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Abstract

Many virus-encoded proteins have intrinsically disordered regions that lack a stable folded three-

dimensional structure. These disordered proteins often play important functional roles in virus

replication, such as down-regulating host defense mechanisms. With the widespread availability of

next-generation sequencing, the number of new virus genomes with predicted open reading frames

is rapidly outpacing our capacity for directly characterizing protein structures through crystallog-

raphy. Hence, computational methods for structural prediction play an important role. A large

number of predictors focus on the problem of classifying residues into ordered and disordered re-

gions, and these methods tend to be validated on a diverse training set of proteins from eukaryotes,

prokaryotes and viruses. In this study, we investigate whether some predictors outperform others

in the context of virus proteins. We evaluate the prediction accuracy of 21 methods, many of which

are only available as web applications, on a curated set of 126 proteins encoded by viruses. Fur-

thermore, we apply a random forest classifier to these predictor outputs. Based on cross-validation

experiments, this ensemble approach confers a substantial improvement in accuracy, e.g., a mean

36% gain in Matthews correlation coefficient. Lastly, we apply the random forest predictor to

SARS-CoV-2 ORF6, an accessory gene that encodes a short (61 AA) and moderately disordered

protein that inhibits the host innate immune response.
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Introduction

For almost a century, it was assumed that proteins required a properly folded and stable three-

dimensional or tertiary structure in order to function [1–3]. More recently, it has become evident

that many proteins and protein regions are disordered, which are referred to as intrinsically dis-

ordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs), respectively. Both

IDPs and IDPRs can perform important biological functions despite lacking a properly folded and

stable tertiary structure [2, 4].

These kinds of proteins are an important area of research because they play major roles in cell

regulation, signalling, differentiation, survival, apoptosis and proliferation [5, 6]. Some are also

postulated to be involved in disease etiology and could represent potential targets for new drugs

[7, 8]. Virus-encoded IDPs facilitate multiple functions such as adaptation to new or dynamic

host environments, modulating host gene expression to promote virus replication, or counteracting

host-defense mechanisms [9–11]. IDPRs may be more tolerant of non-synonymous mutations

than ordered protein regions [12], which may partly explain why virus genomes can tolerate high

mutation rates [13, 14]. Viruses also have very compact genomes with overlapping reading frames

[15, 16], in which mutations may potentially modify multiple proteins. This may confer viruses a

greater capacity to acquire novel functions and interactions [17]. Overlapping regions tend to be

more structurally disordered when compared to non-overlapping regions [18].

Several experimental techniques are available to detect IDPs and IDPRs. The most common meth-

ods identify either protein regions in crystal structures that have unresolvable coordinates (X-ray

crystallography) or regions in nuclear magnetic resonance (NMR) structures that have divergent

structural conformations [6, 19, 20]. Other experimental techniques include circular dichroism

(CD) spectroscopy and limited proteolysis (LiP) [1]. The challenge, however, is that these meth-

ods are very labour-intensive and difficult to scale up to track the rapidly accumulating number of
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unique protein sequences in public databases [6, 19]. At the time of this writing, over 60 million

protein sequences have been deposited in the Uniprot database, yet only 0.02% of these sequences

have been annotated for disorder [6]. As a result, numerous computational techniques that could

potentially predict intrinsic disorder in protein sequences have been developed. These techniques

work based on the assumptions that compared to IDPs and IDPRs, ordered proteins have a differ-

ent amino acid composition as well as levels of sequence conservation [21, 22]. To date about 60

predictors for intrinsic disorder in proteins have been developed [1, 23, 24], which can be broadly

classified into three major categories. The first category, the scoring function-based methods, pre-

dict protein disorder solely based on basic statistics of amino acid propensities, physio-chemical

properties of amino acids and residue contacts in folded proteins to detect regions of high energy.

A second category is characterized by the use of machine learning classifiers (e.g., regularized

regression models or neural networks) to predict protein disorder based on amino acid sequence

properties. The third category are meta-predictors that predict disorder from an ensemble of pre-

dictive methods from the other two categories [1, 6, 25].

Different predictors of intrinsic disorder are developed on a variety of methodologies and will

inevitably vary with respect to their sensitivities and biases in application to different protein se-

quences. As a result, it has been relatively difficult to benchmark these methods to identify a

single disorder prediction method that can be classified as the most accurate relative to the oth-

ers [24]. The DisProt database is a good resource for obtaining experimental data that has been

manually curated for disorder in proteins, and can be used for benchmarking the performance

of disorder predictors. As of April 27th, 2020, the Disprot protein database contained n = 3500

proteins of which 126 were virus-encoded proteins that have been annotated for intrinsic disor-

der as a presence-absence characteristic at the amino acid level [26, 27]. Previously, Tokuriki et

al. [14] reported preliminary evidence that when compared to non-viruses, viral proteins possess

many distinct biophysical properties including having shorter disordered regions. We are not aware
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of a published study that has previously benchmarked predictors of intrinsic disorder specifically

for viral proteins. Here, we report results from a comparison of 21 disorder predictors on viral

proteins from the DisProt database to firstly determine which methods work best for viruses, and

secondly to generate inputs for an ensemble predictor that we evaluate alongside the predictors

used individually.

Methods

Data collection

The Database of Protein Disorder (DisProt) [28] was used to collect virus protein sequences an-

notated with intrinsically disordered regions, based on experimental data derived from various

detection methods; e.g., X-ray crystallography, NMR spectroscopy, CD spectroscopy (both far and

near UV) and protease sensitivity. DisProt records include the amino acid sequence and all dis-

ordered regions annotated with the respective detection methods as well as specific experimental

conditions. At the time of our study, DisProt contained 3,500 author-verified proteins, of which

all viral proteins were collected for the present study. A total of 126 virus proteins were obtained,

derived from different detection methods. Similarly, a set of 126 non-viral proteins was sampled

at random without replacement from the protein database for comparison.

We evaluated a number of disorder prediction programs and web applications. From the methods

tested, we selected a subset of predictors favouring those that were developed more recently, are

actively maintained, and performed well in previous method comparison studies [1, 29]. Where al-

ternate settings or different versions based on training data were available for a given predictor, we

tested all combinations. Our final set of 21 prediction methods tested were: SPOT-Disorder2 [30],

PONDR-FIT [31], IUPred2 (short and long) [32], PONDR (VLXT, XL1-XT, CAN-XT, VL3-BA,

and VSL2 variants) [33], Disprot (VL2 and variants VL2-V, -C and -S; VL3, VL3H, and VSLB)

[34], CSpritz (short and long) [35], and ESpritz (variants trained on X-ray, NMR, and Disprot
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data) [36]. Although several other predictor models have been released online, the respective web

services were unavailable or broken over the course of our data collection.

To obtain disorder predictions from the methods that were only accessible as web applications,

i.e., with no source code or compiled binary standalone distribution, we wrote Python scripts to

automate the process of submitting protein sequence inputs and parsing HTML outputs. We used

Selenium in conjunction with ChromeDriver (v81.0.4044.69) [37] to automate the web browsing

and form submission processes. For each predictor, we implemented a delay of 90 seconds between

consecutive protein sequence queries to avoid overloading the webservers hosting the respective

predictor algorithms with repeated requests. Due to issues with the Disprot webserver, we were

only able to obtain predictions for the non-viral protein data set for 13 of the predictors.

We converted each DisProt record to a binary vector corresponding to ordered/disordered state

of residues in the amino acid sequence. To compare results between disorder prediction algo-

rithms, we dichotomized continuous-valued residue predictions, i.e., intrinsic disorder probability,

by locating the threshold that maximized the Matthews correlation coefficient (MCC) for each

predictor applied to the DisProt training data. This optimal threshold was estimated using Brent’s

root-finding algorithm as implemented by the optim function in the R statistical computing en-

vironment (version 3.4.4). In addition, we calculated the accuracy, specificity and sensitivity for

each predictor from the contingency table of DisProt residue labels and dichotomized predictions.

Ensemble classifier training and validation

To assess whether the accuracy of existing predictors could be further improved on the virus-

specific data set, we trained an ensemble classifier on the outputs of all predictors as features.

Specifically, we used the random forest method implemented in the scikit-learn (version 0.23.1)

Python module [38], which employs a set of de-correlated decision trees and averages their re-

spective outputs to obtain an ensemble prediction [39]. To reduce bias, random forests fit the same
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decision trees to many bootstrap samples of the training data, and each committee of trees ‘votes’

for a particular classification [40]. By splitting the trees based on different samples of features,

random forests reduce the correlation between trees and the overall variance.

We split the viral protein data into random testing and training subsets, with 30% of protein se-

quences reserved for testing. Due to class imbalance in the data (i.e., only a minority of residues

are labeled as disordered), we used stratified random sampling using the ‘StratifiedShuffleSplit’

function in the scikit-learn module. This function stratifies the data by label so that a constant pro-

portion of labels is maintained in the training subset. Continuous-valued outputs from each predic-

tor were normalized to a zero mean and unit variance. Thus, we did not apply the dichotomizing

thresholds to these features (predictor outputs) when training the random forest classifier.

We used 5-fold cross validation to tune the four hyper-parameters of the random forest classifier;

namely: (1) the number of decision trees; (2) the maximum depth of any given decision tree;

and the minimum number of samples required to split (3) an internal node or (4) a leaf node.

To further minimize the effect of class imbalance in our data, we used over-sampling to balance

the data with synthetic cases [41]. As suggested in [42], we applied an over-sampling procedure

at every iteration of the cross-validation analysis to avoid over-optimistic results. We used the

Python package imbalanced-learn [43] to over-sample the minority class (residues in intrinsically

disordered regions) using the synthetic minority oversampling technique (SMOTE) [44]. SMOTE

generates new cases by sampling the original data at random with replacement, evaluates each

sample’s k nearest neighbours in the feature space, and then generates new synthetic samples along

the vectors joining the sample to one of the neighbouring points. Over-sampling enables decision

trees to be more generalizable by amplifying the decision region of the minority class.

Using the optimized tuning parameters, we fit the final model on all of the training data. We ap-

plied this final model to generate predictions on the reserved testing data and calculated the MCC,
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sensitivity, specificity and accuracy. We repeated this process 10 times with randomly generated

seeds to split the data into training and testing subsets, and averaged these performance metrics

across replicates.

Comparison to non-viral data

To characterize how the performance of individual disorder predictors might vary among proteins

from viruses and non-viruses, we computed the root mean square error (RMSE) for all continuous-

valued predictions relative to the Disprot label (0, 1). We visualized this error distribution using

principal component analysis (PCA). As well, we trained a support vector machine (SVM) on the

RMSE values to determine whether the virus/non-virus labels were separable in this space. We

used the default radial basis kernel with the C-classification SVM method implemented in the R

package e1071 [45], with 100 training subsets sampled at random without replacement for half of

the data, and the remaining half for validation.

Data availability

We have released the Python scripts for automating queries to the disorder prediction web servers

under a permissive free software license at https://github.com/PoonLab/Floppy/.

Results and Discussion

Viral and non-viral proteins have similar levels of disorder

We obtained 126 viral and 126 randomly selected non-viral protein sequences from the DisProt

database. The sequences were already annotated manually by a panel of experts for the presence

or absence of disorder at each amino acid position, based on experimental data [27]. Supple-

mentary Tables S1 and S2 summarize the composition of the viral and non-viral protein datasets,

respectively. The viral protein data set represents 22 virus families and 48 species. Not surpris-
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ingly, human immunodeficiency virus type 1 was disproportionately represented in these data with

16 entries corresponding to seven different gene products. Similarly, the non-viral protein data set

was predominated by 75 human proteins, followed by 23 proteins from the yeast Saccharomyces

cerevisiae. We found no significant difference in amino acid sequence lengths between viruses and

all other organisms (Wilcoxon rank sum test, P = 0.60), with median lengths of 355 [interquartile

range, IQR: 145–846] and 395 [203–729] amino acids, respectively. Furthermore, the dispersion

in sequence lengths was significantly greater among viral proteins relative to the nonviral proteins

(Ansari-Bradley test, P= 0.0028). There was no significant difference in the proportion of residues

in disordered regions between the viral and non-viral data (Wilcoxon P = 0.97). The mean propor-

tions were 0.30 (interquartile range, IQR [0.07-0.42]) for viral and 0.30 [0.07-0.47] for non-viral

proteins, and similar numbers of proteins exhibited complete disorder (13 and 9, respectively).

Divergent predictions of disorder in viral proteins

Our first objective was to benchmark the performance of different predictors of intrinsic protein

disorder to determine which predictor conferred the highest accuracy for viral proteins. These

predictors generate continuous-valued outputs that generally correspond to the estimated proba-

bility that the residue is in an intrinsically disordered region. To create a uniform standard for

comparison to the binary presence-absence labels, we optimized the disorder prediction thresholds

as a tuning parameter for each predictor for the viral and non-viral datasets, respectively (Supple-

mentary Tables S3 and S4). Put simply, residues with values above the threshold were classified as

disordered. We used both the Matthews correlation coefficient (MCC, ranging from −1 to +1 [46])

and area under the receiver-operator characteristic curve (AUC, ranging from 0 to 1) to quantify

the performance of each predictor.

These quantities were significantly correlated (Spearman’s ρ = 0.95, P = 5.2× 10−6) and iden-

tified ESpritz.Disprot, CSpritz.Long and SPOT.Disorder2 as the most effective predictors for the
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Figure 1: Performance of predictors on viral data set. (A) Scatterplot of MCC and AUC values
for 21 predictors applied to the viral protein data set. (B) Slopegraph comparing the MCC val-
ues for 13 predictors applied to both non-viral and viral data sets. Because the three variants of
the ESpritz model obtained identical MCC values, the corresponding labels were merged. Two
labels (PONDRFIT, PONDR.VSL2) were displaced to prevent overlaps on the left and right sides,
respectively.

viral proteins (Figure 1A). ESpritz.Disprot obtained the highest overall values for both MCC and

AUC (0.46 and 0.85, respectively). We note that SPOT.Disorder2 has recently been reported to

exhibit a high degree of prediction accuracy for proteins of varying length [47]. In contrast, the

predictors Disprot-VL2-V, PONDR-XL1 and PONDR-CAN performed very poorly on the viral

dataset with MCC < 0.2 and AUC < 0.65. VL2-V is a ‘flavour’ of the VL2 predictors which

were allowed to specialize on different subsets of a partitioned training set; for example, V tended

to call higher levels of disorder in proteins of Archaebacteria [34]. Similarly, PONDR-XL1 was

optimized to predict longer disordered regions and PONDR-CAN was trained specifically on cal-

cineurins (a protein phosphatase) that is known to perform poorly on other proteins [48].

9

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.27.357954doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.357954
http://creativecommons.org/licenses/by-nd/4.0/


−0.5 0.0 0.5 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

Principal component 1 (62.8%)

P
rin

ci
pa

l c
om

po
ne

nt
 2

 (
20

.0
%

)

Viral
Nonviral

Figure 2: Principal components analysis plot of the root mean squared errors (RMSEs) for 13 disor-
der predictors on viral (red, triangles) and non-viral (blue, circles) protein sequences. The percent-
ages of total variance explained by the first two principal components are indicated in parentheses
in the respective axis labels.

Figure 1B compares the MCC values for non-viral and viral protein data sets. Predictors exhib-

ited substantially less variation in MCC for the non-viral data — put another way, the majority

of predictors were more accurate at predicting disorder in viral proteins. The entire set of MCC,

AUC, sensitivity and specificity values for both data sets are summarized in Supplementary Tables

S3 and S4. To examine potential differences among predictors in greater detail, we calculated the

RMSE for each protein and predictor and used a principal components analysis to visualize the re-

sulting matrix (Figure 2). The PCA indicated that the different predictors did not exhibit markedly

divergent error profiles at the level of entire proteins. However, a support vector machine classi-

fier trained on a random half of these data obtained, on average, an AUC of 0.75 (n = 100, range

= 0.65− 0.83), indicating that the viral and non-viral protein labels were appreciably separable

10

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.27.357954doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.357954
http://creativecommons.org/licenses/by-nd/4.0/


with respect to these RMSE values.

Ensemble prediction

Ensemble classifiers are expected to perform better than their constituent models because they can

reduce overfitting of the data by the latter [49]. Although multiple predictive models of protein

disorder employ an ensemble approach, none of them has been trained specifically on viral protein

data. We trained a random forest classifier on the outputs of the predictors used in our study

using 10 random training subsets of the viral protein data. Next, we validated the performance

of this ensemble model in comparison to these individual predictors to determine if training on

viral data conferred a significant advantage. We found that the ensemble classifier performed

substantially better, with a mean MCC of 0.72 (range 0.62−0.86). This corresponded to a roughly

27% improvement relative to ESpritz.Disorder, the best performing disorder predictor on these

data (Figure 1).

To examine the relative contribution of the different predictors used as inputs for the ensemble

method, we evaluated the feature importance of each input (Figure 3) — roughly the prevalence of

that feature among the decision trees comprising the random forest. We observed that the individ-

ual accuracy of a predictor did not necessarily correspond to its feature importance. Specifically,

the best predictors (ESpritz.Disprot, CSpritz.Long and SPOT-Disorder.2) tended to be assigned

higher importance values. On the other hand, both Disprot-VL2.C and Disprot-VL2.V also dis-

played high importance despite having some of the worst accuracy measures when evaluated indi-

vidually (Figure 1).

Example: SARS-CoV-2 accessory protein 6

To illustrate the use of our ensemble model on a novel protein, we applied this model and the 21

individual predictors to the accessory protein encoded by ORF6 in the novel 2019 coronavirus that

was first isolated in Wuhan, China (designated SARS-CoV-2). ORF6 is one of the eight accessory
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Figure 3: Box plot of the average decrease in Gini impurity by each feature in the random forest,
for 10 random runs of the random forest model. Vertical line indicates the median, the box is the
interquartile range (IQR; range from first to third quartiles). The left whisker extends to the first
datum greater that Q1 − 1.5×IQR and the right whisker extends to the last datum smaller than Q3
+ 1.5×IQR. Individual points are outliers that lie outside this range.

genes of this virus. Its protein product is involved in antagonizing interferon activity thereby sup-

pressing host immune response [50]. The protein is predicted to be highly disordered, particularly

in its C-terminal region that contains short linear motifs involved in numerous biological activi-

ties [51]. We used a heatmap (Figure 4) to visually summarize results from the ensemble method

and individual predictors, mapped to the ORF6 amino acid sequence. Overall, most predictors

assigned a higher probability of disorder in the C-terminal region of the protein, with the conspic-

uous exception of PONDR-XL1 and PONDR-CAN, which did not predict any disordered residues

in this region. We also observed considerable variation among predictors around this overall trend.

Although the PONDR-XL1 predictor is documented to omit the first and last 15 residues from dis-

order predictions, we observed that only 14 residues were reported this way — this treatment was

12

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.27.357954doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.357954
http://creativecommons.org/licenses/by-nd/4.0/


Figure 4: Disorder Predictions for novel ORF6 in SARS-CoV-2. The first row represents the
random forest model predictions, with subsequent rows corresponding to individual predictors.
The entire protein length is represented on the x-axis, each grid is an amino acid. Red squares
indicate disordered predictions and blue squares indicate ordered predictions.

also obtained for PONDR-CAN, although it was not a documented behaviour of that predictor.

Concluding remarks

Intrinsically disordered protein regions play an essential role in many viral functions [11]. It is

therefore important to predict these regions accurately in order to make biological inferences from

sequence variation. In this study, we found that predictive models of intrinsic disorder were more

divergent in performance when evaluated on viral proteins than non-viral proteins. We note that

many of these predictors could only be accessed through web applications, and some services be-

come unavailable at different points of our study. Although we obtained more accurate predictions

— or at least, predictions that were more concordant with an expert-curated database of intrinsic

protein disorder [27] — using an ensemble ‘machine learning’ method, the erratic availability of
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the constituent predictors presents a significant obstacle to the practical utility of such approaches.

Hence, we encourage researchers in the field of disorder prediction to support open science by

releasing their source code or compiled binaries for local execution.
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Supplementary Tables

Table S1: Summary of viral protein data

Family Organism Protein Disprot ID Length
Alphafusellovirus Sulfolobus spindle-

shape virus 1
Protein F-112 DP00847 112

Alphatectivirus Enterobacteria phage
PRD1

Protein P16 DP01012 117

Betapolyomavirus JC polyomavirus Agnoprotein DP01186 71
Simian virus 40 Large T antigen DP01618 708

Major capsid protein VP1 DP00182 362
Chordopoxvirinae Molluscum contagio-

sum virus subtype
1

Viral CASP8 and FADD-
like apoptosis regulator

DP02042 241

Myxoma virus M156R DP00849 102
Probable host range pro-
tein 2-3

DP01983 203

Vaccinia virus Protein F1 DP01539 222
Protein K7 DP02194 149

Deltavirus Hepatitis delta virus
genotype I

Small delta antigen DP00965 195

Firstpapillomavirinae Human papillomavirus
type 16

Protein E6 DP01615 158

Protein E7 DP00024 98
Regulatory protein E2 DP01428 365

Human papillomavirus
type 45

Protein E7 DP01780 106

Protein E7 DP00947 106
Human papillomavirus
type 51

Protein E6 DP02256 151

Flaviviridae Bovine viral diarrhea
virus

Genome polyprotein DP00675 3988

Dengue virus type 1 Genome polyprotein DP01929 3392
Dengue virus type 2 Genome polyprotein DP01930 3391

DP01245 3388
DP00876 3391

Dengue virus type 3 Genome polyprotein DP02204 3390
Dengue virus type 4 Genome polyprotein DP01931 3387
Hepatitis C virus geno-
type 1a

Genome polyprotein DP00588 3011

Hepatitis C virus geno-
type 1b

Genome polyprotein DP01142 3010
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Table S1: Summary of viral protein data

Family Organism Protein Disprot ID Length
Flaviviridae Hepatitis C virus geno-

type 1b
Genome polyprotein DP00615 3010

Hepatitis C virus geno-
type 2a

Genome polyprotein DP01031 3033

Hepatitis GB virus B Genome polyprotein DP00674 2864
Kunjin virus Genome polyprotein DP02051 3433
Murray valley en-
cephalitis virus

Genome polyprotein DP02212 3434

West Nile virus Genome polyprotein DP02203 3433
DP00673 3430

Zika virus Genome polyprotein DP01256 3419
Herpesviridae Epstein-Barr virus Latent membrane protein

2A
DP01060 118

Human herpesvirus 1 Envelope glycoprotein B DP02128 904
Major viral transcription
factor ICP4

DP01305 1298

TAP transporter inhibitor
ICP47

DP02208 88

Tegument protein VP16 DP02291 490
DP01642 490

Thymidine kinase DP00419 376
Human herpesvirus 2 Tegument protein VP16 DP00087 490
Human herpesvirus 8 Kaposi’s sarcoma-

associated herpes-like
virus ORF73 homolog

DP02334 1162

Human herpesvirus 8 LANA DP01621 1117
Human herpesvirus 8
type P

Viral macrophage inflam-
matory protein 2

DP00685 94

Inovirus Enterobacteria phage fd Attachment protein G3P DP00034 424
Mastadenovirus Human adenovirus A

serotype 12
Early E1A protein DP01151 266

Human adenovirus C
serotype 2

Early E1A protein DP01928 289

Human adenovirus C
serotype 5

DNA-binding protein DP00003 529

Early E1A protein DP01150 289
Pre-protein VI DP00808 250

Mimivirus Acanthamoeba
polyphaga mimivirus

Probable uracil-DNA gly-
cosylase

DP01481 370
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Table S1: Summary of viral protein data

Family Organism Protein Disprot ID Length
Mimivirus Acanthamoeba

polyphaga mimivirus
Tyrosine–tRNA ligase DP00726 346

Myoviridae Enterobacteria phage
T4

Baseplate central spike
complex protein gp5

DP00284 575

Deoxycytidylate deami-
nase

DP00583 193

Fibritin DP01616 487
RNA polymerase-associa-
ted protein Gp33

DP00898 112

Escherichia phage P1 Antitoxin phd DP00288 73
Recombination enhance-
ment function protein

DP00932 186

Myoviridae Escherichia phage P2 Integrase DP00850 337
Negarnaviricota Hendra virus Nucleoprotein DP00698 532

Phosphoprotein DP00700 707
Human respiratory syn-
cytial virus A

Phosphoprotein DP00447 241

DP00895 241
Influenza A virus Hemagglutinin DP00566 566

Matrix protein 2 DP01016 96
Nuclear export protein DP00871 121

Influenza B virus Nucleoprotein DP01405 560
Lassa virus RING finger protein Z DP00820 99
Measles virus Nucleoprotein DP00160 523

DP00640 525
Phosphoprotein DP00133 507

Nipah virus Glycoprotein G DP00686 602
Nucleoprotein DP00697 532
Phosphoprotein DP00699 709

Rabies virus Phosphoprotein DP01759 297
Sendai virus Nucleoprotein DP00629 524

Phosphoprotein DP00939 568
Vesicular stomatitis In-
diana virus

Phosphoprotein DP01395 265

DP01394 265
DP01393 265
DP01391 265

Zaire ebolavirus Hexameric zinc-finger pro-
tein VP30

DP00627 288

Polymerase cofactor VP35 DP00998 340
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Table S1: Summary of viral protein data

Family Organism Protein Disprot ID Length
Nidovirales Human SARS coron-

avirus
Nucleoprotein DP00948 422

Orthohepadnavirus Hepatitis B virus Large envelope protein DP01806 445
Parvovirinae Adeno-associated virus Capsid protein VP1 DP01984 733
Picornavirales Enterovirus D68 VP4 DP00986 69

Foot-and-mouth disease
virus

Genome polyprotein DP00573 2332

Mengo encephalomy-
ocarditis virus

Genome polyprotein DP01129 2293

Podoviridae Bacillus phage phi29 Capsid assembly scaffold-
ing protein

DP02261 98

Salmonella phage P22 Transcriptional repressor
arc

DP01512 53

Potyviridae Potato virus Y Polyprotein DP01039 594
Reoviridae Reptilian orthoreovirus Membrane fusion protein

p14
DP01043 125

Retroviridae Equine infectious ane-
mia virus

Protein Tat DP00764 78

HIV-1 Protein Nef DP00919 208
HIV-1 Protein Tat DP01295 72
HIV-1 Protein Tat DP01087 101
HIV-1 subtype B Envelope glycoprotein

gp160
DP00976 856

Envelope glycoprotein
gp160

DP00978 843

Gag-Pol polyprotein DP00410 1435
Gag polyprotein DP00101 500
Gag polyprotein DP00148 512
Protein Nef DP01843 206
Protein Nef DP00048 206
Protein Nef DP00189 206
Protein Rev DP00424 116
Protein Tat DP00929 86
Protein Vif DP00875 192

HIV-1 subtype C Protein Tat DP01003 101
HIV-1 subtype D Protein Tat DP00842 86
Mason-Pfizer monkey
virus

Gag polyprotein DP01625 657

Moloney murine
leukemia virus

Gag-Pol polyprotein DP00651 1738
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Table S1: Summary of viral protein data

Family Organism Protein Disprot ID Length
Siphoviridae Bacillus phage SPP1 39 protein DP00750 126

Escherichia phage
HK022

Excisionase DP01013 72

Escherichia phage
lambda

Antitermination protein N DP00005 107

DNA-packaging protein FI DP01336 132
Head-tail connector pro-
tein FII

DP01762 117

Regulatory protein cro DP00741 66
Solemoviridae Southern cowpea mo-

saic virus
Capsid protein DP00064 279

Togaviridae Chikungunya virus Nonstructural polyprotein DP01469 2474
DP01468 2474
DP01466 2474

Polyprotein P1234 DP01188 2474
Semliki forest virus Structural polyprotein DP00999 1253
Sindbis virus subtype
Ockelbo

Structural polyprotein DP00066 1245

Tombusviridae Carnation mottle virus Capsid protein DP02071 348
Tymovirales Pepino mosaic virus Coat protein DP01059 237
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Table S2: Summary of non-viral protein data

Family Organism Protein Disprot ID Length
Chordata Homo sapiens 60S acidic ribosomal pro-

tein P2
DP00793 115

60S ribosomal protein L4 DP01654 427
Amyloid-beta precursor
protein

DP01280 770

Anaphase-promoting com-
plex subunit 15

DP01454 121

Androgen receptor DP00492 920
Antigen peptide trans-
porter 2

DP02210 686

Apoptosis-stimulating of
p53 protein 2

DP01164 1128

ATM interactor DP01288 823
ATP-dependent RNA heli-
case DDX19B

DP01560 479

Axin-1 DP00959 862
Beta-adducin DP00241 726
Brain acid soluble protein
1

DP00930 227

Breast cancer type 2 sus-
ceptibility protein

DP01869 3418

Calmodulin regulator pro-
tein PCP4

DP00592 62

cAMP-dependent protein
kinase inhibitor alpha

DP00934 76

C-C motif chemokine 26 DP00696 94
Cellular tumor antigen p53 DP00086 393
Cyclin-T1 DP01462 726
Cysteine protease ATG4B DP01326 393
Cystic fibrosis transmem-
brane conductance regula-
tor

DP00012 1480

Cytoplasmic protein
NCK1

DP01114 377

DnaJ homolog subfamily C
member 24

DP00865 149

DNA repair protein
XRCC4

DP00152 336

E3 ubiquitin-protein ligase
PPP1R11

DP00219 126
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Table S2: Summary of non-viral protein data

Family Organism Protein Disprot ID Length
Chordata Homo sapiens E3 ubiquitin-protein ligase

XIAP
DP01773 497

Epidermal growth factor
receptor

DP00309 1210

ETS domain-containing
protein Elk-4

DP01329 431

Eukaryotic initiation factor
4A-III

DP02069 411

Eukaryotic translation
initiation factor 1A,
X-chromosomal

DP00903 144

F-box only protein 4 DP01884 387
Filamin-binding LIM pro-
tein 1

DP01310 373

Geminin DP00901 209
Glycosylphosphatidylinositol-
anchored high density
lipoprotein-binding protein
1

DP01327 184

Heterogeneous nuclear ri-
bonucleoprotein F

DP01736 415

Heterogeneous nuclear ri-
bonucleoproteins A2/B1

DP01109 353

Homeobox protein Nkx-
3.1

DP00683 234

Hypoxia-inducible factor
1-alpha

DP00262 826

Immunoglobulin alpha Fc
receptor

DP00311 287

Integrin beta-2 DP01848 769
Isoform 11 of E3 ubiquitin-
protein ligase Mdm2

DP01133 497

Isoform 2 of Protein max DP01097 151
Kinetochore protein
NDC80 homolog

DP01576 642

Kinetochore scaffold 1 DP01269 2342
Mast/stem cell growth fac-
tor receptor Kit

DP02247 976

M-phase inducer phos-
phatase 3

DP02126 473
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Table S2: Summary of non-viral protein data

Family Organism Protein Disprot ID Length
Chordata Homo sapiens Natriuretic peptides B DP00551 134

Neurogenic locus notch
homolog protein 1

DP01104 2555

Nuclear inhibitor of pro-
tein phosphatase 1

DP00937 351

Nuclear pore complex pro-
tein Nup133

DP02164 1156

Nuclear pore complex pro-
tein Nup153

DP01799 1475

Nuclear receptor coactiva-
tor 2

DP01880 1464

Nuclear receptor coactiva-
tor 3

DP00343 1424

Nucleophosmin DP01474 294
P antigen family member 5 DP01473 130
Peroxisome proliferator-
activated receptor gamma

DP00718 505

Polyglutamine-binding
protein 1

DP01308 265

Protein jagged-1 DP00418 1218
Protein max DP00084 160
Protein regulator of cytoki-
nesis 1

DP02316 620

Protein SMG7 DP01844 1137
Prothymosin alpha DP01677 111
Proto-oncogene c-Fos DP00078 380
Ras-related protein Rap-2a DP00167 183
Replication protein A 32
kDa subunit

DP01361 270

Serine/threonine-protein
kinase PAK 4

DP01184 591

Signal recognition particle
19 kDa protein

DP00570 144

SOSS complex subunit C DP01943 104
Stonin-2 DP01368 905
T-cell surface glycoprotein
CD3 gamma chain

DP00508 182

Thymidylate synthase DP00073 313
TP53-regulated inhibitor
of apoptosis 1

DP01835 76
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Table S2: Summary of non-viral protein data

Family Organism Protein Disprot ID Length
Chordata Homo sapiens Transcription elongation

regulator 1
DP01893 1098

Transcription initiation
factor TFIID subunit 6

DP01262 677

Tyrosine-protein kinase
Lck

DP01580 509

Ubiquitin carboxyl-
terminal hydrolase 7

DP00941 1102

Mus musculus Amelogenin, X isoform DP01477 210
BH3-interacting domain
death agonist

DP01661 195

Dehydrodolichyl diphos-
phate synthase complex
subunit Nus1

DP01304 297

Dystroglycan DP00491 893
Fermitin family homolog 1 DP00655 677
Mediator of RNA poly-
merase II transcription
subunit 1

DP02151 1575

Phorbol-12-myristate-13-
acetate-induced protein
1

DP01281 103

Protein BEX1 DP01183 128
Protein kinase C alpha type DP01105 672
Transcription regulator
protein BACH2

DP01009 839

Tumor suppressor ARF DP00335 169
Rattus norvegicus Calcium/calmodulin-

dependent protein kinase
type 1

DP01958 374

Calpain-2 catalytic subunit DP01996 700
Calpastatin DP01994 713
Cyclic AMP-responsive
element-binding protein 1

DP00080 341

Neuroendocrine protein
7B2

DP01557 210

Olfactory marker protein DP00279 163
Rab proteins geranylger-
anyltransferase component
A 1

DP00458 650
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Table S2: Summary of non-viral protein data

Family Organism Protein Disprot ID Length
Chordata Rattus norvegicus Seminal vesicle secretory

protein 4
DP00527 112

Synaptosomal-associated
protein 25

DP00068 206

Vesicle-associated mem-
brane protein 2

DP00622 116

Dikarya Millerozyma farinosa Salt-mediated killer pro-
toxin 1

DP00180 222

Saccharomyces cere-
visiae

Acetyl-CoA carboxylase DP00557 2233

Autophagy-related protein
13

DP01732 738

Cold sensitive U2 snRNA
suppressor 1

DP01978 436

DNA-directed RNA poly-
merases I, II, and III sub-
unit RPABC2

DP00771 155

DNA topoisomerase 2 DP00076 1428
Dolichyl-
diphosphooligosaccharide–
protein glycosyltransferase
subunit STT3

DP01195 718

Eukaryotic initiation factor
4F subunit p150

DP00082 952

H/ACA ribonucleoprotein
complex subunit CBF5

DP02055 483

Histone H2A.Z-specific
chaperone CHZ1

DP01135 153

Mitochondrial distribution
and morphology protein 35

DP02325 86

Pre-mRNA-splicing factor
18

DP02073 251

Protein SAN1 DP01136 610
Protein STE50 DP01515 346
Regulatory protein ADR1 DP00077 1323
Ribosome biogenesis pro-
tein ERB1

DP00900 807

Ribosome biogenesis pro-
tein NSA1

DP02195 463
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Table S2: Summary of non-viral protein data

Family Organism Protein Disprot ID Length
Dikarya Saccharomyces cere-

visiae
Securin DP00256 373

Suppressor protein STM1 DP00994 273
U6 snRNA-associated Sm-
like protein LSm7

DP01261 115

Ubiquitin-conjugating en-
zyme E2 1

DP02193 215

Ubiquitin-like modifier-
activating enzyme ATG7

DP02249 630

UV excision repair protein
RAD23

DP01629 398

Vacuolar-sorting protein
SNF8

DP01604 233

Schizosaccharomyces
pombe

YTH domain-containing
protein mmi1

DP01975 488

Ecdysozoa Caenorhabditis elegans ATP-dependent RNA heli-
case laf-1

DP01113 708

Drosophila
melanogaster

Chromatin accessibility
complex 16kD protein,
isoform A

DP00811 140

FACT complex subunit
Ssrp1

DP00720 723

Transcription initiation
factor TFIID subunit 1

DP00081 2129

Streptophyta Arabidopsis thaliana Auxin-responsive protein
IAA7

DP01121 243

Calvin cycle protein CP12-
2, chloroplastic

DP00534 131

Dehydrin COR47 DP00657 265

25

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.27.357954doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.357954
http://creativecommons.org/licenses/by-nd/4.0/


Table S3: Optimized thresholds and accuracy of intrinsic disorder prediction in viral proteins for
each predictor analysed. MCC = Matthews correlation coefficient; AUC = area under the receiver
operator characteristic curve.

Predictor MCC AUC Specificity Sensitivity Threshold
ESpritz.Disprot 0.46 0.85 0.64 0.90 0.29
CSpritz.Long 0.45 0.85 0.57 0.92 0.34
SPOT.Disorder2 0.42 0.84 0.65 0.88 0.13
CSpritz.Short 0.38 0.82 0.67 0.85 0.11
PONDRFIT 0.37 0.80 0.57 0.88 0.50
PONDR.VL3 0.36 0.78 0.56 0.88 0.54
ESpritz.Xray 0.35 0.80 0.58 0.87 0.06
Disprot.vslb 0.35 0.78 0.54 0.88 0.65
PONDR.VSL2 0.35 0.78 0.54 0.88 0.65
IUPRED2.short 0.34 0.79 0.57 0.87 0.47
Disprot.vl3 0.34 0.79 0.53 0.88 0.68
Disprot.vl3h 0.34 0.78 0.55 0.87 0.63
IUPRED2.long 0.33 0.78 0.54 0.87 0.49
Disprot.vl2 0.29 0.76 0.53 0.85 0.57
ESpritz.NMR 0.27 0.74 0.52 0.84 0.36
Disprot.vl2.S 0.24 0.73 0.53 0.81 0.54
PONDR.VLXT 0.22 0.71 0.50 0.80 0.62
Disprot.vl2.C 0.20 0.70 0.57 0.73 0.52
PONDR.XL1 0.15 0.59 0.38 0.82 0.69
Disprot.vl2.V 0.14 0.62 0.29 0.87 0.52
PONDR.CAN 0.11 0.59 0.25 0.88 0.62

26

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.27.357954doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.357954
http://creativecommons.org/licenses/by-nd/4.0/


Table S4: Optimized thresholds and accuracy of intrinsic disorder prediction in non-viral proteins
for each predictor analysed. MCC = Matthews correlation coefficient; AUC = area under the
receiver operator characteristic curve.

Predictor MCC AUC Specificity Sensitivity Threshold
ESpritz.Disprot 0.36 0.79 0.65 0.78 0.38
ESpritz.Xray 0.35 0.77 0.73 0.70 0.06
SPOT.Disorder2 0.34 0.77 0.70 0.73 0.24
IUPRED2.short 0.33 0.76 0.72 0.69 0.42
IUPRED2.long 0.32 0.76 0.72 0.69 0.47
PONDRFIT 0.32 0.75 0.74 0.67 0.46
PONDR.VSL2 0.30 0.74 0.76 0.63 0.62
PONDR.VL3 0.28 0.74 0.78 0.59 0.51
ESpritz.NMR 0.28 0.73 0.65 0.70 0.39
CSpritz.Long 0.26 0.71 0.83 0.51 0.21
PONDR.VLXT 0.23 0.69 0.70 0.60 0.41
PONDR.XL1 0.18 0.64 0.56 0.67 0.62
PONDR.CAN 0.13 0.60 0.51 0.65 0.34
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IntÕl Conf. on Artificial Intelligence. vol. 56. Citeseer; 2000. .

[42] Hemmerich J, Asilar E, Ecker GF. COVER: conformational oversampling as data augmenta-

tion for molecules. Journal of Cheminformatics. 2020;12(1):1–12.

[43] Lemaı̂tre G, Nogueira F, Aridas CK. Imbalanced-learn: A python toolbox to tackle the curse

of imbalanced datasets in machine learning. The Journal of Machine Learning Research.

2017;18(1):559–563.

[44] Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-

sampling technique. Journal of artificial intelligence research. 2002;16:321–357.

[45] Chang CC, Lin CJ. LIBSVM: A library for support vector machines. ACM transactions on

intelligent systems and technology (TIST). 2011;2(3):1–27.

[46] Boughorbel S, Jarray F, El-Anbari M. Optimal classifier for imbalanced data using Matthews

Correlation Coefficient metric. PloS one. 2017;12(6):e0177678.

[47] Hanson J, Yang Y, Paliwal K, Zhou Y. Improving protein disorder prediction by deep bidirec-

tional long short-term memory recurrent neural networks. Bioinformatics. 2017;33(5):685–

692.

32

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.27.357954doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.357954
http://creativecommons.org/licenses/by-nd/4.0/


[48] Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK. Sequence complexity of

disordered protein. Proteins: Structure, Function, and Bioinformatics. 2001;42(1):38–48.

[49] Attia A. Ensemble Prediction of Intrinsically Disordered Regions in Proteins. BMC Bioin-

formatics. 2012;13(1):111.

[50] Yuen CK, Lam JY, Wong WM, Mak LF, Wang X, Chu H, et al. SARS-CoV-2 nsp13, nsp14,

nsp15 and orf6 function as potent interferon antagonists. Emerging Microbes & Infections.

2020;p. 1–29.

[51] Giri R, Bhardwaj T, Shegane M, Gehi BR, Kumar P, Gadhave K. Dark Proteome of Newly

Emerged SARS-CoV-2 in Comparison with Human and Bat Coronaviruses. bioRxiv. 2020;.

33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.27.357954doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.357954
http://creativecommons.org/licenses/by-nd/4.0/

