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Abstract

Motivation: Cross-(multi)platform normalization of gene-expression microarray data remains an unresolved
issue. Despite the existence of several algorithms, they are either constrained by the need to normalize all
samples of all platforms together, compromising scalability and reuse, by adherence to the platforms of
a specific provider, or simply by poor performance. In addition, many of the methods presented in the
literature have not been specifically tested against multi-platform data and/or other methods applicable in
this context. Thus, we set out to develop a normalization algorithm appropriate for gene-expression studies
based on multiple, potentially large microarray sets collected along multiple platforms and at different
times, applicable in systematic studies aimed at extracting knowledge from the wealth of microarray data
available in public repositories; for example, for the extraction of Real-World Data to complement data
from Randomized Controlled Trials. Our main focus or criterion for performance was on the capacity of the
algorithm to properly separate samples from different biological groups.
Results: We present CuBlock, an algorithm addressing this objective, together with a strategy to validate
cross-platform normalization methods. To validate the algorithm and benchmark it against existing methods,
we used two distinct data sets, one specifically generated for testing and standardization purposes and
one from an actual experimental study. Using these data sets, we benchmarked CuBlock against ComBat
(Johnson et al., 2007), YuGene (Lê Cao et al., 2014), DBNorm (Meng et al., 2017), Shambhala (Borisov
et al., 2019) and a simple log2 transform as reference. We note that many other popular normalization
methods are not applicable in this context. CuBlock was the only algorithm in this group that could always
and clearly differentiate the underlying biological groups after mixing the data, from up to six different
platforms in this study.
Availability: CuBlock can be downloaded from
https://www.mathworks.com/matlabcentral/fileexchange/77882-cublock
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1 Introduction
Since the first whole-genome microarray study of gene expression was
published in 1997 (Schena et al., 1995; Lashkari et al., 1997), high-
throughput gene-expression microarrays have been a standard in many
experimental designs in biological and biomedical research. Although their
use is being replaced by next-generation sequencing techniques such as
RNA-Seq (Nagalakshmi et al., 2008), the large amounts of microarray
data relevant to an equally large variety of biological and biomedical pro-
blems and available in public databases constitutes a valuable resource
that will remain in use for many years. The potentiality of resources such
as the Gene Expression Omnibus (GEO) as sources of Real-World Data
(RWD) —data derived from a number of sources, outside the context of
Randomized Controlled Trials (RCTs), and associated with outcomes in
an heterogeneous patient population (Berger et al., 2017)– may in fact
boost the use of the wealth of available microarray data in the near future.
The importance of RWD as a complementary information source in drug-
evaluation studies is based on the observation that data from RCTs does
not always match results from observational studies (Trotta, 2012), mostly
owing to the limited number of RCT patients, their over-monitoring and
the limited follow-up time. Thus, certain adverse drug reactions or lack-
of-efficacy problems are hidden until RWD studies are performed, and
drug administrations have come to encourage the extraction of informa-
tion from sources complementary to RCTs to increase evidence around
treatments (Sherman et al., 2017; Food and Drug Administration, 2018).
A problem of RWD is that it tends to be highly heterogeneous, thus requi-
ring careful analysis and statistical treatment (Berger et al., 2017; Bartlett
et al., 2019). Translated to the context of this study, microarray data rele-
vant to a particular problem will often originate from different laboratories
and experiments, possibly using different microarray platforms (Bumgar-
ner, 2013) and almost certainly obtained in different batches. In order
to make a sensible use of such an heterogeneously sourced data, a data-
normalization step is required before data analysis. Normalization can be
relatively straightforward when dealing with different batches of a same
experiment using the same biological samples, platform and operator, but
gets increasingly complex as different operators, platforms and sample
sources are introduced. This often leads to studies discarding part of the
available data, which could otherwise be used to increase the chances of
discovery of meaningful patterns or improve their statistics.

A main source for sample differences arising from systematic biases
is the mixing of data from different microarray platforms. Unfortunately,
most standard and widely used normalization methods are applicable to
or have been developed for the single-microarray-platform context (Rudy
and Valafar, 2011), making them generally inappropriate for the cross-
study analysis of existing data sets. On the other hand, most existing
cross-platform normalization methods, such as ComBat (Johnson et al.,
2007), XPN (Shabalin et al., 2008) or DWD (Benito et al., 2004), require
the data from different platforms to be normalized together —XPN and
DWD were in fact developed for pairwise cross-platform normalization.
For large data sets, normalizing platforms together can be restrictive. In
addition to involving the normalization of a large joined data set, the even-
tual addition of new microarray data requires global renormalization. This
led to the more recent development of sample-wise, cross-platform nor-
malization methods such as SCAN (Piccolo et al., 2012), YuGene (Lê Cao
et al., 2014), DBNorm (Meng et al., 2017) —which can operate sample
or platform wise– and Shambhala (Borisov et al., 2019). SCAN performs
a sample-wise normalization assuming a double Gaussian mixture distri-
bution. It was, however, specifically designed for Affymetrix platforms,
thereby restricting its general use. The other distribution-based normali-
zation method, DBNorm, scales the data distributions from the individual
microarrays to a common form, which does not need to be predetermined
(e.g. the distribution from a reference microarray). As a downside, it is

very slow. On the other end, YuGene uses a simple transform that assigns
a modified cumulative proportion value to each measurement, making the
normalization very fast. Finally, Shambhala uses a harmonization method
that transforms each profile so that it approaches the output of a chosen
golden-standard platform.

Although the number of normalization methods proposed in the lite-
rature is large, to our knowledge there are no other major cross-platform
normalization methods that can be applied to gene-expression microarrays
in a platform agnostic way and that have been tested and validated as such.
To enable systematic studies involving the download of microarray data
from databases (possibly at different times) and its normalization and sto-
rage for later retrieval, allowing a non-linear use of the data —for example,
in successive analysis incorporating different amounts of data as available
or necessary, it is essential that a downloaded microarray set need not be
normalized more than once. Here, we introduce a novel cross-platform
normalization method fulfilling all these conditions. The algorithm is cal-
led CuBlock, which stands for Cubic approximation by Block. We validate
its performance using various metrics and compare it to five methods that
can be used in a cross-platform context, namely, the log2 transform of raw
data, ComBat, YuGene, DBNorm and Shambhala. Although ComBat does
not normalize platforms separately —it was not devised as a normalization
method but as one to adjust the data for batch effects, we introduced it in
this benchmark set as a popular first choice for cross-platform normaliza-
tion and a frequent benchmark standard for other methods (Walsh et al.,
2015; Irigoyen et al., 2018). Overall, CuBlock shows the best performance
in this group.

2 Methods
In this section we introduce the data sets used for the validation of CuBlock
and describe the data preprocessing approach and the methods used for
benchmarking and validation.

2.1 The data sets

We selected two benchmark data sets previously used in similar studies
(Rudy and Valafar, 2011; Borisov et al., 2019). The first set (here called
the reference data set) originates from projects MAQC (MAQC-I) (MAQC
Consortium, 2006) and SEQC/MAQC-III (SEQC/MAQC-III Consortium,
2014), which made use of reference RNA samples to assess repeatability
of gene-expression microarray data within a specific site, reproducibility
across multiple sites and comparability across multiple platforms. The
second set (here called the experimental data set) originates from a study
trying to assess profile differences of human spermatozoal transcripts from
fertile and teratozoospermic males (Platts et al., 2007). The use of these
two data sets allows us to assess, independently, effects from technical
replicates (same biosample, analyzed in different labs with repetition)
and biological replicates (different biosamples corresponding to a same
condition).

2.1.1 The reference data set
The data of this set are accessible in GEO with accession numbers
GSE5350 (MAQC-I) and GSE56457 (MAQC-III), respectively. The set
contains microarray gene-expression data corresponding to four titration
pools from two distinct reference RNA samples: (A) Stratagene’s Univer-
sal Human Reference RNA pool; (B) Ambion’s Human Brain Reference
RNA pool; (C) pool with an A:B ratio of 3:1; (D) pool with an A:B ratio of
1:3. These biosamples had been analyzed using different platforms and in
different sites, as described (MAQC Consortium, 2006; SEQC/MAQC-III
Consortium, 2014). Following the work from Rudy and Valafar (2011) and
Borisov et al. (2019), we selected data from six of the platforms (between
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parentheses, data-set identifier in this study, GEO platform ID and project
of origin):

• Affymetrix Human Genome U133 Plus 2.0 Array (AFX, GPL570,
MAQC-I): 3 experiments (sites) (AFX_1 to AFX_3), with 4 bio-
samples (A-D) per experiment and 5 replicates per biosample (60
samples)

• Agilent-012391 Whole Human Genome Oligo Microarray G4112A
(AG1, GPL1708, MAQC-I): 3 experiments (AG1_1 to AG1_3), with
4 biosamples (A-D) per experiment and 5 replicates per biosample (60
samples)

• Illumina Sentrix Human-6 Expression BeadChip (ILM, GPL2507,
MAQC-I): 3 experiments (ILM_1 to ILM_3), with 4 biosamples (A-D)
per experiment and 5 replicates per biosample (59 valid samples)

• Illumina HumanHT-12 V4.0 Expression Beadchip (HT12, GPL10558,
MAQC-III): 2 experiments (ILM_COH and ILM_UTS), with 4 bio-
samples (A-D) per experiment and 3 replicates per biosample (24
samples)

• GeneChip® PrimeView™ Human Gene Expression Array (PRV,
GPL16043, MAQC-III): 1 experiment (AFX_USF_PRV), with 4
biosamples (A-D) and 4 replicates per biosample (16 samples)

• Affymetrix Human Gene 2.0 ST Array (HUG, GPL17930, MAQC-
III): 1 experiment (AFX_USF_HUG), with 4 biosamples (A-D) and 4
replicates per biosample (16 samples)

Note that in the MAQC-I study the following microarrays from AG1
were discarded as outliers after the Agilent’s Feature Extraction QC
Report: AG1_1_A1, AG1_2_A3, AG1_2_D2, AG1_3_B3. Since the data
for these microarrays is nevertheless deposited and we wanted our analysis
to be as independent as possible of platform-dependent data-preprocessing
steps, we considered also their inclusion. To this end, we evaluated the
correlation of the data between all AG1 samples and observed that the
"outliers" are highly correlated to the non-outliers of the same experiment
and of the other two experiments (about 0.97 in both cases). A dimension
reduction of the raw data showed also no outliers. We therefore decided
to include these four microarrays in the data set.

2.1.2 The experimental data set
This data set contains spermatozoal RNA samples from normally fertile
(N) and heterogeneously teratozoospermic (T ) subjects and is accessible
in GEO with accession number GSE6969. The samples had been analyzed
on three different platforms (between parentheses, data-set identifier in this
study and GEO platform ID):

• Affymetrix Human Genome U133 Plus 2.0 Array (AFF, GPL570): 13
independent biosamples of type N and 8 of type T

• Illumina Sentrix Human-6 Expression BeadChip (ILL1, GPL2507): 5
independent biosamples of type N and 8 of type T

• Illumina Sentrix HumanRef-8 Expression BeadChip (ILL2, GPL2700):
4 independent biosamples of type N and 6 of type T

2.2 Data processing

To make the analysis as platform agnostic as possible, we took the image-
processed raw intensities for all non-control probes and disregarded any
platform-dependent background-signal correction such as that provided
by mismatch probes in Affymetrix platforms. CEL files for Affymetrix
and txt files for the other platforms were used. Probes with invalid inten-
sities (NaN) in data sets HT12 and HUG were ignored. For Affymetrix
microarrays, the intensities of probes constituting a probe set were avera-
ged. CuBlock normalization was then applied to the log2 transform of the
probe intensities, for each platform separately. Since probes vary among

the different microarray platforms, the normalized data sets were then tran-
sformed from the probe level to the protein level by mapping probes to
UniProtKB accession numbers (ACs) and keeping only those probes that
map to an AC present in all platforms. Each selected AC was then assigned
an intensity equal to the average of the normalized intensities of associated
probes in the given microarray.

To benchmark CuBlock against established normalization methods
applicable in a generic cross-platform context, we compared it to a sim-
ple log2 transform and to the methods ComBat (Johnson et al., 2007),
YuGene (Lê Cao et al., 2014), DBNorm (Meng et al., 2017) and Shambh-
ala (Borisov et al., 2019). YuGene and DBNorm were applied following
the same procedure used for CuBlock, i.e., normalization of the log2 tran-
sform of the probe intensities and successive mapping to ACs. ComBat
requires all microarrays to be normalized together, which implies their
merging before normalization. Therefore, in this case the mapping to Uni-
ProtKB ACs and selection of ACs present in the different platforms was
performed after log2 transform and before ComBat normalization. We
note that DBNorm allows normalization per sample and per platform.
We performed both, but show only the results obtained with sample-
wise normalization since they are better. Comparison to Shambhala was
done only for the data sets AFX, AG1 and ILM from the reference data
set, since Shambhala-normalized data for these sets has been already
reported by the authors as supplementary data to Borisov et al. (2019).
DBNorm was only used on the experimental data set, as the calculati-
ons turned out to be forbiddingly slow. To perform the calculations we
used the R package sva for ComBat (https://bioconductor.org/
packages/release/bioc/html/sva.html) and the packa-
ges provided by YuGene (https://cran.r-project.org/
web/packages/YuGene/index.html) and DBNorm (https:
//github.com/mengqinxue/dbnorm) authors in the respective
papers. Calculations with these programs were performed with default set-
tings. For DBNorm, in order to reproduce the general case (e.g. this study),
in which a reference microarray cannot be straightforwardly selected, we
used the option of normalization into a normal distribution.

2.3 Comparison and validation methods

To validate and compare the cross-platform normalization methods evalu-
ated in this study we used the methodology described below. The objective
was to increase the sensitivity, i.e. the identification of true biological dif-
ferences, while minimizing platform and various kinds of replica effects.
All validation methods were applied on a subset of 500 proteins that best
distinguish two given biological groups.

To select the 500 proteins we first performed a differential analysis on
the normalized data, for all platforms in the reference or experimental data
set. To this end, we performed Welch’s t-test to evaluate, for each protein,
the difference between the associated mean intensities in units of uncer-
tainty (the t-statistic) in two biological groups, A and B from the reference
data set (total of 16624 proteins) or N and T from the experimental data
set (total of 16937 proteins). Note that we deliberately avoid considerati-
ons on whether the data sets meet the requirements of the t-test, since we
used the test simply to identify the 500 proteins with largest separation of
group means per uncertainty unit, that is, with lowest associated p-values,
irrespective of the error in the p-value and, therefore, of its valid inter-
pretation as a probability. Although for such purpose we do not require
the calculation of FDR-adjusted p-values (q-values) (Storey, 2002), since
they conserve p-value ranking, we did obtain them and show correspon-
ding ROC-like curves (the cumulative distribution function of the q-values)
in Figure S1 (Supplementary information). We decided to select a fixed
number of proteins, rather than proteins with a p- or q-value below a given
arbitrary threshold, to enable the comparison of methods using data sets of
equal and reasonably large dimensionality. We note, nevertheless, that the
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500-protein cut corresponds to an FDR well below 10−2 (Figure S1). The
differential analysis was performed with the MATLAB function mattest.

2.3.1 Silhouette plot
Silhouette plots are graphical displays of data partitions (Rousseeuw,
1987), where clusters are represented by so-called silhouettes generated
by comparison of cluster tightness and separation. The method assigns a
silhouette value between -1 and 1 to each element of a cluster, indicating if
the element is well clustered (value close to 1), lies between two or more
clusters (close to 0) or is likely misclassified (close to -1). The silhouette
plot is then generated by representing the values for all elements as bars,
for the different cluster partitions. We computed three silhouette plots for
the reference data set: one identifying clusters with platforms, one where
the data was assigned to groups A∪C and B∪D and one where the partitio-
ning was represented by sets A, B, C and D. For the experimental data set,
silhouette plots based on platform partitioning and T vs. N partitioning
were computed. The MATLAB function silhouette was used to compute
the silhouette plots.

2.3.2 t-SNE dimension reduction
t-SNE (Maaten and Hinton, 2008) is a stochastic dimension-reduction
method aimed to preserve the local structure of data (keeping the low-
dimensional representation of very similar data points close together) while
retaining essential traits of global structure. It analyzes the neighborhood
of the data points by calculating pairwise conditional probabilities repre-
senting their similarity. The method then tries to find a low-dimensional
representation that minimizes the difference between the high-dimensional
and low-dimensional conditional probabilities. The parameter controlling
the number of neighbors is called perplexity, and is typically given values
between 5 and 50. Due to its stochastic nature and the dependence on
the chosen perplexity parameter, the algorithm may converge to irrelevant
solutions. We thus performed 10 runs for each of a number of perplexity
values and selected the one producing the most consistent biological par-
titioning according to the average silhouette values. For the reference data
set we used perplexity values from 5 to 50, in increments of 5, and selected
the representation giving the best clustering relative to sets A, B, C and D.
For the experimental data set, we used perplexity values 5, 10 and 15 and
selected the representation giving the best clustering relative to sets T and
N. The MATLAB function tsne was used to perform the t-SNE dimension
reduction.

2.3.3 Dendrogram
We performed a hierarchical clustering analysis using the Euclidean dista-
nce as metric and the arithmetic mean as linkage criterion, and represented
the resulting cluster hierarchy as a dendrogram. To assess the significance
of the clusters, we applied multiscale bootstrap resampling as provided
in the R package pvclust (Suzuki and Shimodaira, 2006). By default, this
package considers 10 relative bootstrap sample sizes (bootstrap sample size
divided by total sample size), from 0.5 to 1.4, with 1000 resamplings per
sample size, leading to a total of 10000 bootstrap resamples. The package
provides two statistics to estimate the significance of the obtained clusters:
the bootstrap probability (BP) or frequency (expressed as percentage) of
observation of a given cluster in the bootstrap resamples, and the approxi-
mately unbiased p-value (AU), an unbiased version of BP. More details on
multiscale bootstrap resampling can be found in Shimodaira (2004). We
plot the dendrograms using the R package dendextend.

2.3.4 SVM classification
The goal of this analysis was to assert whether relevant patterns can be
found using the data from only one platform. Support vector machi-
nes (SVM) (Cortes and Vapnik, 1995) are binary classifiers applicable

Fig. 1. Pseudocode describing the CuBlock algorithm (see description in Section 3).

to problems that are reducible to a binary outcome, such as the T and
N phenotypes in our experimental data set. We trained a linear support
vector machine model for each platform using the following approach.
To reduce feature-vector dimensionality, where dimensions are proteins
(more specifically their microarray-derived intensities), while retaining
the capacity to asses how well the 500 proteins separate the T and N popu-
lations, the training was performed six times, starting with dimension 5
and increasing it up to dimension 10. For each of 1000 runs with a given
dimensionality, we selected randomly from the 500 protein set as many
proteins as dimensions, extracted the corresponding data from sets T and
N, trained a linear SVM model for each platform, separately, and tested
it on the other two platforms. This led to a total of 6000 models per plat-
form. For each platform, we calculated the mean and standard deviation
of different classification scores over the 6000 models, namely, Accuracy,
Matthews Correlation Coefficient (MCC) (Boughorbel et al., 2017), Bala-
nced Accuracy and Area Under the ROC Curve (AUC) (Fawcett, 2006).
The MATLAB function svm was used to train the SVM models.

3 Algorithm
The main idea of CuBlock is to partition probes into clusters and, for
each sample and probe cluster (i.e. for each data block), transform the
data by a procedure that involves the fitting of a cubic polynomial to a
mapped distribution of points. A pseudo code of the CuBlock algorithm is
described in Figure 1. It calls two additional algorithms with pseudo codes
provided in Figures S2 and S3 (Supplementary information).

The input matrixX contains the log2 transform of the gene-expression
microarray intensities, where columns are samples and rows are probes.
CuBlock makes use of the k-means clustering algorithm (Lloyd, 1982) to
partition probes in the space defined by the samples —a probe data point is
a vector of probe intensities of dimension equal to the number of samples–
and is applied per platform, i.e. the k-means clustering is performed for
all samples of a given platform. k-means is an iterative algorithm that tries
to partition the data into a predefined number k of non-overlapping clu-
sters, starting from a random initialization of their centroids. Because of
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the random initialization, clusters from different runs may differ, and the
core part of the CuBlock algorithm is repeated several times for different
solutions of k-means. Thus, input parameters k and N in Figure 1 refer
to the chosen number of k-means clusters and repetitions, which in this
work took values of 5 and 30, respectively. The CuBlock algorithm finds
first a probe-cluster partition in the space defined by the samples and then
applies its normalization scheme to data blocks defined as those (log2)
probe-intensity values from a sample that belong to a given cluster. The-
refore, for k clusters and m samples we have a total of k · m blocks.
The advantage of the normalization by block is that it decomposes the
distribution of probe intensities of a sample into its different block distri-
butions, according to similarities between probes found by the clustering
algorithm in the space of all samples. These different distributions will
enable the emergence of different patterns present in the data. Instead,
if the blocks were selected at random or the whole sample was used, the
normalization method would estimate parameters based on a unique distri-
bution, masking these different patterns. Although we initially determine
the probe clusters using all samples, we then normalize sample by sample
to reduce the dependence of the normalization on the full sample colle-
ction. The strategy of normalization by block is similar to that used by the
cross-platform normalization method XPN (Shabalin et al., 2008). Howe-
ver, XPN defines probe clusters and sample clusters with two independent
application of k-means (one on the input matrix and the other on its tran-
spose) and blocks are then constituted by all possible combinations of one
sample cluster with one probe cluster.

For each block, and each of theN repetitions of the k-means clustering,
CuBlock fits a cubic polynomial to a mapped set of points symmetrically
distributed between -1 and 1 with density increasing toward zero. This
is performed in four steps, as shown in Figure 1. First, the block data is
linearly transformed to z-scores (zero mean and unit standard deviation).
These are then used as input values of a mapping function whose output
values will be used to fit the cubic polynomial, as described in the pseu-
docode shown in Figure S2. The mapping associates the sorted values
present in the block to an equal number of equidistant points between -1
and 1, and takes these new points to an uneven power in order to have their
distance decrease as they approach zero from either side (Figure S4). The
exact uneven power will determine how slow is the growth of the points
around zero, and is selected such that, on average, the values of the block
that are within standard deviation, i.e. the block values between -1 and 1,
are mapped to a value smaller than 0.1 (Figure S5). The algorithm tries
uneven powers between 3 and 21 and the first one that fulfills the criterion
is selected. Next, the algorithm finds the coefficients of a cubic polyno-
mial that, when evaluated on the sorted block data (input values), best fits
the output values from the mapping function (Figure S4). We chose to
fit a cubic polynomial instead of a higher degree one to avoid overfitting.
Polynomial coefficients were obtained with the MATLAB function polyfit,
with degree 3.

If the block data is not symmetric or contains many outliers, a cubic
polynomial will produce a poor fit. Thus, the polynomial will increase
along the symmetric part of the block and decrease as it reaches the outli-
ers (Figure S6). Despite leading to a poor fit, this feature can be used to
identify asymmetry issues and outliers. When this is the case and decrea-
sing values are identified after evaluating the polynomial on the block data,
the decreasing values are corrected in order to preserve data sorting upon
normalization. Roughly, the correction equates the decreasing values to the
last increasing value (after an increasing section) or to the last decreasing
value (before an increasing section). The precise corrections are described
in Figure S6, and the cases where the cubic polynomial might decrease are
considered in Figure S3.

Figure 2 shows the histograms of different samples before and after
normalization. While before normalization the samples follow clearly dif-
ferent distributions, after normalization the distributions are much more

Fig. 2. Example histograms for samples from different platforms. A-C: histograms before
CuBlock normalization and after log2 transform. D-F: histograms after CuBlock norma-
lization. A, D: biosample A, platform AFX; B, E: biosample B, platform AG1; C, F:
biosample A, platform AG1.

homogeneous. We note that before normalization the distributions are cle-
arly platform dependent (compare A and C, which correspond to the same
biosample but different platforms, and B and C, which correspond to diffe-
rent biosamples and the same platform). This effect is remarkably corrected
after normalization.

4 Results and Discussion
The algorithm described in the previous section was applied to the data
introduced in Section 2.1 after preprocessing (see Section 2.2), and the
results were compared to those obtained with other normalization methods
as explained in Section 2.3. In this section we will present and discuss these
results.

4.1 Reference data set: six platforms

Figures 3 and 4 and Figure S7 show the results obtained with the different
normalization methods using the dendrogram, silhouette and t-SNE analy-
zes, respectively. The three validation methods show that CuBlock and
ComBat separate very clearly the biological groups A, B, C and D (except
for a couple of A points in ComBat’s case). ComBat tends to produce tigh-
ter but less cleanly separated clusters for these four groups, as illustrated
by both the t-SNE (Figure S7C) and silhouette (Figure 4C) plots. CuBlock
is the only method that clusters the biological groups A and C, and B and D
together in the dendrogram plot (Figure 3A), and this is also underlined in
the corresponding silhouette plot in Figure S8A, showing high and homo-
geneous silhouette values. On the contrary, log2, ComBat and YuGene
tend to cluster C with D (Figures 3B-D). In fact, log2 and YuGene have
difficulties to separate this two groups at all. Figures S8 and S9 show silh-
ouette plots using the groups A∪C and B∪D and the platforms as given
clusters, respectively. We note that even though CuBlock puts emphasis
on the biological differences and Figure S9A indicates weak platform clu-
sters, both the t-SNE (Figure S7A) and dendrogram (Figure 3A) plots show
that, within each of the A, B, C, D clusters, the samples are subclustered by
platform. As can be seen in these Figures, ComBat mixes the data from the
different platforms best, while YuGene and log2 are, in this order, worst
at mixing platform data.

4.2 Reference data set: three platforms

To compare the results from CuBlock and Shambhala (the latter reported by
Borisov et al. (2019) for the same data set), we also performed the analysis
for the three-platform subset used by the authors of Shambhala, namely
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Fig. 3. Dendrogram analysis of the reference data set (six platforms) after normalization
with CuBlock (A), log2 (B), ComBat (C) and YuGene (D). Color bars under the dendro-
grams indicate the biological group and platform corresponding to each leaf; the BP (green)
and AU (red) values (see Section 2.3.3) for some selected clusters are indicated at the origin
of the branches.

Fig. 4. Silhouette plots of the reference data set (six platforms) after normalization with
CuBlock (A), log2 (B), ComBat (C) and YuGene (D), using the groups A, B, C and D

as given clusters. Mean silhouette index (SI) values: A: 0.66 (A), 0.62 (B), 0.51 (C) and
0.50 (D); B: 0.51 (A), 0.49 (B), 0.38 (C) and 0.44 (D); C: 0.72 (A), 0.78 (B), 0.79 (C)
and 0.83 (D); D: 0.61 (A), 0.63 (B), 0.35 (C) and 0.39 (D).

AFX, ILM and AG1. They had concluded that Shambhala separates well
A∪C from B∪D but not A from C or B from D. Using our selection of
500 proteins that best distinguish A from B, when looking at the results
for Shambhala in Figure S10B,D we observe that, while A∪C forms a
relatively clear cluster, all the B∪D points from AG1 samples are clustered
with A∪C, making B∪D a well defined cluster only for AFX and ILM.
As illustrated by the t-SNE and dendrogram plots and by the negative
silhouette values in Figure S10F, Shambhala does also not distinguish
A, B, C and D from each other well. The results for CuBlock in Figure
S10A,C,E show the same features already discussed in Section 4.1 using
the data for six platforms.

4.3 Experimental data set

Figures 5 and 6 and Figure S11 show the results obtained for the human
sperm data set, after normalization with CuBlock, log2, ComBat, YuGene
and DBNorm. CuBlock is the only normalization method that significantly
distinguishes the two biological groups, T and N. The dendrogram plots in
Figures 5 and t-SNE plots in Figure S11 show that the other methods tend
to misclassify some samples, in particular the ones from platform ILL2.
Similarly to the results for the reference data set (Section 4.1), CuBlock
tends to sort the samples by platform within the clusters T and N (except
for one T sample from ILL2). To investigate whether patterns that are
found using one platform can be extrapolated to the other platforms, we
performed a SVM classification test as described in Section 2.3.4. The
results are shown in Table 1. In all cases, CuBlock outperforms the other
methods. It is also worth noting that no matter which platform is used for
the training based on CuBlock, the results are always very similar. To a
lesser extent, this is also true for DBNorm. However, using log2, ComBat
and YuGene, training with ILL2 gives worst results than with the other
platforms, probably due to the fact that this platform constitutes a better
defined cluster, as shown in the silhouette plots in Figure S12.

4.4 Reference data set: missing biological groups

CuBlock is a method that works with the actual distribution of the data
without making any assumption on its shape. It is, in that sense, dependent
on the actual differences found in the input data. To test this dependence,
we analyzed again the reference data set using CuBlock and ComBat while
removing the groups B and D from the platforms HUG and AG1. In other
words, these two platforms were normalized only with A and C samples.
The biological difference between A and C is that 25% of C is made of
B RNA samples. The other four platforms were normalized with all four
biological groups. As it can be seen in Figure 7A,C, CuBlock results in the
clustering of the C samples of HUG and AG1 separately and closer to the D
cluster of the other platforms than to their C cluster. However, the A cluster
remains a well-defined cluster for all platforms. This suggests that, in the
two platforms with missing groups, CuBlock emphasizes the difference
between the available data. For HUG and AG1, this means emphasizing
the differences between A and C (the only groups it sees), thus bringing
C closer to the D cluster formed by the other platforms, since, as C itself,
D is also a mixture of A and B. When using ComBat (Figure 7B,D), the C
samples of HUG and AG1 are even more mixed with the D samples, and
the A samples of the two platforms tend to be closer (in the t-SNE plot) to
the C samples of the four other platforms, with some of them even being
clustered (in the dendrogram) in this group.

5 Conclusion
We have introduced an algorithm for cross-platform normalization of gene-
expression microarray data as well as a strategy to validate cross-platform
normalization methods, with a focus on the capacity of the algorithm to
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Fig. 5. Dendrogram analysis of the experimental data set after normalization with CuBlock
(A), log2 (B), ComBat (C), YuGene (D) and DBNorm (E). Color bars under the dendro-
grams indicate the biological group and platform corresponding to each leaf; the BP (green)
and AU (red) values (see Section 2.3.3) for some selected clusters are indicated at the origin
of the branches.

properly separate samples from different biological groups after norma-
lization and across multiple platforms. Overall, CuBlock showed good
results on the two data sets used in this evaluation, a data set specifically
generated for testing and standardization purposes and a data set from an
actual experimental study. CuBlock could always differentiate, clearly,
the underlying biological groups after mixing data from up to 6 different
platforms. Nevertheless, we observed that within each biological group the
algorithm tends to subcluster samples by platform, indicating a remaining,
yet comparatively small, platform effect. Compared to simply taking the
log2 transformation of the microarray data, CuBlock showed significant
improvement in distinguishing the biological groups and mixing the plat-
forms. The ComBat algorithm (Johnson et al., 2007) showed also good
performance on the reference data set, with better mixing of platform data
than all the other methods tested. However, on the experimental data set,
where samples are from different individuals and the difference between
biological groups might become less obvious than in the reference data set,
ComBat did not perform as well. Platform mixing was still good but the
distinction between the two biological groups was not clear. As mentioned
in the introduction, ComBat also requires the platforms to be normalized
together, making it a less convenient method for systematic application

Fig. 6. Silhouette plots of the experimental data set after normalization with CuBlock (A),
log2 (B), ComBat (C), YuGene (D) and DBNorm (E) using the groups T and N as given
clusters. Mean silhouette index (SI) values: A: 0.72 (T ), 0.57 (N); B: 0.75 (T ), 0.23 (N);
C: 0.48 (T ), 0.45 (N); D: 0.67 (T ), 0.51 (N); E: 0.65 (T ), 0.51 (N).

to multiple data sets. DBNorm was only used for the normalization of
the experimental data set, as it proved computationally much more time
demanding than the rest. Both DBNorm and YuGene performed only sligh-
tly better than log2. For the set evaluated, Shambhala lagged clearly behind
the other methods, arguably including a simple log2 transformation.

The CuBlock transformation can be thought as remaining close to the
input data. CuBlock fits cubic polynomials to data blocks that are found
by k-means clustering, thereby trying to best fit the different distributi-
ons found in the data corresponding to a sample (different blocks need
not have the same distribution) and it does so without assuming a shape
for these distributions. As a consequence, CuBlock emphasizes the dif-
ferences within the input data, making it sample-composition dependent
despite the only step in the algorithm where the microarray samples from
a given platform are considered together is when applying the k-means
algorithm (afterwards, each sample is considered separately). This sample
dependence was highlighted in this study when analyzing the reference
data set after removing biological groups in some platforms. It is however
less prominent than for algorithms normalizing platforms together, such
as ComBat. In summary, we have shown that CuBlock can be applied to
data from multiple microarrays in a platform agnostic way and preserves
the biological grouping of the samples, demonstrating a good performa-
nce for different types of samples. It is therefore a tool appropriate for
gene-expression studies based on multiple microarray sets collected along
multiple platforms and at different times, thus facilitating the extraction of
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Table 1. SVM classification scores (see Section 2.3.4)

Training
plat-
form

Accuracy MCC Balanced Accuracy AUC

CuBlock

AFF 0.88 ± 0.08 0.76 ± 0.17 0.86 ± 0.10 0.98 ± 0.03

ILL1 0.92 ± 0.06 0.85 ± 0.12 0.91 ± 0.07 0.99 ± 0.02

ILL2 0.86 ± 0.16 0.74 ± 0.32 0.86 ± 0.17 0.99 ± 0.04

log2

AFF 0.77 ± 0.07 0.52 ± 0.16 0.71 ± 0.08 0.70 ± 0.11

ILL1 0.80 ± 0.06 0.64 ± 0.11 0.81 ± 0.06 0.81 ± 0.04

ILL2 0.44 ± 0.16 −0.13 ± 0.35 0.46 ± 0.16 0.24 ± 0.31

ComBat

AFF 0.73 ± 0.11 0.53 ± 0.20 0.76 ± 0.10 0.90 ± 0.08

ILL1 0.76 ± 0.08 0.57 ± 0.15 0.77 ± 0.08 0.90 ± 0.06

ILL2 0.61 ± 0.30 0.22 ± 0.61 0.61 ± 0.30 0.63 ± 0.36

YuGene

AFF 0.81 ± 0.07 0.63 ± 0.15 0.77 ± 0.08 0.91 ± 0.06

ILL1 0.87 ± 0.08 0.74 ± 0.16 0.87 ± 0.09 0.96 ± 0.04

ILL2 0.55 ± 0.07 0.07 ± 0.17 0.53 ± 0.07 0.97 ± 0.11

DBNorm

AFF 0.81 ± 0.07 0.62 ± 0.16 0.77 ± 0.09 0.91 ± 0.07

ILL1 0.86 ± 0.06 0.76 ± 0.09 0.87 ± 0.05 0.95 ± 0.04

ILL2 0.79 ± 0.13 0.61 ± 0.24 0.77 ± 0.13 0.96 ± 0.11

Mean and standard deviation over the 6000 models per platform and method.

knowledge from the wealth of microarray data available in public reposi-
tories and enabling the use of these repositories as sources of Real-World
Data.
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