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 46 

Abstract 47 

Neurospora crassa has been an important model organism for molecular biology and 48 

genetics for over 60 years. N. crassa has a complex life cycle, with over 28 distinct cell types and 49 

is capable of transcriptional responses to many environmental conditions including nutrient 50 

availability, temperature, and light. To quantify variation in N. crassa gene expression, we 51 

analyzed public expression data from 97 conditions and calculated the Shannon Entropy value 52 

for Neurospora’s approximately 11,000 genes. Entropy values can be used to estimate the 53 

variability in expression for a single gene over a range of conditions and be used to classify 54 

individual genes as constitutive or condition-specific. Shannon entropy has previously been 55 

used measure the degree of tissue specificity of multicellular plant or animal genes. We use this 56 

metric here to measure variable gene expression in a microbe and provide this information as a 57 

resource for the N. crassa research community. Finally, we demonstrate the utility of this 58 

approach by using entropy values to identify genes with constitutive expression across a wide 59 

range of conditions and to identify genes that are activated exclusively during sexual 60 

development.  61 

 62 

  63 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.27.357517doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.357517
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 64 

Across conditions, individual genes can display expression patterns that can range from 65 

conditional to constitutive. When performing Quantitative Reverse Transcription PCR (qRT-PCR) 66 

it is crucial to identify constitutively expressed genes for experimental normalization (HUGGETT 67 

et al. 2005). Conversely, highly regulated, condition-specific gene promoters are often used in 68 

molecular biology to drive conditional expression of a gene under investigation (e.g., an 69 

essential gene) or to control expression of reporter genes in certain cell types or environmental 70 

conditions (e.g., a gene encoding a fluorescent protein) (GILES et al. 1985; HURLEY et al. 2012; 71 

LAMB et al. 2013). Moreover, identification of genes that are exclusively expressed during a 72 

condition or cell-type of interest can reveal genes that are functionally important. Such genes 73 

or promoters are often identified by examining gene expression across just a handful of 74 

experimental conditions; however, with the increase in publicly available transcriptomics data it 75 

is possible to quantify variation in gene expression across many conditions for a given organism. 76 

In 1963, Claude Shannon laid the basis for information theory, and described the unit 77 

known as Shannon entropy (SHANNON 1997). A simplistic definition of Shannon entropy is that it 78 

describes the amount of information a variable can hold (VAJAPEYAM 2014). In our case, a 79 

variable is a gene, and the information is the collection of expression values from different 80 

conditions. If a gene is classified as having low entropy, then the expression values would be 81 

generally consistent across different conditions or possess a low amount of information. 82 

Instead, if a gene is classified as having high entropy, then the expression of this gene would be 83 

highly variable across different conditions and contain a high amount of information.  84 
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Since entropy describes information contained in a variable there are a number of uses 85 

for such a metric. Previous studies have used entropy to investigate cell and tissue specific 86 

expression of genes (SCHUG et al. 2005), identify potential therapeutic targets (FUHRMAN et al. 87 

2000), characterize periodicity in gene expression (LANGMEAD et al. 2002), identify cancerous 88 

tissue samples (VAN WIERINGEN AND VAN DER VAART 2011), and make genomic comparisons 89 

(MACHADO 2012). Studies using entropy have been carried out in human cell lines (NATHANIEL D. 90 

HEINTZMAN et al. 2009), mouse (SCHUG et al. 2005), plants (ZHANG et al. 2006), yeast (TIMOTHY R. 91 

LEZON et al. 2006), bacteria, phage, and metagenomes (AKHTER et al. 2013) but not yet in 92 

filamentous fungi. 93 

Neurospora crassa has a 43Mb genome encoding approximately ~11,000 genes 94 

(BORKOVICH et al. 2004) (add Nature paper). There is a whole genome knock out collection, and 95 

genetic, genomic, and epigenetic studies have been carried out with this organism for more 96 

than 100 years (COLOT et al. 2006). Indeed, N. crassa has been used as a model organism for 97 

epigenetics, testing fungal enzymes for biomass degradation, and circadian clock studies 98 

(DUNLAP et al. 2007; TIAN et al. 2009; ARAMAYO AND SELKER 2013). As a resource for N. crassa 99 

researchers, we generated an entropy value for most genes in the N. crassa genome using 100 

publicly available RNA-seq data, and we validated this approach using previously published lists 101 

of housekeeping or inducible genes. This resource has a number of useful applications for the 102 

N. crassa community.  103 

 104 

  105 
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Methods:  106 

Public data collection: 107 

Entropy calculations were made for all genes in the N. crassa genome using public RNA-108 

seq data sets (97 conditions from a total of 173 separate sets including replicates; Table S1).  109 

 110 

Data Analysis: 111 

Mapping, TPM and entropy calculations: 112 

HiSat2 (version 2.1.0) (KIM et al. 2019) was used to map all of the SRA accessions to the 113 

NC12 genome (NCBI assembly: GCA_000182925.2) using appropriate parameters specific for 114 

paired or single end sequence reads (with parameters –RNA-strandness RF or R) to produce 115 

bam files which were then sorted and indexed using SAMtools (version 1.3) (LI et al. 2009). If 116 

experiments contain replicates, the replicate bam files were merged together before obtaining 117 

counts with featureCounts from Subread (version 1.6.2) (LIAO et al. 2014). FeatureCounts was 118 

used with parameters -T exon to generate all counts at the gene level. Counts were imported 119 

into R where we obtained TPM using the function calculateTPM from the R package scater 120 

(MCCARTHY et al. 2017). This package takes in feature-level (in our case, gene-level) counts and 121 

gene lengths and outputs the TPM values for each gene. TPM values were then used to 122 

calculate the Shannon entropy using the R package BioQC (ZHANG et al. 2017). The function 123 

entropySpecificity was used to calculate the entropy values for all genes in the genome.  To 124 

examine specific genes sets, we converted from NCU accession numbers to gene identifiers 125 

from NCBI Genome Assembly NC12 (GCA_000182925.2) and plotted the kernel density 126 

estimation with rug plots.  127 
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 128 

Data Availability Statement:  All supplementary tables have been uploaded to Figshare. Table S1 129 

contains SRA accession numbers, short descriptions, total reads, and mapped reads for each 130 

public data set used.Calculated entropy values for all N. crassa genes are listed in Table S2. Lists 131 

of all N. crassa genes used to benchmark the entropy values and generate panels in figure 2 and 132 

3 are included in Table S3. Code used to generate the data in this manuscript is available 133 

through github.  https://github.com/ajcourtney/entropy 134 

 135 

 136 

Results and Discussion: 137 

Shannon entropy values are useful in measuring the amount of variation in expression 138 

levels across different tissues or growth conditions. In order to calculate Shannon entropy 139 

values for all Neurospora crassa genes, we first compiled a list of available RNA-seq data sets 140 

present in the NCBI sequence read archive (SRA) (Table S1). We selected datasets that were 141 

generated with the wild type strain Oak Ridge strain background, but we used both mating 142 

types. To calculate accurate entropy values, we needed to gather many observations of gene 143 

expression across different conditions. We searched the SRA database (LEINONEN et al. 2011) for 144 

N. crassa RNA-sequencing entries that were processed at different developmental stages or 145 

grown under different conditions. In total we gathered 173 accessions, which represent 97 146 

developmental or growth conditions. We then developed a pipeline to generate entropy values 147 

for each gene (Figure 1A). Calculated entropy values are available in Table S2. We first mapped 148 

to the NC12 N. crassa genome using HiSat2 (KIM et al. 2019) to generate bam files. The bam 149 
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files were then used to generate read counts for each gene in each condition using 150 

featureCounts (LIAO et al. 2014), which assigns reads to genomic features. Once the count file 151 

was created, we calculated normalized expression values using the Transcripts per Million 152 

(TPM) normalization method to create a matrix of normalized expression values for all genes in 153 

all conditions. We then used this expression matrix to calculate the Shannon entropy value for 154 

each gene (ZHANG et al. 2017).  This generated entropy values for 10,300 out of 10,398 genes. 155 

The remaining 98 genes had 0 read counts in all conditions, so we were unable to calculate 156 

entropy. Our final entropy values range from 0.0506 to 6.599. 70% of the genes in the genome 157 

possess low entropy values between 0.05 and 1 (7,180/10,300) (Figure 1B). These values 158 

include the constitutively expressed genes in the genome. Entropy values above one represent 159 

only 30% of the genome (3,120/10,300), corresponding to genes with more condition-specific 160 

expression patterns. 161 

Validation of entropy as a measure of gene expression variation in N. crassa.  162 

In order to determine if entropy values are a reliable predictor of expression variability 163 

in a microbe, we examined the entropy values generated here for published gene sets expected 164 

to be enriched for constitutively expressed genes, or conversely, for gene sets expected to 165 

contain genes with highly condition-specific expression patterns. If entropy value is a reliable 166 

measure of gene expression variation across conditions, housekeeping genes should be 167 

enriched for genes with low entropy values, whereas sets of conditionally-induced genes are 168 

expected to be enriched for high entropy values. Two previous studies identified genes useful 169 

for RT-qPCR controls in N. crassa. One of which published a list of 38 genes classified as 170 

“housekeeping genes” based on previously generated microarray and RNA-seq datasets under 171 
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three different conditions (quinic acid (QA) induction, circadian gene expression profiling, and 172 

light response) (HURLEY et al. 2015), and the other study identified four genes by using previous 173 

transcriptomic studies and genes used in related organisms to generate candidates that were 174 

validated by quantitative PCR under different conditions (CUSICK et al. 2014) (Table S1). To 175 

visualize the distribution of entropy values in this set of 42 “housekeeping” genes, we plotted a 176 

kernel density estimation (KDE) of entropy values (Figure 2A). The KDE is a smoothed version of 177 

a histogram estimated from the underlying data. As expected, the highest density of data 178 

points in the housekeeping data set is around 0.25 (low entropy) and the density falls sharply 179 

around 0.75 (Figure 2A). Two genes in this set possess entropy values above 1.6 and they 180 

encode an exo-beta-1,3-glucanase and a UDP-glucose dehydrogenase. We plotted a heatmap 181 

depicting TPM values for each gene in each condition with genes ranked by entropy values from 182 

low to high (top to bottom) (Figure 2B). Genes with higher entropy values showed significant 183 

induction of gene expression under certain conditions, whereas genes with low entropy values 184 

displayed consistent expression values across all conditions. In particular, the two genes with 185 

high entropy values showed marked induction under certain conditions. Thus, these data 186 

highlight the value of performing a comprehensive analysis of conditional gene expression 187 

when selecting constitutive control genes.  188 

We further validated the use of entropy as a measure for constitutive gene expression 189 

by using the same approach with a published list of genes 2,624 genes involved in transcription 190 

and translation (Table S1), reasoning that genes involved in these essential processes would be 191 

expressed at similar levels in all 93 conditions we investigated. (BENZ et al. 2014). The 192 

distribution of entropy values for transcription and translation genes resembles the distribution 193 
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of entropy values for housekeeping genes where the highest density is concentrated at the low 194 

end of entropy values (Figure 2C). Many of the genes that possess entropy values above 1.6 are 195 

either hypothetical proteins or genes associated with cellular transport or metabolism. We 196 

again examined the TPM values for each gene in this set in a heatmap ranked by entropy from 197 

low to high and again find mostly steady expression across conditions (Figure 2D). 198 

We next asked if higher entropy values were associated with conditionally expressed 199 

genes. The highest entropy values imply that a gene must only be expressed under specific 200 

conditions and may only show expression in one or a few of the conditions in the entire RNA-201 

seq dataset. To confirm that higher entropy values were indeed associated with condition- or 202 

tissue-specific gene expression, we created KDE plots for 513 genes induced by light (Figure 3A 203 

and Table S1) and 3,259 genes that have expression changes during sexual development (Figure 204 

3C and Table S1) (WU et al. 2014) (WANG et al. 2014). In both cases, there is a shift in 205 

distribution of entropy values toward higher entropy values compared to “housekeeping” or 206 

“transcription and translation” genes. We examined TPM values for each gene in each condition 207 

using a heatmap ranked by entropy values from low to high (top to bottom) and find that a 208 

majority of genes in each gene set show variable expression across conditions, as expected 209 

(Figure 3B, D). Genes that have regulation changes during perithecial (sexual) development also 210 

show a shift to the right, but with retention of more low entropy genes than in the light induced 211 

gene set (Figure 3C). Plotting the TPM values in an entropy ranked heatmap shows that 212 

approximately half of these genes are highly expressed across many conditions and half are 213 

variably expressed, corresponding to genes with lower entropy values in the density plot 214 

(Figure 3D). This implies that half of these genes are not specific to sexual or vegetative cell 215 
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types even though they show transcriptional changes throughout development (WANG et al. 216 

2014). 217 

 As a final confirmation that entropy can be used as a reliable metric to assess the 218 

variation or lack of variation in gene expression levels across many conditions, we plotted the 219 

expression levels of 100 genes with the highest entropy values and 100 genes with the lowest 220 

entropy values. We took the log2 TPM values for all conditions (columns) and plotted them for 221 

each gene in a heatmap that was clustered by gene (row) for both the top and bottom 100 222 

genes. As expected, with the lowest entropy values show mostly uniform expression across all 223 

conditions (Figure 4A), and genes in the high entropy group displayed highly variable and 224 

condition-specific expression (Figure 4B). Together, these data demonstrate that entropy is an 225 

effective tool for measuring variation in gene expression levels in a filamentous fungus.  226 

The information and code generated in the course of this study could prove useful in a 227 

number of ways. First, identifying genes that are induced in a certain condition and display a 228 

high entropy value will help identify genes that are condition-specific. In addition, examining 229 

entropy values for individual genes can be a useful approach for finding new inducible 230 

promoters to use for genetic studies. Condition-specific expressed genes are good starting 231 

targets to test for this purpose.  The entropy metric determined here can also be used to 232 

confirm constitutive expression of genes chosen as controls for RT-PCR. In examining the 233 

housekeeping genes from previously published studies it is clear that not all will function as 234 

good controls under all conditions, a limitation that was discussed by Hurley and colleagues 235 

(HURLEY et al. 2015). We combined all of their housekeeping genes together, whereas they had 236 

them divided into housekeeping genes usable for different conditions in qRT-PCR (QA 237 
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induction, light response studies, and circadian experiments). Here we can choose genes that 238 

will work across all conditions (provided the conditions were represented in the initial dataset). 239 

Our approach provides a quantitative metric that can be applied to identify condition-specific 240 

genes, as opposed to investigating individual datasets or using controls from previous studies 241 

which may not perform as expected. In addition, this methodology is scalable; the initial 242 

inclusion of more conditions will only increase the robustness of the metric produced. As more 243 

data are published, more datasets can be incorporated. This approach can be used across other 244 

fungi in addition to N. crassa, provided there are sufficient RNA-seq data publicly available. 245 
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Figure Legends 333 

Figure 1: Calculation of Shannon entropy for N. crassa genes using public RNA-seq data.  334 

A) Schematic of our computational pipeline for calculating Shannon entropy from publically 335 

available datasets.  336 

B) N. crassa genes display a broad range of entropy values. The histogram shows entropy values 337 

for all genes. The y-axis is the number of genes found in each bin. The x-axis shows the binned 338 

entropy values.  339 

 340 

Figure 2: Constitutively expressed genes are characterized by low entropy values 341 

A) The relative frequency of entropy values for a list of housekeeping genes is shown as a kernel 342 

density estimation (KDE) plot. The rug plot, black lines on the bottom in the KDE plot represents 343 

the individual data points that create the estimation. The y-axis is the probability density, which 344 

is the probability for each unit (gene) on the x-axis. The total area below the KDE curve 345 

integrates to one.  346 

B) The heatmap shows the expression value for housekeeping genes across all conditions 347 

analyzed. The expression level for each gene is plotted as the log2 transformed transcript per 348 

million (TPM) value. Genes (rows) are plotted in ranked order based on the entropy value from 349 

low (top) to high (bottom). The scale on the left indicates entropy values for each gene. Each 350 

condition (column) has been assigned a category: Metabolism (gold), Development (green), or 351 

Light Response (blue). The categories are represented at the top of the heatmap in the three 352 

different colors. 353 
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C) The relative frequency of entropy values for a list of genes related to transcription and 354 

translation is shown as a kernel density estimation (KDE) plot. The rug plot, black lines on the 355 

bottom in the KDE plot represents the individual data points that create the estimation. The y-356 

axis is the probability density, which is the probability for each unit (gene) on the x-axis.  357 

D) Heatmap of log2 transformed TPM values from all transcription and translation related genes 358 

(rows) ranked by entropy (low to high). Entropy values are depicted by the brown to green 359 

heatmap on the left, where brown is low (top) and green is high (bottom). Each condition 360 

(column) has been assigned a category: Metabolism (gold), Development (green), or Light 361 

Response (blue). The categories are represented at the top of the heatmap in the three 362 

different colors. 363 

 364 

Figure 3: Validating entropy values with previously published light induced genes and genes 365 

induced during sexual development 366 

A) The relative frequency of entropy values for a list of light induced genes is shown as a kernel 367 

density estimation (KDE) plot. The rug plot, black lines on the bottom in the KDE plot represents 368 

the individual data points that create the estimation. The y-axis is the probability density, which 369 

is the probability for each unit (gene) on the x-axis. The total area below the KDE curve 370 

integrates to one.  371 

B) The heatmap shows the expression value for light induced genes across all conditions 372 

analyzed. The expression level for each gene is plotted as the log2 transformed TPM value. 373 

Genes (rows) are plotted in ranked order based on the entropy value from low (top) to high 374 

(bottom). The scale on the left indicates entropy values for each gene. Each condition (column) 375 
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has been assigned a category: Metabolism (gold), Development (green), or Light Response 376 

(blue). The categories are represented at the top of the heatmap in the three different colors. 377 

C) The relative frequency of entropy values for a list of sexual development genes genes is 378 

shown as a kernel density estimation (KDE) plot. The rug plot, black lines on the bottom in the 379 

KDE plot represents the individual data points that create the estimation. The y-axis is the 380 

probability density, which is the probability for each unit (gene) on the x-axis. The total area 381 

below the KDE curve integrates to one.  382 

D) The heatmap shows the expression value for sexual development genes across all conditions 383 

analyzed. The expression level for each gene is plotted as the log2 transformed TPM value. 384 

Genes (rows) are plotted in ranked order based on the entropy value from low (top) to high 385 

(bottom). The scale on the left indicates entropy values for each gene. Each condition (column) 386 

has been assigned a category: Metabolism (gold), Development (green), or Light Response 387 

(blue). The categories are represented at the top of the heatmap in the three different colors. 388 

 389 

Figure 4: Log2 TPM values for highest and lowest ranked genes 390 

A) The heatmap shows the expression values for the 100 genes with the highest entropy values. 391 

The expression level for each gene is plotted as the log2 transformed TPM value. Each row 392 

represents a gene. Gene names are listed on the right side of the heatmap. Each condition 393 

(column) has been assigned a category: Metabolism (gold), Development (green), or Light 394 

Response (blue). The categories are represented at the top of the heatmap in the three 395 

different colors. 396 
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B) The heatmap shows the expression values for the 100 genes with the lowest entropy values. 397 

The expression level for each gene is plotted as the log2 transformed TPM value. Each row 398 

represents a gene. Gene names are listed on the right side of the heatmap. Each condition 399 

(column) has been assigned a category: Metabolism (gold), Development (green), or Light 400 

Response (blue). The categories are represented at the top of the heatmap in the three 401 

different colors. 402 

 403 
 404 
 405 
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