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Abstract

The extensive use of touchscreens for all manner of human-computer interactions has
made them plausible instruments of touch-mediated disease transmission. To that end,
we employ stochastic simulations to model human-fomite interaction with a distinct
focus on touchscreen interfaces. The timings and frequency of interactions from within a
closed population of infectious and susceptible individuals was modelled using a basic
queuing network. A pseudo reproductive number (R) was used to compare outcomes
under various parameter conditions. We also expanded the simulation to a specific
real-world scenario; namely airport self check-in and baggage drop. Results revealed
that the required rate of cleaning/disinfecting of screens to effectively mitigate R can be
inordinately high. This suggests that revised or alternative methods should be
considered.

Introduction

The ubiquitousness of shared Touchscreen User Interfaces (TUIs) has become apparent
in recent years; whether it be a fast-food menu or an airport terminal self check-in
machine. However, their reputation for hygiene has come under scrutiny, predominantly
from sensationalised media articles [1–3]. The fact that touchscreens carry pathogens is
not however in question here; what is yet to be established is if they can transmit
enough pathogens to a user so as to cause infection (and if so, which disease?), either
due to an isolated TUI interaction event, or when thought of as a series of interactions
by multiple users, effectively forming an interaction network between them.

Modelling of fomite-mediated disease transmission has already been undertaken
in [4, 5], where the authors describe an Environmental Infection Transmission System
(EITS) using a system of ODEs incorporating the dominant parameters: pathogen
infectivity, survival/persistence on surfaces, and finger-to-surface (surface-to-finger)
transfer rates. Other important parameters include the frequency in which people
interact/touch the fomite and how often it is disinfected and cleaned [6].

In [7], the authors review the specific role of biometric fingerprint scanners in the
transmission of SARS-CoV2. They reiterate the importance of the parameters
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incorporated in the EITS in addition to recommending enhanced universal hygiene
methods; e.g., hand washing, glove wearing, regular surface cleaning and, importantly,
the use of non-contact technologies as an overall alternative.

Estimating reasonable values for each disease model parameter relies on often
limited experimental and clinical data. For example, the survival rate of pathogens on
surfaces has been a source of some contention [8, 9]; quantifying viral particles and
bacteria is fundamentally not an exact science [10,11]. This is further complicated by
the reporting of pathogen quantities using incompatible measures, e.g., PFU, CFU,
TCID50, viral copies from PCR, etc. Moreover, a model needs to consider human
behaviour; self-inoculation (transferring of pathogens onto mucosal membranes e.g.
mouth, nose, eyes) occurs when individuals touch their faces with contaminated hands.
It must be assumed that personal hygiene practices such as handwashing are not strictly
nor universally adhered to.

With all of these considerations, rather than target a specific disease model (e.g.,
Influenza, SARS-CoV2, etc.), in this paper we focus on establishing/reasserting the
fundamental mathematical parameters that govern fomite-mediated disease
transmission and examine how each can affect outcomes. We use stochastic
Monte-Carlo simulations as they offer more flexibility and ease in incorporating the
large number of parameters versus traditional ODE analysis [5, 12–15].

With specific regard to TUIs, we also examine the impact of using touchless
technologies and alternatives such as computer hand tracking using cameras, proximity
sensors, RADAR, mid-air haptics [16] and other ‘touch-free’ interface solutions and
compare their effectiveness to the current leading alternative i.e. more frequent
cleaning/disinfection.

Materials and methods

Basic scenario and assumptions

For transmission via fomite to occur an Infectious donor (I1) must first interact with
the fomite and deposit some amount of pathogens onto its surface. Pathogens must
then survive long enough for a sufficient dose to be subsequently picked-up by the
hands/fingers of a Susceptible (S) host. This newly Exposed (E) individual must then
transfer these pathogens onto the mucosal membrane regions of their face (e.g., eyes,
mouth, nose), i.e., self-inoculate if they are to become Infected (I2) [17].

When considering shared TUIs such as those found in public spaces, we can make
some further general assumptions:

• Individuals will use the TUI in sequence (i.e. they behave as if in a queue).

• Given typical touchscreen menu design, users are obliged to touch the same
regions of the screen e.g. confirmation buttons, on-screen keypads etc. Therefore,
regardless of the application or screen size, users are essentially sharing the same
surface area.

• We can assume that all touch events are carried out with finger tips (possibly just
the index finger of the dominant hand).

• For transmission to occur we assume individuals are not washing their hands
before/after using the interface.

• An infectious person can be defined as someone who has relatively high initial
levels of pathogens on their hands at any given time e.g. from coughing/sneezing
into one’s hands or a having recently used the toilet without hand-washing
afterwards. They remain infectious throughout the simulation.
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• Once a susceptible person becomes exposed (S → E), we assume self-inoculation
(face touching) occurs within 20 minutes after TUI use. Beyond a certain time it
is unreasonable to attempt to model the level of pathogens on a finger; exposed
individuals will have interacted with countless other fomites and surfaces
(e.g.wiping hands on clothing, opening doors, using their mobile phones, etc.).
There is also the issue of pathogen survival on skin that can range from a few
minutes to several hours [18–20]. The 20 minute assumption mitigates the effects
of these uncertainties. Therefore, the exposed state is transitory: An exposed
individual will either self-inoculate (E → I2) or revert back to a susceptible state
(E → S) after TUI use.

• For the same reasons as above, we do not model the re-deposition of pathogens
from one TUI to another (when users interact with more than one TUI). Infected
individuals do not contribute to pathogen deposition; they carry on, for all intents
and purposes, as susceptible individuals except we do not count or consider their
additional self-inoculation events.

• In all simulations, we consider a single time period (i.e., a day) using a 1-minute
time-step. We do not consider incubation periods, or recovery rates. This is
because many pathogens may lead to infection (but do not subsequently render
the exposed person infectious). (See Outcome measures).

The three main actors in this scenario are therefore the pathogens, the network of
touchscreens and the network of people, each having its own controlling parameters. The
remainder of this section describes the implementation of this computer model and
present pseudo code where applicable to provide the reader with the best clarity. A
summary table listing all relevant parameters and description can be found in Appendix:
Table A.1.

Monte-Carlo simulations generally make use of a variety of sampling distributions in
order to model random events. Throughout this paper we use of the rate parameter λ
to describe a Poisson process and the symbol p to describe its discrete time counterpart,
the Bernoulli process. When considering random variables sampled over a particular
range, [a, b], we make use of the truncated normal distribution, denoted f(x;µ, σ, a, b),
where x is a random variable with mode µ and variance σ2. Other random variables are
sampled from uniform distributions, U [a, b].

Queuing network model

The movement of people is simulated using a system of first-in-first-out (FIFO) queues
(Fig. 1). We begin with an initial population pool of N = (S + I1) people (we can
assume there is an existing disease prevalence I1/N). These individuals leave the pool
at a rate λ0, and arrive at one (or any) of L locations. Each location has an arrival and
departure queue. Arrivals are people who have yet to interact with the TUI, departures
are those who have already interacted and are ready to (potentially) move on to another
location (into that location’s arrival queue). Locations can be interpreted as places
where there is a cluster of identical TUIs e.g. a kiosk of ATM machines. An
establishment may have several locations within it, each with a different number and
type of TUIs serving different customer functions.
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Fig 1. Queuing network. Infectious and susceptible people from an initial population pool
enter a new location at a rate λ0. The location model consist of an arrival and departure FIFO
queue; people in the arrival queues wait to interact with one of a number of TUIs, they then
move on to the departure queue and (potentially) move on to another location at rate λdep.
Markov-Chains of conditional probabilities along with a parameter to set the total number of
‘jumps’ from one location to another is used to govern the flow of people. The rate at which
people move through the queues is dictated by the number of TUIs at each location and the
rate parameter, λtui.

The arrival queues are depleted at a rate mjλtui, (j = 1, 2, . . . , L), where mj is the
number of TUIs at the jth location and λtui is the rate of TUI use i.e. 1/λtui is the
average time interval between TUI use. In our simulations λtui is kept constant across
all locations so that a TUI is used on average once every 2 minutes (in general it is a
parameter associated with each individual TUI design). After a TUI interaction, people
may stay at that location for some time before moving on, e.g., eating at a fast food
restaurant after ordering a meal. The rate at which people depart the location is
governed by λdep. Subsequent movement of people between locations is controlled via a
Markov Chain of conditional probabilities and a number-of-jumps parameter that sets
how many locations a person can visit before being removed from the active simulation.
This framework allows for modelling anything from very basic to increasingly elaborate
networks of people movements.

Touchscreen model

Transfer efficiency asymmetry

An important assumption in this model is that susceptible (S), exposed (E) and newly
infected (I2) individuals can only pick-up pathogens from a TUI surface. Deposition of
pathogens onto TUIs is carried out by infectious donor (I1) individuals exclusively. This
assumption is also linked to the concept of transfer efficiency asymmetry.

Let us define the deposit rate (α) as the proportion of pathogens on an infectious
finger transferred onto the surface of a fomite. Similarly, we define pick-up rate (β) as
the proportion of pathogens on a fomite that are transferred to the finger of a
susceptible person. With regards to fingers and non-porous surfaces (like glass), transfer
efficiency has been shown to be asymmetric. From glass-to-finger, pick-up rates, β, are
on the order of 20± 30(SD)% [21,22], while deposit rates, α, are considerably lower i.e.
5% [23,24] (Fig. 2). Some key points worth noting about the experiments conducted to
ascertain these values: deposit rates were measured by inoculating a finger with a
known concentration of pathogens and measuring the amount left behind on a clean
surface. Pick-up rates were examined by touching a contaminated surface with a clean
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finger and measuring the pathogen level on the finger. This would suggest that we can
interpret the transfer efficiency data as a one-way or net result i.e. either pathogen are
deposited by an infectious person or picked up by a susceptible, exclusively.

We model transfer rates using truncated normal distributions, default values are
depicted in (Fig. 2A)). This allows for incorporating the mode, µ, and variance, σ2, (i.e.,
uncertainty) from experimental findings described in the literature while incorporating
bounding limits, (a, b), (i.e., 0 to 100%).

Fig 2. Transfer and touch rates. (A) Pathogen transfer (pick-up (β) and deposit (α)
rates are estimated by sampling from truncated normal distributions; default values estimated
from the literature are depicted for surface-to-finger, finger-to-surface and finger-to-face. (B)
Using truncated normal distributions to simulate the average number of touch events during
TUI interaction; depicted are a ‘default’ model used for simulations along with that of a
bag-drop and self check-in machine found at most major airports. To inform our choice of
distribution parameters, we made use of online video demonstrations self-check in procedures;
advertised by many major airline companies.

Touch rates

As with transfer rates, the number of touches, nt, expected to complete a transaction or
menu selection can be modelled using a truncated normal distribution. For example, an
ATM pin pad requires a minimum of 5 touches (4 pin numbers + OK), i.e., both mode
and minimum can be set to 5. However, cancelled transactions, re-attempts, correcting
invalid input etc. means that we can expect a small variance in touch numbers. Unless
we have compelling reason not to, the maximum number of touches can be safely limited
to some reasonably large value, e.g., 30. Fig. 2B depicts the distributions sampled from
to model touchscreen events in this simulation; a default generic TUI f(nt; 5, 1.5, 4, 30),
an airport self check-in machine f(nt; 10, 3.5, 8, 30) and bag-drop kiosk f(nt; 5, 1.5, 4, 8).

Pathogen removal

Assuming effective cleaning practices, a thorough wipe with an appropriate cleaning
agent will remove approximately 98% of pathogens [25]. We simulate cleaning events
with a daily frequency pclean. This removal of pathogens is in conjunction with
deactivation / die-off rates of bacteria and viruses which can live on surfaces for several
hours to months [26,27]. We model this using the pathogen half-life on a surface, t1/2.
These parameters are likely play an important role if they are on the same order of
magnitude as the intervals between TUI use.
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Touchscreen dynamical model

Let D be the total accumulated level (or dose) of pathogens on a TUI. Alg 1 describes
the flow of pathogens at each simulation time step. Note, TUI interaction (and all the
calculations to go with it) happens in a single simulation time-step.

Algorithm 1 Calculate flow of pathogens in time-step ∆t
. . .
for each time step ∆t do
for all TUI do

i← current(TUI) . index of current TUI

if isAvailable(TUI) and deQueue(person) then

α← sample(f(α; 0.05, 2, 0, 60)) . see Fig.2 / Table A.1
β ← sample(f(β; 0.20, 2, 0, 60))
nt← sample(f(nt;µi, σi, ai, bi))

if person = Infectious then

dfinger ← getPathogenLevelsOnFinger()
Di ← Di + dfinger × (1− (1− α)nt)

else {person = (Susceptible or Infected)}

dpickup ← Di × (1− (1− β)nt)
Di ← Di − dpickup

if selfInoculate(dpickup, ID50) and person = Susceptible then
person← Infected

end if

end if
end if

if isTimeToClean(pclean, ∆t) then
Di ← Di × (1− 0.98) . 98% cleaning efficiency

end if

γ = 2(−1/t1/2) . convert half-life to decay rate
Di ← Di × (γ)∆t

end for
end for
...

In the case of an infectious user, dfinger is the number of pathogens on their finger.
For susceptible users, dpickup is the number of pathogens transferred to their finger. For
each interaction we sample a random number of touch events nt and select a β or α rate
from its respective distribution. Note, we only select a transfer rate once per interaction
(technically it should vary with every touch). Here, we assume that an individual will be
consistent in the pressure applied with their fingers with each touch (and their fingers
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will obviously not change in surface area), so transfer rates can be taken as constant
throughout the interaction. Computational efficiency savings is another motivating
factor.

There are two functions presented in Alg 1 that still have yet to be defined
selfInoculate() and getPathogenLevelOnFinger() which will be discussed in the following
sections.

Pathogen shedding

In our model we would like to estimate the pathogenic load on a single finger by
considering the following scenarios:

1. After toilet use (taking into account hand washing rates and effectiveness); we
may consider both respiratory and enteric viruses (and bacteria).

2. Coughing and/or sneezing into one’s hands (assumes a respiratory virus e.g.
influenza)

Viral loads in faeces can be as high as 107 − 108 PFU/g [17,28]; this can include
common respiratory viruses like influenza in addition to enteric disease causing
pathogens. The level of Norovirus in faeces has been reported as 105 − 109 particles/g
based on PCR [29]. Bacterial load found on hands after toilet use ranged from
0.85± 0.93(SD)× 105CFU for washed and dried hands to 3.64± 4.49(SD)× 105 CFU
for unwashed hands [30]. In other experiments, 108 CFU/g has been used to
approximate natural bacterial contamination levels [31].

It has been estimated that 30% of individuals do not wash their hands
sufficiently [32] and there are additional issues in lavatories with regards to using
contaminated soap [33] and doorknobs [34]. Therefore, we can feel justified in our
assumptions about the prevalence of infectious individuals in a given population.

The average volume of a cough has been reported at between 0.006 - 0.044 ml [4, 6].
Sneeze volumes are estimated as 40 times that of a cough. Coughing and sneezing rates
of influenza sufferers are on the order of 12-22/h and 5/h, respectively. The
concentration of viral particles in ex-pulsed droplets, based on nasal swabs, ranges on
the order of 104 − 105 TCID50/ml.

Regardless of the units quoted (TCID, PFU etc.) the number of units are ostensibly
of similar orders of magnitude. As will be discussed (see Dose response), this number
will ultimately be normalised relative to the infectivity of the pathogen under
consideration.

From [35] we can estimate that a single fingertip represents approximately 1.4% of
the hand’s surface (and shares that proportion of pathogens). Based on all of the above,
we estimate the total dose shed from the finger of an infectious individual (prior to each
interaction with a TUI) by Alg 2.

Algorithm 2 getDoseOnFinger() subroutine

Function getDoseOnFinger()

np← sample(U(104, 106))
return np× 0.014 . fingertip equals 1.4% of total hand area

EndFunction
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Self-inoculation

Face touching rates involving direct contact with mucosal membranes (eyes, nose,
mouth etc.) have been found to be approximately 15 touches/h [36,37]. We can
simulate the number of face touching events, k, in our prescribed 20 minutes period by
drawing from a Poisson distribution, Pois(k;λ), where λ = 5 touches every 20 minutes.

The deposit rate of pathogens from finger-to-lip (more generally skin-to skin) has
been reported in the region of 35% [24,36] (see Fig. 2 and Appendix Table A.1).

Dose response

The human ID50 is the infective dose with 50% probability of infection. Typically,
respiratory viruses require a relatively large dose for infection
( 103 − 104 TCID50) [4,6,38]. For many types of bacteria and enteric viruses this can be
as low as 10 - 100 PFU (or CFU) [39,40]. If we interpret these values as estimates for
ID50, provided we stick with the same units, pathogen levels can effectively be
normalised. It is customary to model a dose response using an exponential cumulative
distribution function (CDF) [5]. Self-inoculation is therefore calculated by Alg 3.

Algorithm 3 selfInoculation() subroutine

Function selfInoculation(dpickup, ID50)

α← sample(f(α; 0.35, 2, 0, 60)) . see Fig2 / Table A.1

k ← sample(Pois(5)) . assumes 5 face touches per 20 minutes

dinoc ← dpickup × (1− (1− α)k)

P ← 1− exp (− ln (2)× dinoc

ID50
) . dose response

return accept(P ) . returns true with probability P

EndFunction

Outcome measures

In fomite-mediated transmission a pseudo reproduction number, R can be defined as the
number of susceptible people that the fomite infects having been contaminated by an
infectious person. Thus, R is defined as the ratio of newly infected individuals to the
initial number of infectious (Eq 1).

R =
number of infected

number of infectious
=
I2
I1

(1)

Another metric of interest is the gap (in terms of number-of-users) between
infectious contamination and subsequent susceptible users becoming infected. It seems
intuitive that the next susceptible user will be the most likely to become infected.
However, we can measure and store this gap from the simulation results to confirm this
assertion. Accordingly, the questions we would like to answer are the following:

• What is the probability of becoming infected after using a TUI?

• On average, how many susceptible individuals could become infected as a direct
result of a single infectious user over the course of a day, i.e. R?
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• Which TUI users are getting infected, i.e. what is the time gap between infectious
and infected?

• What is the efficacy of frequent cleaning on reducing the probability of infection?

Results

Overview

In this section we present the results from two simulated scenarios; default simulation
parameters are listed in Table 1. The touch and transfer rates used are those already
discussed and depicted in Fig. 2. Each scenario is simulated over the period of a single
day with one minute time-step resolution. Note that care needs to be applied when
considering parameters such as population N , λ0, λtui, etc. to ensure that the entire
population actually makes it through the simulation during the allotted time. Results
for each parameter setting are averaged over 10,000 realisations of a single day period.

1. Simulation 1: A location with a single TUI; this allows us to examine the
model’s sensitivity to parameters (survival rates, infectious dose, cleaning rates,
etc.). We also look at the effects of adding extra TUIs at that location.

2. Simulation 2: A real-world example involving two TUI locations; Airport
terminal check-in machines followed by baggage drop. We use data for London
Heathrow (LHR) Terminal 5 [41] along with the assumption that one in four
outgoing passengers makes use of those machines.

Table 1. Simulation default parameters.

Parameter Simulation 1 Simulation 2

Number of locations 1 2
TUIs per location 1 (36, 24)

N 100 12000
λ0 (per minute) 0.5 20
λdep (per minute) 0.05 1000
λtui (per minute) 0.5

Disease Prevalence 2%
ID50 102

t1/2 (hours) 3
pclean (daily) 0

Default parameters for Simulations 1 and 2. Simulations are carried out using 10,000
realisations of a 1 day period (with 1 minute time-steps resolution). Simulation 1
models 1 location with a single TUI. Simulation 2 models an airport terminal with 36
self check-in machines and 24 bag-drop machines. The figure of N = 12000 is derived
from passenger arrival data from LHR T5 (2018) and assuming 1 in 4 passengers
actually makes use of the machines [41].

Simulation 1: a single TUI location

The following figures show the effects on the reproduction number R for varying
different simulation parameters; disease prevalence (Fig. 3A), pathogen survival, t1/2

(Fig. 3B), infectivity, ID50 (Fig. 3C), the number of TUIs (Fig. 3D), touch rates
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(Fig. 3E), cleaning rate, pclean (Fig. 3F) and the effect of additional locations (Fig. 4).
For each simulation, we keep all other parameters constant as given in Table 1.

Fig 3. Simulation 1 control parameters. (A) Disease Prevalence: R, reaches a peak at
approximately 4%, suggesting an optimal cumulative effect of infectious donor prevalence,
beyond which it drops steadily along with the proportion of susceptible individuals. (B)
Pathogen Survival: A longer half-life results in R asymptotically approaching a maximum value
of 1.7. Three separate plots were made using λtui values of 0.5, 0.2 and 0.1, i.e., 2 (green),
5(blue) and 10 (red) minutes average interval between TUI use. Longer intervals allows for
more time for pathogens to die-off thus slightly lowering the R value. (C) Infectious Dose: The
effect of varying parameter ID50 on R is significant; beyond a certain level of infectivity,
fomite-mediated disease transmission becomes non-viable. (D) Number of TUIs: As the
number of TUIs available for use at a location increases, the risk of infection drops steadily
(approximately linearly). With more TUIs to choose from, the time intervals between their use
increases and the effective pick-up and self-inoculation probabilities diminish. (E) Number of
touch events: Increasing the average number of touches per TUI interaction lowers the
infection rates (blue-solid). The average gap (green-dotted) between infectious and infected
users indicates that at increasing touch-rates the next susceptible user of a TUI after its
contamination (gap=1) almost exclusively becomes infected. In other words, a higher touch
rate results in a greater pick-up of pathogens, effectively cleaning the surface for subsequent
users (shielding them) while simultaneously increasing the probability of infection for the
current user. (F) Cleaning rate: Cleaning rates, pclean, on the order of several hundred times
per day are required to achieve an R value less than one. The cleaning intervals are random
and are thus not correlated to the rate of TUI users. Therefore low cleaning rates do not
effectively prevent the next susceptible user of the TUI from picking-up pathogens.
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Fig 4. Additional locations. Here we model the effects of additional, identical locations;
each simulated person has equal probability of visiting any one location, and will make as many
‘jumps’ as there are locations. Plotted alongside R (blue +) is the probability of infection
(green *), which is calculated as I2/S. Extra locations means more chances for the infectious
donor to spread disease. The plots are not precisely linear; the ratio of R to the number of
locations decreases with increasing location numbers. In all simulations, people can only be
infected once (despite picking-up more infectious doses). Therefore, this reduction in infection
rate efficiency is due to herd-immunity.

Simulation 2: airport terminal with two TUI locations

For this simulation, we focus on the effects of cleaning rate, pclean (Fig. 5A) and
compare its effectiveness to substituting a proportion of TUIs with a ‘touch-free’
alternative (Fig. 5B).

Fig 5. Cleaning rate vs ‘touch-free’ interventions. (A) The effects of cleaning are
similar to that in Simulation 1; R values are higher overall due to having more than one
location. (B) Replacing a proportion of TUIs with a ‘touch-free’ alternative results in a direct
linear drop in R. For comparison, the same R value is achieved by replacement of 50% of TUIs
as a cleaning rate of several hundred cleans per day per TUI, of which there are 60 in this
simulation.

Discussion

In many cases the simulation results are intuitive. For example, it is clear that timing
plays an important role as the number of TUIs per location (Fig. 3D), pathogen
survival (Fig. 3B) and the rate of TUI use, λtui, all interact to affect the infection rate.
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Other unsurprising results are the effects of increasing initial disease prevalence
(Fig. 3A) and infectious dose (Fig. 3C).

Increasing the number of locations (Fig. 4), essentially gives infectious individuals
multiple chances to contaminate TUIs and infect other users. Were it not for the effects
of herd-immunity (and the fact that infections were tallied only in the first instance), R
values would rise directly proportionally to the number of TUI locations in the
simulation. The assumption that an infectious user always has some dose of pathogens
to deposit at each interaction (Alg. 2), is probably not justified at much higher location
numbers as it supposes an inexhaustible shedding of pathogens (or exceptionally
unhygienic behaviour). Therefore, Fig. 4 likely overestimates R as the number of
locations increases.

Rather less intuitive is the effect of increasing the average number of touches, nt, for
TUI interaction (Fig. 3E). Throughout all simulations, the average gap recorded
between infectious and infected user was between 1 and 2; this implies that the
susceptible users who immediately follow an infectious user are most at risk. Because of
the asymmetrical way pick-up and deposit rates are modelled, higher touch rates do the
same effective job as cleaning the TUI; the next susceptible user is essentially doomed
to infection while simultaneously shielding subsequent users.

In order to use this simulator to model a specific disease, one would have to collate
shedding rates and infectious dose information. This requires care when dealing with
TCID50, PFU, CFU, etc. For example, the default simulation parameters could have
been attributed to certain strains of E. Coli or adenovirus. Enteric disease causing
pathogens ostensibly have the right combination of (relatively) long half-life on surfaces
and low infectious dose to be the major players in fomite-mediated transmission.
Drawing any conclusions about a specific pathogen using this model should be done with
caution.

We did not model the re-deposition of pathogens from newly infected individuals
onto fomites due to the complexity and consequent unreliability in estimating pathogen
levels on an individual’s hand over time. Though unconfirmed, it is reasonable to
assume that re-deposition would likely increase the overall infection rates in the
scenarios tested.

In this paper we made use of a pseudo R value. It should be clear that, while an R
value less than 1 is desirable in a pandemic, in this scenario a user-interface designer
should be aiming much lower (R� 1). One effective way to mitigate infection spread
via fomites is with compulsory handwashing. This has also been shown to be effective
against pandemics in airport networks [15,42]. Indeed, the relevance of our paper’s
results depends on whether or not a population will maintain these stringent hygienic
practices.

An alternative approach that places the responsibility and control with the TUI
owners/operators is enhanced sterilization regimens. From Fig. 3F and Fig. 5A, it is
apparent that cleaning rates on the order of hundreds of times per day per TUI are
required to have a significant effect on R. From a cost perspective, this can be
prohibitive. In addition to the added cost of cleaning agents, protective equipment (e.g.
gloves) and increased staff exposure, the excessive use of industrial and household
cleaning agents carries with it a health risk, particularly to those with breathing
ailments [43,44].

UV light is an alternative to chemical agents for disinfecting surfaces, but does not
solve the issue of increased cleaning rates nor is it completely absolved from health
implications [45–48].

A promising and attractive solution is the emerging technology of self-cleaning
antimicrobial surface coatings, many of which are commercially available e.g. for
tablets/smartphones [49–51]. With respects to the model presented in this paper, these
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coatings would have significant impact on the pathogen half-life parameter, t1/2,
(Fig. 3B). However, not all pathogens are significantly affected [52]. It is also unclear if
their antimicrobial properties diminish with regular use or require maintenance and/or
replacement.

Another alternative to enhanced cleaning are touch-free interfaces that completely
remove the need to touch and therefore deposit or pickup pathogens from surfaces
(Fig. 5B). Whether or not businesses and venues choose to implement such an
alternative will likely depend on the cost of replacement or conversion of existing TUIs.
They also need to consider human/consumer behaviour and expectations, particularly in
times of pandemics, regarding hygiene. What is for certain however, is that the
COVID-19 pandemic has already forced a massive world-wide digital revolution in how
we live, work, and do business.
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Appendix

Table A.1. Simulation parameters.

Symbol Description Distribution/Range

Pathogen Model
np Number of pathogens shed by an infectious individual U(104, 106)

ID50 Infectious Dose (50%. Probability) 100 − 109

t1/2 Pathogen half life on surface 5 minutes− 24 hours
Self Inoculation Model

k Face touch events per 20 minutes Pois(k; 5)
αface Deposit rate (finger to face) f(αface; 0.35, 0.1, 0, 1)

TUI Model
αtui Deposit rate (tui) f(αtui; 0.05, 0.1, 0, 0.6)
β Pick-up rate (tui) f(β; 0.20, 0.2, 0, 0.6)

nt

Number of touches (default) f(nt; 5, 1.5, 4, 30)
Number of touches (self-checkin) f(nt; 10, 3.5, 8, 30)
Number of touches (bagdrop) f(nt; 5, 1.5, 4, 8)

λtui TUI use rate (per minute) 0.5
pclean TUI cleaning rate (daily) 0 - 1440

Queuing Network Model*
N Population 100 - 12000
λ0 Initial arrival rate (per minute) 0.2 - 20
λdep Departure rate (per minute) 0.05 - 1000

Summary of simulation parameters. *Not listed are the number of locations, TUIs per location and disease prevalence (I1/N)
associated with the queuing network model.
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