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ABSTRACT 

Objective: Electroencephalogram (EEG) monitors are often used to monitor depth of general 

anesthesia. EEG monitoring is less well developed for lighter levels of anesthesia. Here we 

present an automated method to monitor the depth of anesthesia for office based procedures 

using EEG spectral features.   

Methods: We analyze EEG recordings from 30 patients undergoing sedation using a multimodal 

anesthesia strategy. Level of sedation during the procedure is coded using the Richmond 

Agitation and Sedation Scale (RASS). The power spectrum from the frontal EEG is used to infer 

the level of sedation, by training a logistic regression model with elastic net regularization. Area 

under the receiver operator characteristic curve (AUC) is used to evaluate how well the 

automated system distinguishes awake from sedated EEG epochs. 

Results: EEG power spectral characteristics vary systematically and consistently across patients 

with the levels of light anesthesia and relatively healthy patients encountered during office-based 

anesthesia procedures. The logistic regression model using spectral EEG features distinguishes 

awake and sedated states with an AUC of 0.85 (± 0.14). 

Conclusions: Our results demonstrate that frontal EEG spectral features can reliably monitor 

sedation levels during office based anesthesia. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.27.356592doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.356592
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

INTRODUCTION 

          As surgical and anesthetic techniques advance, procedures are increasingly performed in 

ambulatory settings (Urman et al. 2012; Shapiro et al. 2014). Approximately one-third of 

ambulatory or “office based” anesthesia (OBA) services in the United States are provided as 

Monitored Anesthesia Care (MAC) (Bayman et al. 2011). During MAC, the anesthesia care team 

continually assesses the level of sedation to avoid an unintended progression to a state of general 

anesthesia (Shapiro et al. 2014).  Nevertheless, oversedation leading to respiratory depression is 

still an important mechanism of patient injuries during MAC (Purdon et al. 2015). Incurrent 

OBA practice, sedation levels are either indirectly monitored through clinical observation, or 

based on evaluations of a patient’s responsiveness to verbal or tactile stimuli (Sheahan and 

Mathews 2014). However, the frequency and consistency of such evaluations is subjective and 

can be flawed (Green and Mason 2010). Moreover, effective drug doses to achieve a certain 

level of sedation in OBA may vary markedly between individuals (Shapiro et al. 2014; Kim et al. 

2017). Therefore, implementing explicit and objective methods to assess sedation levels may 

improve safety in OBA practice.  

     Tracking brain state using EEG is a principled physiology-based method to achieve reliable 

continuous assessment of OBA sedation levels. Previous studies have found that using EEG-

based monitoing during procedural sedation is accompanied by reduction in propofol 

administration (Conway and Sutherland 2016; Park et al. 2016), a commonly used intravenous 

hypnotic agent for ambulatory anesthesia (Seamans 2008; Akeju et al. 2016). However, the EEG 

response can be variable due to the use a multimodal apporach (i.e. using several drugs in 

combination) that targets specific endpoints including hypnosis, amnesia, analgesia and akinesia 

(Brown et al. 2010). Multimodal anesthesia involves the use of smaller doses of several drugs 
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with the goal of maximizing the benefits  and minimizing the side effects of each drug.     

          The objective in this study is to evaluate the feasibility of automated EEG-based sedation 

level tracking using the EEG power spectrum during multimodal anesthesia in the office based 

setting. 

METHODS AND MATERIALS 

Patient selection  

                    The study was performed with under a protocol approved by the ethics committees 

of Beth Israel Deaconess Hospital and Massachusetts General Hospital, Boston, USA. Waiver of 

consent was granted to analyze EEG recorded during general anesthesia or sedation. The EEG 

recordings were strictly observational and were not used for clinical management.   In total, we 

obtained EEG recordings from 46 patients undergoing multimodal sedation for either 

esophagogastroduodenoscopy or colonoscopy or both, for diagnostic and therapeutic purposes, 

during the period September 2016-March 2017. We excluded 16 patients from the analysis due 

to technical problems during EEG recording. Therefore, we analyzed the data from 30 patients 

(16 males, 14 females, mean age: 60.8±12.9, mean weight = 78.8±18.4 kg, mean height 

=168.6±13.1 cm) in this study.  

EEG recording 

          We used SedLine 4-channel forehead EEG monitors (Massimo Corporation, Irvine, 40 

CA) to record EEG signals from patients undergoing OBA sedation. We placed recording 

electrodes on each patient’s forehead approximately at positions Fp1, Fp2, F7, and F8, 1 cm 

above the ground electrode FpZ. We ensured that the impedances in each channel were < 5kΩ 

before EEG recording. We did not adjust the electrodes for impedance after starting the surgical 

procedure. We used the following settings to record EEG: sampling frequency = 250 Hz, 
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preamplifier bandwidth = 0.5-90 Hz and resolution = 16-bit, 29 nV. 

Sedation assessment 

          For scoring patients’ level of sedation we used the RASS behavioral scale (Sessler et al. 

2002). RASS scores range between -5 (unresponsive to external stimuli) to 0 (awake/calm). 

Higher numbers (+1 through +4), not used in our study, denote levels of agitation. Research staff 

(MBW, SBN, PK) assigned RASS scores approximately once every 30s throughout the 

procedure.  Clinical staff received training to reduce inter-rater variability in RASS assessments. 

For training RASS prediction models, we group EEG epochs with RASS scores = 0 and -1 

(“awake”), and epochs with RASS scores = -4, -5 (“sedated”); epochs with intermediate scores (-

3, -2) are not used for model training. This ensures that the data used to train the classification 

model represent clearly distinguishable clinical states.  

Anesthesia Protocol 

          The anesthesia care team reviewed patients’ medical histories, including pre-existing 

medical conditions, drug allergies, medications, social history and medical records to select 

appropriate drugs. MAC anesthesia was used for all patients. Induction and maintenance of 

sedation was performed using a continuous low-dose infusion of propofol (25-75 µg/kg/minute), 

with intermittent boluses of propofol (20-100 mg), ketamine (20-40 mg), dexmedetomidine (1 

µg/kg over 10 minutes) and lidocaine (5-10 mg) (Shapiro 2007).  In several cases the anesthesia 

provider modified the infusion rate based on the patients’ assessed level of sedation. A few 

patients were pre-medicated with a single dose of haloperidol (0.25 mg) and midazolam (1-2 mg) 

if they displayed increased anxiety in the preoperative holding area.  All patients were monitored 

according to the Standards for Basic Anesthetic Monitoring established by the American Society 

for Anesthesiologists (ASA), which requires the continuous evaluation for oxygenation, 
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ventilation, circulation and temperature during all anesthetics. Changes in drug infusion rates and 

timing and doses of drug boluses throughout the procedure were recorded using logging 

software.  The anesthesia provider delivered care independent of EEG monitoring.  

 

AUTOMATIC SEDATION LEVEL MONITORING SYSTEM 

The architecture of the proposed EEG-based automatic sedation level monitoring system is 

shown in Figure 1. Details of each stage are described below.  

Figure 1: Architecture of the proposed automatic sedation level detection system. 
 

 

Preprocessing and artifact rejection 

          We use a bipolar montage, with channels defined by the differences Fp1-F7 and Fp2-F8. 

The EEG signal is passed through a bandpass filter set at 0.5-25 Hz. For model training, 

frequency range is limited to 0.5-25 Hz to reduce the influence of muscle artifact during the 

awake state. Using a 5 second moving window we detect artifacts in the EEG signal based on the 

following conditions: (1) amplifier saturation/movement artifacts – abnormally high signal 

amplitude (> 500 ) ; (2) 60 Hz activity above 500  (measured spectrographically); (3) 

loose electrode artifacts – mean amplitude of the sum of signals less than half the mean 

amplitude of the first channel. We segment the EEG into overlapping 4s epochs with  0.1s shift 

for further analysis. 

Feature extraction 

          We perform spectral estimation using multitaper spectral analysis via the chronux toolbox 

Vµ Vµ
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(Bokil et al. 2010) with the following parameters: length of the window T = 4s with  0.1s shift, 

time-bandwidth product TW = 3, number of tapers K = 5, and spectral resolution 2W of 1.5 Hz. 

Figure 2 shows an example of the spectrogram along with RASS assessments and drug 

infusion/bolus rates from a single subject. 

Figure 2: Sample figure from a patient showing (a) Frontal EEG multitaper 
spectrogram, (b) bolus dosages: L = Lidocaine, P = Propofol, K = Ketamine, and D 
= Dexmedatomidine, (c) continuous propofol infusion rate, and (d) RASS 
assessments. 
 

We use both the un-normalized (raw) power spectrum and normalized power spectrum 

(normalized by total power) averaged across the two bipolar montages to train the logistic 

regression model. Figure 3 shows the EEG signal and corresponding spectrogram at different 

RASS levels in one subject.  
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Figure 3: (a) Example of EEG signal at different RASS states and (b) their 

corresponding multitaper spectrogram. 

 
 
 
Classification and post-processing 
 
          We use logistic regression with with elastic-net regularization (Tibshirani 1996) to train 

models to detect sedation levels. The benefit of using elastic-net regularization is that it has low 

computational complexity and is suitable for for high-dimensional data with multiple correlated 

features (Efron et al. 2004). In addition, by setting many of the coefficients to zero, elastic-net 

automatically performs feature selection. 
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Model Performance Evaluation 

Metrics 

          We use the area under the receiver operator characteristic curve (AUC) as a metric to 

assess the performance of the model for binary classification. In addition, we use the Spearman 

rank correlation coefficient (ρ) to measure the correlation between the probability output of the 

model with RASS scores over time. The rationale is that 𝜌𝜌 provides information complementary 

to AUC: it measures the extent to which increases or decreases in sedation depth are tracked by 

changes in the model output, inclluding for intermeiate RASS values. Thus is a measure of how 

well the model performs in providing a continuous output, as as opposed its ability to provide 

binary predictions.  

 

Cross validation 

          We use leave-one-patient-out (LOPO) cross-validation to assess performance of the 

prediction system. In this method, data from N-1 patients are used for training the system and ata 

from the one remaining patient is used for testing. This is repeated until each patient’s data is 

used for testing, resulting in a total of N iterations. During training, we standardize the training 

set features to have unit mean and standard deviation. We also normalize features in the testing 

with respect to the mean and standard deviation of the training set so that all data is processed in 

the same way. To optimize the set of features to be included in the final model (“feature 

selection”), and model parameters (𝜆𝜆,𝛼𝛼), required by the elastic-net algorithm, we use 10-fold 

cross validation on the training set to obtain these parameters. We use the parameters (𝜆𝜆,𝛼𝛼) that 

provide maximum mean AUC over 10-folds of training data to train the final model on all the 

training data. After obtaining the final trained model with optimal parameters in the inner cross 
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validation loop, we obtain the probability of sedation on the left-out testing subject in the the 

outer cross validation loop of LOPOCV (30 iterations in total). In this way, we only use training 

data to optimize model parameters. The model is kept independent of the testing data, mimicing 

the real clinical scenario.  

Training and testing strategy 

          We evaluate two different training and testing combinations: 1) TBTB – train and test on 

binary data in which the model is trained and tested to discriminate between awake and sedated 

epochs, and 2) TBTR – train on binary data and test on RASS scores (ordinal RASS -5,-4,…,0 

scores rather than binarized scores). In this evaluation, we use the binary classifier which is 

trained on awake and sedated epochs to assign a probability score to all EEG epochs with RASS 

scores. We calculate the Spearman rank correlation coefficient (ρ) between the probability score 

and the RASS scores. We perform all coding and analysis using the MATLAB 2018a scripting 

language (Natick, USA). 

 
RESULTS 

Unless stated otherwise, all results are reported as mean (± SD). 

Automatic sedation level classification 

(i) TBTB – Binary classification: 

          Figure 4 shows the coefficient weights assigned by the elastic-net model as a function of 

frequency. The oscillatory activity around the slow-delta (0.1-4 Hz) band shows negative 

correlation with the awake state (RASS = 0 and -1), as opposed to the oscillatory activity around 

high alpha and low beta (9-15 Hz) bands, which correlates with the sedated state (RASS = -4 and 

-5). The multivariate logistic regression model using spectrogram (normalized + un-normalized 

spectrogram) resulted in an AUC = 0.85 (0.14). 
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Figure 4: Plot of elastic-net regression coefficients of all frequency bins. The 
regression coefficients are estimated from the elastic net analysis of the un-
normalized (blue) and the normalized spectrogram (red) across all subjects. 
 

 

 

(ii) TBTR – Correlation with continuous RASS scores 

          Although during training we optimized the system to make a binary distinction between 

sedated (RASS = -5 and -4) and awake (RASS = 0 and -1) states, the model provides a 

continuous output, i.e. a probability of being awake. To investigate the potential utility of this 

probability as an index of depth of sedation during OBA, we next evaluate the correlation 

between the model output over time and all RASS states between - 5 to 0. This results in a mean 

ρ = 0.38 (0.17) across 30 patients, substantially better than chance level correlation (ρ = 0.18 

(0.11)). This suggests that the automated system, despite being trained to make binary 

discriminations, provides significant information about sedation levels along the continuum 

between sedation and wakefulness. An example illustrating this process is shown in figure 5. 
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Figure 5: Example of the correlation between the probability score of the 
classifier output with RASS assessments (ρ = 0.68 in this example). In this 
method, a trained binary linear model (trained only on awake and sedated 
epochs) is used to obtain continuous probability score on the testing patient. 

 

DISCUSSION 

          In this study, we investigated the potential of a neurophysiology based system to 

characterize sedation levels, using spectral features of the frontal EEG, in a multimodal office-

based anesthesia setting. Our results show that slow-delta (0.1-4 Hz) oscillations are associated 

with lighter sedation levels (RASS = 0 and -1) induced by propofol when combined with 

adjunctive sedatives and analgesics. We also observed that high alpha-low beta (9-15 Hz) 

oscillations are associated with deeper levels of sedation (RASS =-4 and -5). Our results show 

that spectral features of the EEG show systematic trends with increasing levels of sedation that 

computer algorithms can leverage to infer the level of sedation. Using statistical learning we 

identified weighted combinations of spectral EEG features that provide good discrimination 

between awake and sedated EEG states (AUC = 0.85 (0.14)). Our system provides a continuous 

probability estimate of the patient’s sedation level.  
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          Monitoring depth of sedation during standard anesthesia care is typically based on 

behavioral assessments of the patient's arousability in response to verbal or tactile stimuli and 

indirectly through monitoring cardiovascular and respiratory function, whereas intermittency in 

behavioral assessments and subjectivity in identifying and quantifying a patient’s response 

(Green and Mason 2010) can result in inadequate sedation or oversedation. EEG-based 

anesthesia monitors are often used when general anesthesia is required. However, explicit and 

objective brain monitoring may also benefit cases targeting lighter sedation levels, to prevent 

unintended deeper levels of anesthesia.   

          The multimodal sedation strategy is gaining popularity, particularly in ambulatory settings, 

due to better safety profiles. The utility of EEG-based monitors has been less investigated when 

anesthetics are administered concurrently with other hypnotics, sedatives and analgesics. 

Concurrent administration of centrally-acting hypnotics, sedatives and analgesics induce 

anesthetic states that might have different neurophysiologic properties from those when single 

anesthetics are used. Therefore, it is important to investigate how well EEG based monitoring of 

sedation levels performs in the setting of multimodal sedation.  

LIMITATIONS 

          There are several limitations in this study. First, we only explored features derived from 

the EEG spectrogram. This has the advantage of straightforward interpretation, but it is possible 

that less interpretable features improve model performance. Future work will explore whether 

additional features (entropy, complexity) can improve the performance of the proposed system. 

A second limitation is the limited number of patients. Future work will need to validate the 

robustness of the system on a dataset from a large cohort of patients undergoing multi-drug 

sedation. Third, we used a simple logistic regression approach to train the sedation level 
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prediction model. More advanced machine learning models may improve the performance of the 

proposed system. Finally, we only trained the model to perform binary classification in this study 

(awake vs sedated). Future work will explore discriminating multiple sedation levels on a 

continuous scale using a prospective dataset. 

 CONCLUSION 

          This study evalutes the performance of an automated system using the EEG spectrogram 

for predicting sedation levels in an office based anesthesia setting, using a multimodal sedation 

strategy. Our findings suggest that features from the EEG spectrogram are able to discriminate 

awake vs sedated brain states.  

DATA AVAILABILITY 

The data used in this study is available from github repository: 

https://github.com/mghcdac/EEG_mulitmodal_sedation
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