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1 Abstract

Collective dynamics in multicellular systems such as biological organs and tis-
sues plays a key role in biological development, regeneration, and pathological
conditions. Collective dynamics - understood as population behaviour arising
from the interplay of the constituting discrete cells - can be studied with mathe-
matical models. Off- and on-lattice agent-based models allow to analyse the link
between individual cell and collective behaviour. Notably, in on-lattice agent-
based models known as cellular automata, collective behaviour can not only
be analysed through computer simulations, but predicted with mathematical
methods. However, classical cellular automaton models fail to replicate key as-
pects of collective migration, which is a central instance of collective behaviour
in multicellular systems.

To overcome drawbacks of classical on-lattice models, we introduce a novel
on-lattice, agent-based modelling class for collective cell migration, which we
call biological lattice-gas cellular automaton (BIO-LGCA). The BIO-LGCA is
characterised by synchronous time updates, and the explicit consideration of
individual cell velocities. While rules in classical cellular automata are typically
chosen ad hoc, we demonstrate that rules for cell-cell and cell-environment inter-
actions in the BIO-LGCA can also be derived from experimental single cell mi-
gration data or biophysical laws for individual cell migration. Furthermore, we
present elementary BIO-LGCA models of fundamental cell interactions, which
may be combined in a modular fashion to model complex multicellular phenom-
ena. Finally, we present a mathematical mean-field analysis of a BIO-LGCA
model that allows to predict collective patterns for a particular cell-cell in-
teraction. A Python package which implements various interaction rules and
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Figure 1: BIO-LGCA modelling: The key question is to extract the interaction
rules underlying a particular collective behaviour in a population of cells. Ap-
propriate BIO-LGCA interaction rules can be chosen ad hoc, extracted from
experimental single cell migration data, or derived from biophysical equations
for single cell migration.

visualisations of BIO-LGCA model simulations we have developed is available
at https://github.com/sisyga/BIO-LGCA.

2 Author summary

Pathophysiological tissue dynamics, such as cancer tissue invasion, and structure
formation during embryonic development, emerge from individual inter-cellular
interactions. In order to study the impact of single cell dynamics and cell-cell
interactions on tissue behaviour, one needs to develop space-time-dependent
agent-based models (ABMs), which consider the behaviour of individual cells.
Typically, in agent-based models there is a payoff between biological realism
and computational cost of corresponding model simulations. Continuous time
ABMs are typically more realistic but computationally expensive, while rule-
and lattice-based ABMs are regarded as phenomenological but computationally
efficient and amenable to mathematical analysis. Here, we present the rule- and
lattice-based BIO-LGCA modelling class which allows for (i) rigorous deriva-
tion of rules from biophysical laws and/or experimental data, (ii) mathematical
analysis of the resulting dynamics, and (iii) computational efficiency.
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3 Introduction

Systems biology and mathematical modelling is rapidly expanding its scope from
the study of single cells to the analysis of collective behaviour in multicellular
tissue- and organ-scale systems. In such systems, individual cells may interact
with their environment (hapto- and chemotaxis, contact guidance, etc.) or with
other cells (cell-cell adhesion, contact inhibiton of locomotion, etc.) and produce
collective patterns exceeding the cells’ interaction range. To study collective
behaviour in such systems theoretically and/or computationally, a mathematical
model must be decided upon as a first step. Continuous models describe the
average behaviour of the cellular population. Their lack of resolution at the
individual level makes them inappropriate to study the role of individuals in
collective behaviour. Agent-based models, on the other hand, are particularly
suited to the study of collective behaviour in multicellular systems, as they
resolve individual cell dynamics, and thus allow for the analysis of large-scale
tissue effects of individual cell behaviour.

In the context of multicellular tissue dynamics, various agent-based models
have been developed to analyse tissue dynamics as a collective phenomenon
emerging from the interplay of individual biological cells. In these models,
cells are regarded as separate, individual units, contrary to continuum methods,
which neglect the discrete individual cell nature, and where tissue dynamics is
derived from conservation and constitutive laws, drawing parallels to physical
systems. Since agent-based models represent individual biological cells, distinct
cell phenotypes can be taken into account, which may be fundamental for the
organisation at the tissue level. For example, it has been shown that cell-to-cell
variability plays a key role in tumour progression and resistance to treatment
[1]. Moreover, with the advance of high performance computing, agent-based
models can be used to analyse in vitro systems at a 1:1 basis even for large cell
population sizes.

Agent-based models can be classified into on-lattice and off-lattice or “lattice-
free” models depending on whether cell movement is restricted to an underlying
lattice (see [2] for references). While lattice-free models are typically very de-
tailed in their biophysical description, they are often too complex for mathemat-
ical analysis, while lattice models are normally very abstract and phenomeno-
logical, thus facilitating their analysis, but making biological data integration
at the model definition level challenging.

In lattice models, either (i) a lattice site may be occupied by many biological
cells (e.g., [3]), (ii) a site may be occupied by at most one single biological
cell (e.g., [4]), or (iii) several neighbouring lattice sites may represent a single
biological cell (e.g., [5]). In probabilistic lattice models, the interacting particle
system (IPS) is an important example, proliferation, death, and migration of
biological cells are modeled as stochastic processes. Model types (i) and (ii) can
mimick volume exclusion effects, (iii) can qualitatively capture cell deformation
and compression, while each of the three approaches can describe the effects of
mechanical forces of one cell on its neighbour, or on a group of neighbouring
cells to some extent.

Lattice models are equivalent to cellular automata, which have been intro-
duced by J. v. Neumann and S. Ulam in the 1950s as models for individual
(self-)reproduction [6]. A cellular automaton consists of a regular spatial lat-
tice in which each lattice node can assume a discrete, typically finite number of
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states. The next state of a node solely depends on the states in neighbouring
sites and a deterministic or stochastic transition function. Cellular automata
provide simple models of self-organising systems in which collective behaviour
emerges from an ensemble of many interacting ”simple” components - being it
molecules, cells or organisms [7, 8, 9, 10].

However, when modeling collective migration phenomena, classic CA and
IPS models have major drawbacks which are due to the strict volume exclusion
and asynchronous update in such models. Most importantly, they fail to pro-
duce collective movement at unit density, since this density implies a ”jammed
state” due to volume exclusion. These are for example the “traffic jams” in [11].
However, a fluidized state at unit density is important in epithelia. Furthermore,
asynchronous update may lead to oscillating density spikes. For example in an
IPS model for persistent motion in a crowded environment, cells at the invasion
front detach and leave gaps behind that are subsequently filled by following
cells [12]. This is an artefact of models with asynchronous update as in reality
invasion can happen while cells stay connected all the time. Moreover, classic
CA models consider only cell position and not explicitly cell momentum, com-
plicating the modeling of collective cell migration mediated primarily through
changes in momentum, rather than density.

The lattice-gas cellular automaton (BIO-LGCA) introduced here, on the
other hand, is a cellular automaton in which lattice sites are updated syn-
chronously, and which explicitly considers individual cell velocities. These fea-
tures make the BIO-LGCA appropriate for modeling collective migration phe-
nomena where cell interactions result in directional changes of velocity, and
where high cell densities do not hamper movement. Table 1 presents an overview
of on-lattice cell-based models.

Table 1: Comparison of on-lattice cell-based models with respect to time rep-
resentation, computational efficiency, migration modelling capacity, and avail-
ability of analytic methods. CA: cellular automaton, BIO-LGCA: biological
lattice-gas cellular automaton, IPS: interacting particle system, CPM: cellular
Potts model; for details see also [2].

model comput.
effic.

model.
flexibil-
ity

analytic
methods

single
cell mig.

coll. cell
mig.

one site/ one cell
(CA/IPS)

++ +/- ++ ++ +/-

one site/ many cells
(CA/IPS)

++ +/- ++ - +

one site/ many cells
with velocity (BIO-
LGCA)

++ + + ++ ++

many sites/one cell
(CPM)

- ++ - ++ ++

The structure of the paper is as follows: we first formally define the BIO-
LGCA model class. Then, we construct biophysical BIO-LGCA rules from mi-
croscopic Langevin models for selected cases of single and collective cell migra-
tion. Subsequently, we demonstrate how to generate data-driven BIO-LGCA
rules from experimental single cell migration data (Fig. 1). Furthermore, we
show that, in specific cases, the biophysical and the data-driven approaches con-
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Figure 2: Lattice and neighbourhood in the BIO-LGCA: example of square
lattice (left). The node state is represented by the occupation of velocity chan-
nels (right); in the example, there are four velocity channels c1, c2, c3, c4, cor-
responding to the square geometry of the lattice, and one ”rest channel” c0.
Filled dots denote the presence of a cell in the respective velocity channel; right:
von Neumann neighbourhood (green) of the red node.

verge to the same functional form. For this case, we present several simple, but
biologically relevant model examples. We end with a critical discussion of the
BIO-LGCA modelling framework.

4 Definition

A BIO-LGCA is defined by a discrete spatial lattice L, a discrete state space E ,
a neighbourhood N and local rule-based dynamics.

4.1 Lattice

The regular lattice L ⊂ Rd consists of nodes r ∈ L. Every node has b nearest-
neighbours, where b depends on the lattice geometry. Each lattice node r ∈ L
is connected to its nearest neighbours by unit vectors ci, i = 1, . . . , b, called
velocity channels. In addition, a variable number a ∈ N0 of rest channels (zero-
velocity channels) cj = 0, b < j ≤ a + b, is allowed (Fig. 2). The parameter
K = a+ b defines the maximum node capacity.

4.2 Neighbourhood

The set N , the neighbourhood template, defines the nodes which determine
the dynamics of the node 0 ∈ L. Throughout this work, the neighbourhood
will be assumed to be a von Neumann neighbourhood (Fig. 2), defined as
N b := N b(0) = {c1, c2, . . . , cb}, but other neighbourhood choices are possible.
In general, N (r) := N b(r) = N b + r, specifies the set of lattice nodes which
determine the dynamics of the state at node r ∈ L. 1

1N b + r = {r + r
′
, r

′ ∈ N b}
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4.3 State space

The state space in LGCA is defined through the occupation numbers sj ∈ {0, 1},
j = 1, . . . ,K. These occupation numbers represent the presence (sj = 1) or
absence (sj = 0) of a cell in the channel cj within some node. Then, the
configuration of a node is given by the state vector

s = (s1, . . . , sK) ∈ E = {0, 1}K .

This reflects an exclusion principle which allows not more than one cell at the
same node within the same channel simultaneously. As a consequence, each
node r ∈ L can host up to K cells, which are distributed in different channels.

It is possible to consider more than one cell phenotype in the BIO-LGCA
model. In this case each phenotype is indexed by σ ∈ Σ ⊂ N. Then, the
configuration vector is given by

s = (sσ)σ∈Σ ∈ E = {0, 1}|Σ|K ,

where | · | denotes the cardinality of a set. Each node will be able to support up
to |Σ|K cells.

Two useful quantities for a given node are the total number of cells at the
node n(s) and the momentum/node flux J(s), defined as

n(s) :=
∑
σ∈Σ

nσ(s) =
∑
σ∈Σ

K∑
j=1

sσ,j and J(s) :=
∑
σ∈Σ

K∑
j=1

sσ,j cj , .

where nσ(s) is the σ number of cell phenotypes.

4.4 Dynamics

In general, in cellular automata a new lattice configuration is created according
to a local rule that determines the new state of each node in terms of the
current states of the node and the nodes in its neighbourhood. In order to
determine a new lattice configuration, the local rule is applied independently and
simultaneously at every node r of the lattice. Mathematically, in probabilistic
cellular automata, the local rule can be interpreted as a transition probability
P (s → s′) to replace a current configuration s with a new node configuration
s′.

In a BIO-LGCA, local rules are composed of a particular combination of op-
erators for stochastic reorientation (O), phenotypic switching (S), and stochas-
tic cell birth and death (R), as well as a deterministic propagation operator
(P) (see figure 3). The propagation and reorientation operators together define
cell movement, while phenotypic switching allows cells to stochastically and
reversibly transition between phenotypes. In a BIO-LGCA, the stochastic oper-
ators are applied sequentially to every node, such that the transition probability
can be expressed as

P (s→ s′) = PSPRPO,

where Pi, i ∈ {S,R,O} are the transition probabilities of the corresponding
operator. In this way, a post-interaction node configuration s′ is defined as
the resulting node configuration after subsequent application of the stochastic
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Figure 3: Operator-based dynamics of the BIO-LGCA: Propagation P, reorien-
tation O, phenotypic switch S, and birth/death operators R (top); conservation
laws maintained by the different operators (middle); sketches of the operator
dynamics (bottom), see text for explanations.

operators, i.e. s′ = sS◦R◦O. Subsequently, the deterministic propagation oper-
ator P is applied: cells in velocity channels at the node, i.e. moving cells, are
translocated to neighbouring nodes in the direction of their respective velocity
channels. The time step increases once the propagator operator has been ap-
plied. Accordingly, the dynamics of the BIO-LGCA can be summarized in the
stochastic microdynamical equation

sj (r + cj , k + 1) = s′j (r, k) . (1)

5 BIO-LGCA rule derivation

In classical cellular automata, transition probabilities are typically chosen ad
hoc. Here, we show that BIO-LGCA rules can also be rigorously derived from
known biophysical equations of motion, and from experimental data reflect-
ing the mean behaviour of individual cells. In the following, we disregard
birth/death processes and phenotypic transitions. For the corresponding BIO-
LGCA model specified exclusively by transition probabilities for reorientation,
we first present a method to derive the BIO-LGCA transition probabilities from
a Langevin model describing single-cell migration [13] and then a method where
the the transition probabilities are derived from average observations, while the
internal dynamics of the cells are assumed to be unknown [14]. In certain cases,
independent of the particular method chosen for rule derivation, the functional
form of the transition probabilities will be the same (Fig. 4).
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5.1 Reorientation dynamics derived from biophysical equa-
tions of motion

In the field of cell migration, different types of cell migration have been described
by a set of stochastic differential equations governing the motion of discrete cells
in an overdamped situation, e.g in a highly viscous medium. The correspond-
ing off-lattice model is known as self-propelled particle model (SPP), and the
stochastic differential equations encoding individual cell motion (as introduced
in [15]) are Langevin equations, where a stochastic variable θm describes the
orientation of the m-th cell in the system which moves with a constant speed
v0 ∈ R+ and orientation θm(t) ∈ [0, 2π) varying according to some potential
and influenced by noise. Its equations of motion read [16]:

ẋm = v0v(θm), (2a)

θ̇m = −γ ∂U({xk} , {θk})
∂θm

+ ξm(t), (2b)

where xm ∈ Rd is the cell’s spatial position, v(θm) ∈ Rd is a unit vector
pointing in the direction of the cell’s displacement, γ ∈ R+ is a relaxation
constant, and ξm(t) is a white noise term with zero mean and correlation
〈ξm (t1) ξn (t2)〉 = 2Dθδ (t2 − t1) δm,n. The heart of the model is the poten-
tial U ({xk} , {θk}) : RNd× [0, 2π)N 7→ R, where N is the number of cells within
the central cell’s neighbourhood of interaction. This potential encodes all the
biophysical mechanisms that dictate the cell’s reorientation. The reorienta-
tion potential typically only depends on the orientations of neighbouring cells,
though a dependence on cell positions is also possible [17].

The probability density function of the stochastic variable θm governed by
the aforementioned Langevin equations is given by the corresponding Fokker-
Planck equation

∂P (θm, t)

∂t
= γ

∂

∂θm

(
∂U

∂θm
P (θm, t)

)
+Dθ

∂2P (θm, t)

∂θ2
m

. (3)

If we assume fast relaxation times for the solution of the Fokker-Planck equa-
tion, then one can take the p.d.f. of the steady state, P (θm), as the probability
of cell m to have an orientation θm.
The next step is to relate this probability to a node configuration probability.
For this, we identify θm with the argument of the unit vector pointing towards
the direction of the cell’s displacement, i.e. θm = arg(vm), so that the proba-
bility can be expressed as P (θm) = P (vm).

Given that the velocity is constant and the direction of motion is totally
defined by the orientation of the cell, we can identify the (instantaneous) cell
displacement v(θm) by an occupied velocity channel in the BIO-LGCA, cm, as it
fully determines the translocation of the cell during the propagation step. Due
to the velocity discretization in the BIO-LGCA, cells in the Langevin model
with an orientation arg(cm) − a ≤ θ ≤ arg(cm) + b; a, b ∈ R, are described in
the LGCA model as occupying velocity channel cm (Fig. 5). The probability
of occupying velocity channel cm in the BIO-LGCA can then be calculated as

P (cm) =

∫ arg(cm)+b

arg(cm)−a
P (θ)dθ.
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Biophysical eqs. of motion Observations from data

Interaction rule

Maximum caliber theoryFokker-Planck equation

Figure 4: Rule generation in BIO-LGCA models: The transition probability
defining the BIO-LGCA interaction rule can be derived from experimental data
and biophysical equations of motion (for explanation see text).

We now assume that we can choose the integration interval [arg(cm)−a, arg(cm)+
b], such that, by the mean value theorem,

P (cm) = K · P (arg(cm)),

where K = a+ b is the size of the integration interval. We shall asume that K
is identical for all velocity channels.

If we further assume that the occupation of velocity channels is uncorrelated,
then the probability to transition to a post-reorientation configuration sO follows
a multinomial distribution:

P
(
s→ sO

)
=
δ
(
n (s) , n

(
sO
))

Z (sO)

b∏
m=0

P (cm)s
O
m , (4)

Figure 5: Sketch of velocity discretization in BIO-LGCA models from a bio-
physical off-lattice Langevin model.
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where the Kronecker delta ensures mass conservation, and Z
(
sO
)

is the nor-
malisation factor which has the following form:

Z
(
sO
)

=
∑
sO

b∏
m=0

P (cm)s
O
m . (5)

If the drift term in Eq. 3 is non-zero, we can further simplify before plugging
in the interaction potential. With non-zero drift, we have for the steady state:

γ
∂

∂θm

(
∂U

∂θm
P

)
+Dθ

∂2P

∂θ2
m

= 0, (6)

which, after integration, yields the following:

P (θm) = C0 exp{(−βU(θm))}, (7)

where β = γ/Dθ. Inserting this into Eq. 4 and absorbing the integration
constant C0 in the partition function Z, one obtains the following expression:

P
(
s→ sO

)
=
δ
(
n (s) , n

(
sO
))

Z

b∏
m=0

{C0 exp{[−βU(cm)]}}s
O
m

=
δ
(
n (s) , n

(
sO
))

Z̃
exp

{
−β

b∑
m=0

[
U(cm)sOm

]}
,

(8)

where Z̃ is the normalisation constant in which the integration constant has
been absorbed.
In order to account for possible discrepancies between the original Langevin
model and the derived BIO-LGCA model (Fig. 6), it is important to emphasise
the assumptions made during the derivation:

• The relaxation time of the Fokker-Planck solution is smaller than the
BIO-LGCA time step.

• P (arg(cm)) is the mean value of P (θm) in the interval [arg(cm) − a,
arg(cm) + b].

• The size of the integration interval, K, is identical for all velocity channels.

• The occupation probabilities of all velocity channels are uncorrelated.

Collective migration Let’s now consider the case where the reorientation
potential is of the form

U ({xk} , {θk}) = −C ({xk} , {θk}) cos [θm − ϕ ({xk} , {θk})] , (9)

that is, the reorientation potential depends only on the cosine of the orienta-
tion of the central cell, whose amplitude and shift may depend on the positions
and/or orientations of all cells within the neighbourhood of interaction (includ-
ing the central cell) only through the amplitude (C) and shift (ϕ) of the cosine
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Figure 6: Comparison of Langevin ABM model and BIO-LGCA simulations in
the density (ρ) vs interaction sensitivity (β) parameter space (from [13]).

function. Using trigonometric identities, the reorientation potential can then be
rewritten as

U ({xk} , {θk}) = −v (θm) ·G ({xk} , {θk}) , (10)

where G ({xk} , {θk}) is called the local director field, whose norm and argument
are, respectively, ‖G ({xk} , {θk})‖ = C ({xk} , {θk}) and arg [G ({xk} , {θk})] =
ϕ ({xk} , {θk}). Substituting Eq. 10 in Eq. 8, and using the linearity of the
internal product, the transition probability of the reorientation operator is

P
(
s→ sO

)
=
δ
(
n (s) , n

(
sO
))

Z
exp (βJ (s) ·G (sN )) , (11)

where G (sN ) is the local director field of the neighbourhood configuration, and
J (s) is the node flux, as described previously.

In general, whenever the reorientation potential can be expressed as

U ({xk} , {θk}) = −C ({xk} , {θk}) cosn [θm − ϕ ({xk} , {θk})] , (12)

with n ∈ N, the argument of the exponential in the transition probability can
be expressed as an internal product of two vectors. In the specific case of n = 2,
using trigonometric functions, one can arrive at the transition probability

P
(
s→ sO

)
=
δ
(
n (s) , n

(
sO
))

Z
exp (βN (s) ·G (sN )) , (13)

where N (s) is the local nematic alignment vector, and is defined as

N (s) :=
1

2

b∑
p=1

c[2(p−1)modb]+1sp. (14)

Thus, the reorientation probabilities have the same general form whenever the
interaction potential is conservative and consists of a pairwise comparison be-
tween the angles and/or positions of neighbouring cells.
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5.2 Data-driven rules

Due to the complexity of inter- and intracellular processes, it is not uncommon
to have little knowledge about biophysical mechanisms mediating single and
collective cell migration. Typically, there is partial to no knowledge of the
intracellular processes underlying experimental observations, such as signalling
pathways. In this case, statistical methods can be used to derive reorientation
rules needed to define appropriate BIO-LGCA models.

Suppose that an experimental observation is the only known information
about a single or collective cell migration process, with no knowledge about the
underlying mechanisms driving such process. These observations are typically
averages of a time-dependent quantity (called the observable). The reorientation
probabilities of the corresponding BIO-LGCA model should be chosen such that
the mean of the observable function matches the experimental observation. For
example, a common observable is the comparison between the initial cell velocity
v0, and the velocity at a later time t, vt, expressed as v0 · vt. The corresponding
experimental observation is called the velocity autocorrelation function, defined
as g(t) = 〈v0 · vt〉.

However, this is not enough to completely determine the probability distribu-
tion. Take, for example, a zero-mean observation. Most symmetric distributions
centered about zero will fulfill the observation. Which functional form of the
probabilities to choose, then? We can actually exploit the lack of information
on the mechanistic nature of the process to our own advantage. The maximum
caliber (and maximum entropy) formalism [18] dictates to maximise entropy
(a measure of the lack of information contained in a probabilistic model) while
restricting probabilities to reproduce the experimental observation. This trans-
lates into optimising the following functional

C̃ [PΓ] = −
∑

Γ

PΓ lnPΓ+
k∑
j=1

β(j)

[∑
Γ

PΓŨj
(
{s (r)}r∈L

)
− Ej

]
+λ

(∑
Γ

PΓ − 1

)
,

(15)
where PΓ is the probability of a cell to follow a certain spatial trajectory Γ, β(j)
and λ are Lagrange multipliers, Ũk

(
{s (r)}r∈L

)
is the value of the observable

at the time step k depending on the state of the lattice {s (r)}r∈L, and Ek is
the value of the observation at the time step k, which is the average of the
observable obtained from experimental data. The first term of the functional
is the entropy, which we want to maximise. The second term restricts the
resulting probabilities to match the experimental observation. Since we assume
the observation, Ek to be a time-dependent function, then a Lagrange multiplier
β(k) is needed for every time step k. The last term guarantees the normalisation
of probabilities, which requires and additional Lagrange multiplier, λ.

The optimisation of this functional yields an optimal value for the path

probabilities PΓ = 1
Z exp

[∑k
j=1 β(j)Ũj

(
{s (r)}r∈L

)]
, where the value of β(j) is

such that Ek =
∑

Γ PΓŨj
(
{s (r)}r∈L

)
.

If the process is Markovian, then one may decompose the path probability
into individual channel occupation probabilities for each time step k, as

Pi,k =
1

Z
exp

[
β(k)Ũk (si | sN )

]
, (16)
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where the observable is dependent on the occupancy of the i-th channel of the
node and conditioned to a certain configuration of its interaction neighbourhood.
For example, if the observation is the autocorrelation function g(t) = 〈v0 · vt〉,
where vt denotes the normalized velocity of a cell at the time t, determined from
experimental data, then the corresponding channel occupation probabilities are
found to be

Pi,k =
1

z
exp [dg(k) (ci0 · ci)] , (17)

where z is the normalisation constant for the transition probability, d is the
dimension of space, and ci0 is the initial orientation of the cell.

If we assume independence among cells within the same node, we arrive at
a reorientation probability of the form

P
(
s→ sO

)
=
δ
(
n (s) , n

(
sO
))

Z
exp

[
b∑
i=1

β(k)Ũk (si | sN )

]
. (18)

Note that, if both observation and observable are time-independent, then
the Lagrange multiplier β(k) = β is also time independent, and the transition
probabilities are given by

P
(
s→ sO

)
=
δ
(
n (s) , n

(
sO
))

Z
exp

[
b∑
i=1

βŨ (si | sN )

]
. (19)

Furthermore, when Ũ (si | sN ) = sici ·G (sN ), then Eq. 19 reduces to Eq. 11.

6 BIO-LGCA rules for single and collective cell
migration

Now that the BIO-LGCA framework has been defined and data- and equation-
based methods for rule derivation have been described, we present key examples
of transition probabilities corresponding to reorientation operators, which model
important elementary single-cell and collective behaviours. Note that several of
these examples’ probabilities have the general form of Eq. 11.

6.1 Single cell migration

Random walk Random walks are performed by cells such as bacteria and
amoebae in the absence of any environmental cues. Random walk of cells can be
modeled by a reorientation operator with the following transition probabilities:

P
(
s→ sO

)
=

1

Z(s)
· δ
(
n(s), n(sO)

)
. (20)

This rule conserves mass, i.e. cell number.

Chemotaxis Chemotaxis describes the dependence of individual cell move-
ment on a chemical signal gradient field. Accordingly, spatio-temporal pattern
formation at the level of cells and chemical signals can be observed. Chemotac-
tic patterns result from the coupling of different spatio-temporal scales at the
cell and the molecular level, respectively.
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Figure 7: BIO-LGCA modelling with data-driven rules. First, an experiment
is performed and data (here: migration trajectories) are gathered. Second, the
data is processed and a characteristic observation is selected (here the obser-
vation is the velocity autocorrelation function). Third, a BIO-LGCA model
is constructed by deriving rules from the experimental observations (see Fig.
4), and data (trajectories) are gathered from simulations. The model can be
validated by showing that it reproduces experimental observations (here, the
velocity autocorrelation function). Experimental plots of D. discoideum trajec-
tories (top) were adapted from [19]. BIO-LGCA simulation plots of single-cell
trajectories (bottom) were produced by the authors from a BIO-LGCA model
obtained from experimental plots as described within the main text.
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To mimick a chemotactic response to the local signal concentration, we define
the signal gradient field

Gsig(sN ) :=
b∑

p=1

cp c
p
sig, sN =

(
(s1, c1sig), . . . , (s

b, cbsig)
)
∈ ĒN , (21)

where ĒN = E × R+
0 . Chemotaxis can be modeled through a reorientation

operator with transition probabilities given by

P
(
s→ sO|sN ;β

)
=

1

Z (sN , β)
exp

(
β Gsig(sN ) · J(sO)

)
δn(s),n(sO). (22)

where β is the chemotactic sensitivity of the cells.
With large probability, cells will move in the direction of the external chem-

ical gradient Gsig.

Haptotaxis We consider cell migration in a static environment that conveys
directional information expressed by a vector field

E : L → R2.

A biologically relevant example is haptotactic cell motion of cells responding to
fixed local concentration differences of adhesion molecules along the extracellular
matrix (ECM). In this example, the local spatial concentration differences of
integrin ligands in the ECM constitute a gradient field that creates a “drift” E
[20].

The transition probabilities associated to the reorientation operator, given
a vector E ∈ R2, is given by

P
(
s→ sO|E

)
=

1

Z (n(s),E, β)
exp

(
βE · J

(
sO
))
· δn(s),n(sO),

where E ∈ R2.
In this case, cells preferably move in the direction of the external gradient

E.

Contact guidance We now focus on cell migration in environments that con-
vey orientational, rather than directional, guidance. Examples of such motion
are provided by neutrophil or leukocyte movement through the pores of the
ECM, the motion of cells along fibrillar tissues, or the motion of glioma cells
along fiber track structures. Such an environment can be represented by a sec-
ond rank tensor field that encodes the spatial anisotropy along the tissue. In
each point, the corresponding tensor informs the cells about the local orientation
and strength of the anisotropy and induces a principal (local) axis of movement.
Thus, the enviroment can again be represented by a vector field

E : L → R2.

Contact guidance can be modeled through a reorientation operator with tran-
sition probabilities defined as

P
(
s→ sO|E

)
=

1

Z (n(s),E, β)
exp

(
β|E · J

(
sO
)
|
)
· δn(s),n(sO).
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Attraction

Alignment

Figure 8: Basic interactions with neighbourhood impact; node configuration
(red) before and after application of stochastic interaction rule: cell-cell attrac-
tion (top), cell alignment (bottom).

6.2 Collective cell migration

Several kinds of organisms, as well as biological cells, e.g. fibroblasts, can align
their velocities globally through local interactions. Here, we introduce a reori-
entation operator where the local director field is a function of the states of
several channels and nodes, reflecting the influence of neighbouring cells during
collective cell migration.

P
(
s,→ sO|sN

)
=

1

Z(sN )
exp

(
βD(sN ) · J(sO)

)
δ
(
n(s), n(sO)

)
, (23)

where D(sN ) =
∑b
p=1 J(sp) is the local cell momentum This particular reorien-

tation probability triggers cell alignment [21].

6.3 Attractive interaction

Biological cells can interact via cell-cell adhesion, through filpodia cadherin
interaction, for example. Agent attraction/adhesion can be modeled with a
reorientation operator with the following probability distribution.

P
(
s,→ sO|sN , β

)
=

1

Z(sN )
exp

(
βG(sN ) · J(sO)

)
δ
(
n(s), n(sO)

)
, (24)

where G(sN ) =
∑K
p=1 n(sp)cp is the density gradient field.

This reorientation probability favors cell agglomeration. A similar rule has
been introduced in [22].

7 Mean-field analysis

We here demonstrate the mean-field analysis of the BIO-LGCA for the example
of the attractive interaction eq. (24). This analysis allows to predict collective
behaviour. In particular, we calculate the critical sensitivity βc, such that ag-
gregation occurs for β > βc, while a homogeneous initial conditions is stable for
β < βc. Under ”mean-field” we here understand that we neglect correlations
between the occupation numbers of different channels and that we approximate
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the mean value of any function f of a random variable X by the function evalu-
ated at the mean value of the random variable, i.e. 〈f(X)〉 ≈ f(〈X〉). As we are
interested in the onset of aggregation from a homogeneous initial state with low
density ρ̄ := 1

|L|
∑

r∈L n(r) � 1 and weak interaction β � 1 we can linearize

the transition probabilities. We further assume that there is at most one cell
at each node and therefore only consider single-cell transitions (n = 1). For the
partition function Z we then obtain

Z =
K∑
i=1

expβG(sN ) · ci ≈
K∑
i=1

1 + βG(sN ) · ci = K, (25)

due to the symmetry of the lattice. For the single-cell transition probability we
obtain

P (sOi = 1|sN ) ≈ 1 + βG(sN ) · ci
K

. (26)

Since the transition probability only depends on the number of cells on the
neighbouring nodes, but not on their distribution on the channels, we analyze
the mean local density

ρ(r, k) := 〈n(r, k)〉 =

〈
K∑
i=1

si(r, k)

〉
. (27)

According to the propagation rule the cell number n(r, k + 1) is given by

n(r, k + 1) =
K∑
i=1

sOi (r− ci, k). (28)

We calculate the expected value under the mean-field assumption in terms of
numbers of cells n(r) at node r ∈ L, and the number of cells nN (r) in the
neighbourhood of r ∈ L as

ρ(r, k + 1) =
K∑
i=1

∑
nN

P
(
sOi = 1|nN (r−ci)

)
P
(
nN (r−ci)

)
. (29)

As in the low-density regime P (n(r) > 1) ≈ 0 ∀r ∈ L, we can use the single-
cell transition probability eq. (26) and the factorizing probability distribution
under our mean-field assumption to obtain

ρ(r, k + 1) =

K∑
i=1

∑
nN

1 + βci ·
∑K
j=1 cjn(r− ci + cj , k)

K
P
(
nN (r−ci)

)
=

1

K

K∑
i=1

1 + βci ·
b∑
j=1

cjρ(r− ci + cj , k)

P (n(r− ci) = 1)

≈ 1

K

K∑
i=1

1 + βci ·
b∑
j=1

cjρ(r− ci + cj , k)

ρ(r− ci, k) (30)
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To proceed, we assume a one-dimensional lattice, where b = 2, c1,2 = ±1 with a
rest channels to obtain the finite-difference equation (FDE)

ρ(r, k + 1) =
a

K
ρ(r, k) +

1

K

[
ρ(r − 1, k) + ρ(r + 1, k)

]
+

β

K

{
ρ(r − 1, k)

[
ρ(r, k)− ρ(r − 2, k)

]
+ ρ(r + 1, k)

[
ρ(r, k)− ρ(r + 2, k)

]}
. (31)

This FDE can be analyzed by means of linear stability analysis. To do this, we
first rewrite eq. (31) in terms of the density difference ∆ρ(r, k) := ρ(r, k + 1)−
ρ(r, k), which we linearize around the steady state for a small perturbation of
the form ρ(r, k) = ρ̄+ δρ(r, k)

∆ρ(r, k) ≈ ∆ρ(r, k)

∣∣∣∣
ρ̄

+
∑
r′

∂∆ρ(r, k)

∂ρ(r′, k)

∣∣∣∣
ρ̄

δρ(r′, k) (32)

= K−1{δρ(r, k)[−2 + 2βρ̄]

+ [δρ(r + 1, k) + δρ(r − 1, k)]

− [δρ(r + 2, k) + δρ(r − 2, k)]βρ̄}. (33)

We now apply the discrete Fourier transform

δρ̃(q, k) =
L−1∑
r=0

δρ(r, k) exp
−2πiqr

L
, (34)

and obtain the mode-dependent FDE

∆ρ̃(q, k + 1) =
2δρ̃(q, k)

K

{
βρ̄− 1 + cos

2πq

L
− βρ̄ cos

4πq

L

}
(35)

=
2δρ̃(q, k)

K

{
2βρ̄− 1 + cos

2πq

L
− 2βρ̄ cos2 2πq

L

}
, (36)

using 2 cosx = eix + e−ix and cos 2x = 2 cos2 x − 1. Note that the system
becomes unstable when the r.h.s. of the equation is larger than 0, meaning
the perturbation grows, while it is stable with a decreasing perturbation if it
is smaller than 0. To find the dominant Fourier mode q that maximizes the
r.h.s. we assume an infinite lattice L → ∞ so that we can define the quasi-
continuous wave number κ := 2πq

L and use the derivative with respect to κ to
calculate the maxima of the bracket on the r.h.s. of eq. (36),

− sinκ+ 4βρ̄ cosκ sinκ = 0, (37)

−1 + 4βρ̄ cosκ = 0, (38)

cosκ =
1

4βρ̄
. (39)

Note that we divided by sinκ here, neglecting the trivial solutions κ = 0, π.
Clearly the solution cosκc = 1

4βρ̄ is only valid for βρ̄ ≥ 1
4 and it is the dominant

wave number in this case. This in turn allows us to define the critical parameter
combination (βρ̄)c := 1

4 . We can also calculate the dominant wave length in
dependence of βρ̄ as λc = 2π

κc
, which diverges at βρ̄ → (βρ̄)c ⇒ λc → ∞ and

approaches λc → 4 for βρ̄→∞.
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Figure 9: Pattern formation in the LGCA aggregation rule. Left: critical wave
length obtained from the mean-field analysis. The critical wave length diverges
for (βρ̄)→ (βρ̄)c = 1/4, and lim(βρ̄)c→∞ λc = 4. Right: emergence of a periodic
pattern from a homogeneous initial state. The horizontal distance of the orange
dashed lines is equal to the critical wave length predicted by mean-field analysis.
Parameters: β = 100, ρ̄ = 1, a = 2.

8 Discussion

In contrast to “continuumsystems” and their canonical description with partial
differential equations, there is no standard model for describing interactions of
discrete objects, particularly interacting discrete biological cells. In this paper,
the BIO-LGCA is proposed as a lattice-based model class for a spatially ex-
tended system of interacting cells. The BIO-LGCA idea can be expanded to
multispecies models with different cell phenotypes where cell phenotypes may
differ in their migration or interaction behaviours reflected in the specific inter-
action rule (cp. also [23]). It is also possible to extend the BIO-LGCA idea
to heterogeneous populations and environments, e.g. cells which differ in their
adhesivities and/or which interact with a heterogeneous non-cellular environ-
ment [24, 25]. BIO-LGCA models are appropriate for low and moderate cell
densities. For higher densities e.g. in epithelial issues, cell shape may mat-
ter and other models, such as the Cellular Potts model, may be better choices
(see [2, 26] for reviews of on- and off-lattice models). It is also important to
be aware of lattice artefacts inherent to the spatial discretization considered in
every cellular automaton model, e.g. the checkerboard artefact (cp. [27]). In
two spatial dimensions, the hexagonal lattice possesses less artefacts than the
square lattice. A major advantage of BIO-LGCA models compared to other on-
and off-lattice cell-based models for interacting cell systems, such as interacting
particle systems, e.g. [28, 29], asynchronous cellular automata, e.g. [30, 31, 32],
further cell-based models [33] or systems of stochastic differential equations [34],
is their computational efficiency, and their synchronicity and explicit velocity
consideration, which enables the modeling of moderately packed cell collectives
while minimizing model artifacts.

Most BIO-LGCA models do not conserve momentum, especially if they
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model active cells in highly viscous environments and spend energy to bypass
momentum conservation. In particular, cell motion may be influenced by the in-
teraction of cells with components of their microenvironment through haptotaxis
or differential adhesion, contact guidance, contact inhibition, and processes that
involve cellular responses to signals that are propagated over larger distances
(e.g. chemotaxis). BIO-LGCA models have already been used in the study
of several biological processes, namely angiogenesis [35], bacterial rippling [36],
Turing pattern formation [37], active media [38], epidemiology [39] and various
aspects of tumor dynamics [24, 40, 41, 42, 43, 44, 45, 46, 47], among others.

BIO-LGCA models allow multiscale analysis of behaviours emerging at mul-
tiple temporal and spatial scales. The microscopic scale is much smaller than
the typical cell size and is not explicitly considered in BIO-LGCA models. The
macroscopic scale is much larger than the cell size and refers to the behaviour of
the cell population. Thus, a BIO-LGCA operates at a mesoscopic scale between
the microscopic and the macroscopic scale: the mesoscopic scale coarse-grains
microscopic properties but distinguishes individual cells. BIO-LGCA as “meso-
scopic“ models can be regarded either as coarse-grained microscopic models, or
discretized macroscopic models. The BIO-LGCA framework facilitates theoret-
ical analysis of emergent, tissue-scale (macroscopic) behaviours [27]. In many
cases, the macroscopic behaviour of the mesoscopic BIO-LGCA can be ana-
lyzed using reasonable approximations, such as through a spatial mean-field
description based on a partial differential equation [27, 48, 49, 50] (see also
sec. 7). In particular, BIO-LGCA have been used for analysing collective be-
haviours at the macroscopic biological tissue level that result from local cellular
interactions. Typical examples of observables at a macroscopic scale are cell
density patterns and quantities related to the dynamics of moving cell fronts
and cluster size distributions [51, 52, 53]. Cell density patterns can often be
assessed experimentally and provide, therefore, a means to relate BIO-LGCA
model predictions to experimental observations.

Meanwhile, microscopic model descriptions in the form of stochastic differen-
tial equations have been derived from a mesoscopic individual-based BIO-LGCA
formulation as well [54]. Note that in standard LGCA and BIO-LGCA individ-
ual agents can not be distinguished and therefore followed.

The BIO-LGCA modeling strategy is “modular”: starting from “basic mod-
els”, which include those explored in this paper such as alignment, contact
guidance/repulsion, hapto- and chemotaxis. Coupling them is required to de-
sign models for complex biological problems. The focus of future activities is the
analysis of further model combinations for selected biological problems, which
are not necessarily restricted to cells but could also comprise interactions at
subcellular and tissue scales. The resulting multi-scale models will contain a
multitude of coupled spatial and temporal scales and will impose significant
challenges for their analytic treatment.

9 Simulator

https://imc.zih.tu-dresden.de//biolgca/
https://github.com/sisyga/BIO-LGCA
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