate soil formation during the early 53 
stages of terrestrial ecosystem development [6-12]. While methane (CH4), hydrogen sulfide (H2S), 54 
hydrogen (H2), and carbon monoxide (CO) have been proposed to promote bacterial colonization 55 
and support microbial life in these organic-carbon deficient environments [13,14], the actual carbon 56 
and energy sources of the first colonizers remain elusive, but likely include a range of endogenous 57 
and exogenous sources, including reduced minerals and gases. The microbial ability to utilize these 58 
substrates for growth, and thereby initiate the formation of soil organic material, depends on 59 
specialized enzymes which may not be prevalent in many different microbial groups, thus 60 
representing a limited phylogenetic distribution. As a consequence, this could constrain the 61 
composition of pioneering microbial communities. 62 

CO is a potential source of carbon and energy for microbes pioneering the colonization of 63 
volcanic substrates. CO utilization under oxic conditions requires a molybdenum-dependent carbon 64 
monoxide dehydrogenase (Mo-CODH), which catalyses the oxidation of CO to CO2 [15]. Surveys of 65 
genome databases (e.g., Integrated Microbial Genomes) reveal that Mo-CODHs occur in 66 
Proteobacteria, Actinobacteria, Firmicutes, Chloroflexi, Bacteroidetes, Deinococcus-Thermus, 67 
Halobacteria, and Sulfolobales among others. They were originally described as inducible enzymes 68 
and have subsequently been shown to be up-regulated by carbon limitation during growth of 69 
Actinobacteria (e.g., Rhodococcus and Mycobacterium smegmatis [15-17], and Chloroflexi (e.g., 70 
Thermogemmatispora and Thermomicrobium [18]). Mo-CODH has been previously targeted in 71 
molecular ecological studies of CO oxidizers in volcanic systems and other extreme environments 72 
[15]. These studies have revealed changes in community composition with the age and 73 
developmental status of individual sites [7,15]. The results suggest that CO-oxidizing communities 74 
are not static, but that they change in response to changing environmental conditions, and possibly 75 
affect the direction of changes. 76 

In a preceding study, we identified the microbial communities involved in volcanic soil 77 
formation in different sites on Llaima Volcano (Chile). The bacterial communities of soils from 3 sites 78 
affected by lava deposition in 1640, 1751 and 1957 were analysed using 16S rRNA gene amplicon 79 
sequencing [19] and it was demonstrated that microbial diversity increased with the age of the soil 80 
deposits. Interestingly, bacterial phylotypes of the poorly studied Ktedonobacterales were among the 81 
predominant community members in the 1957 soil, representing 37% of all OTUs, as compared with 82 
18% in the 1751 and 7% in the 1640 soils. Thus, we suspected that bacteria of this order could be 83 
instrumental for the initiation of soil formation, paving the way for soil organic carbon formation and 84 
preparing a substrate for microbial colonisation and plant growth. Some already cultivated 85 
Ktedonobacterales were found to be carboxydotrophs and hydrogenotrophs (i.e. carbon monoxide 86 
(CO) and hydrogen (H2) oxidisers/consumers) [14]. Thus, this leads to the hypothesis that CO and H2 87 
are important carbon and energy sources for early stages of microbes colonizing the Llaima Volcano 88 
soil. However, the ecophysiology of the few bacterial isolates assigned to Ktedonobacterales limits 89 
predictions about metabolic functions based on 16S rRNA gene sequences alone. 90 

Therefore, in this study a metagenomic approach was chosen to identify microbial traits 91 
associated with early stages of colonization and soil formation in a volcanic ecosystem. In particular, 92 
the presence of functional genes implicated in CO-oxidation (coxL genes) and H2-oxidation (hyd and 93 
hyp genes) was assessed from metagenome-assembled genomes (MAGs). These MAGs were 94 
retrieved from volcanic soils of different ages, representing sites 1640, 1751 and 1957. During this 95 
period, the soil formation evolved as indicated by their different levels of soil organic matter ranging 96 
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from 65.33 ± 2.31 in the most recent soil (1957) to 9.33 % in both medium (1751) and oldest soils (1640) 97 
[20].  98 

Especially the most recent soil (youngest soil) was suspected to reveal microbial adaptations to 99 
the challenging environmental conditions and thus to unveil the metabolic processes which initiate 100 
microbial colonisations. Therefore, functional metabolic modules annotated in the environmental 101 
genomes were analysed, with a main focus on the poorly characterised class of the Ktedonobacteria 102 
(Chloroflexi). Three Ktedonobacteria MAGs were obtained and all contained genes encoding CO and 103 
H2 oxidation. Additional MAGs from other phyla were also found to contain these genes. Our study 104 
advances the understanding of the ecology of Ktedonobacteria and their potential to act as early 105 
colonizers in volcanic soils. 106 
 107 

2. Materials and Methods 108 
 109 
2.1 Sequencing 110 
The DNA from the volcanic soils used in our study had been previously extracted [20]. The soil 111 

physico-chemical characteristics have been published [20] showing a pH of 5.6 in both medium and 112 
oldest soil and 4.7 in the youngest soil, and nitrogen (mg/kg) of 25 (1640), 26 (1751) and 36.33 (1957). 113 
Briefly, the soil samples originating from three different sites of different ages according to the latest 114 
lava eruption (1640, 1751, 1957, map in [20]). A total of nine samples (triplicate per site) were 115 
sequenced on an Illumina MiSeq at the Max-Planck-Genome Centre, Köln, Germany. The 116 
metagenome was analysed on a high-performance computer using 650 GB RAM and 64 cores at the 117 
Thünen Institute of Biodiversity, Braunschweig, Germany. 118 

 119 
2.2. Quality control 120 
The sequence reads were checked using FastQC version 0.11.8 [21]. Low quality reads were 121 

discarded using BBDuk version 38.68, quality-trimming to Q15 using the Phred algorithm [22]. A 122 
schematic overview of the steps and programs used are shown in Figure 1.  123 

 124 
 125 

 126 
Figure 1. Workflow of the metagenome analysis and programs used in the present study. 127 

Binning was run by using MetaWrap package. AAI: Amino Acid Identity.  128 
 129 
2.3. Metagenome assembly and binning  130 

Figure 1. Workflow of the metagenome analysis and programs used in the present study. Binning was 
run by using MetaWrap package. AAI: Amino Acid Identity. 
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All trimmed Illumina reads were merged into longer contiguous sequences (scaffolds) using de 131 
novo assemblers Megahit version 1.2.8 [23] with k-mers 21,29,39,59,79,99,119,141 and MetaSPAdes 132 
(SPAdes for co-assembly) version 3.13.1 [24,25] with k-mers 21,31,41,51,61,71,81. Triplicate samples 133 
were co-assembled in order to improve the assembly of low-abundance organisms. Assembly quality 134 
was checked with MetaQuast version 5.0.2 [26] showing that the best quality was obtained with 135 
MetaSPAdes for our samples (data not shown). Downstream analysis was carried out using the 136 
scaffolds retrieved from MetaSPAdes. Krona charts [27] were recovered from MetaQuast runs to 137 
identify taxonomic profiles. Downstream binning analysis was performed with two sets of scaffolds: 138 
full size scaffolds and scaffolds larger than 1000 bp. 139 

Metagenomic binning of the assembled scaffolds was carried out with the metaWRAP version 140 
1.2.1 pipeline [28], which binning module employs three binning software programs: MaxBin2 [29], 141 
metaBAT2 [30], and CONCOCT [31]. Completion and contamination metrics of the extracted bins 142 
were estimated using CheckM [32]. The resulting bins were collectively processed to produce 143 
consolidated metagenome-assembled genomes (MAGs) using the bin_refinement module (criterion: 144 
completeness > 70%; contamination < 5%). Both sets of MAGs (18 from scaffolds larger than 1000 bp 145 
and 17 from full size scaffolds) were aggregated, visualized with VizBin [33] and then dereplicated 146 
using dRep [34]. Only the highest scoring MAG from each secondary cluster was retained in the 147 
dereplicated set. The abundance of each MAG in the different sites was calculated using BLASTN 148 
version 2.5.0+ [35] keeping only hits with >95% identity and e-value 1e-5 for the analysis [36]. A final 149 
heatmap was constructed using the function heatmap.2 from the gplots package version 3.0.4 [37] in 150 
R version 4.0.2 (https://www.r-project.org). 151 

 152 
2.4. Functional annotation 153 
The open reading frames (ORFs) in all scaffolds of each MAG were predicted using Prodigal 154 

(v2.6.3) [38]. Functions were annotated using Cognizer [39] and KEGG annotation framework [40]. 155 
The annotations of the predicted proteins from the Kyoto Encyclopedia of Genes and Genomes 156 
(KEGG) were used to confirm protein functional assignment and identify pathways. Complete 157 
pathways were identified using KEGG BRITE pathway mapping [40]. Aerobic carbon-monoxide 158 
dehydrogenases and hydrogen dehydrogenase were also identified using KEGG ortholog 159 
annotations; CODH was further distinguished as form I and form II (putative CODH) based on active 160 
site motifs present in coxL genes (e.g., [41]).  161 

 162 
2.5. Phylogenomic analysis 163 
Taxonomic classification of MAGs was performed using the classify_bins module from 164 

metaWRAP which relies on NCBI_nt database. MAGs were also screened using the RAST Server 165 
(Rapid Annotations using Subsystems Technology; [42,43]), which also allowed to retrieve 166 
information regarding close relative genomes in order to construct the phylogenetic tree.  167 

To estimate intergenomic similarity, amino-acid comparisons between MAGs and their closest 168 
relative genomes present in the databases were calculated based on reciprocal best hits (two-way 169 
AAI) using the enveomics collection (http://enve-omics.gatech.edu/ [44].  170 

The phylogenetic affiliation of MAGs was determined by constructing a genomic tree using 171 
FastTree version 2.1.11 [45]. Reference genomes were manually downloaded from the National 172 
Center for Biotechnology Information (NCBI) Refseq database (Table S1). Conserved genes from the 173 
extracted bins and the reference genomes were concatenated using Phylosift version 1.0.1 [46].  174 

Phylogenetic analysis of the large sub-unit CO dehydrogenase gene (coxL) using the Maximum 175 
Likelihood method with a JTT matrix-based model [47] was performed. Bootstrap values (100 176 
replicates) are shown where support ≥ 70 percent. The scale bar indicates substitutions per site. All 177 
gapped positions were deleted resulting in 420 positions in the final dataset. Evolutionary analyses 178 
were conducted in MEGA X [48,49]. 179 
 180 

2.6. Accession number 181 
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Raw metagenomic data and environmental genomes derived from binning processes were 182 
deposited in the Sequence Read Archive (SRA) under the bioproject accession number PRJNA602600 183 
for raw data and PRJNA602601 for metagenome-assembled genomes. 184 
 185 

3. Results 186 

3.1. MAGs recovery 187 

A total of ~3-4 million scaffolds were recovered from the soil metagenomes in each site. Even 188 
though all the sites underwent similar sequencing efforts (between 2.3 GB in 1640 and 1957 to 2.4 189 
Gb in 1751), the youngest soil had the largest number of scaffolds with 499 sequences >50 kb 190 
compared to the oldest soil with only 12 scaffolds with a size >50 kb (Table 1). The youngest soil 191 
also had a larger N50 length of scaffolds and L50 compared to the other soils (Table 1). A total of 19 192 
MAGs with a completeness of >70% and a contamination <5% (2 from 1640, 1 from 1751 and 16 193 
from 1957) were retrieved and characterised. 194 

Table 1. Summary report for the assembly quality assessment using MetaQuast 195 

196 
N50 - length such that scaffolds of this length or longer include half the bases of the assembly; L50 - 197 
number of scaffolds that are longer than, or equal to, the N50 length and therefore include half the 198 
bases of the assembly (https://www.ncbi.nlm.nih.gov/assembly/help/#globalstats)  199 

 200 

3.2. MAG identification 201 

MAGs were affiliated to the phyla Actinobacteria, Proteobacteria, Acidobacteria, 202 
Gemmatimonadetes, Chloroflexi, Firmicutes and Verrucomicrobia (Figure 2). In the oldest soil, two 203 
environmental genomes were retrieved related to Actinomycetales (Actinobacteria) and 204 
Rhodospirillales (Proteobacteria). The only MAG retrieved from the middle soil was related to 205 
Acidobacteria. MAGs binned from the youngest soil included seven assigned to Acidobacteria, one 206 
to Proteobacteria, three to Actinobacteria, one to the phylum Gemmatimonadetes, one to 207 
Verrucomicrobia and three to the phylum Chloroflexi (Figure 2).  208 
 209 

Statistics 1640 1751 1957

Number of scaffolds (>= 0 bp) 3631380 4047900 3138527

Number of scaffolds (>= 500 bp) 1488437 1609020 1578887
Number of scaffolds (>= 1000 bp) 326980 333885 447418
Number of scaffolds (>= 25000 bp) 172 195 1551
Number of scaffolds (>= 50000 bp) 12 40 499
Total length (>= 0 bp) 2320437372 2460323814 2396069091
Total length (>= 500 bp) 1385386471 1404094641 1717252425
Total length (>= 1000 bp) 631179105 570404360 964085094
Total length (>= 25000 bp) 5697241 8152100 82365310
Total length (>= 50000 bp) 686375 2983958 46419897
N50 914 850 700
L50 391387 477193 348604
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 210 

Figure 2. Phylogenomic tree of the bacterial genomic bins. The tree was built with PhyloSift against 211 
reference genomes downloaded from NCBI. MAGs are indicated in bold together with their 212 
respective completeness and contamination. FastTree confidence values of MAG branches are 213 
shown. The horizontal bar represents 10% sequence divergence. 214 
The abundance of the MAGs in each site was calculated by using BLASTN (Figure 3). MAGs were 215 
more abundant from the soil they were recovered. MAGs with a total abundance >1% were found 216 
only in the young soil (1957). MAG 1957-2.1 (Ktedonobacteria, 1.21% ± 0.82), MAG 1957-5.1 217 
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(Actinomycetales, 1.02% ± 0.84), MAG 1957-13.1 (Verrucomicrobiales, 1.58% ± 1.1) and MAG 1957-218 
16.1 (Acidobacteria, 1.14% ± 0.87) were the most abundant MAGs (Figure 3).  219 
 220 
 221 

 222 
 223 
Figure 3. Heatmap representing the abundance of MAGs in each metagenome. The analysis was done 224 
by blast and only hits greater than 95% identity and e-value 1e-5 were used. 225 
 226 

3.3. Metabolic characterisation of MAGs  227 

Genes encoding enzymes involved in carbohydrate and energy metabolism, such as carbon fixation, 228 
sulfur metabolism, ATP synthesis and nitrogen metabolism, as well as terpenoid backbone 229 
biosynthesis were found in all the MAGs (Table 2). Other functions, including xenobiotic 230 
biodegradation, fatty acid metabolism, nucleotide metabolism, and vitamin metabolism, among 231 
others, were also found (Table S2).  232 

Table 2. Summary table of complete cellular functions and other high-level features in the MAGs 233 
recovered form sites 1640, 1751 and 1957 retrieved from KEGG analysis. Reference genomes for 234 
Ketedonobacteria: DSM45816T [50], DSM44963T [51] and NBRC 113551T [52], (K: KEGG orthology; 235 
M: KEGG Mode). Asterisks indicate the MAGs isolated from the class Ktedonobacteria. “X” indicates 236 
MAGs containing genes encoding form I of the CoxL. 237 
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 238 
 239 
3.3.1 Characterization of CODH and hydrogenase genes in MAGs 240 
 241 
Three MAGs (MAG-1640-1.1, MAG-1751-1.1 and MAG-1957-2.1) encoded form I of the CO-242 
dehydrogenase large subunit (coxL). These MAGs were each associated with a particular soil, with 243 
low abundance in the metagenomes of the other sites (Figure 4A). In addition to these three form-I 244 
coxL encoding MAGs, 15 other scaffolds from MAGs containing form II coxL-like genes were 245 
recovered (data not shown), but the function of form II CoxL is not yet known. The arrangement of 246 
genes encoding form I CODH in each of the MAGs is shown in Figure 4B. It should be noted that all 247 
of these three MAGs show the canonical arrangement for the three structural genes of CODH, that is 248 
the MSL genes. The genes encoding the [NiFe]-hydrogenase and its accessory proteins were only 249 
identified in MAG-1957-2.1, and instead only some of the accessory hyp genes were found in the other 250 
two MAGs (Figure 4B). A phylogenetic analysis of the form I coxL genes was performed, showing 251 
they are affiliated with Actinobacteria (MAG-1640-1.1), Nitrospirae Candidatus Manganitrophus 252 
noduliformans (MAG-1751-1.1) and Chloroflexi (MAG-1957-2.1) (Figure 5). This grouping is 253 
consistent with the results of PhyloSift (Figure 2), except for MAG-1751-1.1 where it was loosely 254 
associated with Acidobacteria (although with an amino-acid identity of only 40%) rather than 255 
Nitrospirae. 256 
 257 

 258 
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 259 

 260 
Figure 4. A. Relative abundance of MAG-1640-1.1, MAG-1751-1.1 and MAG-1957-2.1 in sites 1640, 261 
1751, 1957. Bars indicate standard error of triplicates. B. Gene arrangement of the carbon monoxide 262 
dehydrogenase (CODH) and membrane-bound [NiFe]-hydrogenase in MAG-1640-1.1, MAG-1751-263 
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1.1 and MAG-1957-2.1 (* indicates hypothetical proteins; small indicates NiFe-hydrogenase small 264 
subunit and large indicates NiFe-hydrogenase large subunit).  265 
 266 

 267 
Figure 5. Phylogenetic tree of form I carbon monoxide dehydrogenase large subunit (CoxL) of 268 
metagenome-assembled genomes retrieved from Llaima volcano (MAG-1640-2.1, MAG-1751-1.1 and 269 
MAG-1957-2.1) against a reference sequences (with accession numbers included in the tree). The tree 270 
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was drawn using the Maximum Likelihood method using MEGA X [48]. Bootstrap values (500 271 
replications) are shown at the nodes. MAG-1751_1.1 is a partial sequence of the coxL gene. 272 
 273 
3.3.2 Complete metabolic characterization of Ktedonobacterales MAGs  274 
Here we focused on the Ktedonobacterales MAGs because of their apparent importance in early soil 275 
formation. Three Ktedonobacterales MAGs were identified in the 1957 soil metagenomes, but were 276 
not found in the older soils (Figure 2 and 3). Two of the MAGs (MAGs 1957-2.1 and 1957-3.1), 277 
related/affiliated to the class Ktedonobacteria (phylum Chloroflexi), contained genes for the complete 278 
electron transport chain, citric acid metabolism, nitrogen metabolism, sulfur metabolism, several 279 
transporters, the complete gene set for carbon monoxide oxidation (CO dehydrogenase), herbicide 280 
degradation and degradation aromatics as well as the major subunit of the formate dehydrogenase, 281 
and also a hydrogenase. MAG 1957-6.1 (Ktedonobacteria) had very similar pathways as the other 282 
Chloroflexi MAGs, except a step for CO-oxidation and the electron transport chain were absent (Table 283 
2, Table S2, Figure 6).  284 
 285 

 286 
Figure 6. Metabolic reconstruction for some of the most important functions in the 287 

Ktedonobacteria MAGs isolated from the youngest soil using KEGG (More information in Table 2 288 
and Table S2), dashed lines were used for incomplete pathways. Multi-arrows lines indicate several 289 
steps of a pathway.    290 

 291 

4. Discussion 292 

4.1. Characterisation of MAGs 293 

In this study, a characterisation of metagenome-assembled genomes retrieved from Llaima volcano 294 
was performed. This study builds from a previous study [19] in which 16S rRNA gene amplicon-295 
based sequences from those soils were analysed. The main objective of this study was to characterise 296 
genomes from those sites and to analyse the functions of the abundant but the poorly characterised 297 
Ktedonobacteria (phylum Chloroflexi) present at Llaima volcano. The relative abundance of the main 298 
phyla based on classification of scaffolds larger than 500 bp showed that microbial communities 299 
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change as the soils age (Figure S1). This corroborates findings from a previous study [19]. For 300 
example, the relative abundance of Chloroflexi is higher in the younger soils (28% in the youngest 301 
soil to 7% in the oldest soil) and the opposite trend is observed for members of the phylum 302 
Proteobacteria, as their abundance increases as the soil ages (from 42% in the youngest soil to 59% in 303 
the oldest soil) (Figure S1). Except for those related to Firmicutes and Verrucomicrobia, and to a lesser 304 
extent Acidobacteria and Proteobacteria, the extracted environmental genomes had an amino acid 305 
identity > 50% with their closest reference genome (Table S3), which suggest that they belonged to 306 
those genera [53]. 307 

A total of 16 MAGs were recovered from the youngest soil (1957) (Figure 3). This soil is only 308 
partially vegetated (about 5%) by mosses and lichens. The microbial community in this area likely 309 
harbours populations able to grow as facultative chemolithoautotrophs or mixotrophs on carbon 310 
monoxide, hydrogen or methane. This high relative abundance of MAGs with genes for CO and 311 
hydrogen utilization in the youngest soils is consistent with reports by King and colleagues for 312 
Hawaiian and Japanese volcanic deposits (21- to 800-year old sites). For some of those sites, microbial 313 
community structure changed as the soil matured with members of the phylum Proteobacteria 314 
dominating vegetated sites while younger sites were enriched with Ktedonobacteria within the 315 
Chloroflexi and characterized by relatively high rates of atmospheric CO uptake [7,14,54].  316 

MAGs were most abundant in the soil site from where they were retrieved (Figure 3). Relatively 317 
few MAGs were retrieved from the two older soils, which can be explained by the higher diversity 318 
in these soils and the decreased likelihood of recovering MAGs from groups such as Actinobacteria, 319 
Acidobacteria and Chloroflexi that were less common in them. In fact, several of the MAGs retrieved 320 
had a low relative abundance within the soils (Figure 3), which is consistent with their relative 321 
abundance of 16S rRNA genes in these soils [19]. Binning at the strain level remains a technical 322 
challenge [55], with the chances of retrieving MAGs at a given sequencing effort being reduced with 323 
increasing microdiversity (intra-population genetic diversity) and overall community diversity [56]. 324 
We previously reported that as the soil recovered and vegetation established, the microbial 325 
population appeared to enlarge and become more diverse [19], which explains the lower number of 326 
MAGS retrieved from more mature soil (1640 sample), compared to the younger sites (1957). 327 

4.2. Metabolic characterisation of MAGs 328 
The three MAGs containing form I coxL genes were found in an operon structure (Fig. 4B) typical 329 

of known CO oxidizers [41]. Form I coxL has been definitively associated with CO oxidation at high 330 
concentrations and also at sub-atmospheric levels [41]. Thus, even at low abundance, the presence of 331 
these cox-containing MAGs strongly suggests a capacity for atmospheric CO uptake at all the sites.  332 

Most of the complete functions found from the Ktedonobacteria MAGs were also found in three 333 
reference genomes: Ktedonobacter racemifer DSM 44963 [51], Thermogemmatispora carboxidivorans PM5, 334 
isolated from a geothermal biofilm on Kilauea Volcano, Hawaii (USA) [50] and Dictyobacter volcani 335 
W12 [52]. According to our genomic analyses, all of these reference strains possess formate-, H2-, and 336 
CO-dehydrogenases as do the MAGs recovered in the present study. Burkholderia strains (phylum 337 
Proteobacteria) [57], members of the phylum Chloroflexi [14] and other members of the phyla 338 
Proteobacteria and Actinobacteria [58] have also been reported as CO-oxidisers in Hawaiian volcanic 339 
deposits. coxL genes encoding the large subunit of the CO dehydrogenase have been found in 340 
Proteobacteria species from Kilauea and Miyake-jima volcanoes [10,14,54].  341 

The taxonomies of MAGs 1640-1.1 and 1957-2.1 were consistent for coxL (Figure 5) and 342 
phylogenomic analyses (Figure 2). In contrast, MAG-1751-1.1 clustered weakly with Acidobacteria 343 
based on genomic analysis (40% amino acid identity with a reference genome, see Table S3) but did 344 
not cluster with Candidatus Manganitrophus noduliformans as did the coxL sequence from this MAG.  345 

Several strains from the class Ktedonobacteria have been isolated from different environments 346 
(Table S4), but only Dictyobacter vulcani W12 [52] and Thermogemmatispora carboxidivorans PM5 [50] 347 
have been isolated from volcanic environments. So far, the class Ktedonobacteria contains only six 348 
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genera and fifteen formally proposed species. Out of the 15 type strains, 11 genomes are available on 349 
RefSeq (Table S2). The order Ktedonobacterales contains the type strains Ktedonobacter racemifer 350 
SOSP1-21T [51,59], Dictyobacter aurantiacus S-27T [60], Dictyobacter vulcani W12T [52], Thermosporothrix 351 
hazakensis SK20-1T [61], Thermosporothrix narukonensis F4T [62], Ktedonosporobacter rubrisoli SCAWS-352 
G2T [63], Tengunoibacter tsumagoiensis Uno3T, Dictyobacter kobayashii Uno11T and Dictyobacter alpinus 353 
Uno16T [64]. The order Thermogemmatispora contains the species Thermogemmatispora aurantia A1-2T 354 
[65], Thermogemmatispora argillosa A3-2T [65], Thermogemmatispora onikobensis NBRC 111776 355 
(unpublished, RefSeq Nr NZ_BDGT00000000.1), Thermogemmatispora onikobensis ONI-1T [66], 356 
Thermogemmatispora foliorum ONI-5T [66] and Thermogemmatispora carboxidivorans PM5T [50]. All of 357 
those genomes contain the complete gene set for carbon monoxide oxidation (CO dehydrogenase), 358 
as well as formate dehydrogenases, and a H2 dehydrogenases (Table S4). Our study particularly 359 
brings more insights into the role that early colonisers of this group from volcanic soils may have in 360 
the development of soils. 361 

The large subunit of the NAD-reducing hydrogenase was also found in several MAGs (Table 2). 362 
Hydrogen metabolism has been shown to provide an additional energy source for some 363 
microorganisms and has been observed in bacteria and archaea [67]. Hydrogen dehydrogenases have 364 
also been found in members of the genus Cupriavidus (phylum Proteobacteria) from volcanic 365 
mudflow deposits in the Philippines suggesting their potential contribution to hydrogen uptake [68]. 366 
 367 

4. Conclusions 368 
This study is further evidence that poorly characterised groups such as Ktedonobacteria, 369 

establish in remote volcanic sites and may use reduced gases for growth. Further studies are needed 370 
to demonstrate the activity of these pathways and their significance in volcanic deposits. 371 
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