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Abstract 
 
Introduction 

Large datasets, consisting of hundreds or thousands of subjects, are becoming the new 
data standard within the neuroimaging community. While big data creates numerous benefits, 
such as detecting smaller effects, many of these big datasets have focused on non-clinical 
populations. The heterogeneity of clinical populations makes creating datasets of equal size and 
quality more challenging. There is a need for methods to connect these robust large datasets 
with the carefully curated clinical datasets collected over the past decades. 
Methods 

In this study, resting-state fMRI data from the Adolescent Brain Cognitive Development 
study (N=1509) and the Human Connectome Project (N=910) is used to discover generalizable 
brain features for use in an out-of-sample (N=121) multivariate predictive model to classify 
young (3-10yrs) children who stutter from fluent peers. 
Results 

Accuracy up to 72% classification is achieved using 10-fold cross validation. This study 
suggests that big data has the potential to yield generalizable biomarkers that are clinically 
meaningful. Specifically, this is the first study to demonstrate that big data-derived brain features 
can differentiate children who stutter from their fluent peers and provide novel information on 
brain networks relevant to stuttering pathophysiology.  

Discussion 
The results provide a significant expansion to previous understanding of the neural 

bases of stuttering. In addition to auditory, somatomotor, and subcortical networks, the big data-
based models highlight the importance of considering large scale brain networks supporting 
error sensitivity, attention, cognitive control, and emotion regulation/self-inspection in the neural 
bases of stuttering. 
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Abbreviations 
ABCD – Adolescent Brain Cognitive Development study 
ADHD – Attention Deficit Hyperactivity Disorder 
AROMA – Automated Removal of Motion Artifact 
AUC – Area under the Curve 
BBS – Brain Basis Set 
BOLD – Blood Oxygen Level Dependent 
CO – Cingular-Opercular network 
CER - Cerebellum network 
CSF – Cerebral Spinal Fluid 
CWS – Children Who Stutter 
DAN – Dorsal Attention network 
DMN – Default Mode network 
EPI – Echo Planar Imaging 
FIX – FIMRIB’s ICA-based Xnoiseifier 
FD – Framewise Displacement 
FSL – FIMRIB Software Library 
fMRI – Functional Magnetic Resonance Imaging 
HCP – Human Connectome Project 
ICA – Independent Component Analysis 
MNI – Montreal Neurological Institute 
MR – Memory Retrieval network 
PCA – Principal Component Analysis 
ROC – Receiver Operator Characteristic 
ROI – Region of Interest 
rsfMRI – Resting-State Functional Magnetic Resonance Imaging 
SCPT – Short Continuous Performance Task 
SMN – Somatomotor network 
SPM – Statistical Parametric Mapping 
SSI – Stuttering Severity Instrument 
VAN – Ventral Attention network 
VIS – Visual network 
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Introduction 
 

Childhood onset fluency disorder, more commonly known as stuttering, is a 

neurodevelopmental disorder that affects 1% of the general population (5-8% of all preschool-

age children) (Yairi & Ambrose, 2013). Stuttering significantly impedes the speaker’s ability to 

produce the rhythmic, fluid flow of speech sounds, and can lead to substantial negative 

psychosocial consequences.  

Most studies examining stuttering have applied methodological approaches that focus 

on specific hypothesis driven brain regions or examine connectivity among a few areas of 

interest (See for reviews (Chang et al., 2019; Neef et al., 2015)) However, as a complex 

neurodevelopmental disorder, stuttering likely emerges with subtle changes in large-scale 

network connections that support multiple functions, including cognitive/language, attention, and 

motor control. In a recent study, we used a connectomics approach to examine intra- and inter-

network connectivity of large-scale intrinsic connectivity networks for the first time to examine 

stuttering children. We found that children who stutter, regardless of later persistence or 

recovery from stuttering, could be differentiated from their non-stuttering peers based on earlier 

collected resting-state fMRI scans (Chang et al., 2018). In general, somatomotor network 

connectivity was aberrant in children who stutter. However, the differences were also reflected 

in the somatomotor network’s connectivity with other large-scale networks such as attention and 

default mode networks. This study also reported network connectivity patterns that differentiated 

persistently stuttering children from recovered children. Given the lack of a held-out test set or 

cross validated model performance, these results warrant replication and expansion through 

larger out of sample predictive studies.  

A limitation of most clinical studies, especially those involving scanning young children, 

is that the sample sizes tend to be small, leading to limited statistical power to discover true 

effects and prone to finding false positives and lack of replication. Due to the small sample 

sizes, prediction-based (as opposed to associative) studies are rare. Reflecting on these issues’ 

seriousness, big datasets consisting of hundreds or thousands of subjects are becoming the 

new data standard within the neuroimaging community. Big data creates numerous benefits, 

including allowing for more ambitious statistical analyses than smaller studies due to the 

increased power and better estimations of model generalizability. One important benefit of big 

datasets is that underlying “features” inherent in the dataset, such as in specific connectivity 

patterns of large-scale networks extracted from resting-state fMRI data, may be more reliably 
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measured, and modes of variation of these features are better estimated due to the increased 

power.  

Previous studies have shown that certain brain features can be linked to phenotypes of 

interest (e.g., variations in IQ, attention, etc.), and can also be used for the prediction of 

cognitive or clinical phenotypes (Beaty et al., 2018; Chen et al., 2020; Dubois et al., 2018; Finn 

et al., 2015; Goñi et al., 2014; He et al., 2020; Kong et al., 2019; Lake et al., 2019; Nguyen et 

al., 2020; Rosenberg et al., 2015, 2020; Sripada, Angstadt, Rutherford, Taxali, Clark, et al., 

2020; Weis et al., 2020; Wu et al., 2020). Recent work in the ABCD study showed that until 

sample sizes approach thousands of subjects, brain-behavior relationships were underpowered 

and statistical errors were inflated (Marek et al., 2020). The rich research questions regarding 

whether big data-derived brain features can be applied to smaller clinical datasets have not yet 

been explored. Other work has suggested that big-data applied to small-data, dubbed “meta-

matching,” is potentially useful but did not explore across dataset predictive model transfer (He 

et al., 2020). There is a strong need for methods that connect these powerful large datasets with 

the carefully curated clinical datasets. We address the feasibility of across dataset model 

transfer by discovering brain features in the ABCD and HCP studies and applying them to a 

smaller (out of sample) clinical dataset. 

This study aimed to create an analysis framework to combine big data with a more 

modest sample size clinical dataset. We leveraged a multivariate predictive modeling method, 

brain basis set (Sripada, Angstadt, et al., 2019; Sripada, Angstadt, Rutherford, Taxali, & 

Shedden, 2020; Sripada, Rutherford, et al., 2019), to bring the power of big data into a 

framework examining group differences in brain connectivity present in children who stutter. Our 

pipeline begins with feature discovery and selection in large open datasets, using resting-state 

functional MRI data from the Human Connectome Project (HCP) and the Adolescent Brain 

Cognitive Development (ABCD) study. We then transfer these big-data brain features to an out-

of-sample clinical dataset, consisting of resting-state fMRI data collected from children who 

stutter and healthy controls. These data were collected as part of an on-going longitudinal study 

in stuttering (Chang et al., 2018; Garnett et al., 2018). 

This modeling approach fuses unsupervised and supervised learning techniques. The 

initial decomposition of fMRI data (feature discovery) is unsupervised through principal 

component analysis (PCA), meaning it is unaware of the data’s behavioral characteristics. The 

predictive modeling portion of the pipeline, which uses cross-validated logistic regression, is 

supervised because the model is informed (in the training set) of all participants’ clinical labels. 

Brain basis set takes advantage of the fact that, though functional connectomes are massive, 
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complex objects, there is high redundancy in the set of connections that differ across people. 

This allows for a distilled set of PCA components to capture the most meaningful inter-individual 

variations and provide generalizability allowing us to use the basis set developed in one group 

for prediction in a separate clinical dataset.  

In the big datasets used here for feature discovery, participants of both HCP and ABCD 

were tested on a battery of assessments, including those relevant to language and attention. 

Prior work using brain basis set modeling within these datasets showed the best predictive 

performance when predicting cognitive phenotypes, such as fluid intelligence or latent cognitive 

variables such as general cognitive ability (Sripada, Taxali, et al., 2019; Sui et al., 2020). 

Examining brain basis sets associated with behaviors relevant to children who stutter and 

applying them to an out of sample stuttering dataset may provide a way to predict subgroups 

within the stuttering group, such as categorizing those most likely to recover from stuttering or 

go on to develop chronic stuttering. Early prediction of the clinical population’s different clinical 

trajectories is important because it could prioritize clinical resources toward delivering early 

intervention to those children most vulnerable to developing persistent stuttering. Apart from 

clinical implications, better classification of children who stutter from their non-stuttering peers is 

likely to provide a breakthrough in understanding the complex neural bases of stuttering. 

This work’s central goal is to test if big datasets, such as the ABCD study and the HCP 

data, can help discover a “better” brain basis set, which is a basis set that improves out of 

sample classification between children who stutter and fluent peers. The rationale behind this 

hypothesis is that larger sample sizes tend to discover more generalizable brain features. HCP 

and ABCD data contain higher quality MRI data (spatial and temporal resolution, longer scan 

length) than most clinical datasets (Casey et al., 2018; Van Essen et al., 2013). To test this big 

data prediction hypothesis, we directly compare the big data model’s performance to within-

sample feature discovery-based models.  

Predictive modeling work within the clinical neuroimaging community is often met with 

skepticism (Bzdok & Meyer-Lindenberg, 2018; Cabitza et al., 2017; Feczko et al., 2019; Lasko 

et al., 2017; Stephan, Bach, et al., 2016, p. 1; Stephan, Binder, et al., 2016). Much of the 

criticism surrounding predictive modeling stems from the fact that many predictive models are 

“black boxes,” yielding low interpretability in terms of the circuits involved (Rudin & Radin, 

2019). We emphasize the importance of interpretable and plausible prediction in clinical 

samples, making these characteristics top priority in this work. Therefore, we included an 

additional analysis to move our work beyond broad statements about patients differing from 
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healthy controls to characterizing which brain networks may contribute the most to the observed 

differences with the hope of informing future interventions.   

 

Materials & Methods 

Data acquisition 

HCP All subjects and data were from the HCP-1200 release (Van Essen et al., 2013). 

Four runs of resting-state fMRI data (14.4 minutes each; two runs per day over two days) were 

acquired (TR = 720 ms).  

ABCD Data from the curated ABCD annual release 1.1 were used, and full details are 

described in (Hagler et al., 2019). Imaging protocols were harmonized across sites and 

scanners. High spatial (2.4 mm isotropic) and temporal resolution (TR = 800 ms) resting-state 

fMRI was acquired in four separate runs (5min per run, 20 minutes total).  

Stuttering During the rsfMRI scan, children lay supine with their eyes open. They were 

instructed to remain as still as possible. Preceding the MRI scanning session, all children were 

trained during a separate visit with a mock scanner to familiarize and desensitize them to the 

sights and sounds of the scanner and to practice being still inside the scanner bore (Chang et 

al., 2015, 2016). To ensure that the child remained calm and to minimize the possibility of 

movement, an experimenter sat by the child throughout the scan. MRI scans were acquired on 

a GE 3T Signa HDx scanner (GE Healthcare). Thirty-six contiguous 3-mm axial slices were 

collected with a gradient-echo EPI sequence (7 min) in an interleaved order (TR = 2500 ms). All 

procedures used in this study were approved by the Michigan State University Institutional 

Review Board. Informed consent was obtained according to the Declaration of Helsinki. All 

children were paid a nominal remuneration, and were given small prizes (e.g. stickers) for their 

participation. This study is not a clinical trial.  

In/Exclusion criteria 

HCP subjects were eligible to be included if they had structural T1w and T2w data and 

had four complete resting-state fMRI runs (14m 24s each; 1206 subjects total in release files, 

1003 with full resting state and structural). Subjects with more than 10% of frames censored 

were excluded from further analysis, and if there was incomplete phenotypic data, leaving 910 

subjects.  

ABCD subjects were eligible to be included if they had at least 4 minutes of good data 

(after motion censoring at FD>0.5mm) and a usable T1w image (n=2757). To remove unwanted 

sources of dependence in the dataset, only one sibling was randomly chosen to be retained for 
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any family with more than one sibling (n=2494). Incomplete neurocognitive data were also 

criteria for exclusion, as were preprocessing errors in applying the field-maps. This left 1,509 

subjects.  

Stuttering subjects were eligible to be included if they had at least 4 minutes of good 

data (after motion censoring at FD>0.5mm) and a usable T1w image (n=121). The 

demographics of subjects included in our analysis are shown in Table 1.  

Table 1 Participant demographics. Mean (standard deviation).  

 Stuttering ABCD HCP 
Sample size 121 1509 910 

Age (years) 6.14 ± 1.9 10.05 ± 0.60 28.5 ± 3.7 

Sex (M/F) 61/60 783/726 435/475 

mean FD (mm) 0.39 ± 0.34 0.21 ± 0.08 0.15 ± 0.04 
Percent stuttered 
syllables (%SLD) 

3.66 ± 3.73 - - 

Stuttering severity 
instrument (SSI)1 

9.3 ± 10.2 - - 

 

Data Preprocessing 

We harmonized data preprocessing as much as possible across all three datasets used 

in this study. However, due to the nature of these datasets, small differences in data 

preprocessing occurred across these datasets, and each preprocessing workflow is described 

as follows.  

HCP Processed volumetric data from the HCP minimal preprocessing pipeline, including 

ICA-FIX denoising, were used. Full details of these steps can be found in Glasser (Glasser et 

al., 2013) and Salimi-Korshidi (Salimi-Khorshidi et al., 2014). Briefly, T1w and T2w data were 

corrected for gradient-nonlinearity and readout distortions, inhomogeneity corrected and 

registered linearly and nonlinearly to MNI space using FSL’s FLIRT and FNIRT. BOLD fMRI 

data were also gradient-nonlinearity distortion corrected, rigidly realigned to adjust for motion, 

fieldmap corrected, aligned to the structural images, and then registered to MNI space with the 

nonlinear warping calculated from the structural images. Then FIX was applied to the data to 

                                                 
1 The Stuttering Severity Instrument (SSI-4) was used to examine frequency and duration of disfluencies 
occurring in the speech sample acquired from each child who stutters. The SSI composite score 
incorporates frequency and duration of stuttered speech, as well as any physical concomitants associated 
with stuttering (Riley & Bakker, 2009). To be classified as a child who stutters, they needed to score in the 
very mild or higher range on the SSI composite score. For borderline cases, parent’s expressed concern 
of stuttering and clinician (certified Speech-Language Pathologist) impression confirming stuttering status 
were considered in making the determination of stuttering status.  
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identify and remove motion and other artifacts in the time-series. Images were smoothed with a 

6mm Gaussian kernel and then resampled to 3mm isotropic resolution. The smoothed images 

then went through several resting-state processing steps, including a motion artifact removal 

steps comparable to the type B (i.e., recommended) stream of Siegel et al. (Siegel et al., 2017). 

These steps include linear detrending, CompCor to extract, and regress out the top 5 principal 

components of white matter and CSF (Behzadi et al., 2007), bandpass filtering from 0.1-0.01Hz, 

and motion scrubbing of frames that exceed a framewise displacement of 0.5mm.  

ABCD Minimally preprocessed resting-state fMRI was used from data release 1.1. This 

data reflects the application of the following steps: i) gradient-nonlinearity distortions and 

inhomogeneity correction for structural data; and ii) gradient-nonlinearity distortion correction, 

rigid realignment to adjust for motion, and field map correction for functional data. Additional 

processing steps were applied by our group using SPM12, including co-registration using the 

CAT12 toolbox application, smoothing with a 6mm Gaussian kernel, and application of ICA-

AROMA (Pruim et al., 2015). Resting-state processing steps were then applied, including linear 

detrending, CompCor (Behzadi et al., 2007), bandpass filtering from 0.1-0.01Hz, and motion 

scrubbing of frames that exceed a framewise displacement of 0.5mm.  

Stuttering Data were processed using typical methods in Statistical Parametric Mapping 

(SPM12, Wellcome Institute of Cognitive Neurology, London).  Slice time was corrected using 

sinc-interpolation, and all scans were realigned to the 10th volume acquired during each scan. 

Time-series of functional volumes were then co-registered with a high-resolution T1 image, 

spatially normalized to the MNI152 brain using the CAT12 toolbox, and then spatially smoothed 

with a 6 mm isotropic Gaussian kernel. ICA-AROMA (Pruim et al., 2015) was applied to the 

smoothed data for motion denoising. Resting-state processing steps were then applied, 

including linear detrending, CompCor (Behzadi et al., 2007), bandpass filtering from 0.1-0.01Hz, 

and motion scrubbing of frames that exceed a framewise displacement of 0.5mm.  

Connectome Generation 

We calculated spatially averaged time series for each of 264 4.24mm radii ROIs from the 

parcellation of Power et al. (Power et al., 2011). We then calculated Pearson’s correlation 

coefficients between each ROI. These were then transformed using Fisher’s r to z-

transformation. Connectomes are symmetric matrices that do not contain directionality 

information. Therefore, we vectorize each subject’s connectome’s upper triangle to create a 1 x 

34,716 (264 choose 2) vector. All subject’s connectome vectors are then stacked, creating an n 

subjects x p connections matrix, where rows represent unique subjects and columns represent 

unique connections.  

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2020.10.28.359711doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.28.359711
http://creativecommons.org/licenses/by-nd/4.0/


Classifying stuttering using big data 

 

Brain Basis Set Predictive Modeling 

Brain Basis Set (BBS) is a multivariate predictive method that uses dimensionality 

reduction to produce a basis set of components to make phenotypic predictions (see Figure 1 

for an overview). First, for the dimensionality reduction step, we submitted an n subjects x p 

connections matrix for both the HCP and ABCD training datasets (separately) for principal 

components analysis. Next, we moved to the stuttering dataset to calculate the expression 

scores for each of the k components for each subject by projecting each subject’s connectivity 

matrix onto each principal component. We then fit a logistic regression model with these 

expression scores as predictors and the phenotype of interest (the clinical diagnosis of 

stuttering) as the outcome. In a test dataset, we again calculated the expression scores for each 

component in the basis set for each test subject. We repeated this model within the stuttering 

dataset using 10-fold cross validation. Importantly, our model controls for nuisance variables 

(age, sex, linear and quadratic effects of motion).  
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Figure 1. Overview of Brain Basis Set (BBS) Predictive Modeling. BBS utilizes 

dimensionality reduction with principal components analysis (PCA) to construct a high-quality 

feature set in a large data set (i.e., HCP & ABCD) and then apply the basis set to an out-of-

sample clinical data set to the classification of children who stutter from fluent peers and 

compare this model performance to within-sample basis set using 10-fold cross validation.  

 

Feature Selection: Top 10 components (“Top k”) and phenotype-correlation 

(“Pheno-corr”) models  

We tested three different techniques for selecting which components to use in the 

predictive model. First, we used the top k variance explaining components from the HCP basis 

set and then also from the ABCD basis set. Prior work using BBS modeling in ABCD and HCP 

datasets showed that somewhere between 50 to 100 components yields an optimal prediction 
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of a broad array of behavioral phenotypes (Sripada, Angstadt, et al., 2019). However, due to the 

smaller sample size of the stuttering dataset (n=121) compared to the HCP (n=910) and ABCD 

(n=1509) sample sizes, we lowered this number due to the possibility of overfitting the data. The 

sample size of the clinical dataset is approximately 1/10th the sample size of HCP and ABCD. 

Therefore, in this study, we used 1/10th the number of components used in previous HCP & 

ABCD predictive models and set k equal to 10. These models are referred to as “HCP top k=10” 

and “ABCD top k=10”. 

Next, HCP and ABCD basis set components that were significantly correlated (p<0.01) 

with the phenotypes of interest (cognitive variables from the NIHToolbox and sustained 

attention) were selected. These models are referred to as “ABCD pheno-corr” and “HCP pheno-

corr” models. Cognitive NIHToolbox phenotypes were selected based on previous work in HCP 

and ABCD predictive modeling demonstrating that these cognitive phenotypes tend to yield the 

highest accuracy and test-retest reliability (Sripada, Taxali, et al., 2019). The choice of 

sustained attention among the phenotypic measures collected in HCP and ABCD was based on 

results from Chang et al. (Chang et al., 2018) where significant differences involving attention 

networks (DAN, VAN) and their connectivity with FPN and SMN networks were found to 

differentiate CWS from controls. Clinically, ADHD and subclinical attention deficits are 

commonly reported in stuttering (Donaher & Richels, 2012), but to date, there have been few 

studies investigating how neural networks supporting attention are affected in stuttering. 

Sustained attention in HCP is measured using the Short Penn Continuous Performance Test 

(SCPT) (Gur et al., 2010; Kurtz et al., 2001). Participants see vertical and horizontal red lines 

flash on the computer screen. In one block, they must press the spacebar when the lines form a 

number, and in the other block, they push the spacebar when the lines form a letter. The lines 

are displayed for 300 ms, followed by a 700 ms ITI. Each block contains 90 stimuli and lasts for 

1.5 minutes. The equivalent sustained attention variable from the ABCD study is from the stop 

signal fMRI task (SST), corresponding to the total number of correct go trials across the entire 

task. The SST requires participants to withhold or interrupt a motor response to a “Go” stimulus 

when followed unpredictably by a signal to stop. Each of the two runs contains 180 trials. A 

further detailed description of this task can be found in Casey et al. (Casey et al., 2018).  

Finally, to test whether big data improves classification performance, we compared the 

big data models to within-sample feature discovery models. Using big datasets from HCP and 

ABCD may be hurting our predictive performance due to differing age ranges of the populations 

they are drawn from and that there are unlikely any clinically diagnosed stuttering participants in 

these datasets. Instead of using the HCP or ABCD basis set, we embedded the dimensionality 
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step within the stuttering dataset cross validation, and this model is called “In-sample top k=10”. 

We used the top k =10 components from the stuttering training set as predictors and compared 

them to the top k=10 HCP model and k=10 ABCD model. We did not repeat the pheno-corr 

method in-sample due to not having enough training set subjects to yield reliable correlations 

(Poldrack et al., 2020; Varoquaux, 2018; Varoquaux et al., 2017).  

Model Evaluation 

The performance of our model was determined using the area under the curve (AUC) 

(Fawcett, 2006; Hand & Till, 2001). The “curve” reference in AUC corresponds to the receiver 

operating characteristic (ROC) curve, which plots the true positive rate versus the false positive 

rate. AUC is calculated on the test set within 10-fold cross validation, and the average AUC 

across folds is reported in Table 2 and Figure 2. Assessing the overall model statistical 

significance in our primary analysis framework is challenging due to the cross-validation 

procedure (10 different test-sets). While we do not want to rely on statistical significance for 

interpreting results, we recognize that overall model significance is helpful for determining that 

the prediction is meaningful (above chance accuracy). Following model evaluation and reporting 

methods in previous work (Sripada, Angstadt, Rutherford, Taxali, Greathouse, et al., 2020), a 

logistic regression model was fit within the whole sample to determine the overall statistical 

significance of each proposed feature selection method. The statistical significance of each full 

models’ predictors is shown in supplemental tables, and the overall model statistical significance 

is reported in the results section. 

Visualization of Whole Brain Predictive Models 

To help convey overall patterns across all components in a given BBS predictive model, 

we constructed “consensus” component maps, shown in Figure 3. We first fit a BBS model to 

the entire dataset consisting of all stuttering participants. We then multiplied each component 

map with its associated beta weight from this fitted BBS model. Next, we summed across all top 

k=10 components or pheno-corr components, yielding a single map for each model. The 

resulting map indicates the extent to which each connection is positively (red) or negatively 

(blue) related to the outcome variable of interest, stuttering status.  

Interpretation Analysis: Keep Two Networks 

To aid in the predictive model’s interpretability, we repeated all analyses using every 

network pair (one at a time) from the Power parcellation (Power et al., 2011). There are 13 brain 

networks in the Power parcellation, which results in 78 network pairs (13 choose 2). This allows 

us to observe which nodes, edges, and networks contribute most to the predictive model’s 

accuracy. For every network pair, for example, the FPN-DMN, all other nodes, and edges 
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belonging to other networks are removed to create a much smaller connectivity matrix (that 

includes within-DMN, within-FPN, and DMN-FPN connections) for each subject and every step 

of the analysis (PCA matrix decomposition, component selection, and cross-validated logistic 

regression model fit) are performed on only the nodes and edges belonging to the FPN & DMN 

networks. This was repeated for all other network pairs. Figure 3A provides a visual intuition for 

the process of creating network-pair connectomes from the whole brain connectome. We used 

the top k=10 components HCP, ABCD, and In-sample models during the component selection 

step. For the pheno-corr models, we only used the HCP fluid intelligence model and ABCD fluid 

intelligence model due to their high prediction accuracy in the whole-brain results. Also, given 

that there are 78 network-pairs, and therefore 78 models to run per phenotype, we needed to 

limit our selection to produce succinct results.  

Data sharing 

 All code and data (that allows for it) is made available on GitHub 

(https://www.github.com/saigerutherford/bigdata-stuttering). The ABCD data does not allow raw 

or derivative data re-sharing and requires users to complete their own data use agreement on 

https://www.nda.nih.gov. A study has been created on NDA (DOI:10.15154/1520500) to track 

the included ABCD subjects in these analyses.  

 

Results  

Primary Analysis: Whole-Brain Connectome  

Fluid intelligence pheno-corr model in ABCD and HCP achieved highest accuracy 

The brain basis set predictive model successfully differentiated between children who 

stutter and healthy controls using resting-state connectivity patterns from out-of-sample healthy 

child (ABCD study) and adult (HCP study) datasets. The best performing whole-brain model 

used components related to fluid intelligence in the child (AUC10fold-cv = 0.66; p-valuefull-sample = 

5.79e-5), and adult (AUC10fold-cv = 0.66; p-valuefull-sample = 2.25e-3) samples. Accuracy of other 

phenotype models from the NIH-Toolbox and sustained attention ranged from 0.5 (Picture 

Sequence – episodic memory) to 0.65 (Pattern Completion – processing speed). Table 2 

summarizes the accuracy of all ABCD and HCP pheno-corr models, along with the number of 

features in each model (components significantly correlated with each phenotype), and the 

subdomains/abilities each phenotype represents. The supplemental tables contain the feature 

level statistical significance of all models. 
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Table 2 HCP & ABCD pheno-corr model performance using variables from the NIH Toolbox 
and a sustained attention task. The number of significantly correlated components with 
phenotypes (p<0.01) are reported for each dataset along with the average AUC across a 10-fold 
cross validation framework. 

Phenotype Subdomain Ability # of HCP 
components 

(p<0.01) 

HCP 
AUC 

# of ABCD 
components 

(p<0.01) 

ABCD 
AUC 

Dimensional 
Change 
Card Sort 

Executive 
Function 

Cognitive 
Flexibility 

8 0.52 14 0.58 

List Sorting  Working 
Memory 

Working 
Memory 

9 0.57 21 0.53 

Picture 
Vocabulary 

Language Vocabulary 
Knowledge 

13 0.54 17 0.59 

Pattern 
Comparison  

Processing 
Speed 

Processing 
Speed 

13 0.52 15 0.65 

Picture 
Sequence  

Episodic 
Memory 

Episodic 
Memory 

15 0.54 22 0.50 

Reading 
Recognition 

Language Oral 
Reading 

Skill 

18 0.52 18 0.58 

Fluid 
Intelligence2 

- - 13 0.66 17 0.66 

Sustained 
Attention 

- - 13 0.58 17 0.56 

 

Top k=10 models suggest big data basis sets may improve accuracy 

When comparing the HCP, ABCD and in-sample top k=10 basis sets, the ABCD 

(AUC10fold-cv = 0.63; p-valuefull-sample = 2.26e-3) and HCP (AUC10fold-cv = 0.59; p-valuefull-sample = 

4.58e-3) models had slightly higher accuracy than the in-sample model (AUC10fold-cv = 0.57; p-

valuefull-sample = 7.85e-3), suggesting that using big data to discover a brain basis set improves 

prediction performance, or at the very least does not decrease performance compared to in-

sample feature selection. Interestingly, the top k=10 predictive models from separate datasets 

appear to leverage very similar brain connections. The correlation between the consensus maps 

                                                 
2 Fluid Intelligence is a Cognition Composite Score that includes DCCS, Flanker, Picture Sequence 
Memory, List Sorting, and Pattern Comparison measures.  
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of each model are strongly positive and are statistically significant. The HCP & ABCD 

consensus maps are correlated r=0.55, HCP & In-sample correlation of r=0.32, and ABCD & In-

sample are correlated r=0.50. The pheno-corr fluid intelligence model showed less overlap 

between the HCP & ABCD models (r=0.06). The ROC curve for all dataset’s top k=10 and 

ABCD & HCP fluid intelligence pheno-corr whole brain models are shown in Figure 2 and the 

consensus map models for all dataset’s top k=10, and HCP & ABCD fluid intelligence pheno-

corr models are shown in Figure 3.  

Figure 2 Whole Brain Receiving Operator Characteristic Curve plotting the false positive 

rate versus true positive rate for the top k=10 HCP, ABCD, and In-sample models and the fluid 

intelligence HCP and ABCD models. All of these models were tested using 10-fold cross 

validation logistic regression models. The diagonal dotted line shows chance accuracy. For 

most all subjects, the big data models (blue, red, cyan, magenta lines) are above the in-sample 

model (green line) meaning that big data models help improve the classification for most 

subjects in the clinical dataset.  
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Figure 3 Consensus maps of connections that are predictive of stuttering status. The top 

k=10 models are highly similar across all three datasets (bottom row), and the pheno-corr 

models (top row) show unique, distributed patterns of connections that predict stuttering status. 

The correlation (r) between each of the maps is shown to quantify the overlap between each 

model’s predictive features.  
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Interpretation Analysis: Keep Two Networks 

Subset network basis sets reveal a fine-scale resolution of clinical data not 

detected in whole-brain models 

When further interrogating which brain nodes, connections, and networks contributed the

most useful information to our predictive model, we learned that the auditory and ventral 

attention networks, from the in-sample top k=10 model, contributed the most and yielded the 

highest accuracy (AUC10fold-cv = 0.72). The salience and subcortical network pair from the in-

sample top k=10 model was a close second (AUC10fold-cv = 0.71). These results show that when 

using a reduced basis set (from just two brain networks, e.g., auditory & salience), the in-sample

basis set outperforms ABCD & HCP. The results of all network pairs are visualized in Figure 4. 

This suggests that clinical variation has a fine-scale resolution that may be overlooked when 

searching the full connectome. 

Figure 4 Keep Two Network Analysis. A) Visual intuition for how the network-pair 

connectomes (ex. DMN-FPN) are created. This process was repeated for all 78 network pairs. 

In panels B-F, a black box is placed around the most accurate (i.e., best-performing model) 

network-pair, and this network pair is also shown below the panel in larger, bolded text. The 

he 

le 
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number represented in each box is the average AUC across 10-fold CV for that given network-

pair. Lighter colors correspond to higher accuracy. B) ABCD fluid intelligence pheno-corr C) 

HCP fluid intelligence pheno-corr D) ABCD top k=10 E) HCP top k=10 F) In-sample top k=10 

 

Discussion 

In this work, we determined whether a brain basis set developed in big data sets, HCP 

and ABCD, could be used to classify stuttering children from fluent peers. The results across 

several predictive models in this study suggest that big data can be transferred to smaller 

clinical datasets to help prediction performance. While the big data-based models provide a 

rather modest improvement in classification accuracy, it is important to remember that predicting 

behavior from biological data is a highly complex problem to solve, and accuracy is not the only 

important facet of predictive modeling. There are other benefits of leveraging big data such as 

testing true out of sample model fit to determine generalizability and exploration of brain 

components related to phenotypes that were not collected in smaller clinical samples.  

Past neuroimaging research has pointed to a wide range of structural and functional 

deficits in speakers who stutter, encompassing aberrant auditory-motor cortical connectivity and 

basal ganglia-thalamocortical connections. The wide range of locations and connectivity 

patterns that differ in stuttering speakers may not be surprising, given that multiple neural 

systems’ deficits can have detrimental effects on fluent speech production. While the main 

behavioral manifestations of stuttering involve speech disfluency, many children who stutter also 

exhibit comorbid symptoms comprising subtle language, attention, and/or cognitive deficits. This 

finding is similar to that observed in other neurodevelopmental disorders where diagnostic 

categories overlap and are highly heterogeneous (Siugzdaite et al., 2020). Reflecting these 

views, there is a growing consensus for rejecting a “core-deficit hypothesis” in developmental 

disorders in favor of embracing the view that neurodevelopmental conditions can arise from 

complex patterns of relative strengths and weaknesses that may encompass multiple aspects of 

cognition and behavior (Astle & Fletcher-Watson, 2020). Therefore, we tested whether cognitive 

functions that are more reliably captured with big data (using methods such as brain basis set 

[BBS] modeling to derive basic “features” inherent in resting-state fMRI) could improve 

classification performance in a pediatric stuttering dataset. We expected that this approach 

would allow us to examine how the stuttering group differs in these basic features in complex 

ways in the context of whole-brain connectivity measures.  
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The whole-brain connectome results showed that the BBS models of fluid intelligence 

phenotype-correlation derived from the HCP and ABCD datasets achieved the highest accuracy 

in classifying stuttering children. The fluid intelligence measure is a composite score that 

encompasses scores from other tests administered as part of the NIH toolbox®, including 

Pattern comparison task (processing speed; information processing), list sorting working 

memory task (working memory; Categorization; Information Processing), picture sequence 

memory task (Visuospatial sequencing & memory), flanker task (Cognitive Control/Attention, 

and the dimensional change card sort task (Flexible thinking; concept formation; set-shifting) 

(Gershon et al., 2010; Luciana et al., 2018). Interestingly, phenotypes that were more directly 

related to language function, such as reading and picture vocabulary scores, did not perform as 

well in the pheno-corr models compared to the fluid intelligence and processing speed cognitive 

phenotypes. These results suggest the need to examine further inherent changes in these 

cognitive dimensions (processing speed, attention, working memory) for stuttering children and 

how they might interact with stuttering status.  

Apart from the pheno-corr models, the top k=10 models from ABCD and HCP performed 

slightly better than the model based on the in-sample dataset. The consensus component 

maps, generated to convey overall patterns across all components in a given BBS predictive 

model, further showed the connectivity pairs in each model that contributed to predicting 

stuttering status. The top k=10 predictive models from HCP, ABCD, and the patient samples, 

appeared to leverage very similar brain connections. The correlation between each model’s 

consensus maps was strongly positive and statistically significant, especially between ABCD 

and the patient sample. The higher correlation found between consensus models derived from 

ABCD and the stuttering sample could be attributed to the more similar age distributions of 

these two samples as opposed to the HCP study, which included mostly adults. Network-level 

alterations predicting stuttering based on consensus models that were common across all three 

datasets included: within-network connectivity decreases in the default mode network (DMN), 

frontoparietal network (FPN), and visual network. Also, increased connectivity between DMN-

cingulo-opercular (CO) networks and the FPN-CO networks predicted stuttering status.  The 

DMN is hypothesized to implement emotion regulation and self-inspection; decreased DMN 

function may negatively affect adaptive emotion regulation (Schilbach et al., 2012). Decreased 

DMN function, when paired with decreased FPN function (affecting cognitive control) and 

overactive functioning of CO and ventral attention networks (VAN), have been implicated in 

anxiety disorders (Sylvester et al., 2012). The fact that stuttering was associated with decreased 

intra-network connectivity of both the DMN and FPN networks and at the same time increased 
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connectivity of those same networks with the cingulo-opercular network is interesting given the 

CO network’s relevance to error sensitivity, detecting negative affect and pain (Shackman et al., 

2011). Altered within-network functional connectivity in the CO network has also been linked to 

patients with social anxiety disorder (Liao et al., 2010) and tonic alertness, i.e., sustained 

attention (Sadaghiani & D’Esposito, 2015). The heightened connectivity between the cingulo-

opercular network to both DMN and FPN networks in stuttering speakers might reflect the need 

for greater involvement of these two networks to achieve emotional regulation and cognitive 

control in the presence of error detection and conflict.  

While social anxiety is commonly reported in adults who stutter, the same has not been 

consistently reported in children who stutter. Direct examination of emotional processing in 

children who stutter has been rare, though some studies have reported subtle differences in 

CWS in terms of autonomic nervous system responses to challenging speech tasks (nonword 

repetition; (Tumanova & Backes, 2019)) or emotionally stressful stimuli ((Jones et al., 2014; 

Walsh et al., 2019). The current BBS results suggest that brain networks linked to emotional 

regulation and their connectivity with cognitive control networks may differentiate children who 

stutter. More research is warranted in this area, especially related to understanding how these 

network connectivity patterns change due to persistence and stuttering recovery. 

Altered network findings predicting stuttering status based on just the in-sample 

consensus model included: decreased within-network connectivity in the auditory and cerebellar 

networks and decreased connectivity between the auditory- somatomotor networks (SMF, SMH) 

and auditory- ventral attention networks (VAN). The in-sample model pointing to the auditory 

network and its connectivity with somatomotor networks is largely consistent with past literature 

in stuttering, where most studies have identified structural and functional deficits in auditory-

motor integration. Decreased within-network connectivity in the auditory network may suggest a 

less ideal functioning of this network, representing a critical to interface with the speech motor 

region, necessary for developing and maintaining fluent speech control (Bohland & Guenther, 

2006). Deficient auditory cortex function has been reported as one of the neural “signatures” of 

stuttering based on meta-analyses of neuroimaging stuttering literature (Brown et al., Budde et 

al.). The current results implicating decreased auditory-ventral attention network connectivity in 

children who stutter is relevant to findings reported in a previous study of childhood stuttering 

that also showed aberrant connectivity involving the attention networks, including the ventral 

attention network (Chang et al., 2018). The VAN includes parts of the ventrolateral prefrontal 

cortex and the temporoparietal junction and supports bottom-up attention, i.e., directing 

attention to newly appearing stimuli. The decreased connectivity between the VAN and auditory 
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networks implicated in the in-sample consensus model for stuttering may suggest discordant 

function between these two networks. That is, an abnormally increased function of the ventral 

attention network may be linked to a tendency to direct attention to stimuli that suddenly appear 

rather than towards (auditory) stimuli that are currently the focus of the task to be performed, 

e.g., speech control. A prolonged influence of such aberrant auditory-VAN connectivity may 

cascade downstream to influence how the auditory network interfaces with the somatomotor 

networks, which could lead to inefficient integration of auditory-motor networks that are critical 

for supporting fluent speech control.  

Another altered network finding that was specific to the in-sample consensus model was 

decreased within-cerebellar network connectivity. Given the cerebellum’s role in motor learning, 

error correction, movement timing, and past findings of aberrant function (De Nil et al., 2003) 

and structure (Connally et al., 2014; Sitek et al., 2016) in stuttering speakers, a further detailed 

examination of this structure in relation to stuttering is warranted. Apart from its motor-related 

functions, the cerebellum has connections with most parts of the cerebral cortex (Buckner, 

2013) including the auditory cortex. It also connects to the basal ganglia and thalamus and has 

afferent connections from the olivary nucleus. The latter may have a role in detecting and 

processing somatosensory and auditory errors (Schweighofer et al., 2013). It would be of 

particular interest to examine how cerebellar network connectivity, both within-network and 

between network connectivity - change during development in normally developing children 

compared to children who stutter. Such investigations have the potential to reveal how the 

cerebellar function may modulate previously reported network alterations in stuttering and 

provide clues to how this may influence developmental changes that are linked to later 

persistence and recovery.  

The keep- two network models were used to interrogate further which brain nodes, 

connections, and networks contributed the most useful information to our predictive model using 

a reduced basis set (from just two brain networks). Here, the in-sample basis set outperformed 

the models from both the ABCD and HCP data sets. The auditory and ventral attention network 

pairs appeared to contribute the most to the model and yielded an accuracy of (72%). The 

salience and subcortical network pair from the in-sample top k=10 model was the next highest 

contributor achieving 71% classification accuracy. Here, the auditory-VAN network connectivity 

is highlighted again, providing further confirmation of these networks’ importance in predicting 

stuttering status. The salience network is often equated with both the CO and VAN networks, 

with overlapping or adjacent structures comprising each of these networks. The salience 

network’s key structures include the anterior insula and the dorsal anterior cingulate cortex, 
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although the striatal-thalamic loop is also functionally connected to the key structures and hence 

the salience network (Peters et al., 2016) The salience network’s function has been reported to 

include detecting and integrating sensory and emotional stimuli (V. Menon, 2015; Vinod Menon 

& Uddin, 2010), and attentional shifting that helps mediate the switch between internally-

directed versus externally-directed attention (Uddin, 2015). In the consensus models discussed 

above, connectivity involving the salience network was altered for stuttering children, based on 

both ABCD and in-sample models. Networks showing altered connections with the salience 

network included the DMN and FPN, two networks linked to internally directed and externally 

directed cognitive control function, respectively. These results suggest that the efficiency of 

switching between internal and externally oriented tasks might be affected in children who 

stutter. Specifically, these inefficiencies may be reflected in suboptimal performance on 

externally oriented tasks such as speech production because internally oriented processing 

such as self-inspection is not fully switched off. A similar perspective is taken by the default 

network interference model (Sonuga-Barke & Castellanos, 2007), where diminished segregation 

between the DMN and other networks might allow the intrusion of DMN activity that causes 

inefficient functioning of task-positive processes (Zou et al., 2013) and lead to behavioral 

variability (Kelly et al., 2008; Poole et al., 2016). Altered connectivity of the salience network to 

the subcortical network in stuttering is also not surprising, given past findings pointing to 

aberrant thalamocortical loop function in stuttering physiology (Alm, 2004; Chang & Guenther, 

2020; Craig-McQuaide et al., 2014).  

 

Conclusion 

In sum, our findings show that using big data such as ABCD and HCP datasets to derive 

basic cognitive “features” provided superior models to classify children who stutter from age-

matched controls. The results provide a significant expansion to previous understanding of the 

neural bases of stuttering that had previously been limited mainly to auditory and motor 

integration areas in the cortical and subcortical regions. In addition to auditory, somatomotor, 

and subcortical networks, the models built using big data highlight the importance of considering 

large scale brain networks supporting error sensitivity (cingulo-opercular), attention (ventral 

attention, salience), cognitive control (FPN), and emotion regulation/self-inspection (DMN) in the 

neural bases of stuttering. The results also suggest that while big data can identify whole-brain 

based connectivity alterations relevant to the disorder, these approaches might be best 

supplemented by detailed reduced-basis set modeling that further interrogates which brain 

nodes, connections, and networks contribute the most useful information to the predictive 
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models. This latter approach indicated that the clinically specific stuttering dataset outperformed 

the big dataset derived models, possibly showing core disorder-specific networks that may be 

altered and are vulnerable for further modulation from other large-scale networks. This study is 

a first attempt to identify the brain basis features predictive of stuttering. The present findings 

offer insights into the neurophysiological basis of stuttering and pave the way for future studies 

that elucidate neural mechanisms for ultimately predicting the optimal treatment strategy and/or 

outcomes. The transfer learning framework introduced by this work builds an important 

connection between the clinical neuroscience and the big-data neuroscience communities. 
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