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Abstract 

Proteins that drive processes like clathrin-mediated endocytosis (CME) are expressed at various copy 

numbers within a cell, from hundreds (e.g. auxilin) to millions (e.g. clathrin). Between cell types with 

identical genomes, copy numbers further vary significantly both in absolute and relative abundance. 

These variations contain essential information about each protein’s function, but how significant are these 

variations and how can they be quantified to infer useful functional behavior?  Here, we address this by 

quantifying the stoichiometry of proteins involved in the CME network. We find robust trends across three 

cell types in proteins that are sub- vs super-stoichiometric in terms of protein function, network topology 

(e.g. hubs), and abundance. To perform this analysis, we first constructed the interface resolved network 

of 82 proteins involved in CME in mammals, plus lipid and cargo binding partners, totaling over 600 

specific binding interactions. Our model solves for stoichiometric balance by optimizing each copy of a 

protein interface to match up to its partner interfaces, keeping the optimized copies as close as possible 

to observed copies. We find highly expressed, structure-forming proteins such as actin and clathrin do 

tend to be super-stoichiometric, or in excess of their partners, but they are not the most extreme cases.  

We test sensitivity of network stoichiometry to protein removal and find that hub proteins tend to be less 

sensitive to removal of any single partner, thus acting as buffers that compensate dosage changes.  As 

expected, tightly coupled protein pairs (e.g. CAPZA2 and CAPZB) are strongly correlated. Unexpectedly, 

removal of functionally similar cargo adaptor proteins produces widely variable levels of disruption to the 

network stoichiometry. Our results predict that knockdown of the adaptor protein DAB2 will globally 

impact the stoichiometry of most other cargo adaptor proteins in Hela cells, with significantly less impact 

in fibroblast cells. This inexpensive analysis can be applied to any protein network, synthesizing disparate 

sources of biological data into a relatively simple and intuitive model of binding stoichiometry that can aid 

in dynamical modeling and experimental design. 
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Introduction 

The copy numbers of distinct proteins have now been counted for a number of single cells1-5 and tissues6,7, 

where abundances can vary per cell type by at least 6 orders of magnitude. This protein copy number data 

is a valuable resource for identifying function and phenotype per cell. Highly abundant proteins,  such as 

the chaperone ATPase HSC70, often exhibit broad functionality8. Protein copy numbers or expression 

profiles indicate variations from cell-type to cell-type, or between healthy and diseased cells9, where the 

genes that encode specific proteins are otherwise identical. However, pair correlations only scratch the 

surface of the information available. The relative abundance of proteins reflects a network of 

relationships. Can we use such a network description to capture the higher order connectivity and thus 

quantify the significance of copy number variations on function? In clathrin-mediated endocytosis (CME), 

an essential process for transport across the plasma membrane10-14, clathrin is a highly abundant protein, 

but it has dozens of binding partners that could leave it in short supply. Some proteins, such as dynamin 

3, are only expressed in a subset of mammalian cell types, but given that dynamin proteins are encoded 

by three genes, the two other genes could compensate for this shortage. Here, we quantify the relative 

stoichiometry of proteins in CME using a mathematical optimization that integrates both the protein 

network and the known copy numbers of proteins, identifying which proteins are in excess supply (super-

stoichiometric), relative to their partners, and vice-versa (sub-stoichiometric). Coupled with 

computational ‘knockdowns’ of each protein, this approach allows us to identify strongly correlated 

partners and protein clusters, determine trends in stoichiometry across cell types, and predict how 

experimental knockdowns may impact binding interactions in CME.    

 Stoichiometric balance is a simple but useful way to define a quantitative model of relative 

protein copy numbers. For obligate multi-protein complexes in stoichiometric balance, each protein 

subunit is expressed at copy numbers relative to their stoichiometry in the complex. That is, if each subunit 

binds 1:1, they would all have identical copy numbers. The largest benefit of stoichiometric balance is an 

improvement of complex yield, as subunits are not sequestered in incomplete complexes15-17. With all 

interfaces matched up to a partner, perfect balance also minimizes the formation of mis-interactions that 

can result from leftover subunits that assemble in nonfunctional complexes due to the sticky hydrophobic 

surfaces of proteins18-20. Experimental evidence supports stoichiometric balance for proteins involved in 

highly stable complex formation2,21,22. We recently extended this idea of stoichiometric balance to larger 

networks where each protein may have interfaces with multiple competing partners23. For large reversible 

networks to be in balance, each interface of a protein would be expressed to match (by summing over) all 

of its partner interfaces. Applied to the CME network in yeast, this study found that the proteins in CME 
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are largely in stoichiometric balance, judged relative to randomly sampled copy numbers, while specific 

classes of proteins, like enzymes, are sub-stoichiometric23. The motivation for stoichiometric balance 

applied to large networks is similar as for obligate complexes—one can directly quantify when specific 

proteins deviate from this simple underlying model that maximizes matched protein complexes. Hence 

this optimization problem is not a black box: each prediction of stoichiometry can be traced back to a 

protein’s network of partners and copy numbers to determine why observed copy numbers are sub- or 

super-stoichiometric relative to perfect balance.   

Our model of stoichiometric balance asserts that perfect balance of each binding interface to its 

partners is optimal. We thus include in our interpretation of the balanced solutions the more complex 

hypothesis that perfect balance can be suboptimal. For example, the model effectively ignores that some 

binding interactions are weak and are not designed to be in permanent complex with a partner. Many of 

the protein-protein interactions (PPIs) that drive self-assembly, including those in CME, have affinities of 

only micromolar strength [see e.g.24 and refs within], and super-stoichiometric proteins would help drive 

binding and total complex yield. The model further assumes a static picture of all complexes being formed 

simultaneously, lacking spatial control of protein interactions25,26 or temporal sequences of binding 

events10,25. In the dynamic cell environment, proteins that are sub-stoichiometric can help control signal 

transduction and cell fate by selectively activating only one of many partners27. Strategic imbalances in 

copy numbers can also dramatically improve assembly yield28, by preventing sequestration of subunits in 

mis-interacting intermediates. In a kinetic model of clathrin vesicle formation in yeast, our recent study 

found that stoichiometric balance of adaptors to clathrin would produce faster vesicle formation relative 

to observed copy numbers23. However, one possible benefit for the observed imbalances is that by 

keeping adaptors at sub-stoichiometric levels, they can more effectively tune where and when clathrin 

targets the membrane, acting as gatekeepers for the speed and success of vesicle formation23. Hence, we 

will interpret sub and super-stoichiometric proteins in our network in terms of the both the costs and 

potential benefits provided by their mis-matched abundances.    

CME involves dozens of components performing the stochastically orchestrated assembly of a 

protein coat for the purpose of capturing and internalizing cargo across the plasma membrane. Without 

an objective and quantitative framework for integrating the distinct protein copy numbers and hundreds 

of protein interactions, it is incredibly complicated to interpret the role of individual proteins or 

interactions in CME. The assumption of stoichiometric balance reduces the information required to 

assemble a complex network to the point that it can be reliably filled in by available experimental 

biochemical information. Ideally, we would model this process using physical laws that yield spatial and 
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temporal resolution. Such dynamical modeling could predict detailed mechanisms, such as how uptake of 

hundreds of potential cargo proteins (e.g. G-protein coupled receptors (GPCRs) or the transferrin 

receptor) is controlled by the network of dozens of cytoplasmic proteins. However, this is currently 

intractable, given the sheer number of components and interactions, coupling to cytoskeleton10,29-33, 

membrane bending and vesicle fission34-36, and connection to downstream steps in vesicle trafficking. 

Modeling efforts have nonetheless been critical in helping quantify requirements for clathrin-cage 

assembly23,37-42, the role of the cytoskeleton33,43,44, the impact of dimensionality reduction on 

assembly23,24, and the mechanical coupling to the membrane45-47. Although the sequence of events in CME 

have been broadly defined10 (including initiation by localization of adaptors, recruitment and assembly of 

the clathrin lattice, and concurrent bending of the membrane), computational approaches such as ours 

help to predict how perturbations to single components or subsets of components will propagate 

throughout the network. Based on previous work10,11,48 the 82 proteins we define here are significant 

contributors to CME in mammalian cells. Moreover, they can be usefully classified, according to their 

established role in CME, as cargo adaptors, enzymes, structural or scaffold proteins, and cytoskeletal 

components. We expand our network to the membrane to include specific lipids and internalized 

cargo/receptors, as internalization constitutes the fundamental purpose of CME. The composition of the 

plasma membrane lipids impacts the membrane’s mechanical properties, but also directly controls 

recruitment of cytosolic proteins to the surface, particularly via negatively charged phospholipids. Further, 

membrane composition can be dynamically altered by enzymes that metabolize lipids, including 

phosphatidylinositol (PI), phosphatidylinositol-5,6-biphosphate (PI(4,5)P2), and later in vesicle uncoating, 

phosphatidylinositol-3,4-bisphosphate (PI(3,4)P₂). Sorting signals specify cargo internationalization by 

adaptor proteins, which couple clathrin cages to both phospholipids and cargo49. We show below that 

these functions often directly correlate with our measured stoichiometric balance, even when using copy 

numbers from three distinct cell types2-5.  

A critical ingredient to stoichiometric balance analysis is that the protein interactions of the 

network must be resolved at the level of molecular interfaces. This level of detail is necessary to capture 

the ability of proteins both to compete for binding through shared domains and bind simultaneously 

through distinct domains. The construction of this network is laborious and although automated 

predictive resources exist50,51, they are susceptible to false positives and negatives.  We assembled this 

interaction network for proteins involved in mammalian CME using the wealth of research detailing their 

domains, binding interactions, biochemistry, dynamics, and function (Table S1-S3). Our network 

integrates previous work annotating the domain specific binding partners of essential components such 
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as the adaptor protein AP-252-54 and clathrin55, with a comprehensive literature curation of 82 proteins 

collected from three studies of systems-level CME10,11,56, plus lipid and cargo binding partners49,57. These 

structurally resolved networks, on their own, provide a rich resource for studying specificity and evolution 

in protein interactions 23,58-61, and are essential for constructing dynamical models of the processes, as has 

been done for yeast CME23,56 and ErbB signaling27. Networks further act as maps that suggest pathways of 

connection and communication, highlighting, in this case, that not only proteins, but very specific 

interfaces mediate a majority of protein interactions.  This map can therefore be useful for designing 

mutations or tracking how disease mutations at a specific interface might disrupt global function51.  

Our approach here is complementary to dynamical models42,62, as it can be easily applied to large 

networks containing hundreds of interactions23, requires almost no parameterization (e.g. no biochemical 

data required), and provokes unique threads of questions about the relationships between proteins. The 

calculations are also highly efficient, taking seconds on a CPU, allowing for systematic perturbations to 

the network of components or their copies, across distinct cell types, with minimal expense. For example, 

we ask: is clathrin present in excess in the cell, like a pool available to function whenever it is needed? Are 

enzymes abundant and balanced in the network? Are there more adaptor proteins than available binding 

sites on the membrane? How do the copies of cargo add up relative to their targeting adaptor proteins? 

Do knockdowns (KDs) or removal of each protein result in localized or global perturbations to the 

stoichiometric balance and thus complex formation throughout the protein network? Rather than 

undergoing an extensive experimental pursuit to silence a gene encoding a CME protein i.e. siRNA, we 

show that KDs can be mimicked computationally to study their predicted effects on CME copy number 

distributions.  

            In this paper, we first introduce the mammalian proteins and their interface-resolved interaction 

network constructed here using protein structures, PPI databases63, and manual literature curation. We 

perform a structural and functional characterization of this network that highlights the high specificity of 

binding interfaces, the redundancy of domain interactions, the capacity to assemble large multi-protein 

complexes through multi-valent proteins, the presence of regulatory interactions, and the tight 

connection to the membrane via direct protein-lipid interactions.  We then provide a toy example to 

illustrate the stoichiometric balance concept, before applying it to the copy-numbers observed in three 

cell types: a rat synaptosome, a mouse fibroblast, and a human epithelial (HeLa) cell. We perform this 

stoichiometric balance analysis to the full network, to the network without lipids and cargo, and to the 

network as each protein is removed or ‘knocked down’. We determine which proteins are most sensitive 

to knockdown of others, and how this varies by network connectivity (i.e. hub proteins). Comparisons 
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across cell-type are powerful for identifying trends, as abundances change but the network is highly 

conserved.  Importantly, with each perturbation to the network, we can quantify changes to the full 

network of protein stoichiometry, without needing to focus on the response of a specific protein or 

observable. We discuss the role of sub-stoichiometric proteins as gatekeepers, controlling when and 

where cargo uptake occurs. Additionally, chemical modifiers (like kinases), whose interactions are 

transient but whose changes are long-lived, may be optimal when sub-stoichiometric. We discuss the role 

of super-stoichiometric structural proteins as large reservoirs that are readily available when needed. 

Finally, we conclude with the future directions made possible by the datasets generated and analyses 

performed here.   

 

  

RESULTS AND DISCUSSION 
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Figure 1. Domain architecture of 82 CME proteins in our human interface-resolved protein network. 

Information on domains was curated from SMART64 and low-throughput studies. The colored dot next to 

each protein name indicates the class to which we have assigned it: the central AP-2 adaptor subunits in 

mustard yellow, other cargo adaptor proteins in pink, kinases in dark blue (which act on proteins and 

lipids), phosphatases in light blue (which act only on lipids), dynamins in gray (necessary for vesicle fission), 

enzyme co-factors of the ATPase chaperone protein HSC70/HSPA8 in purple (needed for disassembly of 
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cages), and a class of highly-expressed proteins in green. Protein length is scaled to reflect residue length, 

with distinct domains shown in colors, including structured domains and short linear motifs that mediate 

binding. Red outlines indicate domains that are not present in our network, as they were not assigned any 

interacting partners. Domains are colored: SH3 (blue), PRD (pink), lipid binding (green), coiled-coil 

(yellow), other structured (brown). Red boxed domains are not in our interface-resolved network due to 

lack of interaction partners.   

 

The CME proteome is well defined structurally and functionally from extensive literature 

We selected the 82 proteins in our CME cytoplasmic proteome (Fig 1) using a previously curated yeast 

CME interactome 65, live-cell studies 10,66, and comprehensive reviews 11. We classified these proteins and 

colored them in the figures of this paper according to their primary known function in CME (Fig 1). Because 

the physiologic purpose of CME is to internalize transmembrane receptors or cargo across the plasma 

membrane, our full network includes key plasma membrane lipids and transmembrane protein targets, 

visible as the bottom row of nodes in Fig 2. We define nine types of  transmembrane receptor/cargo, each 

of which is selected by (bound to) one or more cargo adaptors for inclusion into clathrin-coated vesicles 

(Table S1) 49,57. In our classification scheme, we separated the central adaptor AP-2 (mustard yellow) from 

the other cargo adaptors (pink), because functionally, it is the most essential adaptor, without which 

uptake is drastically reduced67, and topologically, it is a heterotetramer (encoded in 5 genes—two for the 

alpha adaptor, Fig 1) that acts as a hub in the network. The lipids are required for the actual localization 

of cytoplasmic proteins to the membrane surface, where PI(4,5)P2 is essential68. Alternative to our 

functional classification, CME proteins can be classified based on their arrival time at sites of CME10,11,69. 
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Figure 2. The interface-resolved PPIN for our mammalian CME proteome indicates extensive and 

redundant capacity to assemble and localize to the membrane.  (A) The CME PPIN includes the 82 proteins 

from Fig 1, as well as 5 distinct lipids and 9 classes of transmembrane receptors or cargo along the bottom 

row.  The box contains the set of proteins that directly bind to lipids and cargoes. Proteins that do not 

bind to lipids nor cargoes are located directly above the dashed black box. Unique interfaces are shown, 

color-labeled according to interface type. Red edges indicate enzymatic reactions, and blue edges indicate 

some conditionality or regulation of the interaction. Purple edges are isoform specific. (B) Map of 

interface-resolved PPIs in the network. When separated from the parent proteins, the interface-

interaction network (IIN) illustrates the selectivity of binding pairs, visibly encoded in modules of pair, 

square, and hub motifs. BAR: Bin-Amphiphysin-Rvs domain; CC: coiled coil; Clat.: clathrin-box motif that 
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mediates binding interaction with clathrin heavy chain; DPF: Aspartic Acid(D)-Proline(P)-Phenylalanine(F) 

motif; DPW: Aspartic Acid(D)-Proline(P)-Tryptophan(W) motif; EH: Eps15 Homology; NPF Asparagine(N) 

Proline(P) Phenylalanine(F) domain; F-BAR: FCH(F)-Bin-Amphiphysin-Rvs domain; ENTH/ANTH: Epsin N-

terminal Homology/AP180 N-terminal Homology domain; Glob.: globular domain; PH: Pleckstrin-

Homology domain; SH3: SRC Homology 3 domain PRD  Proline Rich Domain; SLIM: short linear motif; 

μHD: mu-homology domain.  

 

The CME interface-resolved network can be constructed from semi-automated and manual curation 

We constructed the interface-resolved network (Fig. 2) with the proteins shown in Fig 1 by downloading 

all documented protein-protein interactions from databases BioGrid63, IntAct and Mentha, and assigning 

interfaces to each interaction if sufficient information was available. In Methods, we detail all steps taken 

to construct this interface resolved network of binding interactions (see the flowchart in Fig S1), including 

the addition of protein-lipid (previously compiled here in ref24) and protein-cargo interactions49,57,70, as 

well as justification and confidence levels of our assignments. Although we added some interactions due 

to literature reports and homology, information was sometimes insufficient to add all possible 

homologous interactions. This results in some differences between homologs, for example the 

interactome of EPN3 and EPN1 are not identical, nor is CLTCL1 and CLTC. While this may be functionally 

accurate, it may also indicate a lack of independent studies or any additional support for us to make 

corresponding assignments. Hence, we acknowledge that our network is likely not the complete picture 

of the CME interactome. The proteins and copy numbers are compiled in Table S1, the binding domains 

in Table S2, and the full interface resolved network in Table S3.    

 

The interface-interaction network has a topology optimized for binding specificity  

Our network has characteristics previously demonstrated to be beneficial for binding specificity, indicated 

directly by how the interface-interaction network (IIN) in Fig 2B breaks into islands or modules by interface 

type. This includes a module mediated by Src Homology 3 (SH3) and Proline-Rich Domain (PRD) 

interactions (orange and pink module, Fig. 2B) that we discuss further below.   This modularity is expected 

due to constraints on evolving interfaces both for specific interactions and against nonspecific 

interactions18,20,58, which further constrains the protein network59. The network topology displays an 

abundance of hub and square motifs59, in addition to pairs (bottom, Fig. 2B). We defined 28 classes of 

interface types, some of which are structured domains (e.g. SH3, BAR), but the majority of which represent 

short linear interaction motifs (SLIMs), such as PRDs and NPFs. SLIMs are typically within disordered or 
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unstructured regions of proteins, although they may adopt folds upon binding71 (Fig. 2B). The modules do 

not all separate cleanly, and the bridging nodes often have unusual binding or regulatory behavior. For 

instance,  SH3BP4 has an SH3 domain that binds the YXXØ cargo peptide, connecting the SH3-PRD module 

to modules on the upper left. This upper left corner also contains a white PH domain that brings together 

multiple modules. The PH ear-domain of NECAP1 displays significant promiscuity in the types of partners 

it binds, including SLIMs, linker regions, the clathrin-box motif of AP2B1, and the AP2M1 subunit. This 

promiscuity allows NECAP1 to localize to sites of CME, and then act as a negative regulator of AP-2 

activity72. 

 

The CME network partitions via connectivity to the membrane 

By arranging our network with the membrane cargo and lipids along the bottom, we can clearly 

see the extent to which the cytoplasmic proteins in CME directly localize to the membrane surface, as 

indicated by the boxed region in the center (Fig. 2A). These proteins also contain large numbers of PPIs, 

allowing them to form a large variety of connected networks with multiple links to the membrane surface. 

The links are typically weak, which allows them to dynamically remodel throughout the formation of the 

clathrin coat, behaving in a manner similar to liquid droplets73 74. By localization to the membrane, these 

proteins can also exploit dimensionality reduction in what is effectively the 2D space of the surface, which 

stabilizes their interactions either with other proteins or to the surface, allowing proteins to nucleate 

complexes at much lower concentrations than are required in solution24. The interconnectedness and 

redundancy in this network is one reason why making predictions about knockdowns of CME proteins is 

challenging. The composition of adaptors and accessory or scaffold proteins per clathrin-coated vesicle is 

not unique. Apart from clathrin being essential, and AP-2 is reliably present, cargo compositions vary75.  

The top tier of proteins, including clathrin, connect to the membrane only indirectly via protein-

protein interactions. Because clathrin does not interact directly with the membrane, it uses its three n-

terminal ‘feet’ to bind to one each of 14 possible distinct adaptor or accessory proteins, 13 of which also 

directly interact with membrane lipids (Fig. 3C excluding non-adaptor proteins OCRL, GAK and DNAJC6).  

The Venn diagram in Fig. 3C highlights how many proteins that bind to clathrin also bind the adaptor AP-

2, membrane lipids, and cargo, numbering 10. Another large cluster of 7 proteins binds both AP-2 and 

lipids, whereas we found only one protein, HIP1R, which binds to clathrin and lipids but not AP-2. Thus, 

almost all lipid binding proteins that bind clathrin also bind AP-2, but the reverse is not true. All cargo 

binding proteins localize to the membrane via either direct lipid binding or via interactions with AP-2, with 

SH3BP4 being the only exception; SH3BP4 binds the transferrin receptor in a nonstandard way, using an 
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SH3 domain76.  The lipid binders that are independent of AP-2 and clathrin are almost all either lipid 

phosphatases or BAR-domain containing77,78 curvature sensors/inducers. The dynamin proteins, despite 

their centrality to CME34, do not directly bind either clathrin or AP2, as we discuss further below.  

 The remaining components of the top-tier that are not part of our defined AP-2/Clathrin/cargo 

core (Fig. 3C) are primarily associated with the actin cytoskeleton. In fact, of the cytoskeletal components 

in our network, only CORO7 and MYO6 directly interacts with AP-2 or clathrin. Instead, the cytoskeleton 

most directly links to the central CME machinery via the 3 dynamins. Dynamins bind directly to the 

essential cytoskeletal actin proteins ACTB and ACTG, which are also network hubs. The cytoskeletal helps 

to bend the membrane in CME, although in mammalian cells it is not required79.   

                                                                                                                                                                                                                                                    

 

 
Figure 3. Domain types and interaction pairings in the network are dominated by binding mediated by 

short linear interaction motifs (SLIMs) (A) The types of interaction pairings in the human CME network. 

PRDs, SLIMs, NPF, and Clat. categories all involve SLIMs binding to structured/globular domains. (B) 
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Prevalence of domain types across all human CME proteins. Counts generated if protein has at least one 

domain of each type present in the CME IIN. Appendage binding, PRD, clathrin-box, NPF, DPF, acidic 

motifs, DPW are all SLIMs, (C) The majority of proteins in the network bind to at least one of the 

functionally critical components of the AP-2 complex, clathrin triskelion, lipid, and/or cargo. Proteins that 

are not present in this core set are cytoskeletal. (D) Interface-interaction composition profile of human 

CME proteins, listed alphabetically along the x-axis. Counts generated if protein contains either domain 

involved in interface-interaction listed. Self-interactions were counted once. Domain names are defined 

in Fig. 2. 

 

   

 

The majority of binding interactions are mediated by weak or transient connections involving a short 

linear motif 

 We defined 11 major interface-interaction classes based on the interface present in our network (Fig. 3).  

Of the 617 interactions present in the IIN, more than half involve SLIMs (Fig 3A). Of the categories we 

classified, PRD, Asn-Pro-Phe (NPF) motifs, and Clathrin binding motifs (listed as Clat.) are all SLIMs, as are 

those included in the general SLIM-Glob. (short for Globular) category such as acidic, Asp-Pro-Phe (DPF), 

Asp-Pro-Trp (DPW), coiled-coil (CC), linker, and ubiquitin-interacting motifs (UIM). The most common 

specific interaction pairs are the PRDs binding to the structured SH3 domains (Fig. 3A).   

A hierarchy of connections connect clathrin with the membrane. Most CME proteins have 

domains that mediate interactions with AP-2, clathrin-box motifs, and SH3 (Fig. 3B). Of the 31 PRD- and/or 

SH3-containing proteins, 11 (AMPH, BIN1, DAB2, DNM1/2/3, HIP1R, ITSN1, MYO1E, NUMB, and SGIP1) 

contain lipid-binding interfaces. SH3-containing proteins mediate low-affinity hydrophobic interactions 

with KDs ranging from 1-10𝜇M80. Interactions between the AP-2 appendage domains and the SLIMs that 

bind to it are also typically in the 𝜇M regime52,53 (see Table S2). These low affinity interactions allow for 

the rapid assembly and disassembly of transient complexes and clusters, as has been shown for the 

FCHO1-EPS15 interactions that nucleate sites of clathrin-coated pits73,74,81.  

 From the same interaction composition profile, we observe proteins that mediate much fewer 

interactions often conduct specific roles in phosphorylation or assembly of higher-order protein 

complexes (Fig. 3D). For example, ARPC2 and ARPC5L operate only as subunits of the larger ARP2/3 

complex hence their PPIs are only mediated with other ARP2/3 subunits. BMP2K, PI4KA, and PIP5K1C are 

kinases that mediate just two, if not one, binding interactions (Fig. 2A, 3D). The behavior of kinases is 
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distinct, performing nearly irreversible modifications that usually influence binding of subsequent 

proteins. Their involvement in the CME network is much less pronounced than in a signaling network23,27. 

The most significantly connected enzymes in the CME network are lipid phosphatases, which can regulate 

the stickiness and mechanical properties of the plasma membrane82,83. 

 

Dynamin centers a module that is differentiable from the AP-2/Clathrin/Cargo module 

The interaction composition profiles for dynamin proteins, DNM1/2/3, are overrepresented by SH3-PRD. 

For 43 of 53 total interactions mediated by DNM1 and 65 of 74 interactions by DNM2, respectively, ~81% 

and ~88% of their interactions are mediated by the multiple PRD motifs within dynamin, driving their high-

ranking in protein connectivity (Fig 3D). Dynamins contain  no SH3 domains themselves, but use their PRDs 

to bind SH3 containing partners and use their GTPases activity to induce vesicle fission of clathrin-coated 

pits35. Dynamins provide a hub of a distinctive module of the CME network because they do not bind AP-

2 or clathrin. Instead, they exert their influence on the CME stages via lipid-binding, acting as hub proteins 

to connect to several other exclusively lipid-binding proteins like SH3-containing endophilins and formin-

binding proteins, as well as cytoskeletal proteins (Fig 3C). They thus play a central role in reshaping the 

membrane during invagination35. 

 SH3-PRD domain interactions thus act as another way to usefully partition the CME proteins by 

how they connect between the dynamin and AP-2/clathrin/cargo module.  The SH3-PRD interactions are 

not used by AP-2 or clathrin, neither for cargo nor lipid binding (except SH3BP4).  They cluster with lipid 

binding (endophilins and formin binding proteins) and cytoskeletal proteins (WAS, WASL, MYO1E, CTTN, 

DBNL). We can define distinct classes of proteins that crossover between the AP-2/clathrin/cargo module 

(Fig 3C) and the SH3-PRD module. The proteins DAB2, NUMB, SYNJ1, OCRL, SGIP1, and HIP1R all connect 

to the AP-2/clathrin/cargo module and have PRDs.  The proteins AMPH, Bin1 (amphiphysin II), SNX9 and, 

SGIP1 all connect to the AP-2/clathrin/cargo module and contain BAR domains and SH3 domains. Finally, 

intersectins (ITSN1 and ITSN2) connect to both modules and are unique in also containing EH domains 

that bind to several other adaptors, providing direct links to AP-2, other adaptor proteins, dynamins, and 

links to the cytoskeleton.  
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Figure 4. Illustration of the Stoichiometric Balance Optimization of Protein Networks (SBOPN) model 

applied to an interface-resolved network with observed copy numbers. (A) A simplified network diagram 

that contains four proteins, differentiated by color, where the central protein has two interfaces, and is 

thus capable of multi-component assembly. In the network, interfaces represented by black dots can only 

bind to their partners if their shapes are compatible, as reflected in nature where protein binding involves 

conformational and chemical compatibility. Edges represented in black lines denote binding interactions. 

Observed copy numbers for each protein are shown in white/black text. (B) The observed copy numbers 

are unbalanced: several interfaces are unmatched. Note here that the square proteins compete for the 

same binding interface. Stoichiometric balance (SB) is achieved if all interface copies are matched to their 

partners and there are no leftovers. Here, the SBOPN algorithm removes an extra copy of the hub protein 

and adds two additional copies of the droplet-shaped protein to completely match all interfaces. To 

quantify SB, we calculate SB ratio = observed copies/balanced copies, as illustrate in the last column of 

the table (Eq 1). We note that for multi-interface proteins (i.e. the blue one), not all interfaces must appear 

at the same copy number. When calculating SB ratio for a protein, we thus use the copies averaged across 

all interfaces. 

 

Measuring stoichiometry of components highlights the broad distribution of single-cell protein 

abundances 
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We quantify stoichiometry by integrating the interface-resolved protein network with copy 

numbers derived from single cell types2,3. The model we use defines stoichiometrically balanced copy 

numbers as matching up each copy of an interface to one of its partners23. The model thus solves for an 

optimal equilibrium distribution of bound complexes in the limit that all binding interactions are equally 

strong. We constrain the balanced copy number solutions to be as close as possible to the observed, real 

copies for a protein.  For multi-interface proteins, we further constrain each domain within the proteins 

to have similar copy numbers (i.e. a specific protein should not have 1 million copies of one domain, and 

only 10 of another); we allow variance due to known fluctuations in protein copy numbers1. The model is 

solved using nonlinear optimization performed by the SBOPN method (Stoichiometric Balance Optimized 

for Protein Networks), which takes <1 second (see Methods) 23.  To illustrate, we show a simple IIN in Fig. 

4A with observed protein copies listed.  We then apply the SBOPN method, resulting in a solution of 

balanced copy numbers (Fig. 4B). We define the stoichiometric balance ratio, or SB ratio, of a protein p as 

the ratio between observed (Cobs) and balanced (Cbalanced) copy numbers, which determines whether a 

protein is sub- or super-stoichiometric.  

𝑆𝐵! =
"!"#(!)

""$%$&'()(!)
  Eq. 1 

Perfectly stoichiometric proteins thus have an SB ratio of 1. Proteins that have too few observed copies, 

or are in demand, are sub-stoichiometric (SB ratio<1) Proteins with too many observed copies, or have 

excess supply, are super-stoichiometric (SB ratio>1).   

           The observed copy numbers for the HeLa cell type, shown in Fig. 5A, span multiple decades, from 

high pM for dynamin1 to >10𝜇M for cofilin, with the central lipids PI(4,5)P2 and 

Phosphoinositide/Phosphoserines reaching even higher concentrations. Although lipids and cargo are 

restricted to the 2D membrane, we can define their concentration via copies/cell volume to enable 

interface matching in the SB analysis.  These copy numbers are averaged across two studies, with high 

correlation (R=0.83) between the studies (Fig. S2).    We note there is a distinction in whether a protein 

has zero observed copies, or whether the number of copies is unknown. Proteins with unknown copy 

numbers remain in the network and are subject to stoichiometric balancing, but without any constraint 

on their target copy numbers. Those proteins not observed in a given cell type (according to the Human 

Protein Atlas and the Proteomics DataBase) are removed from the network for that cell type, given that 

they are not expressed (see Methods, Table S1).  Importantly, the optimal SB for any protein in a network 

depends on the global network and copy numbers, and thus will vary by cell type and with addition or 

deletion of nodes to the network. We provide all code and input files for this analysis at 

github.com/mjohn218/StoichiometricBalance, including code for systematically simulating knockdowns.  
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Figure 5:  CME protein copy numbers in HeLa cells span decades, but balanced copies show functional 

and topological trends.  A) Proteins, lipids, and transmembrane cargo are colored according to our 

classification scheme shown in the legend, and sorted here along the x-axis by copy number. The green 

class was designed to capture the most highly expressed cytosolic proteins, shown as a cluster on the 

right-hand side. EPN3 is included in the SB analysis, although its copy numbers are unknown. Seven 

proteins were removed from the network for having zero expected copies in HeLa (AMPH, CORO6, DNM3, 

SGIP1, SNAP91, WAS, CARGO_SYT1). B) After applying SBOPN, the SB ratios do show correlation to the 

observed copy numbers: proteins left of 1on the x-axis are sub-stoichiometric and tend to have low 

concentrations (R=0.45). Highly expressed proteins are more likely to be stoichiometric, or super-

stoichiometric (green cluster). C) By sorting the proteins according to increasing SB ratio, we see that the 

cargo adaptor proteins are nearly all super-stoichiometric, or expressed at higher levels than they are 

‘needed’. D) The SB ratios also show correlation with the connectivity or edge numbers per protein, but 

in a volcano shape. Highly connected proteins tend to be stoichiometric, whereas proteins with fewer 

connections span the full range of SB ratios.   
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Stoichiometric Balance ratio correlates with abundance and network connectivity 

We find that the correlation of high protein abundance with super-stoichiometry is significant, with 

R=0.45 (Fig 5B). While this is perhaps not surprising, our network analysis also identifies highly expressed 

proteins that are not super-stoichiometric, due to, for example, their large number of interaction partners. 

We find that the strongest predictor is that proteins with low expression levels are sub-stoichiometric. 

This is true of all the kinases and phosphatases in the network, all of which exhibit concentrations <100nM. 

The concentration of kinases is especially low.  The co-factors auxilin (DNAJC6) and GAK, of the chaperone 

HSC70 (HSPA8), are both sub-stoichiometric, particularly auxilin which is present at only a few hundred 

copies. Their highly mismatched stoichiometry is exacerbated by the fact that they both bind to the highly 

expressed proteins HSC70 and clathrin heavy chain (CLTC). This same trend with kinases/phosphatases 

being sub-stoichiometric was observed in yeast 23. Because transient enzyme interactions result in long-

lived chemical modifications to substrates, a one-to-one stoichiometry of enzymes with targets would 

seem unnecessary. The set of highly expressed proteins labeled in green in Fig 5A do tend to be super-

stoichiometric, although they are not the most extreme (Fig 5C). Algorithmically, it is more costly to create 

a significant imbalance at these high abundances, and thus they are closer to an SB ratio of 1. 

Mechanistically in the cell, this correlates nicely with the essentiality of these specific proteins (clathrin, 

actin, and HSC70); although they are highly abundant and super-stoichiometric, they are not in excessive 

surplus relative to their full network of partners, but are closer to the ‘right’ balance.   

 The trend between SB ratios and connectivity in the network is visible as a volcano shape (Fig. 

5D), with more highly connected proteins having an SB ratio closer to 1. Mechanistically, highly connected 

or hub proteins are more likely to be essential for cell survival84, and having an SB ratio close to 1 suggests 

that the proteins are present at the optimal abundance to interact with their many partners.  However, 

we note that this correlation is weaker than the correlation of SB ratio with concentration. This is likely 

because protein abundances span orders of magnitude, having a wide impact on the overall SB 

distribution, whereas protein connectivity only spans two orders of magnitude (1-100). Abundance also 

does not correlate with connectivity, resulting in conflicting pressures on the stoichiometry of some 

proteins (HeLa: R=-0.08, Fibro: R=-0.02, Synaptosome: R=0.27). Dynamin1 (DNM1), for example, is highly 

connected but also has very low abundance. We find it to be highly sub-stoichiometric in the network, 

driven by its extremely low copy numbers; its high connectivity would favor balanced stoichiometry.    

 

Cargo adaptor proteins (aside from AP-2) compete to bind the AP-2 and clathrin hub interfaces 
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When we apply SBOPN to the CME network restricted to the 82 cytosolic proteins, we observe that nearly 

all of the non-AP-2 cargo adaptor proteins are classified as super-stoichiometric, that is, present at levels 

exceeding their partners’ demand (pink bars in Fig. 5C). Yet they exhibit copy numbers across the 

spectrum of concentrations (Fig. 5A). Instead, it is their network connectivity that determines super-

stoichiometry. Connectivity is similar across all cargo adaptors and dominated by links to both the AP-2 

appendage hubs and the clathrin N-terminal hub. There is too much competition for adaptor proteins to 

bind to the hub interfaces on AP-2 and clathrin, and insufficient hub protein interfaces to fulfill 

stoichiometric balance. Thus, we find that although clathrin is abundant, its many partners compete for 

binding at its N-terminal hub. Because these partners use short motifs to bind clathrin85, they are expected 

to have similar affinities. Cargo adaptor protein abundance, therefore, should play a strong role in 

controlling their stoichiometry with clathrin.  In order to balance out the interfaces to one another, our 

analysis indicates the AP-2 subunits are insufficiently available, resulting in sub-stoichiometry.  Nearly all 

the other adaptor proteins, in contrast, are in excess relative to their observed copies, resulting in super-

stoichiometry. For the adaptors ARRB1, ARRB2, LDLRAP, and AGFG1, they are set to the minimum possible 

copies, or effectively ‘sacrificed’ in the optimization; this is due to their similar binding profiles in the 

network, as unlike DAB2 and PICALM, they contain almost no links outside of clathrin, AP-2, cargo, and 

lipids. We find exceptions to the super-stoichiometry of cargo adaptors with STON2 and EPS15, both of 

which are sub-stoichiometric, and neither of which binds clathrin. Their distinct network connectivity to 

AP-2 but not clathrin differentiates them from the other adaptors. As we show below, by removing nodes 

or ‘knockdowns’, one can more clearly see correlations between proteins and differences between 

members of each class.  

 

Homologs do not always display the same stoichiometry 

The homologs FCHO1 and FCHO2, while not identical in their binding profiles, show similar sub-

stoichiometry in HeLa cells (Fig 5C). There are, however, homologs that display differential stoichiometric 

ratios. For dynamin1 and 2, this is attributable to their vast differences, by a factor of 3000, in copy 

numbers. Intersectin 1 (ITSN1) and 2 (ITSN2) have very different SB ratios (black arrows, Fig. 5C), yet have 

only minor differences in their moderate-scale copy numbers, with ITSN1 at 22 nM and ITSN2 at 29 nM. 

It is further surprising to see the observed differences given the similar (and diverse) domain architecture 

of these highly connected hub proteins (Fig. 1). However, the domains exhibit different binding selectivity. 

We found that ITSN1 uses 12 distinct binding interfaces, totaling 62 binding interactions, whereas for 

ITSN2, only 7 distinct interfaces maintain 38 binding interactions (Fig. 2). They both have similar binding 
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profiles for their SH3 domains. Hence, the main driver of the different stoichiometries are the EH (Eps15-

Homology) domains, which ITSN1 uses to bind multiple, highly expressed adaptor proteins, including 

DAB2. ITSN1 is thus sub-stoichiometric. ITSN2, on the other hand, has not been shown to bind to the SLIM 

motifs in the CME adaptor proteins, despite containing two EH domains.  Therefore, our analysis indicates 

the danger of relying on broad homology to explain the sensitivity of individual proteins to perturbations 

of concentration, and instead highlights the importance of individual binding domains. 

 
Figure 6. Stoichiometric balance reveals correlations and couplings in the network by adding and 

subtracting nodes.  (A) Stoichiometric balance with transmembrane cargo added to cystosolic protein 

network. Cargo adaptor proteins are still super-stoichiometric. (B)  Stoichiometric balance in network with 

all lipids and cargo added. Lipids are abundant and shift most proteins to sub-stoichiometry. C) Analysis 

of SB ratios upon removal of DAB2 protein. Light gray bars are the original SB distribution. Overlaid colored 

bars are SB ratios after removal of DAB2. (D) Analysis of SB ratios upon removal of CAPZB protein. Light 

gray bars are the original SB distribution. Overlaid colored bars are SB ratios after removal of DAB2. 
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Generally, SB ratios do not change significantly when the SBOPN analysis is extended to include 

transmembrane cargo (compare Fig. 5C and Fig. 6A). Somewhat unexpectedly, given the addition of 

binding partners, most adaptor proteins remain super-stoichiometric (Fig 5A). Our analysis finds that 

transmembrane cargo have lower abundance than their sorting adaptor proteins (Table S4), meaning 

there are more than enough cytosolic adaptors to select them for uptake. With no additional network 

connections, the transmembrane cargo thus have stoichiometry determined through their adaptors.  

The only transmembrane cargo we find in excess of their sorting adaptors are the abundant cargo YXXØ 

(which include the transferrin receptor) and SNARE cargo. They are both super-stoichiometric. 

Interestingly, the least abundant cargo in HeLa, VAMP2, is also super-stoichiometric, despite having only 

7 nM concentration. This can be traced to the adaptor protein PICALM, the only one to select both VAMP2 

and the SNARE for uptake in HeLa cells. Both these cargo are necessary for downstream vesicle fusion, 

and because the SNARE class is abundant at 1.5 𝜇M, the supply of PICALM at 0.28 𝜇M is insufficient to 

match up with the sum of both cargo. Thus, both its VAMP2 and SNARE cargo are in excess supply. Due 

to its links to both the AP-2 and clathrin hubs, PICALM is itself also super-stoichiometric. This reinforces 

that the SB ratio of a protein is due to its global connectivity in the network, not just its immediate binding 

partners. If PICALM only bound to its SNARE cargo, its observed copies would be insufficient, and we 

would classify it as sub-stoichiometric. The YXXØ cargo is also quite abundant at 3 𝜇M, and its partners 

AP2M1 and SH3BP4 are insufficient to match its interfaces.  

That this cargo for the central AP-2 adaptor is in surplus suggests another mechanism for AP-2 to 

more stably nucleate clathrin coated pits on the membrane via its more abundant cargo. Recent 

experiments indicate that cargo selection is most impactful on coated pit maturation rather than 

initiation69, and establishing the timescales in future work by combining the network and abundances with 

spatial modeling42 would further clarify how interactions with cargo can checkpoint the assembly of 

clathrin-coated vesicles86.  

 

Membrane lipids are abundant and shift most proteins to sub-stoichiometry  

When we quantify stoichiometric balance in the network with now both transmembrane cargo and lipids 

added in, we observe that most cytoplasmic CME proteins shift to sub-stoichiometry (Fig 6B, Fig S3) 

relative to before (Fig. 5A). This is due almost entirely to the hub lipids PI(4,5)P2 and our PI/PS class, which 

have very high 30𝜇M and 300𝜇M concentrations, respectively. It is an important caveat to note that these 

lipids have many other binding partners in the cell, that would thus impact their available concentrations 

to bind the CME proteome. However, the analysis with lipids is nonetheless instructive because not all 
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CME proteins do bind the membrane (Fig 2A). Further, we can increase the binding stoichiometry of 

proteins:lipids in our analysis from 1:1 to 1:10, for example (Fig S3) which reduces the impact of lipids on 

shifting the network stoichiometry. We find, as expected, the upper tier of proteins (Fig 2A) which are 

separated from the membrane are less impacted by the addition of lipids. Instead, the most dramatic 

changes occur in the cargo adaptor proteins, and the BAR domain containing proteins that bind lipids and 

dynamin (Fig 3C). The cargo adaptors that bind lipids are now sub-stoichiometric, unlike before (LDLRAP, 

NUMB, ARRB1, ARRB2, PICALM, EPN2), with AGFG1/Hrb being the only exception because, rather 

unusually, it does not bind lipids, only its cargo. The BAR domain proteins (SH3GL2, FNBP, BIN1) all bind 

to the PI/PS lipid class, and switch to sub-stoichiometric upon addition of lipids, whereas the BAR proteins 

that bind to AP-2 (FCho1/2) are less affected, as they were already sub-stoichiometric due to low copy 

numbers and connections to AP-2. For much of the analysis below, we remove the lipids from the network 

to query selective interactions between proteins, as the high abundance of the highly connected lipids 

tends to attenuate relationships between cytosolic binding partners. 

 

 

DAB2 knockdown induces a global effect on CME balanced copy number distribution 

By computationally removing each protein from the network, we can clearly see how a single protein 

virtual knockdown can cause pronounced global or local effects on the SB ratios of the full protein 

network, or have no detectable impact. The most striking result we find is the response to DAB2 KD (Fig. 

6C) which globally shifts the stoichiometry of the other adaptor proteins. DAB2 is the most highly 

expressed cargo adaptor (~1 𝜇M). There is excess DAB2 to select its cargo PTB87 (0.67 𝜇M), which is also 

internalized by the adaptors NUMB and LDLRAP1. DAB2 contains diverse connections to not only clathrin, 

AP-2, lipids, and cargo (Fig. 3C), but also EPS15, FCHO2, MYO6, ITSN1, NECAP1, and SH3KBP1 (Fig 2). We 

see that DAB2 KD causes Myosin 6 (MYO6) to switch from being sub- to super-stoichiometric, and 

LDLRAP1 from super- to sub-stoichiometric. Likewise, most cargo adaptors are strongly impacted. For 

example, the SB ratios of ARRB1 and ARRB2 are significantly reduced (Fig. 6C). The reason is that the 

removal of the highly-expressed DAB2 makes available spots on the hub interfaces of AP-2 and clathrin, 

which can now accommodate more of the other adaptor proteins. Our computational KD thus would 

predict that removal of DAB2 would significantly reduce uptake of the LDL receptor (because 

LDLRAP1/ARH and NUMB also select it), and that uptake of alternate cargo would increase. This is 

consistent with experimental results that used  RNAi-mediated gene silencing to knockdown DAB275. They 

found a build-up of LDL receptor on the membrane (indicating reduced internalization), while microscopy 
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images showed a reduction of transferrin receptor on the membrane. This reduction of the alternate 

cargo on the membrane would indicate increased internalization with DAB2 removed75. We note that this 

compensation in which cargo is taken up is not found with all experimental knockdowns of adaptor 

proteins88, because the adaptors also can contribute to efficient clathrin coat assembly. Removal of 

PICALM, for example, reduced transferrin receptor uptake88. DAB2 perhaps operates more independently 

of AP-2 to coordinate uptake of its own cargo, as it does not need AP-2 binding to internalize LDL 

receptors75. 

 

Capzb knockdown induces a localized effect on balanced copy number distribution 

Unlike the global SB shift accompanying DAB2 KD, a strong local coupling emerges for F-actin capping 

protein subunit b (CAPZB) and F-actin capping protein subunit a (CAPZA2), which have similar copy 

numbers to one another (Fig. 6D). Both proteins have low connectivity in the network (Fig. 2) but contain 

interfaces to the highly abundant and connected actin interfaces, and CAPZB also binds the highly 

abundant HSC70/HSPA8. After applying SBOPN, CAPZA2 and CAPZB copy numbers are quite irregular from 

one interface to the next. As a result, when CAPZB is removed, the SB ratio of CAPZA2 changes 

dramatically. We find that the knockdown of CAPZB has an extreme local effect only on its immediate 

partner, CAPZA2. This trend is preserved in just the protein network (Fig 5A), with the addition of cargo 

(Fig 6AB), and with the further addition of lipids (Fig. 6D).  

 

Knockdown of hub proteins and highly abundant proteins is more disruptive to the network 

stoichiometry  

By systematically knocking down each protein (or group of proteins) from the network, we can rank which 

proteins have the biggest impact on the SB distribution and thus complex formation in the network (Fig. 

S4, S5). These measurements can provide guidance in determining which proteins could be removed from 

the network in future modeling efforts, for example, as we would expect their influence on system 

dynamics to be weaker.  We quantify the change upon knockdown by the distance between the 

distributions before and after, using the Jensen-Shannon distance, or JSD (Fig. S6 and Methods), with the 

most disruptive single knockdowns shown in Fig. 6C (JSD=0.7), 6D (JSD=0.55).  When we sort the proteins 

that have the biggest impact (Fig S7), we find that these disruptor proteins have higher abundance and/or 

connectivity. In other words, the JSD has a positive correlation of 0.27 with protein abundance, and a 

positive correlation of 0.34 with protein connectivity (Fig. S8). The correlation is significant but not strong, 

in part because as we noted above, connectivity and copy numbers are not strongly correlated (e.g. DNM1 
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is highly connected but has very few copies). Also, there are a number of coupled nodes that need not 

have high copies or connectivity to strongly disrupt the SB ratio of one protein, with CAPZB and CAPZA2 

being one pair (Fig 6d), and two components of the ARP2/3 complex (ACTR3 and ARPC3) being another 

(Fig. S7).   

We were surprised that KD of the hub proteins of AP-2 and clathrin did not have a more dramatic 

impact on the SB distribution, finding a moderate impact that is maintained when all subunits of the 

heterotetramer AP-2 are removed (JSD=0.04), or all clathrin chains (JSD=0.05) are removed (Fig S9). While 

their removal did have an impact on SB ratios of many proteins (Fig S9), consistent with their broad 

connectivity, the JSD between the distributions was not as large as results from localized change from 

CAPZB, for example. We see that even with the removal of AP-2, for example, cargo adaptor proteins still 

have to compete with one another to bind the clathrin hub, and thus while the number of bound 

complexes changes, most cargo adaptors are still super-stoichiometric. The same is true of clathrin 

removal—many of its partners still compete to bind the AP-2 hub. Thus, when we remove both clathrin 

and AP-2, we see a dramatic change in the SB distribution (JSD=0.55) with several adaptors losing 

connections to the network entirely. While these computational KD outcomes cannot predict that 

removal of clathrin should stop endocytosis entirely, this is because the SB analysis reports on which 

complexes will be formed. Even in the absence of clathrin, the network of CME proteins would still interact 

with one another to form complexes, despite the fact that functional vesicles could not be produced.   

 

Proteins that are sensitive to the KD of others have low network connectivity 

We can also quantify which proteins have unstable SB ratios, or SB ratios that are sensitive to 

computational KD of other proteins by measuring variance sSB,KD across all KDs (Fig. S10 and Eq 3). We find 

an anti-correlation between the unstable proteins, and the disruptor proteins that alter the SB distribution 

when they are removed (R=-0.51 Fig. S11). For example, when the disruptor protein DAB2 is removed, it 

induces a broad change in the stoichiometry of other proteins. However, no matter which other proteins 

are removed from the network, the SB ratio of DAB2 changes very little, indicating that it is robust and 

stable against perturbations to the network. On the other end is LDLRAP1, whose SB ratio is unstable in 

response to KD of an array of other proteins in the network, but whose own KD hardly disrupts the SB 

distribution at all.  This result further highlights how despite their shared function as cargo adaptor 

proteins, DAB2 and LDLRAP1 have dramatically distinct impact on network stoichiometry.  

The unstable proteins that are sensitive to the removal of others tend to have fewer copies (Fig. 

S11, R=-0.29), and have fewer connections (Fig. S11, R=-0.23). Algorithmically, changing their SB values is 
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one of the least costly and most optimal way to balance the network stoichiometry. Mechanistically, this 

suggests that these types of proteins are controlled by their more highly connected partners, adapting 

themselves rather than inducing changes in others.  Generally, unstable proteins have minimal 

connections in the network (Fig. S12), an observation that holds whether or not the membrane is included 

in the analysis. As in the previous section, the correlation is only moderate. We find that just because a 

protein has minimal connections in the network does not mean that it will be unstable upon KD of others. 

Two of the ARP2/3 subunits, for example, have only a few connections (all to other subunits), yet their SB 

ratios are both quite stable. This is because their partners have similar copy numbers, since they are part 

of a multi-subunit complex (Table S1), and these subunits do not connect to any other proteins in the 

network. Another subunit, ARPC3, in contrast, is also minimally connected, but it is unstable because it 

links outside of the ARP2/3 complex to hub interfaces on actin.  

 

 

 
Figure 7. Comparison of SB values between HeLa, mouse fibroblast, and rat synaptosome cells reveals 

distinct patterns. (A) Correlation of SB ratios of proteins expressed in both HeLa and mouse fibroblast 

cells, has a R=0.76. The cytosolic volume of a mouse fibroblast (1200 mm3) was used to calculate protein 

concentrations (M). Dashed line shown corresponds to x=y. (B) Correlation of concentrations of proteins 
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expressed in both HeLa and rat synaptosome cells. The cytosolic volume of a synaptic bouton (without 

vesicles and mitochondria, 0.235 mm3) was used to calculate protein concentrations (M). Dashed line as 

in (A). (C) Susceptibility of proteins to KD in HeLa cells versus mouse fibroblasts. Shown are standard 

deviations of SB ratios upon KD of other proteins in HeLa and mouse fibroblast cells. Overlaid colored bars 

are sensitivity measurements for HeLa proteins. Light gray bars in background are sensitivities of proteins 

to KD in mouse fibroblasts. Gaps indicate mouse proteins with either unknown or zero copies. Red arrow 

points to CAPZA2, which is not sensitive in fibroblast.  (D) Susceptibility of proteins to KD in HeLa cells 

versus rat synaptosomes. Shown are standard deviations of SB ratios upon KD of other proteins in HeLa 

and rat synaptosome cells. Due to the predominantly low copy numbers of proteins expressed in the rat 

synaptosome, a linear min-max normalization was applied to their sensitivity values relative to those in 

the HeLa cell background. Overlaid colored bars are sensitivity measurements for HeLa proteins. Light 

gray bars in background are sensitivities of proteins to KD in rat synaptosomes. Red arrow points to DBNL, 

which is sensitive to KD in all 3 cell types. Colors as in Fig. 6A. 

 

Both protein abundances and SB ratios are similar when comparing fibroblast and HeLa cells  

We can apply the same analysis to new cell types to quantify how copy number distributions and 

stoichiometry change in distinct cellular environments. For a fibroblast cell, the network is quite similar 

to that of HeLa, except one protein is added (AMPH), and five are removed due to zero observed copies 

(ARRB2, CTLCL1, DNAJC6, EPN3, SH3GL2). The observed copy numbers are strongly correlated between 

the cell types (Fig. S13) with R=0.77, although we note that the fibroblast has far more—18 total—

unknown abundances. After applying SBOPN, we find that the SB ratios in the fibroblast also correlate 

with the SB ratios in the HeLa cells. For just the protein network, we find R=0.38, but with the addition of 

cargo, the correlation increases to 0.68 (Fig 7A), and to R=0.76 when the full membrane components are 

included. We see quite similar SB ratios for both adaptor proteins and cargo proteins across both cell 

types, where again we find that most adaptor proteins are super-stoichiometric (compare Fig 7A and Fig 

6A ). Only EPN1 has switched from super- to sub-stoichiometric in fibroblast. Although EPN1 is over 30x 

less concentrated in fibroblast, so is its ubiquitylated cargo, showing that our analysis reveals a correlated 

decrease in both EPN1 and its cargo. Its sub-stoichiometry is instead driven by binding to the AP-2 beta 

subunit, where more copies of it are needed, in part because DAB2 is present at much lower levels in 

fibroblast (14x) compared to HeLa.  Hence DAB2 is much less disruptive to stoichiometry in fibroblast due 

to its markedly reduced copies.  
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Despite the positive correlation between the stoichiometries and sensitivities of CME proteins in 

both cell types, we find interesting differences (Fig S14, S15).  One major reason for several of the changes 

in sensitivity of the SB ratios is that 18 of the proteins in fibroblast have unknown copies. Algorithmically, 

these proteins can effectively absorb any ‘left-over’ interfaces without penalty. If they are assigned a high 

copy number, like CORO1A, which absorbs much of the binding to the extremely highly expressed ACTB 

(166 𝜇M vs 2.4 𝜇M in HeLa), then when it is removed, it acts as a strong disruptor to the network 

stoichiometry. This explains the sensitivity we observed for dynamins (DNM1 and DNM2), which are 

unusually unstable for such highly connected hub proteins—without CORO1A they are needed to bind to 

the millions of surplus actin copies.  As a result, the correlation of sensitivity with node connectivity is 

much weaker in fibroblast than in HeLa cells (R=-0.07, Fig S16).   Some of the strong pairwise couplings 

that emerge upon KD are also suppressed in fibroblast due to the unknown proteins. In HeLa, CAPZA2 was 

highly sensitive to CAPZB KD, but not in fibroblast (Fig 7C, red arrow). However, if CORO1A is removed 

from the network, we find that the strong coupling returns, demonstrating that these unconstrained 

nodes in the network help buffer against imbalances. Lastly, the co-factors of the chaperone 

HSC70/HSPA8 are either not present (auxilin/DNAJC6=0) or unknown (GAK). Thus, while they were 

notably sub-stoichiometric in HeLa, their impact is not visible in the fibroblast cell.  

 

Synaptosome copy numbers and stoichiometry are relatively distinct from HeLa cell types 

When comparing observed copy numbers between a neural synaptosome and HeLa, we find that they are 

only weakly correlated (R=0.05, Fig S17). Although the proteins we have classified as being highly 

expressed generally (light green, Fig 1) remain as the most highly expressed, most proteins have much 

higher concentrations in the synaptosome compared to HeLa (Fig S17). This is perhaps due to challenges 

in measuring very low copy numbers: the volume of the synaptosome is ~6000 times smaller than the 

HeLa cell5, so a single copy of a protein is already at 7 nM concentration, vs 1 pM in a HeLa. Relative to 

HeLa, the synaptosome CME network has also changed with the addition of AMPH, DNM3, SGIP1, SH3GL3, 

SNAP91/AP180, WAS, the cargo SYT1, and removal of TRIP10. Applying SBOPN, we observe that the 

stoichiometry in the synaptosome is thus distinctive from that of HeLa cells. When only considering 

proteins, the correlation is -0.07, with the addition of cargo it increases to 0.12 (Fig 7B), and with lipids, 

to 0.48. Unfortunately, in the synaptosome the copy numbers of many proteins involved in CME (49) have 

not been experimentally quantified, meaning that multiple nodes can act as buffers. This is seen to a lesser 

extent in the fibroblast cell.  Nonetheless, we do find some sharp trends in SB ratios due to the overall 

increase in concentration of multiple proteins in the synaptosomes. When we evaluate SB ratios in the 
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networks with just cytosolic proteins, or cytosolic protein +cargo (Fig. S18), we find that PIP5K1C, a lipid 

kinase that binds to AP-2 beta-subunit, is super-stoichiometric in synaptosomes (Fig 7B). In all other cells, 

kinases and phosphatases are sub-stoichiometric. Here, we see that the abundance of PIP5K1C has 

increased by a factor of over 900 in the synaptosome relative to HeLa, making it far more abundant than 

necessary for its partner AP2-beta appendage. This is true of not just PIP5K1C, and consequently, we see 

that the extent to which AP-2 is concentrated relative to its partners is greatly diminished in the 

synaptosome. Indeed, known protein copies in the synaptosome are within a factor of 10 of the AP-2 

subunits, whereas in HeLa, proteins span a factor of ~1000 relative to AP-2. We also see some distinct 

trends in which proteins have sensitive or unstable SB ratios due to knockdown of others (Fig S19).  DNM1 

is now stable to perturbations in synaptosome (Fig 7D), unlike in HeLa cells, due to its dramatic increase 

in concentration levels, from 0.12 nM in HeLa to 16 mM in synaptosome, which exceeds the total 

DNM1,2,3 levels in HeLa (0.4uM) by a factor of 40. 

Although we find that the SB ratios of the transmembrane cargo proteins themselves is similar in 

synaptosome and HeLa, the specific reason for VAMP2 and SNARE has swapped.  VAMP2 has excessively 

high concentration: at 187 𝜇M it exceeds any other cargo in any cell type, whereas it is present at ~0.008 

𝜇M in HeLa and fibroblast. SNARE is also highly concentrated at 0.7𝜇M, but this is similar to the HeLa and 

Fibroblast. In the synaptosome, SNARE is now highly sensitive to knockdown of VAMP2, due to its 

imbalances (Fig. S19, S20).  The VAMP2 and SNARE adaptor protein SNAP91/AP180, which is not present 

in HeLa or fibroblast, is also now the most concentrated adaptor protein, at 26 𝜇M.  

We can discuss changes in synaptosome stoichiometry in terms of the specific functional demands 

of the synaptosome cell type. VAMP2 is critical for the synaptic vesicle turnover, which is a primary role 

of the synaptosome. Distinct from the HeLa or fibroblast, the synaptosome is like a compartment at the 

end of a neuronal cell that contains mitochondria but not a nucleus5, and thus does not perform all of the 

same functions. Furthermore, at the synapse, there are multiple other forms of endocytosis or receptor 

uptake that are capable of faster (i.e. ultrafast endocytosis83,89) or internalization of larger sections of 

membrane (trogocytosis or phagocytosis), relative to CME. Unlike CME, these internalization pathways 

are not dependent on clathrin, and less so on AP-2.  SYNJ2 and endophilin (SH3GL2), for example, both 

are important for ultrafast endocytosis83, not just CME; endophilin/SH3GL2 has increased concentration 

by a factor of 500, and SYNJ2 has increased concentration by a factor of 2400! It has nearly the same 

number of copies in the synaptosome as in the HeLa, despite vast differences in cell volume.  Thus, the 

functional roles of these proteins has shifted substantially in the synapse, and even the neuronal isoforms 
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of SYNJ2 and SYNJ1 have lost binding connections to the CME network (Table S2). SYNJ1, for example, no 

longer binds to AP-2.  

  

Across cell types, several trends are preserved regarding protein CME function 

There are several trends in the abundance and stoichiometry of distinct protein classes across these 3 cell 

types. The proteins that assemble into rigid-like structures, actin (ACTB, ACTG1) and clathrin, are highly 

abundant, as are their respective disassembly proteins, cofilin (CFL1) and HSC70/HSPA8). Relative to the 

network of protein binding partners, these proteins are nearly always super-stoichiometric, or in excess 

supply (Fig 6, 7A-7B). In contrast, enzymes have low abundance, and are nearly always sub-stoichiometric, 

or in demand. We speculate that this is representative of more general control mechanisms throughout 

the network, where proteins with low abundance act as control nodes or gatekeepers that determine 

when or where assembly occurs. There is essentially a reservoir of clathrin and actin available to assemble, 

and a reservoir as well of their corresponding disassembly factors. Although these abundant proteins self-

assemble, the clathrin interactions in particular are weak (>100 𝜇M)90, and the clathrin-adaptor 

interactions are also typically weak85. High abundance supports a sufficient number of complexes even 

being formed, with the membrane 2D environment further stabilizing nucleation and growth24. With a 

reservoir of abundant proteins, the timing of these events is therefore controlled by essential co-factor 

proteins, as is the case for clathrin disassembly, which requires the auxilin or GAK proteins that have low 

abundance and sub-stoichiometry. Experimentally, it was shown that this clathrin disassembly machinery 

is found to localize to complete vesicles, not the pre-fission coated pits91.  While sub-stoichiometry cannot 

ensure that co-factors will never localize to sites of clathrin-coated pits, by estimating the footprint of a 

single clathrin within a lattice as ~0.0009 𝜇m2, even if 40% of the plasma membrane of a HeLa cell was 

coated in clathrin, more than half of all clathrin trimers would still be in solution. While HSC70 is 

sufficiently abundant to readily localize to coated pits, the sub-stoichiometric co-factors would help 

minimize disassembly at the plasma membrane.  

 For CME, we see a hierarchy of stoichiometries extending from the membrane. The highly 

connected lipids PI(4,5)P2 and PI/PS are also highly abundant and available for their many partners 

(although we note they both also have partners outside of the CME network). We then have the cargo 

adaptor proteins, which are mostly super-stoichiometric relative to their respective target 

transmembrane cargo. The packaging or selection of the cargo is then not limited by the number of 

adaptors, which are sufficient, but the competition of adaptor proteins with one another to assemble with 

AP-2 and clathrin. We see across cell types that the competition for binding to the hub interfaces on AP-
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2 and on clathrin drive many of their partners to be super-stoichiometric, or available in far excess of their 

accessible binding interfaces on AP-2 and clathrin. We also find that subunits of multi-protein complexes 

(AP-2, ARP2/3) tend to have similar abundances, consistent with experiment21, and exhibit more tightly 

linked stoichiometries. For example, the actin capping proteins and subunits of the ARP2/3 complex are 

in many cases sensitive to KD of their partners in all cell types. However, this is only true for subunits that 

connect to the larger network—protected subunits tend to be insensitive to perturbations across the 

network. Hence, while there are several distinctions that occur across cell-types as discussed above, 

because the network topology is very similar across cell types, we see several patterns of local and global 

disruption to stoichiometry that re-emerge in all cell types despite variations in protein abundances.  

  

 

Across cell types, several trends are preserved regarding abundance and topology 

There are several trends in stoichiometry that arise due to the connectivity of proteins or their abundance 

levels. We expect these trends to persist across different network or processes, not just CME, as they 

reflect general optimality constraints for maintaining stoichiometry of binding throughout a highly 

connected network. Specifically, we find persistent positive correlations between SB ratios and 

abundance, with low copy number proteins, such as enzymes, being sub-stoichiometric, and highly 

abundant proteins being super-stoichiometric (Fig. 5B, S21).  We also find that the most highly connected 

nodes tend to be stoichiometric, because it is often less costly in optimizing balance across the network 

(Fig. 5D, Fig S22). Several trends then emerge when we systematically knockdown proteins from the 

network and quantify the change in the SB distribution. Proteins that are most disruptive to the network 

stoichiometry upon KD are more abundant, and have higher connectivity, like AP-2 subunits (Fig. S8, S23). 

This is preserved across cell type, although the correlation is weakened by proteins such as dynamin1, 

which are highly connected but have low abundance in HeLa cells. In contrast, proteins that are sensitive 

and have unstable stoichiometry in response to KD tend to have few network connections, and lower copy 

numbers (Fig. 7C-7D, Fig S12, S16, S20). For example, DBNL exhibits an SB ratio that is unstable against a 

variety of perturbations, across all 3 cell types. DBNL has similar copy numbers across all cell types (0.25-

0.8 mM) and only three connections, but they are all to highly connected hub interfaces. DBNL is an actin 

binding protein (ACTB and ACTG1) that also uses its SH3 domain to bind to the hub DNM1. For each cell 

type, we thus see that not only does removal of its immediate partners alter its SB ratio, but KD to many 

of the actin or DNM1 partners also alter its stoichiometry.  
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Most strikingly, proteins that are disruptive, like HSC70/HSPA8, are robust against perturbations 

to the network, appearing on the left hand sides of Fig 7C-D. This correlation between disruptiveness and 

stability against perturbations is stronger than either of the correlations of KD with copy number or 

connectivity, as it more directly compares how the stoichiometry of a protein impacts or is impacted by 

perturbations to the network (Fig S11, Fig. S24).  An important caveat is that because the SB ratios and 

sensitivities depend on the protein network, for proteins whose KD has a minimal impact in CME, it could 

be more impactful if that protein functions more prominently in other biological pathways. We included 

key cytoskeletal proteins for CME in our network12, but not an exhaustive network of proteins that impact 

actin assembly. Relative abundance can also be shifted with additional network components, as we see 

most clearly with the lipids (Fig 6B), but HSC70/HSPA8 is another example of a protein with additional 

cellular functions and binding partners outside of this network that could reduce its availability to the CME 

proteins if they share the same binding interface8. Lastly, we note that the presence of unknown protein 

copy numbers in the network can act as sinks to absorb binding interactions with abundant proteins. 

These network nodes then tend to suppress couplings, as we saw in the fibroblast when CORO1A was 

removed from the network. The more experimental copy numbers that are available, the more reliable 

and predictive we expect the trends and patterns to be.   

   

Conclusions 

The analysis we have performed here on our newly constructed interface-resolved CME network 

integrates structural data, biochemical studies, and protein abundances to reveal patterns of 

stoichiometry that directly connect to protein function.  One of our more surprising findings is how 

proteins that are quite similar functionally, like the cargo adaptor proteins DAB2 and LDLRAP1/ARH, can 

nonetheless display varying disruptiveness upon removal. These results would be difficult to intuit, but in 

the context of the stoichiometric balance model, they can be explained by differences in copy number 

and connections to distinct components of the network, with DAB2 being the most unusually connected 

adaptor protein. 

 The stoichiometric relationships between proteins we observe are not possible with just the 

network or the copy numbers alone. Clathrin is highly abundant and super-stoichiometric, but this is not 

because it is in fact more numerous than all its binding partners—it is not. However, when its binding 

partners are adjusted for whether they are sub- or super-stoichiometric themselves, or occupied with 

other binding partners, the final balanced copies of clathrin are still in excess supply. This theme re-

appears for other proteins as well: just because a protein (like clathrin or PICALM) appears to be sub-
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stoichiometric relative to a set of partners, does not mean that it is sub-stoichiometric overall. Instead, 

the partners can be super-stoichiometric due to their other connections.  Further, although some protein 

couplings emerge between direct partners, several of the sensitivities to computational knockdown result 

not from immediate partners, but via competition for proteins that share binding to a hub interface (e.g. 

DAB2, DBNL). Although the stoichiometric analysis performed here does not account for the strength of 

the binding interactions between proteins, effectively assuming they all have infinite strength, the SBOPN 

method can be generalized to introduce weights to interactions to mimic weak vs strong binding. Hence 

the relative stoichiometry of the interactions can be re-assessed in light of the need to have highly 

abundant proteins, for example, to ensure any complexes are formed for weak interactions.  Because 

many domain-domain interactions also share similar affinities to one another (such as several AP-2 

appendage and SLIM motif interactions being ~𝜇M strength) the assumption of identical edge weights for 

each hub interface is, at least, reasonable to motivate predictions and describe trends.  This analysis is not 

able to report on the spatial or temporal regulation of CME, as it is based on a steady-state population of 

bound structures. CME is, of course, sensitive to spatial localization to the membrane, and although 

stochastic, has an average timescale of ~ 1 minute to proceed, out-of-equilibrium, from cytosolic 

components to a budded, clathrin-coated vesicle. It also is dependent on mechanical forces required to 

bend the membrane. However, the components in our model are constitutively expressed, so we do 

expect these proteins to be present in the cell simultaneously. Spatiotemporal dynamics with mechanics 

cannot be tractably studied in the context of a network of this size, with almost 100 distinct components, 

and performing KDs of one or many proteins systematically introduces further expense. While modeling 

in cell biology is reaching closer to achieving these types of simulations62, our approach here is a powerful 

complement that requires no parameterization, while still yielding meaningful insight. Several of the 

trends we observe also make intuitive sense, such as highly abundant and highly connected proteins being 

more disruptive to the SB distribution. Abundant proteins and hub proteins are often more essential92 93.  

 Critically, our SBOPN method is based on a physical model of binding specificity and competition, 

and thus we can trace the origins of all SB ratios we observe, making outputs predictive and not purely 

correlative. Because the SB ratios report on the ability of each protein to form complexes, changes in the 

SB ratio define how a new set of interactions and complexes will form upon knockdown, which would 

alter the dynamics. The exact extent to which complexes will change upon knockdown depend on binding 

strengths and dynamics, but our results predict that an experimental knockdown of DAB2, for example, 

would be significantly more impactful in affecting CME dynamics in HeLa cells than in fibroblast, as it is 

much more abundant and out-competes other adaptors in binding to AP-2. A recent experimental study 
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demonstrated how single KD of multiple endocytic adaptor proteins in epithelial cells impacted clathrin 

coated structure formation, finding a surprising lack of correlation between the impact on early CME 

stages and the amount of bulk transferrin uptake88. Our analysis further suggests where specific changes 

might be expected to occur on a protein-by-protein basis, made possible by our analysis of every protein, 

lipid, and cargo response to perturbations to the network. Our analysis can also be used to perform ‘over-

expression’ of nodes, or more minor perturbations than occur upon complete removal of a protein from 

the network.  

The curated network we have constructed provides a foundation for further evolutionary or 

dynamical systems studies. With binding interactions resolved down to the interface or domain, the 

changes in specificity of individual binding interactions can be compared throughout evolution59, across 

diseases, and changes in network connectivity can be compared against the interface-resolved network 

in yeast59,65, for example. The CME interactome here may be incomplete, as unresolved interactions or as-

yet-unknown proteins may play a role. Nevertheless, we know from our analysis that the addition or 

removal of nodes (or interactions) from the network can have minimal effects on stoichiometry, or it can 

indicate important correlations. Thus, we expect the conclusions from our analysis to provide a robust 

foundation from which to build in additional evidence of CME interactions or proteins.   

  

METHODS 

Network Construction  

To construct the mammalian CME interface-resolved network, we initially considered 86 proteins. These 

86 cytoplasmic proteins were selected due to their functional importance to the endocytosis pathway 

based on a systems-level study10, a comprehensive review 11, as well as homology to proteins in the yeast 

interactome65. To begin constructing our interface-resolved PPIN, we pooled unique PPIs mediated by 

only proteins listed in our original 86-protein CME list, downloaded from 3 open-source online molecular 

interaction repositories compiled from comprehensive curation efforts: Biological General Repository for 

Interaction Datasets63, IntAct94, and Mentha95. BioGrid provided the highest number of reported PPIs. 

IntAct is the only database that also curates information on domain resolution when possible. 

Our completed interface-resolved human CME PPIN contains 82 proteins and 617 edges. Four of 

the original proteins either lacked reported PPIs in databases or lacked domain resolution for interactions. 

Of the 617 edges assigned, 433 were identified by a repository and interfaces were assigned with sufficient 

literature evidence, and 184 edges were added by manual curation, primarily due to studies on 

interactions with highly homologous proteins from other mammals (see Table S1 for % homology). We 
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removed 31 edges due to suspected indirect and/or false interactions, and 202 edges downloaded from 

the repositories were left unassigned due to insufficient literature evidence to define binding sites. 

Overall, our filtered interface-resolved mammalian CME PPIN contains 82 proteins, 5 phospholipids, 9 

transmembrane cargo (receptor/SNARE) groups that include 31 unique cargo proteins, and 396 distinct 

interfaces across all proteins and lipids. Our transmembrane cargo groups are YXXØ (where Y is tyrosine, 

Ø is a bulky hydrophobic residue and X is any residue), GPCRs, low density lipoprotein (LDL) 

receptors/phosphotyrosine binding domain targets (PTB), ubiquitylated cargo, specific VAMPs and a 

broader class of SNAREs, as their adaptor partners are known or inferred from sequence homology, with 

the complete list and classification in Table S1. 

Below, we define the protocols and rules we used for delineating interface-resolved PPIs, given 

sufficient data, and rules for distinguishing interfaces within overlapping binding regions (Figure S1). 

Domains that mediate a PPI could be assigned based on varying levels of evidence, listed in descending 

order of definitiveness: both identified via co-crystal structure; both identified with residue information 

derived from in vivo and/or in vitro experiments; one identified and the other has been inferred from 

mammalian or yeast homology; one identified with supporting in vivo and/or in vitro evidence, and the 

other speculated; both inferred; and both speculated. The most straightforward assignments are based 

on crystal structures of the human proteins in co-complex with one another, with the majority of 

assignments, however, being based on biochemical methods between either the human proteins, or 

mammalian and yeast homologs. 

Assigning interfaces to PPIs We document relevant details, e.g. PubMed IDs corresponding to studies 

sourced, and justifications for binding interactions in Table S3, as we individually annotate each PPI pulled 

from the repositories. We kept two separate lists of mammalian (including Bos taurus, Gallus gallus, Mus 

musculus, and Rattus) and yeast homologs for each protein, along with their percentage values of 

sequence identity relative to their human counterparts determined from BLAST96. We collected homologs 

that reached a sequence identity score ≥60%. 

We constructed a decision tree which we iterated through for every PPI per protein in 

constructing our interactome (Fig S1). In brief, we first chose a protein and pooled its unique PPIs across 

the 3 databases. Starting with one of its PPIs, our assignment task starts with a question that asks for 

evidence of highest specificity derived from a co-complex crystal structure, if available. Otherwise, the 

decision-making process continues with a series of questions that descends in orders of definitiveness, 

from residue level experimental support to: 1) whether domain information is available for both proteins 

or either protein; 2) whether domains for both or one of the proteins could be inferred from yeast or 
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mammalian homology referring to our lists of BLAST scores; 3) whether domains for both or one of the 

proteins could be speculated; and 4) if neither domain could be speculated, whether literature support 

for PPIs were derived from high-throughput (HT) methodologies such as affinity capture-mass 

spectrometry (AC-MS)/MS and yeast-two hybrid (Y2H) assays. Hence, this process required substantial 

manual curation of the literature. 

In addition to careful annotation of each PPI, we kept track of all the domains per protein. In order 

to define interfaces for an interaction, we either had to select one of the interfaces we had determined 

so far or add a new interface. We began with interface assignment with those determined from SMART64. 

In some cases, these domains mediated more than one PPI, hence containing multiple binding sites based 

on residue subsets (see Section: Splitting PPI binding domains into multiple subdomains, below). 

Interfaces could thus be broadly classified as structured (or globular “Glob.”) domains, specific residues 

within a structured domain, or short stretches of residues that were primarily part of unstructured 

regions, which we labeled Short LInear Motifs (SLIMs)71. In the process, we actively updated the domains 

of the partner proteins.  

Matched edges Of the 617 edges in our PPIN, 443 are marked “MATCHED”. These interactions were 

identified by at least one of the 3 repositories and were retained in the network given literature evidence 

supporting a direct and specific interaction. 

Splitting binding domains into multiple binding interfaces Specific binding sites and interfaces often lie in 

large, spanning regions that define an entire folded domain. These domains were split if residues have 

been reported to mediate the interaction. We do this because partners for a spanning region of a protein 

can be noncompetitive, meaning both interactions can simultaneously be formed, and because not all 

residues are important for specificity of the interaction. We do not verify that all distinct interfaces are 

sterically accessible simultaneously, as done in one study27, focusing instead on the specificity of the 

individual interface residues for distinct partners, similar to previous work65. PRDs provide an example of 

unstructured regions containing multiple sequential binding motifs with often distinctive specificity for 

binding partners97. For example, the Huntingtin-interacting protein 1 (HIP1R) has a PRD including residues 

1016 to 1068. The HIP1R interaction with cortactin (CTTN) specifically requires residue 1016, whereas 

mutations of essential residues in the 1025-1030 motif do not seem to impact binding. Residues 1025-

1030 mediate specific binding of HIP1R to the three SH3 domains of SH3KBP1/CIN85, hence these regions 

are designated as distinct interfaces. BAR domain proteins provide an example of a structured domain 

with multiple binding interfaces. These domains can simultaneously form dimers with one another, bind 
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to the membrane, and form higher-order oligomers. Thus, for each BAR domain, we created separate 

interfaces for dimerization, lipid binding, and oligomerization. 

Specificity for distinct copies of repeated domains Similar to the PRD example above, proteins also can 

contain repeated copies of a structured domain that have distinct specificity, requiring us to list each copy 

as its own interface. As an example, intersectin 1/2 (ITSN1/2) proteins each contains 5 unique SH3 

domains, SH3A-E, that have distinct binding specificities to protein partners such as DNM2 and WAS.  

Speculating interfaces for binding interactions Many proteins in our CME list share the same protein 

binding partners and sometimes have shared binding regions. We use this information, coupled with 

homology, to define interface-resolved interactions into our PPIN, despite not having direct evidence of 

the specific domains used for the binding pair. To demonstrate our definition for speculating interactions, 

we use A1, A2, A3 isoforms of endophilins (SH3GL2/1/3 respectively), along with AMPH and BIN1, as they 

all share similar domain architecture and overlap in binding partners, to help define binding interactions 

to DNM1 and DNM2. We use homology to define SH3-PRD interactions that are known to DNM2-SH3GL1 

for speculating binding interfaces for DNM1-BIN1 and DNM2-BIN1.  

Added edges In our curated PPIN, 184 new edges were added to account for interactions that were not 

present in the human PPI databases, but were supported by other literature studies. Of the 184, 80 of 

these added edges are lipid and cargo interactions, which we did not initially pull from the repositories. 

Most of the other added edges were not identified by any of the 3 repositories and were added during 

our re-evaluation of “MATCHED” PPIs via literature research. We sought to use homology for resolving 

interfaces of added PPIs, which we make note of below. 

Using homology to add functional PPIs based on definitive biochemical evidence Some interface-resolved 

“ADDED” PPIs were included using homology-based inference. These are interface-resolved PPIs informed 

by low-throughput biochemical experiments using homologous proteins. We take DBNL-DNM1 as an 

example. Mouse Actin-binding protein 1 (mAbp1), physically associates with rat Dnm1, serving to be a 

physical link between the actin cytoskeleton and endocytosis in both membrane transport processes in 

neuronal and non-neuronal cells at actin-rich sites, confirmed by immunoprecipitation and 

immunofluorescence microscopy within the same study. Additionally, because mouse Abp1 and human 

Dbnl share a sequence identity score of 85.39% and rat and human Dnm1 a high score of 98.03%, we thus 

added DBNL-DNM1 into our network.  

Using homology to infer interfaces for dimerization and oligomerization Since CME depends on 

dimerization and oligomerization of BAR-containing proteins such as F-BAR domain only proteins 1/2 

(FCHO1/2), these PPIs were added into our network, if not already identified. For example, in our network, 
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we identified FCHO2:FCHO2 as a “MATCHED” edge, but not FCHO1:FCHO1 nor FCHO1:FCHO2. However, 

the crystal structures of the yeast homolog SYP1 for human FCHO1/2 proteins and the structure of FCHO1 

paralog FCHO2 homodimer have both been resolved. Using this information, we inferred interfaces for 

homodimerization and oligomerization interactions for FCHO1, adding the FCHO1:FCHO1 and 

FCHO1:FCHO2 PPIs into our network. 

Inclusion of protein-lipid and protein-cargo interactions Unlike other existing protein-protein 

interactomes, our interface-resolved network integrates relevant CME protein-lipid interactions as well 

as protein-cargo interactions (Table S3). Our inclusivity of lipid-binding interactions builds off of known 

identification of lipid-binding domains such as BAR, ENTH, and PH domains, including 42 of our proteins. 

Some of these interactions are enzymatic reactions that help regulate the population of phosphoinositides 

at the plasma membrane. For cargo interactions, although our interactome is not expected to be 

comprehensive in including all receptor cargos, we drew from reviews that classified types of cargo 

interactions specific to CME70.  

Unassigned edges 202 edges were left unassigned from our network. High throughput Y2H- or AC-MS/MS-

based screening used to construct large integrated protein interaction libraries PPIs can produce false 

positives and false negatives. If we could not find additional evidence to support an interaction between 

two proteins, this PPI was unassigned. Interactions that were unassigned were also those pulled from low-

throughput experiments that lacked domain resolution.  

Removed edges 31 edges were marked removed from our original list, as there was evidence from 

additional experiments that they were indirect or false. As reported in the construction and 

characterization study for the yeast CME interactome65 the PDB structure of the ARP2/3 complex98 was 

used to assign interfaces, and thus all other subunit contacts found in the 3 repositories were removed. 

11 of the 31, or 35.5% of the removed edges, were Arp2/3 subunit interactions disregarded for this reason. 

PPIs were also removed if they were reported in a high-throughput study but proteins were biochemically 

shown to not interact. Phosphatidylinositol-4-phosphate 5-kinase type 1 gamma interacts with the β 

appendage of AP-2, not the α subunit (Table S3). 

Copy numbers by cell type Organisms contain many different cell types, each of which produces its own 

pattern of protein expression levels and in some cases distinct splicing isoforms of protein encoding genes. 

Our study collected copy numbers from rat synaptosome 5, mouse fibroblast4, and two human HeLa cell 
2,3 studies. In all three cell types, some of our proteins had no copy numbers reported. Proteins whose 

copy numbers were not reported in a study might be due to low natural abundance with expression levels 

undetectable. Therefore, for these proteins we used the Human Protein Atlas6 and Proteomics DB7, which 
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report protein expression levels by tissue types, to help determine whether proteins with no reported 

copy numbers had unknown copy numbers, or zero copy numbers. Specifically, we looked for expression 

for the synaptosome proteins based on neuronal tissue (brain, cortex); for the fibroblast proteins based 

on bone marrow, stroma, soft tissue and skin fibroblasts; and for the HeLa proteins based on cervix, 

uterine, and squamous epithelial cells. Proteins with zero expression were excluded from subsequent 

stoichiometric balance analyses by removing the proteins from the network. If the databases indicated 

any expression level of a protein in a specific cell type, it was left in the network. Proteins that do not have 

constraints on copy numbers (“—“) thus can constrain the stoichiometric balance of their partners, but 

they are not penalized at all for deviating from their observed (unknown) copy number. 

Stoichiometric balance optimization 

The Stoichiometric Balance Optimization of Protein Networks (SBOPN) algorithm has been described 

previously23. Briefly, the algorithm requires the network of interacting proteins, with interfaces resolved 

on their parent proteins. The solution of the number of complexes for each pair of binding partners can 

be formulated as the optimal of a quadratic function, with linear constraints. Specifically, the copy 

numbers of each interface are defined as the sum over all complexes it is part of. Two soft constraints are 

applied. First, for a protein with multiple interfaces, there is a penalty to making them highly distinct from 

one another. Second, a protein’s copies can be constrained to a target value, typically the observed copies 

of a protein. There is one parameter, 𝛼, which controls which of these two soft constraints is more tightly 

applied, where a low value of 𝛼 forces all interfaces to be the same within a protein. We use here a value 

of 𝛼=1, which allows fluctuations in values across interfaces, similar to known variances in measured copy 

numbers. Given the optimal number of complexes that are solved for, we can then calculate the balanced 

number of interface and thus protein copy numbers. The code is available on 

https://github.com/mjohn218/StoichiometricBalance, along with input files for this network and 

knockdown simulations. The interactive network file generated using Cytoscape v3.7.299 is available as 

part of supplemental material. 

Pearson correlation coefficients (R) between distributions were always applied to log10 values of 

concentrations, and to log10 values of SB ratios. The distances between SB distributions was calculated 

using the Jensen-Shannon distance, where the distributions p and q were first normalized:  

𝐽𝑆𝐷 = (%
&
)𝐷'((𝑝||𝑧) + 𝐷'((𝑞||𝑧)1 Eq. 2 

where 𝐷'((𝑝||𝑧) = ∑ 𝑝)log	(
!*
**
)+

),%  is the Kullback-Leibler divergence, and 𝑧 = %
&
(𝑝 + 𝑞) . The sum loops 

over all proteins N with known copy numbers. If we used a chi-squared distance instead of the JSD, the 
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results were similar. The sensitivity or stability of a protein’s SB ratio to removal of nodes from the 

network was calculated for each protein p as  

𝜎!& =
%

++,
∑ )𝑙𝑆𝐵!(𝑗) − 𝑙𝑆𝐵!;;;;;;1&++,
-,.  ,  Eq. 3 

where  𝑙𝑆𝐵!;;;;;; = %
++,

∑ 𝑙𝑆𝐵!(𝑗)
++,
-,. , NKD is the number of computational ‘knockdowns’ or node removals for 

a network, and 𝑙𝑆𝐵!(𝑗) is the log10(SB) of protein p for a ‘knockdown’ j.  
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