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HIGHLIGHTS 82 

� Large-scale scRNA-seq analysis depicts the immune landscape of COVID-19 83 
� Lymphopenia and active T and B cell responses coexist and are shaped by age and 84 

sex 85 
� SARS-CoV-2 infects diverse epithelial and immune cells, inducing distinct responses 86 
� Cytokine storms with systemic S100A8/A9 are associated with COVID-19 severity 87 

SUMMARY 88 

Dysfunctional immune response in the COVID-19 patients is a recurrent theme impacting 89 
symptoms and mortality, yet the detailed understanding of pertinent immune cells is not 90 
complete. We applied single-cell RNA sequencing to 284 samples from 205 COVID-19 91 
patients and controls to create a comprehensive immune landscape. Lymphopenia and 92 
active T and B cell responses were found to coexist and associated with age, sex and their 93 
interactions with COVID-19. Diverse epithelial and immune cell types were observed to be 94 
virus-positive and showed dramatic transcriptomic changes. Elevation of ANXA1 and 95 
S100A9 in virus-positive squamous epithelial cells may enable the initiation of neutrophil 96 
and macrophage responses via the ANXA1-FPR1 and S100A8/9-TLR4 axes. Systemic up-97 
regulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, 98 
may contribute to the cytokine storms frequently observed in severe patients. Our data 99 
provide a rich resource for understanding the pathogenesis and designing effective 100 
therapeutic strategies for COVID-19. 101 
 102 

INTRODUCTION 103 

The coronavirus disease 2019 (COVID-19) is an ongoing pandemic infectious disease, 104 
caused with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, 105 
it has caused with around 29 million infections and close to 1 million deaths according to 106 
the statistics of World Health Organization until September 15, 2020, with the fatality rate as 107 
high as ~10% in specific regions. Although many COVID-19 patients experience 108 
asymptomatic, mild or moderate symptoms, some patients progress to severe conditions 109 
and even death. It is thus of paramount importance to understand the disease mechanisms 110 
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and the underlying factors associated with vulnerabilities, which are critical for controlling 111 
the pandemic and alleviating the global crisis. It is also critical to systematically investigate 112 
differences between clinical presentations (mild/moderate and severe), or between 113 
treatment outcomes (disease progression and convalescence) of patients, as they can 114 
provide important guidance to the development of effective therapeutics and vaccines. 115 
 116 
Multiple studies have suggested the alterations of immune responses as one of the key 117 
mechanisms for severe symptoms (Guo et al., 2020a; Schulte-Schrepping et al., 2020; 118 
Silvin et al., 2020a; Wen et al., 2020; Zhang et al., 2020a; Zhang et al., 2020b). Patients 119 
with severe COVID-19 might have a cytokine storm syndrome accompanying the hyper-120 
inflammatory response, which is a major cause of disease severity and death (Cao, 2020; 121 
Del Valle et al., 2020; Huang et al., 2020; Liao et al., 2020; Mehta et al., 2020; Zhou et al., 122 
2020a). During the inflammatory responding process, pathogenic T cells and inflammatory 123 
monocytes produced inflammatory cytokines (Zhou et al., 2020b) such as G-CSF (Costela-124 
Ruiz et al., 2020; Du et al., 2020), TNF-α (Jamilloux et al., 2020; Vabret et al., 2020), IL-6 125 
and IL-1 (Abbasifard and Khorramdelazad, 2020; Costela-Ruiz et al., 2020; Del Valle et al., 126 
2020; Liao et al., 2020; Mehta et al., 2020; Yang et al., 2020), and drove downstream 127 
hyper-inflammation. In contrast, some studies have argued against the presence of 128 
cytokine storms (Kox et al., 2020; Wilk et al., 2020). Thus, the detailed immune responses 129 
in COVID-19 patients with SARS-CoV-2 infection need to be more thoroughly investigated.  130 
 131 
Single-cell RNA sequencing (scRNA-seq) is powerful at dissecting the immune responses 132 
under various conditions at the finest resolution, and has been applied to COVID-19 studies 133 
on limited scales (Chua et al., 2020; Guo et al., 2020a; He et al., 2020; Liao et al., 2020; 134 
Wilk et al., 2020; Xie et al., 2020). While the current single cell studies of COVID-19 have 135 
provided certain details of the cellular and molecular changes of patients after SARS-CoV-2 136 
infection and even during convalescence (Mathew et al., 2020a), the small sample sizes of 137 
such studies have raised concerns over the robustness and the generalization of such 138 
findings. Here we applied scRNA-seq to a large cohort with 205 individuals, including 139 
hospitalized COVID-19 patients with moderate or severe disease, and patients in the 140 
convalescent stage, as well as healthy controls. With high-quality transcriptomics data of 141 
~1.5 million single cells, we reveal that SARS-CoV-2 could infect a wider range of cell types 142 
than previous understanding, and induce distinct phenotypic changes in those infected cells. 143 
Such heterogeneity of SARS-CoV-2 infection has important immunological implications as 144 
such cells exhibit distinct interaction potentials with innate and adaptive immune cells. We 145 
also observed critical changes in the peripheral blood discriminating mild/moderate from 146 
severe COVID-19 patients in the disease progression or convalescence stages, and found 147 
their association with patient sex and age. Further, our large cohort analysis provides a 148 
unique opportunity to reveal the characteristics of cytokine storms in patients, and to further 149 
illustrate the cell subpopulations that might contribute to the inflammatory responses and 150 
the hyper-inflammatory genomic signatures under SARS-CoV-2 infection. Our findings may 151 
have important implications to the research, treatment, control and prevention of COVID-19. 152 

RESULTS 153 

Integrated analysis of the COVID-19 scRNA-seq data  154 

To systematically characterize the immune properties at single-cell resolution in the COVID-155 
19 patients, we formed a Single Cell Consortium for COVID-19 in China (SC4), which 156 
consisted of researchers from 36 research institutes or hospitals from different regions of 157 
China. Members of SC4 contributed COVID-19 related scRNA-seq data, mostly still 158 
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unpublished, for a total of 205 individuals, including 25 patients with mild/moderate 159 
symptoms, 63 hospitalized patients with severe symptoms, and 92 recovered convalescent 160 
persons, as well as 25 healthy controls (Figure 1A and Table S1). While most previous 161 
studies did not discriminate whether convalescent individuals recovered from mild/moderate 162 
or severe symptoms, we divided the convalescent group into two subgroups, 54 recovered 163 
from mild/moderate symptoms and 38 recovered from severe symptoms, to investigate the 164 
effects of disease severity on the immune status of recovered individuals. This cohort 165 
covered a wide age range (from 6 to 92 years old), with the mild/moderate and severe 166 
groups having significant age differences (Figure S1A), consistent with the epidemiological 167 
observations that aged patients are prone to severe symptoms (Guo et al., 2020a; Hadjadj 168 
et al., 2020; Silvin et al., 2020b; Wilk et al., 2020; Yu et al., 2020). Additionally, no 169 
significant difference was noted in the sex composition between the mild/moderate and 170 
severe groups (Figure S1B).  171 
 172 
A total of 284 samples were collected for scRNA-seq, of which 249 were from peripheral 173 
blood mononuclear cells (PBMCs) and 35 from the respiratory system, which was further 174 
composed of 12 bronchoalveolar lavage fluid (BALF) samples, 22 sputum samples, and 1 175 
sample for pleural fluid mononuclear cells. Some patients had multiple samples collected, 176 
including seven patients with matching BALF and PBMC. Most samples were subjected to 177 
scRNA-seq based on the 10X Genomics 5’ sequencing platform to generate both the gene 178 
expression and T cell receptor (TCR) or B cell receptor (BCR) data. The scRNA-seq raw 179 
data were analyzed by a unified analysis pipeline, including the kallisto and bustools 180 
programs (Bray et al., 2016; Melsted et al., 2019), to obtain the gene expression data of 181 
individual cells and by the CellRanger program to obtain TCR and BCR sequences.  182 

 183 
We applied a common set of stringent quality control criteria to ensure that the selected 184 
data were from single and live cells and that their transcriptomic phenotypes were 185 
comprehensively characterized. A total of 1,462,702 high-quality single cells were ultimately 186 
obtained, with an average of 4,835 unique molecular identifiers (UMIs), representing 1,587 187 
genes (Figures S1D and S1E). With the large-scale of data, we obtained 64 cell clusters, 188 
covering diverse epithelial cells in the respiratory system, megakaryocytes, mast cells, 189 
myeloid cells, and NK/T/B cells (Figure 1B). Such an information-rich resource (available at  190 
http://covid19.cancer-pku.cn/ for quick browsing) enabled accurate annotation and analysis 191 
of these cell clusters at different resolutions (Figure 1C, Figure S1F-J and Table S2), which 192 
allow the elucidation of potential molecular and cellular mechanisms underlying the 193 
pathogenesis of SARS-CoV-2 infection and differences of human immune responses for 194 
patients with distinct symptoms.  195 

 196 
Notable differences could be observed in the immune compositions of healthy controls and 197 
COVID-19 patients with mild/moderate or severe symptoms (Figure 1D) or between the 198 
disease progression stages and convalescence (Figure 1E) based on the t-distributed 199 
stochastic neighbor embedding (t-SNE) projection. The tissue preference of each cluster 200 
was illustrated based on the ratio of observed to randomly expected cell numbers (Ro/e, 201 
Figure 1F), partially reflecting the validity of cell clustering. Notably, various clusters of 202 
proliferating CD8+ and CD4+ T, and plasma B cells were more enriched in BALF than 203 
PBMCs, indicating activated adaptive immune responses in the lung (Figure 1F). 204 
 205 
We first analyzed the compositional changes of the broad categories of immune cells for 206 
PBMCs in different COVID-19 patient groups. Notably, the percentages of megakaryocytes 207 
and monocytes in PBMCs were elevated, particularly in severe COVID-19 patients during 208 
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the disease progression stage (Figure 2A) (Guo et al., 2020a; Zhang et al., 2020b). While 209 
NK cells did not show significant changes among the different patient groups (Figure 2A), B 210 
cells were significantly increased in severe COVID-19 patients (Figure 2A)(Guo et al., 211 
2020a; Mathew et al., 2020b; Zhang et al., 2020b). By contrast, T cells and DCs were 212 
decreased in severe COVID-19 patients (Figure 2A). These findings are consistent with 213 
previous reports that lymphopenia is frequently observed in COVID-19 patients and that 214 
impaired adaptive immunity may occur (Gao et al., 2020; Giamarellos-Bourboulis et al., 215 
2020; Kuri-Cervantes et al., 2020; Ni et al., 2020a; Yu et al., 2020).   216 
 217 
Elevated plasma B cells in COVID-19 patients 218 
As single-cell dissection can provide the finest resolution to investigate the compositional 219 
changes among different COVID-19 patient groups, we then examined the heterogeneity of 220 
sub-clusters within each major immune cell type. For B cells, XBP1+ plasma cells (B_c05-221 
MZB1-XBP1) showed the most significant compositional increases in PBMCs. For some 222 
severe COVID-19 patients, the percentage of plasma cells could even reach 15% of CD45+ 223 
cells in PBMCs, but the levels in other COVID-19 patients and healthy controls were less 224 
than 3% (Figure 2B). These cells highly expressed the genes encoding the constant 225 
regions of IgA1, IgA2, IgG1 or IgG2 (Figure 2B), indicating their functions to secrete 226 
antigen-specific antibodies to combat viral infection. This observation is consistent with the 227 
recent report that the serum of severe COVID-19 patients had high titers of SARS-CoV-2-228 
specific antibodies (Tan et al., 2020b; Zhang et al., 2020c). 229 
 230 
The increased plasma B cells in peripheral blood appeared to be derived from active 231 
proliferation of plasmablasts and transitions from memory B cells based on the paired BCR 232 
sequencing analyses. Both the extent of BCR clonal expansion and the diversity of the total 233 
BCR repertoire of these cells were significantly increased in severe COVID-19 patients 234 
(Figure 2C). Plasmablast cells (B_c06_MKI67), characterized by high expression of MKI67 235 
and thus indicating a proliferative state, were elevated in the peripheral blood of severe 236 
COVID-19 patients (Figure S2A) and shared the most clonotypes with plasma cells (Figure 237 
2D). The memory B cell cluster expressing high levels of CD27, CD80, AIM2, GRIP2, and 238 
COCH (B_c03-CD27-AIM2) was the second major source of plasma B cells in the 239 
peripheral blood, which shared a large proportion of clonotypes with plasma cells and 240 
plasmablasts (Figure 2D). Distinct from plasma cells and plasmablasts which were mainly 241 
composed of IgAs and IgGs, B_c03-CD27-AIM2 had a higher proportion of IgMs (Figure 242 
2E), indicating a precursor state. 243 
 244 
We applied analysis of variance (ANOVA) to dissect the associations of compositional 245 
changes of plasma B cells with disease severity, stage (progression or convalescence), age, 246 
sex, or the interactions of these factors. We found that plasma B cells in blood were 247 
specifically associated with the disease severity of COVID-19, and then disease stage, but 248 
had no associations with age or sex observed (Figure 2F) (Takahashi et al., 2020). In fact, 249 
for the mild/moderate disease, convalescent patients harbored higher levels of plasma B 250 
cells than those in the disease progression stage. By contrast, the plasma B cell levels in 251 
convalescent patients who recovered from severe disease were significantly lower than 252 
those in the disease progression stage (Figure 2B). Interestingly, the precursors of plasma 253 
B cells, i.e., cells of B_c03-CD27-AIM2, appeared to be associated with sex differences 254 
(Figure 2G). In females, the percentage of B_c03-CD27-AIM2 cells was significantly higher 255 
than that of males (Figure 2G). Almost all B cell clusters were associated with disease 256 
stages, implying the importance of humoral immune response changes between disease 257 
progression and convalescence (Figure S2B and Table S3).  258 
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 259 
In summary, plasma B cells appeared to be significantly elevated in the peripheral blood 260 
regarding either the composition, proliferation, or developmental transition from memory B 261 
cells, and were more associated with disease severity. While their precursor cells were also 262 
elevated, they were more prone to be influenced by sex differences, providing a plausible 263 
explanation for the epidemiological observations on sex differences of COVID-19. Taken 264 
together with the observation that plasma B cells were more enriched in BALF (Figure 1F), 265 
these observations may suggest that humoral immune responses were actively initiated to 266 
combat SARS-CoV-2 infection and contributed to disease severity. 267 
 268 
Elevated proliferative T cells in COVID-19 patients 269 
Similar to plasma B cells, proliferative CD8+ and CD4+ T cell clusters also showed an 270 
enrichment in BALF (Figure 1F) and elevation in PBMCs of COVID-19 patients albeit with a 271 
decrease of total T cells (Figures 2A and 3A) (Liao et al., 2020). A total of three proliferative 272 
CD8+ T cell clusters identified in this study, including T_CD8_c10-MKI67-GZMK, 273 
T_CD8_c11-MKI67-FOS, and T_CD8_c12-MKI67-TYROBP, were all increased in COVID-274 
19 patients but with different characteristics. T_CD8_c10-MKI67-GZMK, a proliferative 275 
effector memory CD8+ T cell group characterized by high expression of STMN1, HMGB2, 276 
MKI67, and GZMK, was increased in the convalescent stage of severe COVID-19 patients 277 
(Figure 3B). Similarly, T_CD8_c11-MKI67-FOS also highly expressed STMN1, HMGB2, 278 
and MKI67, but exhibited low levels of GZMK instead and high levels of FOS. This cluster 279 
was increased in the disease progression stage of severe patients but not in convalescence 280 
(Figure 3B). T_CD8_c12-MKI67-TYROBP was characterized by high expression of STMN1, 281 
HMGB2, MKI67, and a NK cell marker gene TYROBP. This cluster was specifically 282 
increased in mild/moderate patients during the disease progression stage but deceased in 283 
the convalescence to a normal level as in healthy controls (Figure 3B). These observations 284 
were consistent with the activation of T cell responses in the peripheral blood of COVID-19 285 
patients as previously reported using flow cytometry or CyTOF techniques (Mathew et al., 286 
2020a; Sekine et al., 2020). However, the variations of proliferative CD8+ T cell clusters in 287 
different severity and stages have not been noticed before, which may indicate the 288 
complexity of T cell responses induced by SARS-CoV-2 infection in different patients. 289 
Moreover, in contrast to plasma B cells that accounted for 6.39% of total B cells, each 290 
proliferative CD8+ T cell cluster accounted for a much smaller proportion of the total CD8+ 291 
T cells (<1.63%) (Guo et al., 2020a; Liao et al., 2020; Mathew et al., 2020a). 292 
 293 
Two proliferative CD4+ T cell clusters were also identified, with T_CD4_c13-MKI67-294 
CCL5lowcharacterized by high expression of SELL and low CCL5 and T_CD4_c14-MKI67-295 
CCL5high characterized by low SELL and high CCL5. The counts of T_CD4_c14-MKI67-296 
CCL5high in PBMCs did not show significant differences among different COVID-19 patients. 297 
By contrast, the T_CD4_c13-MKI67-CCL5low counts were elevated in COVID-19 patients, 298 
particularly in severe patients during the disease progression stage (Figure 3C). Similar to 299 
plasma B cells, the diversity and clonality of this cluster were both increased in severe 300 
patients with disease progression (Figure 3D), indicating an expanded TCR repertoire and 301 
developmental transitions from other clusters. Unlike plasma B cells whose source cluster 302 
B_c03-CD27-AIM2 was increased in peripheral blood (Figure S2C), the major source 303 
cluster of proliferative CD4+ T cells T_c04_CD4−ANXA2 was decreased in COVID-19 304 
patients, particularly in severe patients during the disease progression stage (Figures 3E 305 
and 3F). This may partially explain the dichotomous and incomplete adaptive immunity 306 
previously observed in COVID-19 patients (Catanzaro et al., 2020). ANOVA analyses 307 
revealed that different from T_CD4_c13-MKI67-CCL5low (Figure 3G), the percentage of 308 
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T_CD4_c04−ANXA2 was associated with disease severity, progression/convalescence, 309 
and sex (Figure 3H). In particular, female patients generally had higher levels of 310 
T_CD4_c04−ANXA2 than males (Figure 3H), indicating the sex differences of T cell 311 
responses to SARS-CoV-2 infection (Takahashi et al., 2020). 312 
 313 
In contrast to proliferative T cells that were elevated in PBMCs, other T cell clusters showed 314 
decrease in COVID-19 patients albeit with varied magnitudes, consistent with the 315 
lymphopenia that has been frequently observed in COVID-19 patients (Giamarellos-316 
Bourboulis et al., 2020; Kuri-Cervantes et al., 2020; Yu et al., 2020). The most significantly 317 
decreased T cell clusters included γδT cells (T_c14_gdT-TRDV2), MAIT cells (T_CD8_c09-318 
SLC4A10), a CD8+ T cell cluster highly expressing TYROBP, KLRF1, CD247 and IL2RB 319 
(T_CD8_c08-IL2RB), and three CD4+ T cell clusters showing effector memory 320 
characteristics (T_CD4_c09-GZMK-FOSlow, T_CD4_c11-GNLY, and T_CD4_c04-ANXA2). 321 
ANOVA analysis suggested that these clusters were mainly associated with disease 322 
severity rather than age or sex (Figures S2D and S2E and Table S3), implicating their 323 
critical roles in the disease progression of COVID-19. In particular, decreases of γδT cells 324 
and MAIT cells in the peripheral blood of COVID-19 patients (Figures S2F and Figure S2G) 325 
have been supported by flow cytometry-based analyses, suggesting their potent 326 
antimicrobial functions (Jouan et al., 2020).  327 
 328 
While the decrease of γδT cells, MAIT cells, and effector memory T cells abovementioned 329 
were primarily associated with disease severity, the decreases of naive and central memory 330 
T cells were associated with the age but not sex difference of patients (Figure S2D and S2E 331 
and Table S3). Such clusters included the naive CD8+ cluster T_CD8_c01-LEF1, the CD8+ 332 
central memory cluster T_CD8_c02-GPR183, the naive CD4+ cluster T_CD4_c01-LEF1, 333 
and two CD69+ CD4+ clusters T_CD4_c06-NR4A2 and T_CD4_c05-FOS.  334 
 335 
In summary, our scRNA-seq study recapitulated the lymphopenia in COVID-19 patients 336 
frequently observed in previous studies (Dhama et al., 2020; Giamarellos-Bourboulis et al., 337 
2020; Kuri-Cervantes et al., 2020; Tan et al., 2020a; Yan et al., 2020; Yu et al., 2020). We 338 
further confirmed the activation of both CD4+ and CD8+ T cell responses in PBMCs 339 
recently found by flow cytometry-based immune profiling (Mathew et al., 2020a; Sekine et 340 
al., 2020). With the high resolution provided by scRNA-seq, we revealed the existence of 341 
distinct proliferative T cell clusters for both CD4+ and CD8+ T cells in COVID-19 patients, 342 
and implicated their different roles in patients of different groups and stages. Our large 343 
cohort also enabled us to dissect the impact of age and sex on the immune responses of 344 
COVID-19 patients. We found that, rather than associated with T cell proliferation, age and 345 
sex are more likely associated with the abundance of naive/central memory T cells and the 346 
precursor cells of proliferative T cells, respectively, highlighting the complexity of human T 347 
cell responses to SARS-CoV-2 infection. 348 
 349 
TCR/BCR usage patterns by COVID-19 patients 350 
Our scRNA-seq data also coupled with TCR/BCR repertoire sequencing and thus provided 351 
a rich resource to investigate the TCR/BCR usage of COVID-19 patients, which is 352 
instructive for the development of anti-SARS-CoV-2 therapeutics and vaccines. We first 353 
examined whether identical TCRs or BCRs could be identified across COVID-19 patients. 354 
We found that only a few TCRs or BCRs were shared between two patients, and no 355 
identical TCRs or BCRs were shared beyond three patients. No TCRs or BCRs had 356 
identical amino acid sequences in more than three patients for the complementarity 357 
determining regions 3 (CDR3s) of � chains of TCRs or heavy chains of BCRs. We further 358 
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examined whether the amino acid sequences of CDR3s of published SARS-CoV-2-reacting 359 
antibodies could be identified in the BCR repertoire of this cohort. We found that only one 360 
non-clonal BCR had identical CDR3 in its heavy chain with a comprehensive compendium 361 
containing 1,505 SARS-CoV-2-specific antibodies (Cao et al., 2020). Such scarcity of 362 
common TCRs or BCRs was in contrast with previous studies on severe patients recovered 363 
from enterovirus A71 infection and influenza vaccination (Chen et al., 2017; Jiang et al., 364 
2013), suggesting that SARS-CoV-2 infection might not impose dramatic selective pressure 365 
on the somatic evolution of TCRs and BCRs. 366 
 367 
Although no identical BCRs were found, we noticed that the BCR repertoire of COVID-19 368 
patients had biased VDJ usage compared with that of healthy controls. We trained a 369 
random forest classifier with the VDJ usage frequencies to discriminate COVID-19 patients 370 
with mild/moderate or severe symptoms from healthy controls and found that the 371 
classification accuracy measured by the values of area under curve (AUC) could reach as 372 
high as 0.85. The most important VDJ combinations selected by the random forest 373 
classifiers also had significant overlaps with those of experimentally verified SARS-CoV-2-374 
reacting antibodies (Figure S2H). Among the top 20 VDJ combinations important to 375 
discriminate severe COVID-19 patients from healthy controls selected by random forests, 376 
14 had identical VDJ usage with experimentally verified neutralizing antibodies. Of note, the 377 
VDJ usage of the currently known SARS-CoV-2-neutralizing antibodies was biased towards 378 
IGHV3 and IGHV1. In particular, more than 40 neutralizing antibodies used IGHV3−53. 379 
Such observations are important to the development of effective diagnostics to trace human 380 
infection history and the further refinement of the current neutralizing antibodies. 381 
 382 
The diversity of TCR or BCR repertoires of various T and B clusters might also be 383 
influenced by age, sex, COVID-19 severity, and disease stages. While age was mainly 384 
associated with the abundance of only naive and central memory T cells in PBMC, ANOVA 385 
analysis revealed that age might influence the decrease of TCR diversity in a wider range of 386 
T cells, including naive, central memory, and diverse effector memory T cells (Figure S2I-J). 387 
By contrast, sex differences were mainly associated with the BCR diversity of naive and 388 
memory B cells (B_c01-TCL1A, B_c02-MS4A1-CD27, and B_c04-SOX5-TNFRSF1B) and 389 
the TCR diversity of a subset of effector memory CD4+ T cells (T_CD4_c08-GZMK-FOShigh) 390 
(Figure S2I-K). After correcting the effects of age and sex, the decrease of diversity in MAIT 391 
cells, naive B and CD8+ and CD4+ T cells, effector memory CD8+ T cells (T_CD8_c03-392 
GZMK and T_CD8_c04-COTL1), and a few CD69+ CD4+ T cell clusters (T_CD4_c03-393 
ITGA4, T_CD4_c04-ANXA2) remained independently associated with COVID-19 severity 394 
(Figure S2I-K), highlighting the importance of these cells in COVID-19. Importantly, the 395 
TCR diversity of one proliferative CD8+ T cell cluster, i.e., T_CD8_c11-MKI67-FOS, was 396 
associated with the triad interaction by disease severity, age, and sex (Figure S2J), 397 
indicating the impacts of age and sex on disease severity. Similarly, the clonal expansion of 398 
a central memory CD4+ T cell cluster highly expressing AQP3 (T_CD4_c02-AQP3) was 399 
also associated with the triad interaction by disease severity, age, and sex (Table S3), 400 
indicating that age and sex might impact the COVID-19 disease via multiple mechanisms. 401 
 402 
Taken together, our data suggested that SARS-CoV-2 might not impose dramatic selective 403 
pressure on the somatic evolution of TCRs or BCRs for COVID-19 patients, thus resulting 404 
in few identical TCRs and BCRs across patients. However, preferential VDJ usage were 405 
identified, which highly overlapped with the sequences of some known SARS-CoV-2-406 
neutralizing antibodies. The diversity of TCR and BCR repertoires of various T and B 407 
clusters might be shaped by age, sex, disease severity, and stages together, although the 408 
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influences of these factors were heterogeneous on different cell types. In particular, triad 409 
interactions among age, sex and disease severity were indicated for specific CD8+ and 410 
CD4+ clusters, underscoring the complex T cell responses of COVID-19 patients and 411 
providing important clues for future studies. 412 
 413 
SARS-CoV-2 detected in multiple epithelial and immune cell types with 414 
interferon response phenotypes 415 
The enrichment of plasma B and proliferative T cells in BALF and the elevation of these 416 
cells in PBMCs of COVID-19 patients highlighted the roles of these cells in combating 417 
SARS-CoV-2 infection. To explore potential interactions between these cells and SARS-418 
CoV-2 infected cells, we examined the characteristics of cell types that harbored SARS-419 
CoV-2 sequences in our dataset. From the BALF samples of severe COVID-19 patients in 420 
the disease progression stage, we identified viral RNAs of SARS-CoV-2 in three epithelial 421 
cell types including ciliated, secretory, and squamous epithelial cells and a diverse set of 422 
immune cells including neutrophils, macrophages, plasma B cells, T cells, and NK cells 423 
(Figure 4A). The cell identities of these SARS-CoV-2-positive cells were well confirmed by 424 
their corresponding molecular markers (Figure 4B), excluding the possibility of artefacts 425 
caused by doublets during scRNA-seq. Because ACE2 and TMPRSS2 have been 426 
recognized to play critical roles in mediating viral entry into the host cells for SARS-CoV-2, 427 
we examined their expression levels in these cells (Figure 4C) (Netea et al., 2020). We 428 
found that at least a subset of those epithelial cells expressed ACE2 and TMPRSS2, 429 
consistent with the notion that SARS-CoV-2 employs ACE2 and TMPRSS2 to invade these 430 
cells. Interestingly, those immune cells, which did not express ACE2 or TMPRSS2, 431 
harbored even more viral RNA sequences than the epithelial cells (Figure 4D). The high 432 
viral load reassured that the detection of SARS-CoV-2 RNAs in these immune cells was 433 
unlikely caused by experimental contamination. Consistently, an independent scRNA-seq 434 
study of COVID-19 patients also identified SARS-CoV-2 RNAs in neutrophils and 435 
macrophages from the respiratory samples of COVID-19 patients (Bost et al., 2020).  436 
 437 
Since interferon-stimulated genes (ISGs) are typically activated in virus-infected cells 438 
(Schoggins and Rice, 2011), we next examined the expression of ISGs in these cells 439 
(Figure 4E and Table S4). Because IFIT1/2/3 and IFITM1/2/3 are frequently observed to 440 
increase after various viral infections (Zhang et al., 2016), the high expression of these 441 
genes in these immune cells, particularly neutrophils and macrophages, may indicate ISG 442 
activation in these cells. Compared with matched cell types in PBMC, almost all these ISG 443 
genes exhibited elevated expression in these virus+ immune cells (Figures 4F and S3B and 444 
Table S5). Compared with virus-negative immune cells of the same types in the BALF, 445 
SARS-CoV-2+ epithelial cells, including ciliated, secretory, and squamous cells, as well as 446 
those virus-positive neutrophils, exhibited higher levels of ISG expression (Figure 4F and 447 
Table S5). Positive correlations between the viral loads estimated by the abundance of viral 448 
RNAs and the ISG expression levels were observed for squamous epithelial cells but not 449 
ciliated or secretory epithelial cells (Figures 4G and S3C). For immune cells, virus-positive 450 
neutrophils exclusively demonstrated positive correlations between viral loads and ISG 451 
levels (Figure 4G), but this phenomenon did not exist in other immune cell types. These 452 
observations suggest that SARS-CoV-2 might be able to infect human cells beyond 453 
traditionally assumed respiratory epithelial cells and could induce interferon responses.  454 
 455 
In BALF from mild/moderate COVID-19 patients, fewer cells were obtained and no SARS-456 
CoV-2 RNAs were detected in cells from such samples, suggesting that the respiratory tract 457 
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of mild/moderate patients might be more intact and the viral titer was lower than those from 458 
severe patients. Although type II alveolar (AT2) cells were reported vulnerable to SARS-459 
CoV-2 infection (Hou et al., 2020), our study revealed few AT2 cells in the BALF and no 460 
detectable SARS-CoV-2 RNAs in AT2 cells, which is consistent with the previous finding 461 
that lower respiratory tract cells had lower potential to be infected by SARS-CoV-2 than 462 
those from nasal and upper respiratory tract (Hou et al., 2020; Sungnak et al., 2020). 463 
 464 
Distinct transcriptomic changes of ciliated, secretory, and squamous 465 
epithelial cells after SARS-CoV-2 infection  466 
SARS-CoV-2 infection in different epithelial cells resulted in not only distinct interferon 467 
responses, but also significant transcriptomic changes. For squamous epithelial cells, 468 
SARS-COV-2+ cells exhibited elevated expression of a diverse set of genes such as NT5E, 469 
CLCA4, and SULT2B1 (Figure 5A). These genes were enriched in pathways such as 470 
“response to virus”, “response to type I interferon” and “response to hypoxia”, consistent 471 
with viral infection and the subsequent respiratory distress, reflecting the host immune 472 
response via type I interferons (Figure 5B). By contrast, the numbers of genes with 473 
significant changes after SARS-CoV-2 infection for ciliated and secretory epithelial cells 474 
were much smaller than squamous cells, and few genes showed consistent changes in all 475 
the three epithelial cell types (Figure 5C).  476 
 477 
We next explored the impact of the above transcriptomic changes, especially on their 478 
interaction potentials with immune cells. Annexin A1 (ANXA1), up-regulated in virus+ 479 
squamous epithelial cells (Figure 5D), is known to regulate the functions of neutrophils in 480 
inflammation via its interactions with formyl peptide receptors (Sugimoto et al., 2016). This 481 
prompted us to investigate the cellular interaction changes of epithelial cells with each other 482 
and with immune cells after SARS-CoV-2 infection. Based on CSOmap that estimates cell-483 
cell interactions in three-dimensional space via ligand-receptor (LR) mediated cell self-484 
organization and competition (Ren et al., 2020), we estimated the cellular interaction 485 
potentials in a computationally constructed pseudo-space and found that ciliated, secretory, 486 
and squamous epithelial cells exhibited distinct interaction potentials after SARS-CoV-2 487 
infection.  488 
 489 
Ciliated epithelial cells exhibited lower interaction potentials with themselves and other cells 490 
after SARS-CoV-2 infection, and thus would disperse in the outer compartment of the 491 
pseudo-space (Figures 5E, S4A and S4B), consistent with the pathological phenomenon of 492 
epithelial denudation of coronavirus infection in respiratory tract (Lee et al., 2003; Nicholls 493 
et al., 2003). By contrast, squamous epithelial cells significantly enhanced their interacting 494 
potentials with themselves after SARS-CoV-2 infection compared with those squamous 495 
cells with no viral detection (Figure S4C). Such changes were consistent across COVID-19 496 
patients (Figure 5F). Comparison across ciliated, secretory, and squamous epithelial cells 497 
infected by SARS-CoV-2 also highlighted the dispersing tendency of ciliated cells and the 498 
interacting potentials among squamous cells themselves (Figures 5G and 5H).  499 
 500 
Such interaction distinctions not only existed among epithelial cells, but also impacted their 501 
interactions with immune cells. Consistent with the dispersing nature of ciliated cells in the 502 
outer compartment of the pseudo-space, no significant interactions were observed between 503 
virus+ ciliated cells and immune cells. By contrast, virus+ secretory epithelial cells showed 504 
significant interactions with neutrophils and macrophages in mild/moderate COVID-19 505 
patients via the SCGB3A1-MARCO axis (Figures S4D and S4E), but such interactions were 506 
subdued in severe COVID-19 patients due to the down-regulation of MARCO in neutrophils 507 
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and macrophages (Figure S4F). In severe patients, virus+ squamous cells showed 508 
significant interactions with neutrophils and macrophages via the ANXA1-FPR1 and 509 
S100A9/A8-TLR4 axes (Figure 5I). Neutrophils and macrophages exhibiting high interacting 510 
potentials with virus+ squamous epithelial cells were also prone to be SARS-CoV-2 infected 511 
(Figure 5J). As ANXA1-FPR1 and S100A9/A8-TLR4 interactions have been reported to 512 
play critical roles in the recruitment of immune cells and inflammatory cascade under 513 
various conditions including sepsis and tumor (Gavins et al., 2012; Laouedj et al., 2017; 514 
Osei-Owusu et al., 2019; Vogl et al., 2007), they might also play important roles in the 515 
pathogenesis of SARS-CoV-2 infection. In contrast to innate immune cells such as 516 
neutrophils and macrophages, T and B cells did not show significant interactions with any of 517 
the three types of virus+ epithelial cells (Figure S4G), implying a compromised adaptive 518 
immune response. It is noteworthy that plasma B cells in BALF also tended to be SARS-519 
CoV-2-positive and displayed close interactions with virus+ neutrophils and squamous 520 
epithelial cells via the S100A9/A8-TLR4 axes (Figure 5L).  521 
 522 
We then investigated the cell types expressing ANXA1, FPR1, S100A9, S100A8, and TLR4 523 
in both BALF and PBMC across COVID-19 patients to evaluate the possible inflammatory 524 
cascade mediated by these LR pairs. It was evident that ANXA1 was highly expressed in a 525 
wide range of immune cells except B cells and naive T cells (Figures S5A and S5B) and its 526 
receptor FPR1 was highly expressed in neutrophils, macrophages, and monocytes (Figures 527 
S5A and S5B). Interestingly, for most immune cell clusters in BALF, the expression levels 528 
of ANXA1 and FPR1 were down-regulated in severe COVID-19 patients compared with 529 
those of mild/moderate COVID-19 patients (Figure S5A). But in PBMCs, except for MAIT 530 
cells (T_CD8_c09-SLC4A10) and γδT cells (T_gdT_c14-TRDV2), ANXA1 and FPR1 were 531 
significantly up-regulated in many cell types in severe COVID-19 patients compared with 532 
those of mild/moderate COVID-19 patients (Figure S5B). S100A9 and S100A8 were highly 533 
expressed in neutrophils, macrophages, and monocytes in COVID-19 patients with 534 
mild/moderate symptoms and had no expression in T, B, NK, or dendritic cells (Figures 535 
S4H and S5B). However, for severe COVID-19 patients in the disease progression stage, 536 
S100A9 and S100A8 were significantly up-regulated in almost all cell clusters for both 537 
BALF and PBMCs (Figures S4H and S5B). In particular, T, B, NK, and dendritic cells had 538 
no or minimal levels of S100A9 and S100A8 expression in mild/moderate COVID-19 539 
patients (Figures S4H and S5B). By contrast, in severe COVID-19 patients, the levels of 540 
S100A9 and S100A8 were significantly up-regulated in T, B, NK, and dendritic cells 541 
(Figures S4H and S5B), indicating a systemic inflammatory response. TLR4 did not exhibit 542 
significant differences in PBMCs between severe and mild/moderate COVID-19 patients but 543 
was significantly down-regulated in certain BALF monocyte and macrophage subsets 544 
(Figure S5B).  545 
 546 
In summary, our data indicated that SARS-CoV-2 infection in different types of epithelial 547 
cells might trigger different transcriptomic changes and thus could modulate their 548 
interactions with themselves and with immune cells. In particular, squamous epithelial cells 549 
could up-regulate ANXA1 and S100A8/A9 after SARS-CoV-2 infection, enhancing their 550 
interactions with neutrophils and macrophages via the axes of ANXA1-FPR1 and 551 
S100A8/A9-TLR4. The systemic up-regulation of ANXA1, FPR1, and S100A8/A9 in 552 
immune cells from peripheral blood may indicate, at least partially, the molecular 553 
mechanism of aberrant inflammation in severe COVID-19 patients. This hypothesis is 554 
supported by a preliminary finding that small molecules targeting S100A8/A9 could inhibit 555 
SARS-CoV-2-induced aberrant inflammation in mice (Guo et al., 2020b). Thus, S100A8/A9 556 
should be further evaluated as therapeutic targets. Compared to innate immune cells, 557 
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adoptive immune cells including T and B cells did not show significant interactions with 558 
SARS-CoV-2-positive epithelial cells in BALF by computational simulation, consistent with 559 
previous findings (Chua et al., 2020; Wauters et al., 2020). These might suggest a 560 
compromised adaptive immune response in severe patients. Furthermore, the 561 
megakaryocytes in PBMCs, followed by monocytes, exhibited higher interaction potentials 562 
with epithelial and immune cells in BALF than adaptive immune cells (Figure S4I), 563 
suggesting the critical roles of these cells in the pathogenesis of COVID-19.  564 
 565 
Megakaryocytes and monocyte subsets as critical peripheral sources of 566 
cytokine storms 567 
With our large scale scRNA-seq dataset, we next sought to investigate whether any crucial 568 
cell subtypes in peripheral blood contribute to the bulk of inflammatory cytokine production. 569 
We first defined a cytokine score and inflammatory score for each cell based on the 570 
expressions of the collected cytokine genes and reported inflammatory response genes 571 
(Liberzon et al., 2015) (Table S6), respectively, and used these two scores as indicators to 572 
evaluate the levels of inflammatory cytokine storm for each cell. We found apparent 573 
elevated expression of cytokine and inflammatory genes in patients, especially at the 574 
severe progression stage (Figures 6A and S6A), indicating the existence of inflammatory 575 
cytokine storm after SARS-CoV-2 infection. Seven cell subtypes, including three subtypes 576 
of monocytes (Mono_c1-CD14-CCL3, Mono_c2-CD14-HLA-DPB1 and Mono_c3-CD14-577 
VCAN), three subtypes of T cells (T_CD4_c08-GZMK-FOShigh, T_CD8_c06-TNF and 578 
T_CD8_c09-SLC4A10) and one subtype of megakaryocytes was detected with significantly 579 
higher cytokine and inflammatory scores (Figure. S9B, Table S2, P < 0.0001), indicating 580 
that these cells might be major sources of inflammatory storm. Interestingly, 581 
megakaryocytes, which have not been reported in the inflammatory response in COVID-19 582 
patients, may affect the functions of platelets at the disease stage, in consistent to a 583 
previous study (Manne et al., 2020). 584 

Each of the hyper-inflammatory subtypes highly expressed several cytokine genes that are 585 
known to be involved in the inflammatory storm, such as CCL3, IL1B, CXCL8, CCL4, CCL6, 586 
IL32, LTB and TGFB1, but with different patterns (Figure 6B), suggesting divergent 587 
genomic signatures of these cells. We then investigated the proportion of each of the 7 cell 588 
subtypes in every patient and found that these hyper-inflammatory cell subtypes were in 589 
general slightly more frequent in patients at severe stage (Figure. S6C). When we clustered 590 
these cell subtypes with each individual patient based on the proportions of the hyper-591 
inflammatory cell subtype in PBMCs, we found distinct enrichment of these cell subtypes in 592 
different groups of patients (Figure 6C). Mono_c1-CD14-CCL3, known be associated with 593 
tocilizumab-responding cytokine storm (Guo et al., 2020a), was highly enriched in a 594 
subpopulation of severe onset patients likely to be accompanied by inflammatory storm 595 
(Figures 6C and 6D). The proportion of Mono_c1-CD14-CCL3 subtype was also correlated 596 
with the age of the corresponding patients (Figure. 6E). The hyper-inflammatory 597 
megakaryocytes were enriched in another batch of severe onset patients, which could also 598 
be under excessive inflammatory response (Figure. 6C and 6D). 599 

By contrast, Mono_c2-CD14-HLA-DPB1 and Mono_c3-CD14-VCAN subtypes were widely 600 
distributed in every disease stage, and the hyper-inflammatory T cells showed decreased 601 
proportions in patients at the severe onset stage such as T_CD4_c08-GZMK-FOShigh 602 
subtype (Figures 6C, 6D and S6B), although both of these two monocyte subtypes 603 
exhibited increased proportions in elder convalescent patients (Figure 6E). Taken together, 604 
these results suggest that Mono_c1-CD14-CCL3 and megakaryocytes were the major 605 
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sources triggering cytokine inflammatory storm, with both elevated cell ratios and 606 
inflammatory scores in the severe onset patients. On the other hand, although the severity 607 
of COVID-19 is correlated with lymphopenia, partially reflected by reduced T cells in PBMC 608 
(Dhama et al., 2020; Tan et al., 2020a; Yan et al., 2020), certain T cell subtypes might 609 
actually contribute to the inflammatory storm by enhanced expressing of proinflammatory 610 
cytokines. 611 

Next, we investigated the inflammatory signatures for each hyper-inflammatory cell subtype 612 
and found unique pro-inflammatory cytokine gene expressions in each cell subtype (Figure 613 
6F), suggesting diverse mechanisms by which these cell subtypes may contribute to the 614 
cytokine storm. The hyper-inflammatory Mono_c1-CD14-CCL3 and megakaryocytes largely 615 
expressed more cytokines, suggesting central roles of the two cell types in driving the 616 
inflammatory storm. Specifically, Mono_c1-CD14-CCL3 highly expressed CXCL8, TNF, 617 
IL1RN, IL1B, and CCL3, which we also detected with significantly higher levels in serum 618 
from patients at the severe stage, especially those critically ill patients (Figures 6F and 619 
S6D). Although the inflammatory megakaryocytes highly expressed the cell type identity 620 
marker genes such as PPBP (Zhang et al., 1997), the expression level of these genes was 621 
significantly decreased in patients compared to healthy controls, indicating a loss of 622 
function of these cells after inflammatory activation (Figures 6F and 6G). Notably, the 623 
T_CD8_c06-TNF subtype specifically and highly expressed IFNG, a pro-inflammatory 624 
cytokine highly enriched in patients at the severe onset stage also confirmed by serum 625 
cytokine detection (Figures 6F, G and S6D). Moreover, pro-inflammatory cytokines CXCL8 626 
and IFNG showed significant age-dependent expressions in patients with disease 627 
progression, while no significance was observed in healthy controls (Figure 6H). PPBP 628 
showed no correlation with the age in either patients or healthy controls, suggesting that the 629 
loss of function of megakaryocytes might not be age-dependent (Figure 6H). To assess the 630 
dynamic changes of cytokines in COVID-19 patients with different periods, we compared 631 
them with healthy controls for these seven hyper-inflammatory subtypes, and found that 632 
IFNG, IL6, CCL3, TNF, CXCL2, CXCL8, IL1RN, etc, were highly expressed in cells of 633 
severe patients with disease progression (Figure S6E). 634 

We also observed eight cell subtypes with significantly higher cytokine scores even though 635 
their inflammatory scores showed no difference to other cell clusters (Figure S6B, Table S7, 636 
p < 0.0001). These cell subtypes exhibited uniform and relatively low expressions of 637 
cytokine genes such as IGF1, TXLNA, SCYL1, CCL5 and IL16 (Figure 6F), likely not 638 
involved in the cytokine storm. No significant differences were observed at the serum level 639 
for these cytokines between the different groups of patients (Figure S6F). These genes 640 
specific for hyper-inflammatory cells may serve as signatures for the inflammatory storm 641 
and be helpful in deepening the understanding of COVID-19 pathogenesis. 642 

Interactions of hyper-inflammatory cell subtypes in lung and peripheral 643 
blood 644 
The dysregulated cytokine responses associated with the inflammatory cytokine storm may 645 
cause immunopathological injury to the lung, and large amount of infiltrating inflammatory 646 
immune cells have been demonstrated in the pulmonary tissue of COVID-19 patient 647 
(Bhaskar et al., 2020; Cao, 2020; Sun et al., 2020). We analyzed the expressions of 648 
cytokines and inflammatory genes for each cell from the BALF samples, and compared the 649 
inflammatory and cytokine scores among all the cell subtypes captured in BALF. No 650 
enrichment of cytokine genes was observed from the epithelial cells, while subtypes of 651 
macrophages and monocytes had the highest cytokine and inflammatory scores in the 652 
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severe onset samples (Figure 7A). Similar to our analysis on PBMCs, we identified five 653 
hyper-inflammatory cell subtypes, including Macro_c2-CCL3L1, the three subtypes of 654 
monocytes and the neutrophils (Figure 7B), suggesting that these cell subtypes might be 655 
the major sources driving inflammatory storm in the lung tissue. Neither CD4+ nor CD8+ T 656 
cells were detected with an elevated inflammatory score or the cytokine score in BALF 657 
samples, which was different from those in PBMCs. Each hyper-inflammatory subtype 658 
highly expressed specific cytokines; for example, Macro_c2-CCL3L1 specifically expressed 659 
CCL8, CXCL10/11, and IL6. Mono_c1-CD14-CCL3, as one of the most notable 660 
proinflammatory cell types in both peripheral blood and BALF, uniquely expressed high 661 
expression levels of IL1B, CCL20, CXCL2, CXCL3, CCL3, CCL4, HBEGF and TNF. The 662 
neutrophils also showed many uniquely expressed cytokines including TNFSF13B, CXCL8, 663 
FTH1, CXCL16 (Figure 7C). 664 

To examine how hyper-inflammatory cells interacted with each other in driving the 665 
inflammatory cytokine storm, we analyzed the ligand-receptor pairing patterns among 666 
hyper-inflammatory cell subtypes in severe and moderate samples within PBMC and BALF 667 
respectively (Figure S7). The interactions between PBMCs and BALF cells appeared to 668 
show significant alterations (Figure 7D). Our data revealed elevated ligand-receptor 669 
interactions of hyper-inflammatory cells in patients at severe compared to moderate stage. 670 
Interestingly, cells in the peripheral blood of severe patients showed much lower 671 
interactions with each other compared to those in BALF (Figure. S7A), except for the 672 
megakaryocytes, which secreted IL1B and stimulated Mono_c1-CD14-CCL3 cells. 673 
Mono_c1-CD14-CCL3 cells in BALF expressed CCR5, which could receive multiple 674 
cytokine stimulations secreted by other cell types in both the lung tissue and the peripheral 675 
blood. By contrast, the interactions of Macro_c2-CCL3L1 cells mainly relied on CCR2 and 676 
IL1R2. Collectively, these findings illustrated the molecular basis for the potential cell-cell 677 
interactions at the pulmonary interface in an inflamed state, leading to a better 678 
understanding of the mechanisms of SARS-CoV-2 infection. 679 

DISCUSSION 680 

Our SC4 alliance members generated scRNA-seq data for 284 clinical samples from 205 681 
COVID-19 patients and healthy controls in China, and constructed an information-rich data 682 
resource for dissecting the immune responses of COVID-19 patients at the single-cell 683 
resolution. We observed a significant reduction of total T cells in the peripheral blood of 684 
COVID-19 patients but no notable changes of NK cells, consistent with previous 685 
observations (Liao et al., 2020). However, we did not observe a decrease of total B cells, 686 
but instead noted elevation in some patients, particularly those with severe symptoms. This 687 
contradicts previous studies based on flow cytometry (Giamarellos-Bourboulis et al., 2020), 688 
which may reflect sampling fluctuation in small cohorts instead of technology bias, although 689 
this has yet to be confirmed. Our findings indicate that T cell changes may be a major 690 
cause of the lymphopenia in COVID-19 patients. Despite the overall reduction of total T 691 
cells in the peripheral blood, proliferative CD4+ and CD8+ T cells were actually elevated in 692 
peripheral blood and were enriched in lung samples, indicating activated cellular immune 693 
responses to SARS-CoV-2 infection. Similarly, despite the conflicting reports on total B cell 694 
levels, plasma B cells were consistently elevated in patient lung samples and blood, 695 
supporting an activated humoral response (Gudbjartsson et al., 2020; Ni et al., 2020b). The 696 
complex patterns of T and B cell subtype changes indicate that additional investigations are 697 
needed to understand the detailed mechanism by which the cellular and humoral immune 698 
responses are activated and compromised in COVID-19 patients.  699 
 700 
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Previous clinical and epidemiological studies have revealed obvious sex and age biases in 701 
infection rates and disease severity of COVID-19 patients. Our data, covering a wide age 702 
range and a sex-balanced COVID-19 cohort, proved to be powerful at dissecting the 703 
associations of age and sex in the immune responses to SARS-CoV-2 infection. Our data 704 
revealed an apparent involvement of age and sex in the diverse human immune responses 705 
via multiple mechanisms, at least partially reflected at the immune cell sub-cluster level. In 706 
general, plasma B and proliferative T cells were associated with disease severity, while 707 
compositional differences of the precursor cells of these adaptive immune cell types were 708 
more prone to be influenced by sex and age seemed to impact more on naive and central 709 
memory cells. Of note, age and sex also seemed to impact the diversity of TCR/BCR 710 
repertoires for a wide range of T and B cells, which may have clinical implications.  711 
 712 
The single-cell resolution of our data also enabled us to examine the in vivo potential host 713 
cells of SARS-CoV-2 and the transcriptomic changes caused by SARS-CoV-2 infection. We 714 
observed the presence of SARS-CoV-2 RNAs in multiple epithelial cell types in the human 715 
respiratory tract, including ciliated, secretory, and squamous cells. Although prominent type 716 
I interferon responses could be identified in these cells, distinct transcriptomic changes 717 
appeared to be caused by SARS-CoV-2 infection. Such distinctions were exhibited not only 718 
in the correlations of interferon responses and viral load, but also in the genes of specific 719 
immune relevance, including those encoding LR interactions which are pivotal to cell-cell 720 
communications. Of hundreds of immune-relevant LR pairs, ANXA1-FPR1 and S100A8/A9-721 
TLR4 seemed to be critical in mediating the interactions of virus+ squamous epithelial cells 722 
and neutrophils and macrophages. Although S100A8/A9 were not expressed in lymphoid 723 
cells in mild/moderate COVID-19 patients, they were highly expressed in the T, B, and NK 724 
cells of severe patients, likely contributing to the aberrant inflammation of these patients. 725 
Coincidentally, small molecule inhibitors of S100A8/A9 could reduce the aberrant 726 
inflammation and SARA-CoV-2 replication in mice (Guo et al., 2020b), supporting our 727 
findings. Both S100A8/9 and FPR1 should be evaluated further as targets for modulating 728 
the immune responses to SARS-CoV-2.  729 
  730 
In addition to epithelial cells, RNAs of SARS-CoV-2 were also identified in various immune 731 
cell types, including neutrophils, macrophages, plasma B cells, T and NK cells, often with 732 
even higher levels than those in epithelial cells. The viral infection status of these cells 733 
could also be supported by the prominent interferon responses in these cells. It is still not 734 
clear how such immune cells would acquire viral sequences in the absence of either ACE2 735 
or TMPRSS2, but it is evident that the pattern of SARS-CoV-2 infection is more complicated 736 
than initial understanding.  Such complexity needs to be thoroughly addressed before this 737 
dreadful infectious disease can be effectively controlled. 738 
 739 
The rich information of our data also allowed us to dissect the cellular origins of potential 740 
cytokine storms. We found that megakaryocytes and a few monocyte subsets might be key 741 
sources of a diverse set of cytokines highly elevated in COVID-19 patients with severe 742 
disease progression. We suspect that in severe patients, infected epithelial cells would 743 
secrete cytokines such as IL1RN into the peripheral, and monocytes expressing IL1R2 744 
could be stimulated and in turn produce multiple proinflammatory cytokines such as CXCL8, 745 
IL6, IL1B, and TNF (Figure 7E). Through IL1R2, these hyperactive monocytes could also 746 
interact with dysfunctional megakaryocytes producing TGFB1, TNFSF4, PF4 and FTH1. 747 
Meanwhile, the T cells in the blood go through lymphopenia, while the residual ones are 748 
hyperactive in secreting many inflammatory cytokines such as IFNG and TNFSF8. Such 749 
proinflammatory cytokines secreted by the cells in the blood could also infiltrate into the 750 
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lung tissue, and thus activating the tissue resident monocytes, macrophages and 751 
neutrophils for further cytokine production. We acknowledge that this is only one of many 752 
possible scenarios where an inflammatory storm could form, although our data revealed 753 
key actors in the final cytokine screenplay.  754 
 755 
In conclusion, we generated a large scRNA-seq dataset including ~1.5 million single cells 756 
covering diverse disease severity and stages. Analyses based on this dataset revealed 757 
multiple immune characteristics of SARS-CoV-2 infection with single-cell resolution. Such 758 
data provide a critical resource and important insights in dissecting the pathogenesis of 759 
COVID-19, and potentially help the development of effective therapeutics and vaccines 760 
against SARS-CoV-2.  761 
 762 
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STAR+METHODS 1028 

KEY RESOURCES TABLE 1029 

REAGENT or 
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SOURCE IDENTIFIER 

Antibodies 

      

Biological Samples     
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Critical Commercial Assays 

Fixation/Permeabilization 
Solution Kit 

BD 
Biosciences 

Cat #554714 

SureSelectXT Target 
Enrichment System for 
Illumina Paired-End 
Multiplexed Sequencing 
Library Kit 

Aglient Cat #G9701 
  

TruePrep DNA Library 
Prep Kit V2 for Illumina 

Vazyme 
Biotech 

Cat #TD503 

Chromium Single Cell 3 0 
Library and Bead kit 

10x 
Genomics 

Cat #PN-120237 

Chromium Single Cell 30 
Chip Kit v2 

10x 
Genomics 

Cat #PN-120236 

Chromium i7 Multiplex Kit 10x 
Genomics 

Cat #PN-120262 

Hiseq 3000/4000 SBS kit Illunima Cat #FC-410-1003 

Hiseq 3000/4000 PE 
cluster kit 

Illunima Cat #PE-410-1001 

Deposited Data 

Data files for single-cell 
RNA sequencing 
(processed data) 

This paper The NCBI GEO database, and the 
access number is in the process 

 Data files for single-cell 
RNA sequencing (raw 
data) 

This paper The Genome Sequence Archive (GSA), 
and the access number is in the process 

Oligonucleotides 

      

Software and Algorithms 
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Harmony Korsunsky 
et al., 2018 

https://github.com/pardeike/HarmonyLun 

Cellranger v2.3/v2.0.3 10x 
Genomics 

https://support.10xgenomics.com/single- 
cell-gene-expression/software/pipelines/ 
latest/ahta-is-cell-ranger 

kb v0.24.4 Bray et al., 
2016; 
Melsted et 
al., 2019 

 
https://github.com/pachterlab/kb_python 

kallisto v0.46.1 Bray et al., 
2016 

https://github.com/pachterlab/kallisto 

bustools v0.39.3 Melsted et 
al., 2019 

https://github.com/BUStools/bustools 

STARTRAC Zhang et 
al., 2018 

https://github.com/Japrin/STARTRAC 

Seurat 2.3.0/3.0 Butler et al., 
2018 

https://satijalab.org/seurat 

scanpy 1.5.1 Wolf et al., 
2018 

https://scanpy.readthedocs.io/en/latest/ 

CSOmap Ren, X. et 
al. 

https://github.com/zhongguojie1998/CS
Omap 

Other 

      

  1030 
  1031 
LEAD CONTACT AND MATERIALS AVAILABILITY 1032 
Further information and requests for resources and reagents should be directed to and will 1033 
be fulfilled by the Lead Contact, Zemin Zhang (zemin@pku.edu.cn). 1034 
  1035 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 1036 
  1037 
Ethics statement 1038 
This study was approved by the Ethics Committees of respective institutions, with written 1039 
informed consents obtained from all participants before sample collection according to 1040 
regular principles. 1041 
  1042 
Human subjects 1043 
A total of 183 patients with COVID-19 and 25 healthy individuals in this study were enrolled 1044 
from 36 centers/ laboratories, with samples (n=284) collected. Samples of COVID-19 were 1045 
further categorized into groups of moderate convalescence (n=83), moderate progression 1046 
(n=33), severe convalescence (n=51) and severe progression (n=83) according to disease 1047 
severity (moderate or severe) and stages (progression and convalescence) based on the 1048 
Guidelines for Diagnosis and Treatment of Corona Virus Disease 2019 issued by the 1049 
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National Health Commission of China (7th edition). The sex ratio between female and male 1050 
donor is 101:159. The age of the donors ranges from 6 to 92. Of all the 284 samples, 249 1051 
samples were collected from PBMC, among which 77 samples have sorted B/T cells or 1052 
both. 13 samples were collected from lung tissues, including 12 BALF samples and 1 1053 
PFMC sample. We also collected 22 sputum samples from patients as well. Among all the 1054 
samples, we have 7 paired lung BALF and PBMC samples. Single-cell transcriptome data 1055 
for each sample was profiled using 10x Genomics scRNA-seq platform. Single-cell 1056 
sequencing of TCRs (13 samples) and BCRs (53 samples) or both (11 samples) was also 1057 
performed for part of the samples. Detailed clinical information and demographic 1058 
characteristics of patient cohorts were shown in Table S1. 1059 
 1060 

METHOD DETAILS 1061 

Sample collection 1062 
Blood samples that were not immediately processed for cell encapsulation were mixed with 1063 
Whole Blood Cell Stabilizer (Cytodelics) and stored at −80 °C freezer. The peripheral blood 1064 
mononuclear cell (PBMCs) were isolated using standard density gradient centrifugation and 1065 
then used for 10x single-cell RNA-seq. Bronchoalveolar lavage fluid (BALF) samples were 1066 
collected from COVID-19 patients and processed with 2h according to WHO guidance. 1067 
BALF was passed through 100-μm nylon cell strainer to obtain single cell suspensions with 1068 
cooled RPMI 1640 complete medium. Cells in the BALF were freshly used for 10x single-1069 
cell RNA-seq. Sputum samples were collected from COVID-19 patients using an 1070 
oropharyngeal swab or hypertonic saline induction. To reduce squamous cell contamination, 1071 
subjects were asked to rinse their mouth with water and clear their throat. Samples were 1072 
incubated in Dulbecco's Phosphate-Buffered Saline (DPBS) with agitation for 15 minutes 1073 
and filtered through 40-micron strainers. Cells in the sputum were freshly used for 10x 1074 
single-cell RNA-seq.  1075 
 1076 

Single cell RNA library preparation and sequencing 1077 

Cell suspensions were barcoded through the 10x Chromium Single Cell platform using 1078 
Chromium Single Cell 5′ Library, Chromium Single Cell 3′ Library, Gel Bead and Multiplex 1079 
Kit, and Chip Kit (10x Genomics). The loaded cell numbers range from 300-500,000 aiming 1080 
for 300-14,000 single cells per reaction. Single-cell RNA libraries were prepared using the 1081 
Chromium Single Cell 3′ v2 Reagent (10x Genomics; PN-120237, PN-120236 and PN-1082 
120262), Chromium Single Cell 3′ v3 Reagent (10x Genomics; PN-1000075, PN-1000073 1083 
and PN-120262) the Chromium Single Cell 5′ v2 Reagent (10x Genomics, 120237), and 1084 
Chromium Single Cell V(D)J Reagent kits (10x Genomics, PN-1000006, PN-1000014, PN-1085 
1000020, PN-1000005) was used to prepare single-cell RNA libraries according to the 1086 
manufacturer’s instructions. Each sequencing library was generated with a unique sample 1087 
index. The libraries were sequenced using either DIPSEQ, BGISEQ or Illumina platforms. 1088 
 1089 

Single-cell RNA-seq data processing 1090 

Single-cell sequencing data were aligned and quantified using kallisto/bustools (KB, v0.24.4) 1091 
(Bray et al., 2016)  against the GRCh38 human reference genome downloaded from 10x 1092 
Genomics official website. Preliminary counts were then used for downstream analysis. 1093 
Quality control was applied to cells based on three metrics step by step:  the total UMI 1094 
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counts, number of detected genes and proportion of mitochondrial gene counts per cell. 1095 
Specifically, cells with less than 1000 UMI counts and 500 detected genes were filtered, as 1096 
well as cells with more than 10% mitochondrial gene counts. To remove potential doublets, 1097 
for PBMC samples, cells with UMI counts above 25,000 and detected genes above 5,000 1098 
are filtered out. For other tissues, cells with UMI counts above 70,000 and detected genes 1099 
above 7,500 are filtered out. Additionally, we applied Scrublet (Wolock et al., 2019) to 1100 
identify potential doublets. The doublet score for each single cell and the threshold based 1101 
on the bimodal distribution was calculated using default parameters. The expected doublet 1102 
rate was set to be 0.08, and cells predicted to be doublets or with doubletScore larger than 1103 
0.25 were filtered. After quality control, a total of 1,598,708 cells were remained. We 1104 
normalized the UMI counts with the deconvolution strategy implemented in the R package 1105 
scran (Lun et al., 2016). Specifically, cell-specific size factors were computed by 1106 
computeSumFactors function and further used to scale the counts for each cell. Then the 1107 
logarithmic normalized counts were used for the downstream analysis.  1108 

Batch effect correction and cell subsets annotations 1109 

To integrate cells into a shared space from different datasets for unsupervised clustering, 1110 
we used the harmony algorithm (Korsunsky et al., 2019) to do batch effect correction. To 1111 
detect the most variable genes used for harmony algorithm, we performed variable gene 1112 
selection separately for each sample. A consensus list of 1,500 variable genes was then 1113 
formed by selecting the genes with the greatest recovery rates across samples, with ties 1114 
broken by random sampling. All ribosomal, mitochondrial and immunoglobulin genes were 1115 
then removed from the list. Next, we calculate a PCA matrix with 20 components using 1116 
such informative genes and then feed this PCA matrix into HarmonyMatrix() function 1117 
implemented in R package Harmony. We set sample and dataset as two technical 1118 
covariates for correction with theta set as 2.5 and 1.5, respectively. The resulting batch-1119 
corrected matrix was used to build nearest neighbor graph using scanpy (Wolf et al., 2018). 1120 
Such nearest neighbor graph was then used to find clusters by Louvain algorithm (Traag et 1121 
al., 2019). The cluster-specific marker genes were identified using the rank_genes_groups 1122 
function. 1123 
 1124 
The first round of clustering (resolution = 0.3) identified six major cell types including T cells, 1125 
NK cells, B cells, plasma B cells, myeloid cells and epithelial cells. To identify clusters 1126 
within each major cell type, we performed a second round of clustering on T/NK, B/plasma 1127 
B, myeloid and epithelial cells separately. The procedure of the second round of clustering 1128 
is the same as first round, starting from low-rank harmony output (30 components) on the 1129 
highly variable genes chosen as described above, with resolution ranging from 0.3 to 1.5. 1130 
Each sub cluster was restrained to have at least 30 significantly highly expressed genes 1131 
(FDR < 0.01, logFC > 0.25, t test) compared with other cells. Annotation of the resulting 1132 
clusters to cell types was based on the known markers. Meanwhile, single cells expressing 1133 
two sets of well-studied canonical markers of major cell types were labeled as doublets and 1134 
excluded from the following analysis. Also, cells highly expressed HBA, HBB and HBD, 1135 
which are the markers for erythrocytes, were also excluded. 136,006 cells were removed 1136 
and a total of 1,462,702 cells were retained for downstream analysis. 1137 

Detection and processing of cells with viral RNA 1138 

To identify single cells with viral infection, we aligned raw scRNA-seq reads using 1139 
kallisto/bustools(KB) against a customized reference genome, in which the SARS-CoV-2 1140 
genome (Refseq-ID:NC_045512) was added as an additional chromosome to the human 1141 
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reference genome. Single cells with viral reads (UMI > 0) were retained. Cells with less 1142 
than 200 genes expressed or more than 20% mitochondrial counts were excluded, as well 1143 
as those labeled as doublet following aforementioned protocol.  1144 
 1145 
The remaining cells were then used for dimension reduction and unsupervised clustering 1146 
using Python package scanpy (Wolf et al., 2018) In brief, the top 500 genes with the highest 1147 
variance were selected and the dimensionality of the data was reduced by principal 1148 
component analysis (PCA) (30 components) first and then with t-SNE, followed by Louvain 1149 
clustering (Traag et al., 2019) performed on the 30 principal components (resolution = 1). 1150 
For t-SNE visualization, we directly fit the PCA matrix into the scanpy.api.tl.tsne function 1151 
with perplexity of 30. To identify cell-type-specific gene markers, we selected genes that 1152 
were differentially expressed across different cell types (FDR < 0.01, log fold change > 0.5) 1153 
using the rank_genes_groups function. Clusters were annotated based on the expression 1154 
of known marker genes.  1155 

TCR and BCR analysis 1156 

TCR/BCR sequences were assembled and quantified following Cell Ranger (v.3.0.2) vdj 1157 
protocol against GRCh38 reference genome. Assembled contigs labeled as low-confidence, 1158 
non-productive or with UMIs < 2 were discarded.  1159 
To identify TCR clonotype for each T cell, only cells with at least one TCR α-chain (TRA) 1160 
and one TCR β-chain (TRB) were remained. For a given T cell, if there are two or more α or 1161 
β chains assembled, the highest expression level (UMI or reads) α or β chains was 1162 
regarded as the dominated α or β chain in the cell. Each unique dominated α-β pair (CDR3 1163 
nucleotide sequences and rearranged VDJ genes included) was defined as a clonotype.  T 1164 
cells with exactly the same clonotype constituted a T cell clone.  1165 
 1166 
BCR clonotypes were identified similar to TCR. Only cells with at least one heavy chain 1167 
(IGH) and one light chain (IGL or IGK) were kept. For a given B cell, if there are two or 1168 
more IGH or IGL/IGK assembled, the highest expression level (UMI or reads) IGH or 1169 
IGL/IGK was defined as the dominated IGH or IGL/IGK in the cell. Each unique dominated 1170 
IGH-IGL/IGK pair (CDR3 nucleotide sequences and rearranged VDJ genes) was defined as 1171 
a clonotype. B cells with exactly the same clonotype constituted a B cell clone.  1172 
 1173 
220,968 T cells with TCR information and 282,464 B cells with BCR information were used 1174 
to perform the STARTRAC analysis as we previously described (Zhang et al., 1175 
2018).STARTRAC-expa was used to quantified the potential clonal expansion level. 1176 
TCR/BCR diversity was calculated as Shannon’s entropy shown below: 1177 

� �  � � ��	
 � log����	
�
�

 

The p(x) represents the frequency of a given TCR/BCR clone among all T/B cells with 1178 
TCR/BCR identified.  1179 
 1180 

Comparing immune cell proportion 1181 

For samples from PBMC and BALF tissue, we calculated immune cell proportions for each 1182 
major cell type and underlying cell subsets. In order to avoid bias caused by samples 1183 
dominated by few cell types, we filtered samples containing FACS-sorted B/T cells and 1184 
retained those samples with CD45+ cells > 1000. For each sample, cell type proportion was 1185 
calculated by number of cells in certain cell type divided by total number of CD45+ cells. To 1186 
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identify changes in cell proportions between samples in different disease severity states, 1187 
disease progression stages and sex, we performed Wilcoxon rank-sum test on the 1188 
proportions of each major cell type and underlying cell subset across different phenotype 1189 
groups. We performed correlation analysis to assess the association between cell type 1190 
proportion and patient age. Only those cell types with statistically significant differences 1191 
(FDR < 0.05) in proportions were shown. 1192 

ANOVA analysis 1193 

To further assess how different patients’ phenotypes and their potential interactions 1194 
influence cell type proportions, we performed multivariate ANOVA on cell type proportions 1195 
and on diversity of BCR/TCR based on different patient phenotypes, including disease 1196 
severity, disease progression stage, sex and age. All interactions between these variables 1197 
were included in the models. To convert age into a categorical variable, we binned patient 1198 
age into four groups: young (<18 years old), middle-age (18-50 years old), old-age (50-70 1199 
years old) and the elderly (70+ years old). Interactions between variables were regarded as 1200 
significantly associated with cell type proportions when FDR < 0.05. 1201 

Differential expression and GO term enrichment analysis 1202 

To investigate the impact of virus infection on epithelial cells, we identify differential 1203 
expressed genes by performing two-sided unpaired Wilcoxon tests on all the expressed 1204 
genes (expressed in at least 10% cells in either group of cells). P values were adjusted 1205 
following Benjamini & Hochberg protocol. Top 100 highly expressed genes of each group 1206 
were shown in the volcano plots. Based on these genes, enriched GO terms were then 1207 
acquired for each group of cells using R package clusterProfiler (Yu et al., 2012). 1208 

Cell-cell interaction analysis by CSOmap 1209 

To illustrate the cell-cell interaction potential of cells with viral detection, we first created a 1210 
set of datasets by joining 7 BALF samples with the virus+ dataset separately. Then, we 1211 
used CSOmap (Ren et al., 2020) to construct a 3D pseudo space and calculate the 1212 
significant interaction for each dataset. To investigate the interaction potentials of the cell 1213 
types, we used two indexes, distances within cell type and normalized connection. Distance 1214 
within each cell type is calculated based on the aforementioned 3D coordinates. The 1215 
shorter the distance, the closer the cells are located in the 3D space, which indicates that 1216 
they are more likely to interact with each other. To further investigate the interaction 1217 
between different cell types, we made use of the CSOmap output connection matrix. For a 1218 
cluster pair, normalized connection was calculated by dividing its corresponding connection 1219 
value by the product of their respective cell numbers. Normalized connections were then 1220 
multiplied by 10,000. Meanwhile, to highlight the key ligand-receptor pairs function in the 1221 
interaction, we also examine the contribution output by CSOmap.  1222 
In addition, normalized connections were also calculated on another set of cohorts where 1223 
we combined virus+ dataset with samples with paired PBMC and BALF tissues, in order to 1224 
investigate the interaction potential between cells from two tissues, PBMC and BALF. 1225 

Inflammatory and cytokine score related subtypes analysis. 1226 

Briefly, we firstly filtered out samples with less than 1000 cells. For PBMC, only subtypes 1227 
with more than 1000 cells were included in the subsequent analysis. For BALF data 1228 
analysis, we removed major cell types with less than 500 cells. To define inflammatory and 1229 
cytokine score, we downloaded a gene set termed 1230 
‘HALLMARK_INFLAMMATORY_RESPONSE’ from MSigDB (PMID: 26771021) and 1231 
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collected cytokine genes based on these references (see Table S1). Cytokine and 1232 
inflammatory score were evaluated with the AddModuleScore function built in the Seurat 1233 
(PMID: 31178118). To select the most promising hyper-inflammatory cell types, we 1234 
performed Mann-Whitney rank test (single-tail) for each subtype’s score versus all the other 1235 
subtypes' score. Seven subtypes (Mono_c1-CD14-CCL3, Mono_c2-CD14-HLA-DPB1, 1236 
Mono_c3-CD14-VCAN, T_CD4_c08-GZMK-FOShigh, T_CD8_c06-TNF, T_CD8_c09-1237 
SLC4A10 and Mega) in PBMC were defined as hyper-inflammatory cell types with 1238 
significantly statistical parameters (P < 0.0001) in both cytokine and inflammatory score. In 1239 
addition, we defined 8 subtypes (T_CD8_c08-IL2RB, T_CD4_c11-GNLY, NK_c01-FCGR3A, 1240 
T_CD8_c05-ZNF683, T_CD8_c04-COTL1, T_CD8_c07-TYROBP, T_CD8_c03-GZMK and 1241 
T_gdT_c14-TRDV2) with significantly statistical parameters (P < 0.0001) only in cytokine 1242 
score. For subtypes in BALF, we defined 5 subtypes (Macro_c2-CCL3L1, Mono_c1-CD14-1243 
CCL3, Mono_c2-CD14-HLA-DPB1, Mono_c3-CD14-VCAN, Neu) as hyper-inflammatory 1244 
types with the same standard threshold as PBMC (P < 0.0001). 1245 

Cell ratio and cytokine marker analysis of hyper-inflammatory and 1246 
cytokine subtypes (integrated with Statistics section) 1247 

To explore whether there are state-specific of COVID-19 patients enriched subtypes, we 1248 
performed hierarchical clustering with setting standard scale (0-1) for 7 hyper-inflammatory 1249 
and 8 cytokine subtypes respectively. Then, we used the Wilcoxon rank-sum test to 1250 
calculate the significance of cell proportion of each subtype in states (moderate 1251 
convalescent, moderate progression, severe convalescent, severe progression) compared 1252 
with healthy control. We also applied the ordinary least square method to calculate the 1253 
correlation between age and cell proportion in different states of COVID-19 patients. For the 1254 
significance of cytokine expression level with state and age, we performed Wilcoxon rank-1255 
sum test and ordinary least square to assess the P values. 1256 

Cell-cell communication analysis between PBMC and BALF by iTALK 1257 

To identify and visualize the possible cell-cell interactions in terms of cytokine storm 1258 
between the highly inflammation-correlated cell types evaluated by the inflammation score 1259 
within each tissue and the crosstalk between lung and circulating blood, we employed an R 1260 
package iTALK introduced by Wang et al. (Wang et al., 2019, bioRxiv, 1261 
https://www.biorxiv.org/content/10.1101/507871v1). Cytokine/chemokine category (n = 320) 1262 
in the ligand-receptor database was selectively used for our purpose. Wilcoxon rank sum 1263 
test was used to identify the differentially expressed genes (DEGs) between severe onset 1264 
and moderate onset patient groups for each cell type. DEGs were then matched and paired 1265 
against the ligand-receptor database to construct a putative cell-cell communication 1266 
network. An interaction score defined as the product of the log fold change of ligand and 1267 
receptor was used to rank these interactions. In addition, the expression level of both ligand 1268 
and receptor were also considered.  We defined severe gained interaction if a ligand gene 1269 
was upregulated in severe onset group and its paired gene upregulated or remains no 1270 
change. We defined severe lost interaction if a ligand(receptor) gene was downregulated in 1271 
severe onset group regardless of the expression level of its paired gene. 1272 

Cytokine analysis of serum by using multiplex bead-based immunoassay 1273 

Human cytokines in the serum were measured by Bio-plex Pro TM Human Cytokine 1274 
Screening 48 plex Bio-PlexTM 200 System (# 12007283, Bio-Rad, US) and Bio-PlexTM 1275 
200 System (Bio-Rad). Bio-Plex ProTM assays are essentially immunoassays formatted on 1276 
magnetic beads and are built upon three core elements of xMAP technology, fluorescently 1277 
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dyed microspheres (also called beads), a dedicated flow cytometer with two lasers to 1278 
measure the different molecules bound to the surface of the beads, and a high-speed digital 1279 
signal processor that efficiently manages the fluorescence data. 1280 
 1281 
Sample preparation 1282 
Whole blood from COVID-19 patients and healthy controls were drawn into collection tubes 1283 
containing anticoagulant. Centrifugation the tubes at 1,000 x g for 15 min at 4°C and 1284 
transfer the serum to a clean polyprophylene tube, followed by another centrifugation at 1285 
10,000 x g for 10 min at 4°C to completely remove platelets and precipitates. Dilute 1286 
samples fourfold (1:4) by adding 1 volume of sample to 3 volumes of Bio-Plex sample 1287 
diluent. Fifty microliter of each sample were used to assay. 1288 
 1289 
Preparation of oupled beads 1290 
Coupled beads were diluted to a 1x concentration according to the instruction. Required 1291 
volume of Bio-Plex assay buffer was added to a 15 ml polypropylene tube. Vortex the stock 1292 
coupled beads at medium speed for 30 sec. Carefully open the cap and pipet any liquid 1293 
trapped in the cap back into the tube. Dilute coupled beads to 1x by pipetting the required 1294 
volume into the 15 ml tube and vortex. Protect the beads from light with aluminum foil and 1295 
equilibrate to room temperature prior to use. 1296 
 1297 
Assay running 1298 
Add coupled beads, standards and samples to each well of the assay plate. Cover plate 1299 
with a new sheet of sealing tape and protect from light with aluminum foil. Incubate on 1300 
shaker at 850±50 rpm at room temperature (RT). While the samples were incubating, 1301 
calculate and prepare the volume of detection antibodies and detection antibody diluent 1302 
needed. After washing the plate three times with 100 µl wash buffer, transfer 25 µl detection 1303 
antibodies to each well using a multichannel pipet. Cover plate with a new sheet of sealing 1304 
tape and protect from light with aluminum foil. Incubate on shaker at 850 ± 50 rpm for 30 1305 
min at room temperature. 1306 
 1307 
Read plate and calculation 1308 
Bio-Plex ManagerTM software was used for data acquisition and analysis. 1309 
 1310 

DATA AND CODE AVAILABILITY 1311 

The raw sequencing and processed gene expression data in this paper have been 1312 
deposited into GSA (Genome Sequence Archive in BIG Data Center, Beijing Institute of 1313 
Genomics, Chinese Academy of Sciences) and the NCBI GEO database, respectively. 1314 
Visualization of this dataset can be found at http://covid19.cancer-pku.cn. 1315 
 1316 

Figure legends  1317 

Figure 1. Single-cell atlas of multiple tissue types from healthy individuals and 1318 
COVID-19 patients 1319 
(A) A flowchart depicting the overall design of the study. 1320 
(B) t-Stochastic Neighborhood Embedding (t-SNE) representations of integrated single-cell 1321 
transcriptomes of 1,462,702 cells derived from our healthy controls and COVID-19 patients. 1322 
Cells are colour-coded by 64 cell subsets from 6 major cell types.   1323 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2020. ; https://doi.org/10.1101/2020.10.29.360479doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.29.360479
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

(C) Violin plots of selected marker genes (rows) for major cell subpopulations (columns) 1324 
ordered by cell lineage relationships. NK, natural killer cells; Mono, monocyte; Macro, 1325 
macrophage; DC, dendritic cells; Neu, neutrophil; Mega, megakaryocyte; Epi, epithelial 1326 
cells. 1327 
(D-E) t-SNE representations of integrated single-cell transcriptomes of 1,462,702 cells 1328 
coloured by disease symptoms (D) and disease progression stages (E). 1329 
(F) Tissue preference of each cluster estimated by Ro/e. Ro/e denotes the ratio of observed 1330 
to expected cell number. 1331 
See also Figure S1. 1332 
 1333 

Figure 2. Dynamic changes of B cell composition across disease conditions 1334 
(A) Differences in immune cell composition across disease conditions for PBMC. Conditions 1335 
are shown in different colors. Each boxplot represents one cell cluster. All differences with 1336 
adjusted P-value < 0.05 are indicated; two-sided unpaired Wilcoxon was used for analysis.  1337 
(B) Changes of XBP1+ plasma cells proportion across disease conditions. Composition of 1338 
XBP1+ plasma cell BCRH cgene. All differences with P-value < 0.05 are indicated; two-1339 
sided unpaired Wilcoxon was used for analysis.  1340 
(C) Differences of XBP1+ plasma cells clonal expansion and BCR diversity across disease 1341 
conditions. BCR clonal expansion level is calculated by STARTRAC-expa. Shannon’s 1342 
entropy reveals the diversity of BCR repertoire. All differences with P-value < 0.05 are 1343 
indicated; two-sided unpaired Wilcoxon was used for analysis.  1344 
(D) Transition between XBP1+ plasma cells and other B cell sub clusters (left). Clonotypes 1345 
of clones contain XBP1+ plasma cells (right); only shows clones with more than 5 cells.  1346 
(E) Composition of B_c03-CD27-AIM2 memory cells BCRH cgene. 1347 
(F) ANOVA of XBP1+ plasma cells proportion. 1348 
(G) ANOVA of B_c03-CD27-AIM2 memory cells proportion (left) and differences of B_c03-1349 
CD27-AIM2 memory cells proportion between male and female (right). Two-sided unpaired 1350 
Wilcoxon test.  1351 
See also Figure S2. 1352 
 1353 

Figure 3. Differences in T cell composition across disease conditions 1354 
(A) Changes of proliferating CD4 and CD8 T cells across disease conditions for PBMC. 1355 
Conditions are shown in different colors. All differences with adjusted P-value < 0.05 are 1356 
indicated; two-sided unpaired Wilcoxon was used for analysis.  1357 
(B) Differences of three CD8 proliferating T cell sub clusters proportion across disease 1358 
conditions. All differences with P-value < 0.05 are indicated; two-sided unpaired Wilcoxon 1359 
was used for analysis.  1360 
(C) Differences of two CD4 proliferating T cell sub clusters proportion across disease 1361 
conditions. All differences with P-value < 0.05 are indicated; two-sided unpaired Wilcoxon 1362 
was used for analysis.  1363 
(D) Differences of T_CD4_c13-MKI67-CCL5low proliferating cells clonal expansion and TCR 1364 
diversity across disease conditions. TCR clonal expansion level is calculated by 1365 
STARTRAC-expa. Shannon’s entropy reveals the diversity of BCR repertoire. All 1366 
differences with P-value < 0.05 are indicated; two-sided unpaired Wilcoxon was used for 1367 
analysis.  1368 
(E) Transition between T_CD4_c13-MKI67-CCL5low proliferating cells and other CD4 cell 1369 
sub clusters (left) and clonotypes of clones contain T_CD4_c13-MKI67-CCL5low 1370 
proliferating cells (right); only shows clones with more than 5 cells.  1371 
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(F) Differences of T_c04_CD4-ANXA2 T cell proportion across disease conditions. All 1372 
differences with P-value < 0.05 are indicated; two-sided unpaired Wilcoxon was used for 1373 
analysis.  1374 
(G) ANOVA of T_CD4_c13-MKI67-CCL5low proliferating cells proportion. 1375 
(H) ANOVA of T_c04_CD4-ANXA2 T cell proportion (left) and differences of T_c04_CD4-1376 
ANXA2 T cell proportion between male and female (right). Two-sided unpaired Wilcoxon 1377 
test.  1378 
See also Figure S2. 1379 
 1380 

Figure 4 Landscape Of Cell Types Detected SARS-Cov-2 Sequences and Their 1381 
Antiviral Response. 1382 
(A) Uniform Manifold Approximation and Projection (UMAP) of all cells with SARS-CoV-2 1383 
genome UMI > 0 after quality control containing 3085 cells in total. 1384 
(B) Characteristic markers we chose to identify each cell type. The purple box indicates 1385 
immune cell types (top), and the red one indicates epithelial cell types (bottom). 1386 
(C) UMAP showing expression level of known SARS-CoV-2 infected receptor ACE2 (left) 1387 
and TMPRSS2 (right). Each dot denotes a single cell and colored by its expression level of 1388 
the gene.  1389 
(D) UMAP showing the viral load of each cell. The darker colors in the bar indicate a higher 1390 
viral load in cells.  1391 
(E) UMAP showing the activation of Interferon-stimulated genes (ISGs) in cells with viral 1392 
detection.  1393 
(F) Violin plots showing differential expression of ISGs between cells with viral detection 1394 
(virus+) and cells without (virus-) in PBMC-derived neutrophils (left panel), BALF-derived 1395 
neutrophils (middle panel) and squamous cells (right panel). The y axis represents the 1396 
expression level of each gene. logCP10K, log-transformed counts per 10,000. Two-sided 1397 
unpaired Wilcoxon test.  1398 
(G) Scatter plots showing the correlation between viral load and ISGs in neutrophil (left 1399 
panel) and squamous cells (right panel). The line in scatter plots represent the result of 1400 
linear regression. Each point in the graph represents one single cell, colored by cell types. 1401 
The x axis shows virus load in each cell while the y axis represents the expression level of 1402 
one of the ISG genes. Correlation coefficient (R) and probability (p) are acquired using 1403 
Pearson’s correlation. 1404 

See also Figures S3 and Tables S4. 1405 

Figure 5. The Impact of Virus Infection on Expression and Cell-cell interaction 1406 
of Epithelial Subtypes 1407 
(A) Volcano plot showing differentially expressed genes between squamous cells with or 1408 
without viral detection. Adjusted P-value < 0.05, Two-sided unpaired Wilcoxon test. ANXA1 1409 
is denoted in dark blue. 1410 
(B) Enriched GO terms of genes highly expressed in virus+ squamous cells shown in (A). 1411 
(C) Venn plot showing the intersection of genes upregulated in epithelial cells with viral 1412 
detection. Each compartment is colored by the number of genes. 1413 
(D) Violin plot showing the expression of ANXA1 in squamous cells with or without viral 1414 
detection. Two-sided unpaired Wilcoxon test. 1415 
(E) Boxplot showing the pseudo space distance within ciliated cells. Each dot represents an 1416 
individual patient. Two-sided paired Wilcoxon test. 1417 
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(F) Boxplot showing the pseudo space distance within squamous cells. Each dot represents 1418 
an individual patient. Two-sided paired Wilcoxon test. 1419 
(G) Violin plot showing the pseudo space distance within each type of epithelial cells in one 1420 
example. Two-sided unpaired Wilcoxon test. 1421 
(H) Boxplot showing the median of pseudo space distance within each type of epithelial 1422 
cells of all the patients with BALF data. Each dot represents an individual patient. Two-1423 
sided unpaired Wilcoxon test. 1424 
(L) Boxplot showing the normalized connection between squamous cells and virus-detected 1425 
plasma B cells of all the patients with BALF data. Each dot represents an individual patient. 1426 
Two-sided unpaired Wilcoxon test. 1427 
(I) Pie chart showing the ligand-receptor contribution proportion between virus+ squamous 1428 
and Macro_c6-VCAN in one example. Ligand-receptor pairs with contribution less than 0.05 1429 
were merged as ‘Other LRs’. 1430 
(J) Boxplot showing the normalized connection between squamous cells and virus- 1431 
macrophage (left), virus+ macrophage (middle) and virus+ neutrophils (left). Each dot 1432 
represents an individual patient. Two-sided unpaired Wilcoxon test.  1433 
See also Figures S4 and S5. 1434 
 1435 

Figure 6. Mono_c1-CD14-CCL3 and megakaryocytes in peripheral blood 1436 
appear as dominant source for inflammatory cytokine storm. 1437 
(A) t-SNE plots of PBMC cells colored by major cell types (top left panel), inflammatory cell 1438 
types (top right panel), cytokine score (middle panel) and inflammatory score (bottom 1439 
panel). 1440 
(B) Violin plots of selected cytokine genes for seven hyper-inflammatory cell subtypes. 1441 
(C) Heatmap of an unsupervised clustering of cell proportion of seven hyper-inflammatory 1442 
cell subtypes in all samples analyzed. 1443 
(D) Box plots of the cell proportion of Mono_c1-CD14-CCL3, Mega and T_CD4_c08-GZMK-1444 
FOShigh clusters from healthy controls (n=20), moderate convalescent (n=48), moderate 1445 
onset (n=18), severe convalescent (n=35) and severe onset (n=38) patients. Two-sided 1446 
Wilcoxon rank-sum test. 1447 
(E) Ordinary least squares model of age to cell proportion of Mono_c1-CD14-CCL3, 1448 
Mono_c2-CD14-HLA-DPB1 and Mono_c3-CD14-VCAN clusters from healthy controls 1449 
(n=20), convalescent (n=83) and onset (n=56) patients. P value was assessed with F-1450 
statistic for ordinary least squares model. 1451 
(F) Heatmap of cytokines genes’ expression among seven hyper-inflammatory cell 1452 
subtypes. Seven hyper-inflammatory cell subtypes are colored in red and others are 1453 
colored in grey. 1454 
(G) Box plots of the cytokines’ expression of Mono_c1-CD14-CCL3, Mega and 1455 
T_CD8_c06-TNF clusters from healthy controls (n=20), moderate convalescent (n=48), 1456 
moderate onset (n=18), severe convalescent (n=35) and severe onset (n=38) patients. 1457 
Two-sided Wilcoxon rank-sum test. 1458 
(H) Ordinary least squares model of age to cytokines’ expression of Mono_c1-CD14-CCL3, 1459 
Mega and T_CD8_c06-TNF clusters from healthy controls (n=20), convalescent (n=48+35) 1460 
and onset (n=18+38) patients. P value was assessed with F-statistic for ordinary least 1461 
squares model. 1462 
In (D) and (G), the box represents the second, third quartiles and median, whiskers each 1463 
extend 1.5 times the interquartile range; dots represent outliers. In panel (B), (C) and (F), 1464 
Mono_c1, Mono_c2, Mono_c3, T_CD4_c08, T_CD8_c09, T_CD8_c06 and Mega 1465 
correspond to Mono_c1-CD14-CCL3, Mono_c2-CD14-HLA-DPB1, Mono_c3-CD14-VCAN, 1466 
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T_CD4_c08-GZMK-FOShigh, T_CD8_c09-SLC4A10, T_CD8_c06-TNF and Mega, 1467 
respectively. In panel (F), T_CD4_c11, T_CD8_c03, T_CD8_c04, T_CD8_c05, T_CD8_c07, 1468 
T_gdT_c14, T_CD8_c08, NK_c01 correspond to clusters of T_CD4_c11-GNLY, 1469 
T_CD8_c03-GZMK, T_CD8_c04-COTL1, T_CD8_c05-ZNF683, T_CD8_c07-TYROBP, 1470 
T_gdT_c14-TRDV2, T_CD8_c08-IL2RB and NK_c01-FCGR3A, respectively. DC, dendritic 1471 
cells. Mega, megakaryocytes. Mono, monocytes. 1472 
 1473 

Figure 7. The interactions of hyper-inflammatory cell subtypes in lung and 1474 
peripheral blood. 1475 
(A) t-SNE plots of BALF cells colored by major cell types (top panel), cytokine score (middle 1476 
panel) and inflammatory score (bottom panel). 1477 
(B) Boxplots of the inflammatory score (top panel) and cytokine score (bottom panel) of cell 1478 
subtypes. Significance was evaluated with Wilcoxon rank-sum test. **** P < 0.0001. 1479 
(C) Heatmap of an unsupervised clustering of cytokine genes’ expression among five 1480 
hyper-inflammatory cell subtypes. 1481 
(D) Circos plot showing the prioritized interactions mediated by ligand-receptor pairs 1482 
between inflammation-related cell types from BALF and PBMC, respectively. The outer ring 1483 
displays color coded cell types and the inner ring represents the involved ligand-receptor 1484 
interacting pairs. The line width and arrow width are proportional to the log fold change 1485 
between severe onset and moderate onset patient groups in ligand and receptor, 1486 
respectively. Colors and types of lines are used to indicate different types of interactions as 1487 
shown in the legend. The bar plot at bottom indicates the interaction score for each 1488 
interaction which serves to measure the interaction strength. 1489 
(E) Summary illustration depicting the potential cytokine/receptor interactions of hyper-1490 
inflammatory cell subtypes involved in the cytokine storm. 1491 
DC, dendritic cells. Epi, epithelial cells. Macro, macrophage cells. Mono, monocytes. Neu, 1492 
neutrophils. 1493 
 1494 
 1495 

Supplementary Figures 1496 

Figure S1. Basic information of the dataset quality and cell subsets in major 1497 
cell lineages, Related to Figure 1 1498 
(A) Sorted age span of donors color-coded by disease symptoms. 1499 
(B) Distribution of sex in donors with different disease symptoms. Chi-square test. 1500 
(C-E) Distribution of unique molecular identifier (UMI) count per cell (C), gene count per cell 1501 
(D), and percentage of mitochondrial transcripts per cell (E) detected for cells in various 1502 
tissue types. PBMC, peripheral blood mononuclear cells; BALF, bronchoalveolar lavage 1503 
fluid; PFMC/Sputum, pleural effusion/sputum. 1504 
(F-J) Violin plots of selected marker genes (rows) for cell subsets (columns) within each cell 1505 
lineage, including 6 B/plasma B cell clusters (F), 23 Myeloid cell clusters (G), 3 NK cell 1506 
clusters (H), 4 Epithelial cell clusters (I) and 28 T cell clusters (J). 1507 
 1508 
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Figure S2. ANOVA of cell composition and clonal expansion, Related to 1509 
Figures 2 and 3 1510 
(A) Differences of B_c06-MKI67 cells proportion across disease conditions. All differences 1511 
with P-value < 0.05 are indicated; two-sided unpaired Wilcoxon test.  1512 
(B) ANOVA of B cells proportion 1513 
(C) Differences of B_c03-CD27-AIM2 cells proportion across disease conditions. All 1514 
differences with P-value < 0.05 are indicated; two-sided unpaired Wilcoxon test.  1515 
(D) ANOVA of CD4 T cells proportion 1516 
(E) ANOVA of CD8 T cells proportion 1517 
(F) Differences of T_c14_gdT-TRDV2 cells proportion across disease conditions. All 1518 
differences with P-value < 0.05 are indicated; two-sided unpaired Wilcoxon test.  1519 
(G) Differences of T_c09_CD8-SLC4A10 cells proportion across disease conditions. All 1520 
differences with P-value < 0.05 are indicated; two-sided unpaired Wilcoxon test.  1521 
(H) V gene usage of SARS-Cov-2 neutralized antibodies. 1522 

(I-K) ANOVA of the diversity of TCR/BCR repertoire, estimated by Shannon’s entropy.  1523 

Figure S3.  Differential Expression Analysis for ISG Genes between  other Virus+ 1524 
and Virus- cells in PBMC or BALF, Related to Figures 4. 1525 
(A) The ISG genes in virus+ differentially expressed comparison against virus- in residential 1526 
cell types including immune cells and epithelial cells. Two sided unpaired Wilcoxon test. 1527 
(B) Violin plots showing the expression of ISGs in BALF. Two sided unpaired Wilcoxon test.  1528 
(C) Scatter plots showing the correlation between viral load and expression level of viral 1529 
load. Pearson’s correlation.  1530 

Figure S4. Detailed Investigation of interacting potentials of epithelial cells 1531 
with viral detection, Related to Figure 5 1532 
(A) 2D pseudo space calculated by CSOmap, showing the location of ciliated cells. Each 1533 
dot denotes a single cell, colored by cell type.  1534 
(B) Violin plot showing the distance calculated from space shown in (A) within each ciliated 1535 
cell group. Two-sided unpaired Wilcoxon test. 1536 
(C) Violin plot showing the distance within each squamous cell group. Two-sided unpaired 1537 
Wilcoxon test. 1538 
(D) Bar plot showing the mean of normalized connections of the interaction between virus+ 1539 
secretory and Macro_c1-C1QC in patients categorized by two states. Error bar, s.e.m.  1540 
(E) Pie chart showing the ligand-receptor contribution proportion between virus+ secretory 1541 
and Macro_c6-VCAN in one example. Ligand-receptor pairs with contribution less than 0.05 1542 
were merged as ‘Other LRs’. 1543 
(F) Dotplot showing the mean expression level of MARCO in BALF samples. Pct, 1544 
percentage of expressed cells.  1545 
(G) Boxplot of normalized connection between major cell types and ciliated (top), secretory 1546 
(middle) and squamous (bottom) cells with viral detection. Kruskal-Wallis Rank Sum Test.  1547 
(H) Dot plots showing the expression of S100A9(left) and S100A8 (right) in PBMC samples. 1548 
Each dot is colored by the means of the expression and sized by the scaled means (Z 1549 
scores). Blue boxes highlight expressions in severe onset patients. 1550 
(I) Boxplot of normalized connection between PBMC-derived cell types and BALF. Each dot 1551 
represents a sample. Kruskal-Wallis Rank Sum Test.  1552 
 1553 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2020. ; https://doi.org/10.1101/2020.10.29.360479doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.29.360479
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 
 

Figure S5. The Expression of Genes in PBMC and BALF samples, Related to 1554 
Figure 5 1555 
(A) Dot plots showing the expression of ANXA1 (top), FPR1 (middle) and TLR4 (bottom) in 1556 
PBMC samples.  1557 
(B) Dot plots showing the expression of ANXA1 (first panel), FPR1 (second panel) S100A9 1558 
(third panel), S100A8 (fourth panel) and TLR4 (bottom panel) in BALF samples.  1559 
Each dot is colored by the means of the expression and sized by the scaled means (Z 1560 
scores).  1561 
 1562 

Figure S6. Identification of hyper-inflammatory subtypes associated with 1563 
cytokine storm in PBMCs 1564 
(A) t-SNE plots of PBMC cells colored by cytokine score (top panel) and inflammatory score 1565 
(bottom panel). 1566 
(B) The proportion of subtypes from healthy controls (color, n=20), severe onset (color, 1567 
n=38) and average of all samples (n=159) (top panel); the inflammatory score (middle panel) 1568 
and cytokine score (bottom panel) of subtypes from healthy controls (n=20), moderate 1569 
convalescent (n=48), moderate onset (n=18), severe convalescent (n=35) and severe onset 1570 
(n=38) patients. Significance was evaluated with Mann-Whitney rank test for each subtype 1571 
versus all the other subtypes. **** P < 0.0001. 1572 
(C) Barplots of subtypes’ (seven hyper-inflammatory cell types, eight cytokine cell types and 1573 
others) frequencies across each individual samples from healthy controls (n=20), moderate 1574 
convalescent (n=48), moderate onset (n=18), severe convalescent (n=35) and severe onset 1575 
(n=38) patients. 1576 
(D) Bar graphs showing cytokine concentration at the serum levels of CCL3, IFNG, IL1RN 1577 
and TNF from healthy controls (n=5), convalescent (n=7), non-severe (n=4), severe (n=4), 1578 
death case (n=7) patients. Shown are P values by student t-test. 1579 
(E) The differential expression distribution of cytokines for severe onset (n=38), moderate 1580 
onset (n=18) and convalescent (n=48+35) versus healthy control (n=20). The triangle 1581 
represents severe onset versus healthy controls. Circle stands for moderate onset versus 1582 
healthy controls. The square stands for convalescent versus healthy controls. All rings in 1583 
the plot from the inside to the outside represent the range of P value, which are P > 0.05, 1584 
0.01< P ≤0.05, 0.001< P ≤0.01, 0.0001< P ≤0.001 and P < 0.0001 respectively. Red 1585 
indicates positive and blue indicates negative. Size for the triangle, circle and square 1586 
means log2 (fold change). Two-sided unpaired t test. HC, healthy control. 1587 
(F) Bar graphs showing cytokine concentration at the serum levels of CCL5 and IL16 from 1588 
healthy controls (n=5), convalescent (n=7), non-severe (n=4), severe (n=4), death case 1589 
(n=7) patients. Kruskal-Wallis H-test between non-severe, severe and death case. 1590 
In panel (D) and panel (F), all points are shown and bars represent mean with the 95% 1591 
confidence intervals. DC, dendritic cells. Mega, megakaryocytes. Mono, monocytes. 1592 
 1593 

Figure S7. Intercellular interaction alterations among cell types between 1594 
severe and moderate onset sample groups. 1595 
(A). Circos plot showing the prioritized interactions mediated by ligand-receptor pairs 1596 
between inflammation-related cell subtypes for each tissue, namely, PBMC (left panel) and 1597 
BALF (right panel). The outer ring displays color coded cell types and the inner ring 1598 
represents the involved ligand-receptor interacting pairs. The line width and arrow width are 1599 
proportional to the log fold change between severe onset and moderate onset patient 1600 
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groups in ligand and receptor, respectively. Colors and types of lines are used to indicate 1601 
different types of interactions as shown in the legend. The barplot at bottom indicates the 1602 
interaction score for each ligand-receptor interaction which serves to measure the 1603 
interaction strength. 1604 
DC, dendritic cells. Epi, epithelial cells. Macro, macrophage cells. Mono, monocytes. Neu, 1605 
neutrophils. Mega, megakaryocytes. 1606 
 1607 
 1608 
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