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Abstract	
We	hereby	describe	a	large-scale	community	effort	to	build	an	open-access,	interoperable,	
and	computable	repository	of	COVID-19	molecular	mechanisms	-	the	COVID-19	Disease	Map.	
We	discuss	the	tools,	platforms,	and	guidelines	necessary	for	the	distributed	development	of	
its	contents	by	a	multi-faceted	community	of	biocurators,	domain	experts,	bioinformaticians,	
and	computational	biologists.	We	highlight	the	role	of	relevant	databases	and	text	mining	
approaches	 in	 enrichment	 and	 validation	 of	 the	 curated	 mechanisms.	 We	 describe	 the	
contents	of	the	map	and	their	relevance	to	the	molecular	pathophysiology	of	COVID-19	and	
the	analytical	and	computational	modelling	approaches	that	can	be	applied	to	the	contents	
of	 the	 COVID-19	 Disease	 Map	 for	 mechanistic	 data	 interpretation	 and	 predictions.	 We	
conclude	by	demonstrating	concrete	applications	of	our	work	through	several	use	cases.	

1.	Introduction	
The	 coronavirus	 disease	 2019	 (COVID-19)	 pandemic	 due	 to	 severe	 acute	 respiratory	
syndrome	coronavirus	2	(SARS-CoV-2)	[1]	has	already	resulted	in	the	infection	of	over	40	
million	people	worldwide,	of	whom	one	million	have	died1.	The	molecular	pathophysiology	
that	 links	 SARS-CoV-2	 infection	 to	 the	 clinical	manifestations	 and	 course	 of	 COVID-19	 is	
complex	and	 spans	multiple	biological	pathways,	 cell	 types	and	organs	 [2,3].	To	gain	 the	
insights	into	this	complex	network,	the	biomedical	research	community	needs	to	approach	
it	 from	a	 systems	perspective,	 collecting	 the	mechanistic	knowledge	 scattered	across	 the	
scientific	 literature	 and	 bioinformatic	 databases,	 and	 integrating	 it	 using	 formal	 systems	
biology	standards.	

With	this	goal	 in	mind,	we	 initiated	a	collaborative	effort	 involving	over	230	biocurators,	
domain	experts,	modelers	and	data	analysts	from	120	institutions	in	30	countries	to	develop	
the	COVID-19	Disease	Map,	an	open-access	 collection	of	 curated	computational	diagrams	
and	models	of	molecular	mechanisms	implicated	in	the	disease	[4].		

To	 this	 end,	 we	 aligned	 the	 biocuration	 efforts	 of	 the	 Disease	 Maps	 Community	 [5,6],	
Reactome	 [7],	 and	 WikiPathways	 [8]	 and	 developed	 common	 guidelines	 utilising	
standardised	encoding	and	annotation	schemes,	based	on	community-developed	systems	
biology	 standards	 [9–11],	 and	 persistent	 identifier	 repositories	 [12].	 Moreover,	 we	
integrated	relevant	knowledge	from	public	repositories	[13–16]	and	text	mining	resources,	
providing	a	means	to	update	and	refine	contents	of	the	map.	The	fruit	of	these	efforts	was	a	
series	of	pathway	diagrams	describing	key	events	in	the	COVID-19	infectious	cycle	and	host	
response.	

	

1	https://covid19.who.int/	
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We	ensured	 that	 this	 comprehensive	diagrammatic	description	of	disease	mechanisms	 is	
machine-readable	 and	 computable.	 This	 allows	 us	 to	 develop	 novel	 bioinformatics	
workflows,	creating	executable	networks	for	analysis	and	prediction.	In	this	way,	the	map	is	
both	 human	 and	 machine-readable,	 lowering	 the	 communication	 barrier	 between	
biocurators,	 domain	 experts,	 and	 computational	 biologists	 significantly.	 Computational	
modelling,	data	analysis,	and	their	 informed	interpretation	using	the	contents	of	 the	map	
have	 the	 potential	 to	 identify	 molecular	 signatures	 of	 disease	 predisposition	 and	
development,	and	to	suggest	drug	repositioning	for	improving	current	treatments.	

COVID-19	Disease	Map	is	a	collection	of	41	diagrams	containing	1836	interactions	between	
5499	 elements,	 supported	 by	 617	publications	 and	preprints.	 The	 summary	 of	 diagrams	
available	in	the	COVID-19	Disease	Map	can	be	found	online2	in	Supplementary	Material	1.	
The	 map	 is	 a	 constantly	 evolving	 resource,	 refined	 and	 updated	 by	 ongoing	 efforts	 of	
biocuration,	sharing	and	analysis.	Here,	we	report	its	current	status.	

In	Section	2	we	explain	the	set	up	of	our	community	effort	to	construct	the	interoperable	
content	of	the	resource,	involving	biocurators,	domain	experts	and	data	analysts.	In	Section	
3	we	demonstrate	that	the	scope	of	the	biological	maps	in	the	resource	reflects	the	state-of-
the-art	about	the	molecular	biology	of	COVID-19.	Next,	we	outline	analytical	workflows	that	
can	be	used	on	the	contents	of	the	map,	including	initial,	preliminary	outcomes	of	two	such	
workflows,	discussed	in	detail	as	use	cases	in	Section	4.	We	conclude	in	Section	5	with	an	
outlook	to	further	development	of	the	COVID-19	map	and	the	utility	of	the	entire	resource	
in	future	efforts	towards	building	and	applying	disease-relevant	computational	repositories.	

	

	

	

	

	

	

	

	

2	https://covid.pages.uni.lu/map_contents	
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2.	Building	and	sharing	the	interoperable	content	
The	COVID-19	Disease	Map	project	involves	three	main	groups:	(i)	biocurators,	(ii)	domain	
experts,	and	(iii)	analysts	and	modellers:	

i.	 Biocurators	 develop	 a	 collection	 of	 systems	 biology	 diagrams	 focused	 on	 the	
molecular	mechanisms	of	SARS-CoV-2.	

ii.	 Domain	 experts	 refine	 the	 contents	 of	 the	 diagrams,	 supported	 by	 interactive	
visualisation	and	annotations.	

iii.	 Analysts	 and	modellers	 develop	 computational	workflows	 to	 generate	hypotheses	
and	predictions	about	the	mechanisms	encoded	in	the	diagrams.		

All	 three	groups	have	an	 important	role	 in	 the	process	of	building	 the	map,	by	providing	
content,	refining	 it,	and	defining	the	downstream	computational	use	of	 the	map.	Figure	1	
illustrates	the	ecosystem	of	the	COVID-19	Disease	Map	Community,	highlighting	the	roles	of	
different	participants,	available	 format	conversions,	 interoperable	 tools,	and	downstream	
uses.	 The	 information	 about	 the	 community	 members	 and	 their	 contributions	 are	
disseminated	 via	 the	 FAIRDOMHub	 [17],	 so	 that	 content	 distributed	 across	 different	
collections	can	be	uniformly	referenced.	

2.1 Creating and accessing the diagrams 

The	biocurators	of	the	COVID-19	Disease	Map	diagrams	follow	the	guidelines	developed	by	
the	 Community,	 and	 specific	 workflows	 of	 WikiPathways	 [8]	 and	 Reactome	 [7].	 The	
biocurators	 build	 literature-based	 systems	 biology	 diagrams,	 representing	 the	molecular	
processes	 implicated	 in	 the	COVID-19	pathophysiology,	 their	 complex	 regulation	and	 the	
phenotypic	 outcomes.	 These	 diagrams	 are	 main	 building	 blocks	 of	 the	 map,	 and	 are	
composed	of	biochemical	reactions	and	interactions	(further	called	altogether	interactions)	
taking	place	between	different	types	of	molecular	entities	in	various	cellular	compartments.	
As	there	are	multiple	teams	working	on	related	topics,	biocurators	can	provide	an	expert	
review	across	pathways	and	across	platforms.	This	is	possible,	as	all	platforms	offer	intuitive	
visualisation,	 interpretation,	 and	 analysis	 of	 pathway	 knowledge	 to	 support	 basic	 and	
clinical	research,	genome	analysis,	modelling,	systems	biology,	and	education.	Table	1	lists	
information	about	the	created	content.	For	more	details	see	Supplementary	Material	1.	
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Figure	1:	The	ecosystem	of	the	COVID-19	Disease	Map	Community.	The	main	groups	of	COVID-
19	 Disease	 Map	 Community	 are	 biocurators,	 domain	 experts,	 analysts,	 and	 modellers;	
communicating	to	refine,	interpret	and	apply	COVID-19	Disease	Map	diagrams.	These	diagrams	are	
created	 and	 maintained	 by	 biocurators,	 following	 pathway	 database	 workflows	 or	 standalone	
diagram	editors,	and	reviewed	by	domain	experts.	The	content	is	shared	via	pathway	databases	or	a	
GitLab	 repository;	 all	 can	 be	 enriched	 by	 integrated	 resources	 of	 text	 mining	 and	 interaction	
databases.	The	COVID-19	Disease	Map	diagrams,	available	in	layout-aware	systems	biology	formats	
and	 integrated	 with	 external	 repositories,	 are	 available	 in	 several	 formats	 allowing	 a	 range	 of	
computational	analyses,	including	network	analysis	and	Boolean,	kinetic	or	multiscale	simulations.	

Both	 interactions	 and	 interacting	 entities	 are	 annotated	 following	 a	 uniform,	 persistent	
identification	 scheme,	using	either	MIRIAM	or	 Identifiers.org	 [18],	 and	 the	guidelines	 for	
annotations	of	computational	models	[19].	Viral	protein	interactions	are	explicitly	annotated	
with	their	 taxonomy	identifiers	 to	highlight	 findings	 from	strains	other	 than	SARS-CoV-2.	
Moreover,	 tools	 like	 ModelPolisher	 [20],	 SBMLsqueezer	 [21]	 or	 MEMOTE3	 help	 to	
automatically	complement	the	annotations	in	the	SBML	format	and	validate	the	model	(see	
also	Supplementary	Material	2).	

	

3	https://memote.io	
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Table	 1.	 COVID-19	 Disease	 Map	 contents.	 The	 table	 summarises	 biocuration	 resources	 and	
content	 of	 the	 map	 across	 three	 main	 parts	 of	 the	 repository.	 All	 diagrams	 are	 listed	 in	
Supplementary	Material	1.	

	 Source	

Individual	diagrams	 Reactome	 WikiPathways	

Diagram	
contents	

21	diagrams	
1334	interactions	

4272	molecular	entities	
397	publications	

1	diagram	
101	interactions	

489	molecular	entities	
227	publications	

19	diagrams	
401	interactions	

738	molecular	entities	
61	publications	

Access	 Gitlab	
git-r3lab.uni.lu/covid/models	

SARS-CoV	infections	
collection	

reactome.org/PathwayBrowser/
#/R-HSA-9679506	

COVID	pathways	collection	
covid.wikipathways.org	

Exploration	 The	MINERVA	Platform	[22]	
covid19map.elixir-luxembourg.org	

Guide:	
covid.pages.uni.lu/minerva-guide	

Native	web	interface	
	

Guide:	
Link	to	instructions	

Native	web	interface	
	

Guide:	
Link	to	instructions	

Biocuration	
guidelines	

Community4	 Community5	
Platform-specific5	

Community5	
Platform-specific6	

Diagram	
Editors	

CellDesigner7	
Newt8	
SBGN-ED	[23]	
yEd+ySBGN9	

Reactome	pathway	editor6	 PathVisio	[24]	

Formats	 CellDesigner	 SBML	 [25]	
SBGNML	[26,27]	

Internal,		
SBML	and	SBGNML	compliant	

GPML	[24]	

	

2.2 Enrichment using knowledge from databases and text mining 

The	knowledge	on	COVID-19	mechanisms	is	rapidly	evolving,	as	demonstrated	by	the	rapid	
growth	 of	 the	 COVID-19	 Open	 Research	 Dataset	 (CORD-19)	 dataset,	 a	 source	 scientific	

	

4	https://docs.google.com/document/d/1DFfJZe2xjXrKMHorp_-7hlqWoNVSmx6sIzAaRzXgtQs	
5	https://reactome.org/community/training	
6	https://www.wikipathways.org/index.php/Help:Editing_Pathways	
7	http://celldesigner.org	
8	https://newteditor.org	
9	https://github.com/sbgn/ySBGN	
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manuscript	text	and	metadata	on	COVID-19	and	related	coronavirus	research	[28].	CORD-
19	currently	contains	over	130,000	articles	and	preprints,	over	four	times	more	than	when	
it	was	introduced10.	In	such	a	quickly	evolving	environment,	biocuration	efforts	need	to	be	
supported	 by	 other	 repositories	 of	 structured	 knowledge	 about	 molecular	 mechanisms	
relevant	 for	 COVID-19,	 like	 molecular	 interaction	 databases,	 or	 text	 mining	 resources.	
Contents	of	such	repositories	may	suggest	improvements	in	the	existing	COVID-19	Disease	
Map	 diagrams,	 or	 establish	 a	 starting	 point	 for	 developing	 new	 pathways	 (see	 Section	
“Biocuration	of	database	and	text	mining	content”).	

Interaction	and	pathway	databases	
Interaction	and	pathway	databases	contain	structured	and	annotated	information	on	protein	
interactions	or	causal	relationships.	While	interaction	databases	focus	on	pairs	of	molecules,	
offering	broad	coverage	of	literature-reported	findings.		Pathway	databases	provide	detailed	
description	 of	 biochemical	 processes	 and	 their	 regulations	 	 of	 related	 interactions,	
supported	 by	 diagrams.	 Both	 types	 of	 resources	 can	 be	 a	 valuable	 input	 for	 COVID-19	
Disease	 Map	 biocurators,	 given	 the	 comparability	 of	 identifiers	 used	 for	 molecular	
annotations,	and	the	reference	to	publications	used	for	defining	an	interaction	or	building	a	
pathway.	Table	2	summarises	open-access	resources	supporting	the	biocuration	of	the	map.	
See	Supplementary	Materials	[tools]	for	their	detailed	description.	

Table	 2.	 Resources	 supporting	 biocuration	 of	 the	 COVID-19	 Disease	 Map.	 They	 include	 (i)	
collections	of	COVID-19	interactions	by	the		IMEx	Consortium	[14]	and	the	SIGNOR	2.0	[15],	(ii)	non-
COVID	mechanistic	interaction	database	OmniPath	[13]	and	(iii)	the	Elsevier	Pathway	Collection,	a	
manually	reconstructed	open-access	dataset	of	annotated	pathway	diagrams	for	COVID-1911.		

Resource	 Type	 Manually	
curated	

Directed	 Layout	 COVID-19	
specific	

IMEx	Consortium	database	[29]	 Interaction	 Yes	 No	 No	 Yes12	[14]	

SIGNOR	2.0	database	[15]	 Interaction	 Yes	 Yes	 Yes	 Yes13	

OmniPath	database	[13]	 Interaction	 No	 Yes	 No	 No	

Elsevier	Pathway	Collection14	 Pathway	 Yes	 Yes	 Yes	 Yes9	

	

10	https://www.semanticscholar.org/cord19/download	(accessed	on	20.10.2020)	
11	https://data.mendeley.com/datasets/h9vs5s8fz2/draft?a=f40961bb-9798-4fd1-8025-e2a3ba47b02e		
12	https://www.imexconsortium.org	
13	https://signor.uniroma2.it/covid/	
14	https://pathwaystudio.com	
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Text	mining	resources	
Text-mining	approaches	can	help	to	sieve	through	such	rapidly	expanding	 literature	with	
natural	language	processing	(NLP)	algorithms	based	on	semantic	modelling,	ontologies,	and	
linguistic	analysis	to	automatically	extract	and	annotate	relevant	sentences,	biomolecules,	
and	their	interactions.	This	scope	was	recently	extended	to	pathway	figure	mining:	decoding	
pathway	 figures	 into	 their	 computable	 representations	 [30].	Altogether,	 these	automated	
workflows	lead	to	the	construction	of	knowledge	graphs:	semantic	networks	incorporating	
ontology	 concepts,	 unique	 biomolecule	 references,	 and	 their	 interactions	 extracted	 from	
abstracts	or	full-text	documents	[31].	

The	COVID-19	Disease	Map	Project	 integrates	 open-access	 text	mining	 resources,	 INDRA	
[32],	BioKB15,	AILANI	COVID-1916,	and	PathwayStudio10.	All	platforms	offer	keyword-based	
search	allowing	 interactive	exploration.	Additionally,	 the	map	benefits	 from	an	extensive	
protein-protein	interaction	network	(PPI)17	generated	with	a	custom	text-mining	pipeline	
using	OpenNLP18	and	GNormPlus	[33].	This	pipeline	was	applied	to	the	CORD-19	dataset	and	
the	 collection	 of	 MEDLINE	 abstracts	 associated	 with	 the	 genes	 in	 the	 SARS-CoV-2	 PPI	
network	 [34]	 using	 the	 Entrez	 Gene	 Reference-Into-Function	 (GeneRIF).	 For	 detailed	
descriptions	of	the	resources,	see	Supplementary	Material	3.	

Biocuration	using	database	and	text	mining	content	
Molecular	 interactions	from	databases	and	knowledge	graphs	from	text	mining	resources	
discussed	above	(from	now	on	called	altogether	‘knowledge	graphs’)	have	a	broad	coverage	
at	 the	 cost	 of	 depth	 of	 mechanistic	 representation.	 This	 content	 can	 be	 used	 by	 the	
biocurators	in	the	process	of	building	and	updating	the	systems	biology	focused	diagrams.	
Biocurators	can	use	this	content	in	three	main	ways:	by	visual	exploration,	by	programmatic	
comparison,	and	by	direct	incorporation	of	the	content.		

First,	 the	 biocurators	 can	 visually	 explore	 the	 contents	 of	 the	 knowledge	 graphs	 using	
available	 search	 interfaces	 to	 locate	 new	 knowledge	 and	 encode	 it	 in	 the	 diagrams.	
Moreover,	 solutions	 like	 COVIDminer	 project19,	 PathwayStudio	 and	AILANI	 offer	 a	 visual	
representation	 of	 a	 group	 of	 interactions	 for	 a	 better	 understanding	 of	 their	 biological	
context,	allowing	search	by	interactions,	rather	than	just	isolated	keywords.	Finally,	INDRA	

	

15	https://biokb.lcsb.uni.lu	
16	https://ailani.ai/cgi/login_bioxm_portal.cgi	
17	https://git-r3lab.uni.lu/covid/models/-/tree/master/Resources/Text%20mining	
18	https://opennlp.apache.org	
19	https://rupertoverall.net/covidminer	
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and	 AILANI	 offer	 assistant	 bots	 that	 respond	 to	 natural	 language	 queries	 and	 return	
meaningful	answers	extracted	from	knowledge	graphs.	

Second,	 programmatic	 access	 and	 reproducible	 exploration	 of	 the	 knowledge	 graphs	 is	
possible	via	data	endpoints:	SPARQL	for	BioKB	and	Application	Programming	Interfaces	for	
INDRA,	AILANI,	and	Pathway	Studio.	Users	can	programmatically	submit	keyword	queries	
and	retrieve	functions,	interactions,	pathways,	or	drugs	associated	with	submitted	gene	lists.	
This	way,	otherwise	 time-consuming	tasks	 like	an	assessment	of	completeness	of	a	given	
diagram,	or	search	for	new	literature	evidence,	can	be	automated	to	a	large	extent.	

Finally,	 biocurators	 can	directly	 incorporate	 the	 content	 of	 knowledge	 graphs	 into	 SBML	
format	 using	 BioKC	 [35].	 Additionally,	 the	 contents	 of	 the	 Elsevier	 COVID-19	 Pathway	
Collection	 can	 be	 translated	 to	 SBGNML20	 preserving	 the	 layout	 of	 the	 diagrams.	 The	
SBGNML	content	can	then	be	converted	into	other	diagram	formats	used	by	biocurators	(see	
Section	2.3	below).	

2.3 Interoperability of the diagrams and annotations 

The	biocuration	of	 the	COVID-19	Disease	Map	 is	distributed	across	multiple	 teams,	using	
varying	 tools	 and	 associated	 systems	 biology	 representations.	 This	 requires	 a	 common	
approach	 to	 annotations	 of	 evidence,	 biochemical	 reactions,	molecular	 entities	 and	 their	
interactions.	 Moreover,	 the	 interoperability	 of	 layout-aware	 formats	 is	 needed	 for	
comparison	and	integration	of	the	diagrams	in	the	map.	

Layout-aware	formats	for	molecular	mechanisms	
The	COVID-19	Disease	Map	diagrams	are	encoded	in	one	of	three	layout-aware	formats	for	
standardised	representation	of	molecular	interactions:	SBML21	[36–38],	SBGNML	[27],	and	
GPML	[24].	These	XML-based	formats	focus	to	a	varying	degree	on	user-friendly	graphical	
representation,	standardised	visualisation,	and	support	of	computational	workflows.	For	the	
detailed	description	of	the	formats,	see	Supplementary	Material	1.	

Each	 of	 these	 three	 languages	 has	 a	 different	 focus:	 SBML	 emphasizes	 standardised	
representation	 of	 the	 data	 model	 underlying	 molecular	 interactions,	 SBGNML	 provides	
standardised	 graphical	 representation	 of	 molecular	 processes,	 while	 GPML	 allows	 for	 a	
partially	 standardised	representation	of	uncertain	biological	knowledge.	Nevertheless,	all	
three	formats	are	centered	around	molecular	interactions,	provide	a	constrained	vocabulary	
to	encode	element	and	interaction	types,	encode	layout	of	their	diagrams	and	support	stable	

	

20	https://github.com/golovatenkop/rnef2sbgn	
21	here,	SBML	stands	for	two	formats:	CellDesigner	SBML	and	SBML	with	layout	and	render	packages	
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identifiers	 for	 diagram	 components.	 These	 shared	 properties,	 supported	 by	 a	 common	
ontology22	 [39],	 allow	 cross-format	 mapping	 and	 enable	 translation	 of	 key	 properties	
between	the	formats.	Therefore,	when	developing	the	contents	of	the	map,	biocurators	use	
the	tools	they	are	familiar	with,	facilitating	this	distributed	task.	

Format	interoperability	
The	COVID-19	Disease	Map	Community	 ecosystem	of	 tools	 and	 resources	 (see	 Figure	 1)	
ensures	 interoperability	 between	 the	 three	 layout-aware	 formats	 for	 molecular	
mechanisms:	SBML,	SBGNML,	and	GPML.	Essential	elements	of	this	setup	are	tools	capable	
of	 providing	 cross-format	 translation	 functionality	 [40,41]	 and	 supporting	 harmonised	
visualisation	 processing.	 Another	 essential	 translation	 interface	 is	 a	 representation	 of	
Reactome	pathways	in	WikiPathways	GPML	[42]	and	SBML.	The	SBML	export	of	Reactome	
content	has	been	optimised	in	the	context	of	this	project	and	facilitates	integration	with	the	
other	COVID-19	Disease	Map	software	components.	

The	contents	of	the	COVID-19	Disease	Map	diagrams	can	be	directly	transformed	into	inputs	
of	computational	pipelines	and	data	repositories.	Besides	the	direct	use	of	SBML	format	in	
kinetic	simulations,	CellDesigner	SBML	files	can	be	transformed	into	SBML	qual	[43]	using	
CaSQ	[44],	enabling	Boolean	modelling-based	simulations	(see	also	Supplementary	Material	
3).	 In	 parallel,	 CaSQ	 converts	 the	 diagrams	 to	 the	 SIF	 format23,	 supporting	 pathway	
modelling	workflows	using	simplified	interaction	networks.	Notably,	the	GitLab	repository	
features	an	automated	 translation	of	 stable	versions	of	diagrams	 into	SBML	qual.	Finally,	
translation	of	the	diagrams	into	XGMML	format	(the	eXtensible	Graph	Markup	and	Modelling	
Language)	 using	 Cytoscape	 [45]	 or	 GINSim	 [46]	 allows	 for	 network	 analysis	 and	
interoperability	with	molecular	interaction	repositories	[47].	

3.	Structure	and	scope	of	the	map	
Thanks	 to	 the	 community	 effort	 discussed	 above	 supported	 by	 a	 rich	 bioinformatics	
framework,	we	constructed	the	COVID-19	Disease	Map,	focussing	on	the	mechanisms	known	
from	 other	 coronaviruses	 [48]	 and	 suggested	 by	 early	 experimental	 investigations	
[PMID:32511329].	 Then,	 we	 applied	 the	 analytical	 and	 modelling	 workflows	 to	 the	
contributed	 diagrams	 and	 associated	 interaction	 databases	 to	 propose	 initial	map-based	
insights	into	COVID-19	molecular	mechanisms.		

The	COVID-19	Disease	Map	is	an	evolving	repository	of	pathways	affected	by	SARS-CoV-2.	
Figure	 2.	 It	 is	 currently	 centred	 on	 molecular	 processes	 involved	 in	 SARS-CoV-2	 entry,	

	

22	http://www.ebi.ac.uk/sbo/main/	
23	http://www.cbmc.it/fastcent/doc/SifFormat.htm	
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replication,	and	host-pathogen	interactions.	As	mechanisms	of	host	susceptibility,	immune	
response,	cell	and	organ	specificity	emerge,	these	will	be	incorporated	into	the	next	versions	
of	the	map.	

	

Figure	2:	The	structure	and	content	of	 the	COVID-19	Disease	Map.	The	areas	of	 focus	of	 the	
COVID-19	Map	biocuration.	

The	 COVID-19	 Map	 represents	 the	 mechanisms	 in	 a	 “host	 cell”.	 This	 follows	 literature	
reports	on	cell	specificity	of	SARS-CoV-2	[3,49–53].	Some	pathways	included	in	the	COVID-
19	Map	may	be	shared	among	different	cell	types,	as	for	example	the	IFN-1	pathway	found	
in	cells	such	as	dendritic,	epithelial,	and	alveolar	macrophages	[54–58].	While	at	this	stage,	
we	do	not	address	cell	specificity	explicitly	in	our	diagrams,	extensive	annotations	may	allow	
identification	of	pathways	relevant	to	the	cell	type	of	interest.	

The	 SARS-CoV-2	 infection	 process	 and	COVID-19	progression	 follow	 a	 sequence	 of	 steps	
(Figure	 3),	 starting	 from	 viral	 attachment	 and	 entry,	 which	 involve	 various	 dynamic	
processes	 on	 different	 time	 scales	 that	 are	 not	 captured	 in	 static	 representations	 of	
pathways.	Correlation	of	symptoms	and	potential	drugs	suggested	to	date	helps	downstream	
data	exploration	and	drug	target	interpretation	in	the	context	of	therapeutic	interventions.	
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Figure	3:	Overview	of	the	map	in	the	context	of	COVID-19	progression.	Pathways	and	cell	types	
involved	 in	 the	 sequential	 stages	 of	 COVID-19,	 including	 some	 of	 the	 most	 common	 clinical	
manifestations	and	medical	management	from	the	moment	of	infection	to	the	disease	resolution,	are	
shown.	The	distribution	of	the	elements	is	for	illustrative	reference	and	does	not	necessarily	indicate	
either	a	unique/static	interplay	of	these	elements	or	an	unvarying	progression.	For	the	literature	on	
clinical	manifestations	see	[59–65].	

Supplementary	Material	1	summarises	the	contents	of	the	COVID-19	Disease	Map	diagrams,	
their	central	platform	of	reference.	The	online	version	of	the	table	is	continuously	updated	
to	reflect	the	evolving	content	of	the	COVID-19	Disease	Map24.		

3.1 Virus replication cycle and subversion of host defence 

Virus	attachment	and	entry	
Transmission	 of	 SARS-CoV-2	 primarily	 occurs	 through	 contact	 with	 respiratory	 drops,	
airborne	 transmission,	 and	 through	 contact	 with	 contaminated	 surfaces	 [66–68].	 Upon	
contact	with	the	respiratory	epithelium,	the	virus	infects	cells	mostly	by	binding	the	spike	
surface	glycoprotein	(S)	to	angiotensin-converting	enzyme	2	(ACE2)	with	the	help	of	serine	
protease	 TMPRSS2	 [69–72].	 Importantly,	 recent	 results	 suggest	 viral	 entry	 using	 other	
receptors	of	 lungs	and	 the	 immune	system	[73,74].	Once	attached,	SARS-CoV-2	can	enter	
cells	either	by	direct	fusion	of	the	virion	and	cell	membranes	in	the	presence	of	proteases	

	

24	https://covid.pages.uni.lu/map_contents	
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TMPRSS2	and	furin	or	by	endocytosis	in	their	absence.	Regardless	of	the	entry	mechanism,	
the	 S	 protein	 has	 to	 be	 activated	 to	 initiate	 the	 plasma	 or	 endosome	membrane	 fusion	
process.	While	 in	 the	cell	membrane,	S	protein	 is	activated	by	TMPRSS2	and	 furin,	 in	 the	
endosome	 S	 protein	 is	 activated	 by	 cathepsin	 B	 (CTSB)	 and	 cathepsin	 L	 (CTSL)	 [71,75].	
Activated	 S	 promotes	 the	 cell-	 or	 endosome-membrane	 fusion	 [76]	 with	 the	 virion	
membrane,	and	then	the	nucleocapsid	is	injected	into	the	cytoplasm.	These	mechanisms	are	
represented	in	the	corresponding	diagrams	of	the	map25.	

Replication	and	release	
Within	the	host	cell,	SARS-CoV-2	hijacks	the	rough	endoplasmic	reticulum	(RER)-linked	host	
translational	machinery.	It	then	synthesises	viral	proteins	replicase	polyprotein	1a	(pp1a)	
and	 replicase	 polyprotein	 1ab	 (pp1ab)	 directly	 from	 the	 virus	 (+)genomic	 RNA	 (gRNA)	
[48,77].	Through	a	complex	cascade	of	proteolytic	cleavages,	pp1a	and	pp1ab	give	rise	to	16	
non-structural	proteins	(Nsps)	[78–80].	Most	of	these	Nsps	collectively	form	the	replication	
transcription	 complex	 (RTC)	 that	 is	 anchored	 to	 the	membrane	of	 the	double-membrane	
vesicle	[78,81],	a	coronavirus	replication	organelle	induced	by	Nsps	3,	4,	and	6	[82].	RTC	is	
thought	 to	 play	 two	 main	 roles:	 1)	 triggering	 the	 synthesis	 of	 both	 (+)gRNA	 and	
(+)subgenomic	messenger	RNAs	(sgmRNAs)	via	negative-stranded	templates	[83–85];	and	
2)	 protecting	 intermediate	double-stranded	RNAs	 from	 the	 cell	 innate	 immunity	 sensors	
[86].	 The	 (+)sgmRNAs	 are	 translated	 by	 the	 RER-attached	 translation	 machinery	 into	
structural	(E,	M,	N	and	S)	and	accessory	proteins	(Orf3a,	Orf6,	Orf7a/b,	Orf8,	Orf9b,	Orf10	
and	Orf14).	The	structural	proteins	and	the	newly	generated	(+)gRNAs	are	assembled	into	
new	 virions	 in	 the	 endoplasmic	 reticulum-Golgi	 intermediate	 compartment.	 These	 are	
released	to	the	extracellular	space	via	smooth-walled	vesicles	[48,77].	

Endoplasmic	reticulum	stress	and	unfolded	protein	response	

As	discussed	above,	the	virus	hijacks	the	ER	to	replicate.	Production	of	large	amounts	of	viral	
proteins	exceeds	 the	protein	 folding	capacity	of	 the	ER,	 creating	an	overload	of	unfolded	
proteins.	As	a	result,	the	unfolded	protein	response	(UPR)	pathways	are	triggered	to	assure	
the	ER	homeostasis,	using	 three	main	signalling	routes	of	UPR	via	PERK,	 IRE1,	and	ATF6	
[87].	Their	role	 is	to	mitigate	the	misfolded	protein	load	and	reduce	oxidative	stress.	The	
resulting	 protein	 degradation	 is	 coordinated	 with	 a	 decrease	 in	 protein	 synthesis	 via	
eIF2alpha	 phosphorylation	 and	 induction	 of	 protein	 folding	 genes	 via	 the	 transcription	
factor	XBP1	[88].	When	the	ER	is	unable	to	restore	its	function,	it	can	trigger	cell	apoptosis	
[89,90].	

	

25	https://covid19map.elixir-luxembourg.org/minerva/?search%3Dvirus%2520replication%2520cycle	
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The	 results	 are	 ER	 stress	 and	 activation	 of	 the	 UPR.	 The	 expression	 of	 some	 human	
coronavirus	(HCoV)	proteins	during	infection,	in	particular	the	S	glycoprotein,	may	induce	
activation	of	the	ER	stress	in	the	host	cells	[91].	Based	on	SARS-CoV	results,	this	may	lead	to	
activation	of	the	PERK	[92],	IRE1	and	in	an	indirect	manner,	of	the	ATF6	pathways	[93].	

Autophagy	and	protein	degradation	

Processes	 of	 degrading	 malfunctioning	 proteins	 and	 damaged	 organelles,	 including	 the	
ubiquitin-proteasome	system	 (UPS)	and	autophagy	 [94]	 are	essential	 to	maintain	energy	
homeostasis	and	prevent	cellular	stress	[95,96].	Autophagy	is	also	involved	in	cell	defence,	
including	direct	destruction	of	the	viruses	via	virophagy,	presentation	of	viral	antigens,	and	
inhibition	of	excessive	inflammatory	reactions	[97,98].	

SARS-CoV-2	directly	affects	the	process	of	UPS-based	protein	degradation,	as	indicated	by	
the	 host-virus	 interactome	 dataset	 published	 recently	 [34].	 This	 mechanism	 may	 be	 a	
defence	against	viral	protein	degradation	[99].	The	map	describes	in	detail	the	nature	of	this	
interaction,	namely	the	impact	of	Orf10	virus	protein	on	the	Cul2	ubiquitin	ligase	complex	
and	its	potential	substrates.	

Interactions	 between	 SARS-CoV-2	 and	 host	 autophagy	 pathways	 are	 inferred	 based	 on	
results	from	other	CoVs.	A	finding	that	CoVs	use	double-membrane	vesicles	and	LC3-I	for	
replication	[100]	may	suggest	that	the	virus	induces	autophagy,	possibly	in	ATG5-dependent	
manner	 [101],	 although	 some	 evidence	 points	 to	 the	 contrary	 [102].	 Also,	 the	 CoV	Nsp6	
restricts	 autophagosome	 expansion,	 compromising	 the	 degradation	 of	 viral	 components	
[103].	Recently	revealed	mutations	in	Nsp6	[104]	indicate	its	importance,	although	the	exact	
effect	of	the	mutations	remains	unknown.	Based	on	the	connection	between	autophagy	and	
the	 endocytic	 pathway	 of	 the	 virus	 replication	 cycle	 [105],	 autophagy	 modulation	 was	
suggested	 as	 a	 potential	 therapy	 strategy,	 either	 pharmacologically	 [96,105–107],	 or	 via	
fasting	[108].	

Apoptosis	

Apoptosis,	a	synonym	for	programmed	cell	death,	is	triggered	by	virus-host	interaction	upon	
infection,	as	the	early	death	of	the	virus-infected	cells	may	prevent	viral	replication.	Many	
viruses	 block	 or	 delay	 cell	 death	 by	 expressing	 anti-apoptotic	 proteins	 to	 maximize	 the	
production	 of	 viral	 progeny	 [109].	 In	 turn,	 apoptosis	 induction	 at	 the	 end	 of	 the	 viral	
replication	 cycle	 might	 assist	 in	 viral	 dissemination	 while	 reducing	 an	 inflammatory	
response.	For	instance,	SARS-CoV-2	[110]	and	MERS	[111]	are	able	to	invoke	apoptosis	in	
lymphocytes,	compromising	the	immune	system.	

Apoptosis	follows	two	major	pathways	[112],	called	extrinsic	and	intrinsic.	Extrinsic	signals	
are	transmitted	by	death	ligands	and	their	receptors	(e.g.,	FasL	and	TNF-alpha).	Activated	
death	 receptors	 recruit	 adaptors	 like	 FADD	 and	 TRADD,	 and	 initiator	 procaspases	 like	
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caspase-8,	leading	to	cell	death	with	the	help	of	effector	caspases-3	and	7	[113,114].	In	turn,	
the	intrinsic	pathway	involves	mitochondria-related	members	of	the	Bcl-2	protein	family.	
Cellular	 stress	 causes	 Bcl-2	 proteins-mediated	 release	 of	 cytochrome	 c	 from	 the	
mitochondria	 into	 the	 cytoplasm.	 Cytochrome	 c	 then	 forms	 a	 complex	 with	 Apaf1	 and	
recruits	initiator	procaspase-9	to	form	the	apoptosome,	leading	to	the	proteolytic	activation	
of	caspase-9.	Activated	caspase-9	can	now	initiate	the	caspase	cascade	by	activating	effector	
caspases	 3	 and	 7	 [114].	 The	 intrinsic	 pathway	 is	 modulated	 by	 SARS-CoV	 molecules	
[115,116].	As	intrinsic	apoptosis	involves	mitochondria,	its	activity	may	also	be	exacerbated	
by	SARS-CoV-2	disruptions	of	the	electron	transport	chain,	mitochondrial	translation,	and	
transmembrane	 transport	 [34].	 The	 resulting	 mitochondrial	 dysfunction	 may	 lead	 to	
increased	release	of	reactive	oxygen	species	and	pro-apoptotic	factors.	

Another	 vital	 crosstalk	 is	 that	 of	 the	 intrinsic	 pathway	 with	 the	 PI3K-Akt	 pro-survival	
pathway.	Activated	Akt	 can	phosphorylate	 and	 inactivate	 various	pro-apoptotic	 proteins,	
including	Bad	and	caspase-9	[117].	SARS-CoV	uses	PI3K-Akt	signalling	cascade	to	enhance	
infection	[118].	Moreover,	SARS-CoV	could	affect	apoptosis	 in	a	cell-type-specific	manner	
[119,120].		

SARS-CoV	structural	proteins	S,	E,	M,	N,	and	accessory	proteins	3a,	3b,	6,	7a,	8a,	and	9b	have	
been	shown	to	act	as	crucial	effectors	of	apoptosis	in	vitro.	Structural	proteins	seem	to	affect	
mainly	the	intrinsic	apoptotic	pathway,	with	p38	MAPK	and	PI3K/Akt	pathways	regulating	
cell	 death.	 Accessory	 proteins	 can	 induce	 apoptosis	 via	 different	 cascades	 and	 in	 a	 cell-
specific	manner	 [114].	 SARS-CoV	 E	 and	 7a	 protein	were	 shown	 to	 activate	 the	 intrinsic	
pathway	by	blocking	anti-apoptotic	Bcl-XL	localized	to	the	ER	[121].	SARS-CoV	M	protein	
and	the	ion	channel	activity	of	E	and	3a	were	shown	to	interfere	with	pro-survival	signalling	
cascades	[114,122].	

3.2 Integrative stress response: endothelial damage, coagulation, and 

inflammation 
The	 viral	 replication	 and	 the	 consequent	 immune	 and	 inflammatory	 responses	 cause	
damage	to	the	epithelium	and	pulmonary	capillary	vascular	endothelium	and	activate	the	
main	 intracellular	 defence	 mechanisms,	 as	 well	 as	 the	 humoral	 and	 cellular	 immune	
responses.	Resulting	cellular	stress	and	tissue	damage	[123,124]	impair	respiratory	capacity	
and	lead	to	acute	respiratory	distress	syndrome	(ARDS)	[61,125,126].	Hyperinflammation	
is	a	known	complication,	causing	widespread	damage,	organ	failure,	and	death,	followed	by	
a	not	yet	completely	understood	rapid	 increase	of	cytokine	 levels	(cytokine	storm)	[127–
129],	and	acute	ARDS	[130].	Other	reported	complications,	such	as	coagulation	disturbances	
and	 thrombosis	 are	 associated	 with	 severe	 cases,	 but	 the	 specific	 mechanisms	 are	 still	
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unknown	[64,131–133],	although	some	reports	suggest	that	COVID-19	coagulopathy	has	a	
distinct	profile	[134].	

The	SARS-CoV-2	infection	disrupts	the	coagulation	cascade	and	is	frequently	associated	with	
hyperinflammation,	 renin-angiotensin	 system	 (RAS)	 imbalance	 and	 intravascular	
coagulopathy	 [132,135–137].	 Hyperinflammation	 leads	 in	 turn	 to	 detrimental	
hypercoagulability	 and	 immunothrombosis,	 leading	 to	 microvascular	 thrombosis	 with	
further	organ	damage	 [138].	 Importantly,	RAS	 is	 influenced	by	 risk	 factors	of	developing	
severe	forms	of	COVID-19	[139–141].	

ACE2,	used	by	SARS-CoV-2	for	host	cell	entry,	is	a	regulator	of	RAS	and	is	widely	expressed	
in	 the	 affected	 organs	 [142].	 The	 main	 function	 of	 ACE2	 is	 the	 conversion	 of	 AngII	 to	
angiotensin	1-7	(Ang1-7),	and	these	two	angiotensins	trigger	the	counter-regulatory	arms	of	
RAS	 [143].	 The	 signalling	 via	 AngII	 and	 its	 receptor	 AGTR1,	 elevated	 in	 the	 infected	
[142,144],	induces	the	coagulation	cascade	leading	to	microvascular	thrombosis	[145],	while	
Ang1-7	and	its	receptor	MAS1	attenuate	these	effects	[143].		

3.4 Innate immune response 

PAMP	signalling	

The	 innate	 immune	 system	 detects	 specific	 pathogen-associated	 molecular	 patterns	
(PAMPs),	 through	 Pattern	 Recognition	 Receptors	 (PRRs).	 Detection	 of	 SARS-CoV-2	 is	
mediated	through	receptors	that	recognise	double-stranded	and	single-stranded	RNA	in	the	
endosome	 during	 endocytosis	 of	 the	 virus	 particle,	 or	 in	 the	 cytoplasm	 during	 the	 viral	
replication.	 These	 receptors	mediate	 the	 activation	 of	 transcription	 factors	 such	 as	 AP1,	
NFkappaB,	 IRF3,	 and	 IRF7,	 responsible	 for	 the	 transcription	 of	 antiviral	 proteins,	 in	
particular,	interferon-alpha	and	beta	[146,147].	

SARS-CoV-2	reduces	the	production	of	type	I	interferons	to	evade	the	immune	response	[49].	
The	detailed	mechanism	 is	not	clear	yet;	however,	SARS-CoV	M	protein	 inhibits	 the	 IRF3	
activation	[148]	and	suppresses	NFkappaB	and	COX2	transcription.	At	the	same	time,		SARS-
CoV	N	protein	activates	NFkappaB	[149],	so	the	overall	impact	is	unclear.	These	pathways	
are	also	negatively	regulated	by	SARS-CoV	nsp3	papain-like	protease	domain	(PLPro)	[150].	

The	map	contains	the	initial	recognition	process	of	the	viral	particle	by	the	innate	immune	
system	and	the	viral	mechanisms	to	evade	the	immune	response.	It	provides	the	connection	
between	virus	entry	(detecting	the	viral	endosomal	patterns),	its	replication	cycle	(detection	
cytoplasmic	 viral	 patterns),	 and	 the	 effector	 pathways	 of	 pro-inflammatory	 cytokines,	
especially	of	the	interferon	type	I	class.	The	latter	seems	to	play	a	crucial	but	complex	role	in	
COVID-19	pathology:	both	negative	[151,152]	and	positive	effects	[3,153]	of	interferons	on	
virus	replication	have	been	reported.	
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Interferon	type	I	signalling		

Interferons	(IFNs)	are	central	players	in	the	antiviral	immune	response	of	the	host	cell	[55],	
specifically	 affected	 by	 SARS-CoV-2	 [154–157].	 Type	 I	 IFNs	 are	 induced	 upon	 viral	
recognition	of	PAMPs	by	various	host	PRRs	 [48]	as	discussed	earlier.	The	 IFN-I	pathway	
diagram	 represents	 the	 activation	 of	 TLR7	 and	 IFNAR	 and	 the	 subsequent	 recruiting	 of	
adaptor	 proteins	 and	 the	 downstream	 signalling	 cascades	 regulating	 key	 transcription	
factors	including	IRF3/7,	NF-kappaB,	AP-1,	and	ISRE	[48,158].	Further,	the	map	shows	IRF3-
mediated	induction	of	IFN-I,	affected	by	the	SARS-CoV-2	proteins.	SARS-CoV	Nsp3	and	Orf6	
interfere	with	IRF3	signalling	[159,160]	and	SARS-CoV	M,	N,	Nsp1	and	Nsp3	act	as	interferon	
antagonists	[48,150,158,161,162].	Moreover,	coronaviruses	ORF3a,	ORF6	and	nsp1	proteins	
can	 repress	 interferon	 expression	 and	 stimulate	 the	 degradation	 of	 IFNAR1	 and	 STAT1	
during	the	Unfolded	Protein	Response	(UPR)	[163,164].	

Another	mechanism	of	viral	RNA	recognition	is	RIG-like	receptor	signalling	[58],	leading	to	
STING	 activation	 [165],	 and	 via	 the	 recruitment	 of	 TRAF3,	 TBK1	 and	 IKKepsilon	 to	
phosphorylation	of	IRF3	[56].	This	in	turn	induces	the	transcription	of	IFNs	alpha,	beta	and	
lambda	[166].	SARS-CoV	viral	papain-like-proteases,	contained	within	the	nsp3	and	nsp	16	
proteins,	inhibit	STING	and	the	downstream	IFN	secretion	[167].	In	line	with	this	hypothesis,	
SARS-CoV-2	 infection	results	 in	a	unique	 inflammatory	response	defined	by	 low	 levels	of	
IFN-I	and	high	expression	of	cytokines	[58,168].		The	IFNlambda	diagram	describes	the	IFNL	
receptor	 signaling	 cascade	 [169],	 including	 JAK-STAT	 signaling	 and	 the	 induction	 of	
Interferon	 Stimulated	 Genes,	 which	 encode	 antiviral	 proteins	 [170].	 The	 interactions	 of	
SARS-CoV-2	proteins	with	the	IFNL	pathway	are	based	on	the	literature	[171]	or	SARS-CoV	
homology	[58].	

Altered	host	metabolism	

Metabolic	pathways	govern	the	immune	microenvironment	by	modulating	the	availability	
of	nutrients	and	critical	metabolites	[172].	Infectious	entities	reprogram	host	metabolism	to	
create	favourable	conditions	for	their	reproduction	[173].	SARS-CoV-2	proteins	interact	with	
a	variety	of	immunometabolic	pathways,	several	of	which	are	described	below.	

Heme	catabolism	is	a	well-known	anti-inflammatory	system	in	the	context	of	infectious	and	
autoimmune	 diseases	 [174,175].	 The	 main	 effector	 of	 this	 pathway,	 heme	 oxygenase-1	
(HMOX1)	 was	 found	 to	 interact	 with	 SARS-CoV-2	 Orf3a,	 although	 the	 nature	 of	 this	
interaction	 remains	 ambiguous	 [34,176].	 HMOX1	 cleaves	 heme	 into	 carbon	 monoxide,	
biliverdin	 (then	 reduced	 to	 bilirubin),	 and	 ferrous	 iron	 [PMID:31396090].	 Biliverdin,	
bilirubin,	and	carbon	monoxide	possess	cytoprotective	properties,	and	have	shown	promise	
as	 immunomodulatory	 therapeutics	 [177,178].	 Importantly,	 activation	 of	 HMOX1	 also	
inhibits	 the	 NLRP3	 inflammasome	 [178–180],	 which	 is	 a	 pro-inflammatory	 and	
prothrombotic	multiprotein	system	[181]	highly	active	in	COVID-19	[182–184].	It	mediates	
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production	 of	 the	 pro-inflammatory	 cytokines	 IL-1B	 and	 IL-18	 via	 caspase-1	 [181].	 The	
SARS-CoV	Orf3a,	E,	and	Orf8a	incite	the	NLRP3	inflammasome	[185–188].	Still,	the	potential	
of	the	HMOX1	pathway	to	fight	COVID-19	inflammation	remains	to	be	tested	[176,189,190]	
despite	promising	results	in	other	models	of	inflammation	[176,178,191–193].	

The	 tryptophan-kynurenine	 pathway	 is	 closely	 related	 to	 heme	 metabolism.	 The	 rate-
limiting	step	of	this	pathway	is	catalysed	by	the	indoleamine	2,3	dioxygenase	enzymes	(IDO1	
and	IDO2)	in	dendritic	cells,	macrophages,	and	epithelial	cells	in	response	to	inflammatory	
cytokines	like	IFN-gamma,	IFN-1,	TGF-beta,	TNF-alpha,	and	IL-6	[194–196].	Crosstalk	with	
the	HMOX1	pathway	also	increases	the	expression	of	IDO1	and	HMOX1	in	a	feed-forward	
manner.	 Metabolomics	 analyses	 from	 severe	 COVID-19	 patients	 revealed	 enrichment	 of	
kynurenines	 and	 depletion	 of	 tryptophan,	 indicating	 robust	 activation	 of	 IDO	 enzymes	
[197,198].	Depletion	 of	 tryptophan	 [173,199,200]	 and	 kynurenines	 and	 their	 derivatives	
affect	the	proliferation	and	immune	response	of	a	range	of	T	cells	[176,201–205].	However,	
despite	high	levels	of	kynurenines	in	COVID-19,	CD8+	T-cells	and	Th17	cells	are	enriched	in	
lung	tissue,	and	T-regulatory	cells	are	diminished	[206].	This	raises	the	question	of	whether	
and	how	the	immune	response	elicited	in	COVID-19	evades	suppression	by	the	kynurenine	
pathway.	

The	 SARS-CoV-2	 protein	 Nsp14	 interacts	 with	 three	 human	 proteins:	 GLA,	 SIRT5,	 and	
IMPDH2	 [34].	 The	 galactose	 metabolism	 pathway,	 including	 the	 GLA	 enzyme	 [207],	 is	
interconnected	 with	 amino	 sugar	 and	 nucleotide	 sugar	 metabolism.	 SIRT5	 is	 a	 NAD-
dependent	 desuccinylase	 and	 demalonylase	 regulating	 serine	 catabolism,	 oxidative	
metabolism	 and	 apoptosis	 initiation	 [208–210].	 Moreover,	 nicotinamide	 metabolism	
regulated	 by	 SIRT5	 occurs	 downstream	 of	 the	 tryptophan	 metabolism,	 linking	 it	 to	 the	
pathways	 discussed	 above.	 Finally,	 IMPDH2	 is	 the	 rate-limiting	 enzyme	 in	 the	 de	 novo	
synthesis	 of	 GTP,	 allowing	 regulation	 of	 purine	 metabolism	 and	 downstream	 potential	
antiviral	targets	[211,212].	

The	pyrimidine	synthesis	pathway,	 tightly	 linked	to	purine	metabolism,	affects	viral	DNA	
and	RNA	synthesis.	Pyrimidine	deprivation	is	a	host	targeted	antiviral	defence	mechanism,	
which	blocks	viral	replication	in	infected	cells	and	can	be	regulated	pharmacologically	[213–
215].	 It	 appears	 that	 components	of	 the	DNA	damage	 response	 connect	 the	 inhibition	of	
pyrimidine	biosynthesis	to	the	interferon	signalling	pathway,	probably	via	STING-induced	
TBK1	 activation	 that	 amplifies	 interferon	 response	 to	 viral	 infection,	 discussed	 above.	
Inhibition	of	de	novo	pyrimidine	synthesis	may	have	beneficial	effects	on	the	recovery	from	
COVID-19	[215];	however,	this	may	happen	only	in	a	small	group	of	patients.	
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3.5 Biocuration roadmap 

COVID-19	pathways	featured	in	the	previous	section	cover	mechanisms	reported	so	far.	Still,	
certain	aspects	of	 the	disease	were	not	represented	 in	detail	because	of	 their	complexity,	
namely	cell-type-specific	 immune	response,	and	susceptibility	features.	Their	mechanistic	
description	 is	of	great	 importance,	as	suggested	by	clinical	reports	on	the	 involvement	of	
these	pathways	in	the	molecular	pathophysiology	of	the	disease.	The	mechanisms	outlined	
below	will	be	the	next	targets	in	our	curation	roadmap.		

Cell	type-specific	immune	response	
COVID-19	causes	serious	disbalance	in	multiple	populations	of	immune	cells.	Some	studies	
report	 that	 COVID-19	 patients	 have	 a	 significant	 decrease	 of	 peripheral	 CD4+	 and	 CD8+	
cytotoxic	T	lymphocytes	(CTLs),	B	cells,	NK	cells,	as	well	as	higher	levels	of	a	broad	range	of	
cytokines	and	chemokines	[128,216–219].	The	disease	causes	functional	exhaustion	of	CD8+	
CTLs	 and	NK	 cells,	 induced	by	 SARS-CoV-2	 S	protein	 and	by	 excessive	pro-inflammatory	
cytokine	response	[217,220].	Moreover,	the	ratio	of	naïve-to-memory	helper	T-cells,	as	well	
as	 the	decrease	of	T	regulatory	cells,	correlate	with	COVID-19	severity	[206].	Conversely,	
high	 levels	of	Th17	and	 cytotoxic	CD8+	T-cells	have	been	 found	 in	 the	 lung	 tissue	 [221].	
Pulmonary	recruitment	of	lymphocytes	into	the	airways	may	explain	the	lymphopenia	and	
the	increased	neutrophil-lymphocyte	ratio	in	peripheral	blood	found	in	COVID-19	patients	
[216,222,223].	In	this	regard,	an	abnormal	increase	of	the	Th17:Treg	cell	ratio	may	promote	
the	 release	 of	 pro-inflammatory	 cytokines	 and	 chemokines,	 increasing	 disease	 severity	
[224].		

Susceptibility	features	of	the	host	
SARS-CoV-2	 infection	 is	associated	with	 increased	morbidity	and	mortality	 in	 individuals	
with	underlying	chronic	diseases	or	a	compromised	immune	system	[225–228].	Groups	of	
increased	 risk	 are	 men,	 pregnant	 and	 postpartum	 women,	 and	 individuals	 with	 high	
occupational	viral	exposure	[229–231].	Other	susceptibility	factors	include	the	ABO	blood	
groups	[232–240]	and	respiratory	conditions	[241–246].	

Importantly,	age	 is	one	of	 the	key	aspects	contributing	to	the	severity	of	 the	disease.	The	
elderly	 are	 at	 high	 risk	 of	 developing	 severe	 or	 critical	 disease	 [227,247].	 Age-related	
elevated	 levels	 of	 pro-inflammatory	 cytokines	 (inflammation)	 [247–250],	
immunosenescence	and	cellular	stress	of	ageing	cells	[125,227,247,251,252]	may	contribute	
to	the	risk.	In	contrast,	children	are	generally	less	likely	to	develop	severe	disease	[253,254],	
with	the	exception	of	infants	[125,255–257].	However,	some	previously	healthy	children	and	
adolescents	 can	 develop	 	 a	 multisystem	 inflammatory	 syndrome	 following	 SARS-CoV-2	
infection	[258–262].		



22	

Several	 genetic	 factors	have	been	proposed	and	 identified	 to	 influence	 susceptibility	 and	
severity,	including	the	ACE2	gene,	HLA	locus,	errors	influencing	type	I	IFN	production,	TLR	
pathways,	myeloid	compartments,	as	well	as	cytokine	polymorphisms	[156,235,263–269].	

We	aim	to	connect	the	susceptibility	features	to	specific	molecular	mechanisms	and	better	
understand	 the	 contributing	 factors.	 This	 can	 lead	 to	 a	 series	 of	 testable	 hypotheses,	
including	 the	 role	of	 vitamin	D	 counteracting	pro-inflammatory	 cytokine	 secretion	 [270–
272]	 in	 an	 age-dependent	manner	 [247,273],	 and	modifying	 the	 severity	 of	 the	 disease.	
Another	example	of	a	 testable	hypothesis	may	be	 that	 the	 immune	phenotype	associated	
with	asthma	inhibits	pro-inflammatory	cytokine	production	and	modifies	gene	expression	
in	the	airway	epithelium,	protecting	against	severe	COVID-19	[245,246,274].	

4.	Bioinformatics	analysis	and	computational	modelling	roadmap	for	
hypothesis	generation	
In	 order	 to	 understand	 complex	 and	 often	 indirect	 dependencies	 between	 different	
pathways	 and	 molecules,	 we	 need	 to	 combine	 computational	 and	 data-driven	 analyses.	
Standardised	 representation	 and	 programmatic	 access	 to	 the	 contents	 of	 the	 COVID-19	
Disease	Map	enable	the	development	of	reproducible	analytical	and	modelling	workflows.	
Here,	we	discuss	 the	 range	 of	 possible	 approaches	 and	demonstrate	 preliminary	 results,	
focusing	on	interoperability,	reproducibility,	and	applicability	of	the	methods	and	tools.	

Our	 goal	 is	 to	 work	 on	 the	 computational	 challenges	 as	 a	 community,	 involving	 the	
biocurators	and	domain	experts	 in	the	analysis	of	the	COVID-19	Disease	Map	and	rely	on	
their	feedback	to	evaluate	the	outcomes.	In	this	way,	we	aim	to	identify	approaches	to	tackle	
the	complexity	and	the	size	of	the	map,	proposing	a	state-of-the-art	framework	for	robust	
analysis,	reliable	models,	and	useful	predictions.	

4.1 Data integration and network analysis 

Visualisation	of	omics	data	can	help	contextualise	the	map	with	experimental	data	creating	
data-specific	blueprints.	These	blueprints	could	be	used	to	highlight	parts	of	the	map	that	
are	active	in	one	condition	versus	another	(treatment	versus	control,	patient	versus	healthy,	
normal	 versus	 infected	 cell,	 etc.).	 Combining	 information	 contained	 in	 multiple	 omics	
platforms	can	make	patient	stratification	more	powerful,	by	reducing	the	number	of	samples	
needed	or	by	augmenting	 the	precision	of	 the	patient	groups	 [275,276].	Approaches	 that	
integrate	multiple	data	types	without	the	accompanying	mechanistic	diagrams	[277–279]	
produce	patient	groupings	that	are	difficult	to	interpret.	In	turn,	classical	pathway	analyses	
often	produce	long	lists	mixing	generic	and	cell-specific	pathways,	making	it	challenging	to	
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pinpoint	 relevant	 information.	 Using	 disease	 maps	 to	 interpret	 omics-based	 clusters	
addresses	the	issues	related	to	contextualised	visual	data	analytics.	

Footprint	based	analysis	
Footprints	are	signatures	of	a	molecular	regulator	determined	by	the	expression	levels	of	its	
targets	[280].	For	example,	a	footprint	can	contain	targets	of	a	transcription	factor	(TF)	or	
peptides	 phosphorylated	 by	 a	 kinase.	 Combining	 multiple	 omics	 readouts	 and	 multiple	
measurements	 can	 increase	 the	 robustness	of	 such	 signatures.	Nevertheless,	 an	essential	
component	 is	 the	 mechanistic	 description	 of	 the	 targets	 of	 a	 given	 regulator,	 allowing	
computation	 of	 its	 footprint.	 With	 available	 SARS-CoV-2	 related	 omics	 and	 interaction	
datasets	[281],	it	is	possible	to	infer	which	TFs	and	signalling	pathways	are	affected	upon	
infection	[282].	Combining	the	COVID-19	Disease	map	regulatory	interactions	with	curated	
collections	 of	 TF-target	 interactions	 like	 DoRothEA	 [283]	 will	 provide	 a	 contextualised	
evaluation	of	the	effect	of	SARS-CoV-2	infection	at	the	TF	level.	

Viral–host	interactome	
The	virus–host	interactome	is	a	network	of	virus-human	protein-protein	interactions	(PPIs)	
that	can	help	understanding	the	mechanisms	of	disease	[34,284–286].	It	can	be	expanded	by	
merging	virus-host	PPI	data	with	human	PPI	and	protein	data	[287]	to	discover	clusters	of	
interactions	indicating	human	mechanisms	and	pathways	affected	by	the	virus	[288].	These	
clusters	first	of	all	can	be	interpreted	at	the	mechanistic	level	by	visual	exploration	of	COVID-
19	 Disease	 Map	 diagrams.	 In	 addition,	 these	 clusters	 	 can	 potentially	 	 reveal	 additional	
pathways	 to	 add	 to	 the	 COVID-19	 Disease	 Map	 (e.g.,	 E	 protein	 interactions	 or	 TGFBeta	
diagrams)	or	suggest	new	interactions	to	introduce	into	the	existing	diagrams.	

4.2 Mechanistic and dynamic computational modelling 

Computational	modelling	is	a	powerful	approach	that	enables	in	silico	experiments,	produces	
testable	hypotheses,	helps	elucidate	regulation	and,	finally,	can	suggest	via	predictions	novel	
therapeutic	targets	and	candidates	for	drug	repurposing.		

Mechanistic	pathway	modelling		
Mechanistic	models	of	pathways	allow	bridging	variations	at	the	scale	of	molecular	activity	
to	variations	at	the	level	of	cell	behaviour.	This	can	be	achieved	by	coupling	the	molecular	
interactions	 of	 a	 given	 pathway	 with	 its	 endpoint	 and	 by	 contextualising	 the	 molecular	
activity	 using	 omics	 datasets.	 HiPathia	 is	 such	 a	 method,	 processing	 transcriptomic	 or	
genomic	data	to	estimate	the	functional	profiles	of	a	pathway	conditioned	by	the	data	studied	
and	 linkable	 to	 phenotypes	 such	 as	 disease	 symptoms	 or	 other	 endpoints	 of	 interest	
[289,290].	 Moreover,	 such	 mechanistic	 modelling	 can	 be	 used	 to	 predict	 the	 effect	 of	
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interventions	as,	for	example,	the	effect	of	targeted	drugs	[291].	HiPathia	integrates	directly	
with	the	diagrams	of	the	COVID-19	Map	using	the	SIF	format	provided	by	CaSQ	(see	Section	
2.3),	as	well	as	with	the	associated	interaction	databases	(see	Section	2.2).	

The	drawback	of	approaches	 like	HiPathia	 is	 their	computational	complexity,	 limiting	the	
size	 of	 the	 diagrams	 they	 can	 process.	 An	 approach	 to	 large-scale	 mechanistic	 pathway	
modelling	is	to	transform	them	into	causal	networks.	CARNIVAL	[292]	combines	the	causal	
representation	 of	 networks	 [13]	 with	 transcriptomics,	 phosphoproteomics,	 or	
metabolomics	 data	 [280]	 to	 contextualise	 cellular	 networks	 and	 extract	 mechanistic	
hypotheses.	 The	 algorithm	 identifies	 a	 set	 of	 coherent	 causal	 links	 connecting	 upstream	
drivers	 such	as	 stimulations	or	mutations	 to	downstream	changes	 in	 transcription	 factor	
activities.	

Discrete	computational	modelling	
Analysis	of	the	dynamics	of	molecular	networks	is	necessary	to	understand	their	dynamics	
and	deepen	our	understanding	of	crucial	regulators	behind	disease-related	pathophysiology.	
Discrete	modelling	 framework	provides	this	possibility.	COVID-19	Disease	Map	diagrams,	
translated	 to	 SBML	 qual	 (see	 Section	 2.3),	 can	 be	 directly	 imported	 by	 tools	 like	 Cell	
Collective	[293]	or	GINsim	[46]	for	analysis.	Preserving	annotations	and	layout	information	
ensures	transparency	and	reusability	of	the	models.	

Importantly,	 Cell	 Collective	 is	 an	 online	 user-friendly	modelling	 platform26	 that	 provides	
features	for	real-time	in	silico	simulations	and	analysis	of	complex	signalling	networks.	The	
platform	allows	users	without	computational	background	to	simulate	or	analyse	models	to	
generate	 and	 prioritise	 new	 hypotheses.	 References	 and	 layout	 are	 used	 for	 model	
visualisation,	supporting	the	interpretation	of	the	results.	The	mathematics	and	code	behind	
each	model,	however,	remain	accessible	to	all	users.	 In	turn,	GINsim	is	a	 tool	providing	a	
wide	range	of	analysis	methods,	including	efficient	identification	of	the	states	of	convergence	
of	a	given	model	(attractors).	Model	reduction	functionality	can	also	be	employed	to	facilitate	
the	analysis	of	large-scale	models.	

Multiscale	and	stochastic	computational	modelling		

Viral	infection	and	immune	response	are	complex	processes	that	span	many	different	scales,	
from	molecular	 interactions	 to	multicellular	 behaviour.	 The	modelling	 and	 simulation	 of	
such	complex	scenarios	require	a	dedicated	multiscale	computational	architecture,	where	
multiple	models	run	in	parallel	and	communicate	among	them	to	capture	cellular	behaviour	
and	intercellular	communications.	Multiscale	agent-based	models	simulate	processes	taking	

	

26	https://cellcollective.org	
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place	at	different	time	scales,	e.g.,	diffusion,	cell	mechanics,	cell	cycle,	or	signal	transduction	
[294],	 proposed	 also	 for	 COVID-19	 [295].	 PhysiBoSS	 [296]	 allows	 such	 simulation	 of	
intracellular	processes	by	combining	the	computational	framework	of	PhysiCell	[297]	with	
MaBoSS	[298]	tool	for	stochastic	simulation	of	logical	models	to	study	of	transient	effects	
and	 perturbations	 [299].	 Implementation	 of	 detailed	 COVID-19	 signalling	 models	 in	 the	
PysiBoSS	 framework	 may	 help	 to	 better	 understand	 complex	 dynamics	 of	 multi-scale	
processes	as	interactions	and	crosstalk	between	immune	system	components	and	the	host	
cell	in	COVID-19.	

4.3 Case study: RNA-Seq-based analysis of transcription factor (TF) activity 

In	 this	 case	 study,	 we	 combine	 computational	 approaches	 discussed	 above	 and	 present	
results	 derived	 from	 omics	 data	 analysis	 on	 the	 COVID-19	 Disease	 Maps	 diagrams.	 We	
measured	the	effect	of	COVID-19	at	the	transcription	factor	(TF)	activity	level	by	applying	
VIPER	[300]	combined	with	DoRothEA	regulons	[283]	on	RNA-seq	datasets	of	the	 	SARS-
CoV-2	infected	cell	line	[168].	Then,	we	mapped	the	TFs	normalised	enrichment	score	(NES)	
on	the	Interferon	type	I	signalling	pathway	diagram	of	the	COVID-19	Disease	Map	using	the	
SIF	files	generated	by	CaSQ	(see	Section	2.3).	As	highlighted	in	Figure	4,	our	manually	curated	
pathway	included	some	of	the	most	active	TFs	after	SARS-CoV-2	infection,	such	as	STAT1,	
STAT2	,	IRF9	and	NFKB1.	These	genes	are	well	known	to	be	involved	in	cytokine	signalling	
and	first	antiviral	response	[301,302].		Interestingly,	they	are	located	downstream	of	various	
viral	proteins	 (E,	S,	Nsp1,	Orf7a	and	Orf3a)	and	members	of	 the	MAPK	pathway	 (MAPK8,	
MAPK14	and	MAP3K7).		SARS-CoV-2	infection	is	known	to	promote	MAPK	activation,	which	
mediates	the	cellular	response	to	pathogenic	infection	and	promotes	the	production	of	pro-
inflammatory	cytokines	[281].		Altogether,	we	identified	signaling	events	that	may	capture	
the	mechanistic	response	of	the	human	cells	to	the	viral	infection.	
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Figure	 4:	 the	 Interferon	 type	 I	 signalling	 pathway	 diagram	 of	 the	 COVID-19	 Disease	 Map	
integrated	with	TF	activity	derived	from	transcriptomics	data	after	SARS-CoV-2	infection.	A	
zoom	was	applied	in	the	area	containing	the	most	active	TFs	(red	nodes)	after	infection.	Node	shapes:	
host	 genes	 (rectangles),	 host	 molecular	 complex	 (octagons),	 viral	 proteins	 (V	 shape),	 drugs	
(diamonds)	and	phenotypes	(triangles).		

4.4 Case study: RNA-seq-based analysis of pathway signalling  

In	this	use	case,	the	Hipathia	[289]	algorithm	was	used	to	calculate	the	level	of	activity	of	the	
subpathways	 from	 the	 COVID-19	 Apoptosis	 diagram,	 with	 the	 aim	 to	 evaluate	 whether	
COVID-19	Disease	Map	diagrams	can	be	used	for	pathway	modelling	approach.	To	this	end,	
a	public	RNA-seq	dataset	from	human	SARS-CoV-2	infected	lung	cells	(GEO	GSE147507)	was	
used.		First,	the	RNA-seq	gene	expression	data	was	normalized	with	the	Trimmed	mean	of	M	
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values	 (TMM)	normalization	 [303],	 then	rescaled	 to	range	 [0;1]	 for	 the	calculation	of	 the	
signal	and	normalised	using	quantile	normalisation	[304].	The	normalised	gene	expression	
values	were	used	to	calculate	the	level	of	activation	of	the	subpathways,	then	a	case/control	
contrast	with	a	Wilcoxon	test	was	used	to	assess	differences	in	signaling	activity	between	
the	two	conditions.	

	

 
Figure	5.	Representation	of	the	activation	level	of	Apoptosis	pathway	in	SARS-CoV-2	infected	
lung	 cell	 lines.	 The	 activation	 levels	 have	 been	 calculated	 using	 transcriptional	 data	 from	
GSE147507	 and	 Hipathia	mechanistic	 pathway	 analysis	 algorithm.	 Each	 node	 represents	 a	 gene	
(ellipse),	a	metabolite	(circle)	or	a	 function	(square).	The	pathway	is	composed	of	circuits	 from	a	
receptor	gene/metabolite	to	an	effector	gene/function,	with	interactions	simplified	to	inhibitions	or	
activations	(see	Section	2.3,	SIF	format).	Significantly	deregulated	circuits	are	highlighted	by	color	
arrows	(red:	activated	in	infected	cells).	The	color	of	the	node	corresponds	to	the	level	of	differential	
expression	of	 each	node	 in	 SARS-CoV-2	 infected	 cells	 vs	normal	 lung	 cells.	Blue:	 down-regulated	
elements,	red:	up-regulated	elements,	white:	elements	with	not	statistically	significant	differential	
expression.	Hipathia	calculates	the	overall	circuit	activation,	and	can	indicate	deregulated	interaction	
even	if	interacting	elements	are	not	individually	differentially	expressed.	

Results	 of	 the	 Apoptosis	 pathway	 analysis	 can	 be	 seen	 in	 Figure	 5	 and	 Supplementary	
Material	 5.	 Importantly,	 Hipathia	 calculates	 the	 overall	 activation	 of	 circuits	 (series	 of	
causally	 connected	 elements),	 and	 can	 indicate	deregulated	 interactions	 resulting	 from	a	
cumulative	effect,	even	if	interacting	elements	are	not	individually	differentially	expressed.	
When	discussing	differential	activation,	we	refer	to	the	circuits,	while	individual	elements	
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are	mentioned	as	differentially	expressed.	The	analysis	shows	an	overactivation	of	several	
circuits,	specifically	the	one	ending	in	the	effector	protein	BAX.	This	overactivation	seems	to	
be	led	by	the	overexpression	of	the	BAD	protein,	 inhibiting	BCL2-MCL1-BCL2L1	complex,	
which	 in	 turn	 inhibits	 BAX.	 Indeed,	 SARS-CoV-2	 infection	 can	 invoke	 caspase8-induced	
apoptosis	[305],	where	BAX	together	with	the	ripoptosome/caspase-8	complex,	may	act	as	
a	 pro-inflammatory	 checkpoint	 [306].	 This	 result	 is	 supported	 by	 studies	 in	 SARS-CoV,	
showing	 BAX	 overexpression	 following	 infection	 [121,307].	 Overall,	 our	 findings	
recapitulate	reported	outcomes.	With	evolving	contents	of	the	COVID-19	Disease	Map	and	
new	omics	data	becoming	available,	new	mechanism-based	hypotheses	can	be	formulated.	

4.5 Parallel efforts 

In	 the	COVID19	Disease	Map	community	we	strive	 to	produce	 interoperable	content	and	
seamless	 downstream	 analyses,	 translating	 the	 graphic	 representations	 of	 the	molecular	
mechanisms	to	executable	models.	We	are	also	aware	of		parallel	efforts	towards	modelling	
of	COVID-19	mechanisms,	which	we	plan	to	include	as	a	part	of	our	ecosystem.	These	efforts	
are	not	yet	directly	interoperable	with	the	COVID	19	Disease	Map	content	as	they	use	either	
different	notation	schemes	or	require	parameters	not	covered	by	our	biocuration	guidelines	
At	the	same	time,	they	provide	a	complementary	source	of	information	and	the	opportunity	
to	create	an	even	broader	toolset	to	tackle	the	pandemic.		

The	modified	Edinburgh	Pathway	Notation	 (mEPN)	scheme	 [308]	allows	 for	 the	detailed	
visual	encoding	of	molecular	processes	using	the	yEd	platform	but	diagrams	are	constructed	
in	such	a	way	as	to	also	function	as	Petri	nets.	These	can	then	be	used	directly	for	activity	
simulations	using	the	BioLayout	network	analysis	tool	[309].	The	current	mEPN	COVID-19	
model	details	the	replication	cycle	of	SARS-CoV-2,	integrated	with	a	range	of	host	defence	
systems,	e.g.	 type	1	 interferon	signalling,	TLR	receptors,	OAS	systems,	etc.	Simulations	of	
altered	gene	expression,	interactions	with	drug	targets	or	changes	to	interaction	kinetics	can	
be	 represented	 by	 introducing	 relevant	 transitions	 or	 nodes	 directly	 in	 the	 diagram.	
Currently,	models	constructed	in	mEPN	can	be	saved	as	SBGN.ml	files,	however	is	a	loss	of	
information	 and	 the	 features	 associated	 computationally	 are	 not	 compatible	 with	 other	
COVID-19	Disease	Map	diagrams	(not	modelled	as	Petri	nets).	

The	COVID-19	Disease	Map	can	support	dynamic	kinetic	modelling	to	quantify	the	behaviour	
of	 different	 pathways	 and	 evaluate	 the	 dynamic	 effects	 of	 perturbations.	 However,	 it	 is	
necessary	to	assign	a	kinetic	equation	or	a	rate	law	to	every	reaction	in	the	diagram	to	be	
analysed.	This	process	is	challenging	because	any	given	reaction	depends	on	its	cellular	and	
physiological	context,	which	makes	it	difficult	to	parameterise.	Software	support	of	tools	like	
SBMLsqueezer	[21]	and	reaction	kinetics	databases	like	SABIO-RK	[310]	are	indispensable	
in	 this	 effort.	 Nevertheless,	 the	 most	 critical	 factor	 is	 the	 availability	 of	 experimentally	
validated	parameters	that	can	be	reliably	applied	in	SARS-CoV-2	modelling	scenarios.		



29	

5.	Discussion	
The	COVID-19	Disease	Map	is	both	a	knowledgebase	and	a	computational	repository.	On	the	
one	 hand,	 it	 is	 a	 graphical,	 interactive	 representation	 of	 disease-relevant	 molecular	
mechanisms	 linking	 many	 knowledge	 sources.	 On	 the	 other	 hand,	 it	 is	 a	 computational	
resource	 of	 curated	 content	 for	 graph-based	 analyses	 and	 disease	 modelling.	 It	 offers	 a	
shared	mental	map	for	understanding	the	dynamic	nature	of	the	disease	at	the	molecular	
level	and	also	its	dynamic	propagation	at	a	systemic	level.	Thus,	it	provides	a	platform	for	a	
precise	 formulation	 of	 models,	 accurate	 data	 interpretation,	 monitoring	 of	 therapy,	 and	
potential	for	drug	repositioning.		

The	 COVID-19	 Disease	 Map	 spans	 three	 platforms	 and	 assembles	 diagrams	 describing	
molecular	mechanisms	of	COVID-19.	These	diagrams	are	grounded	in	the	relevant	published	
SARS-CoV-2	 research,	 completed	 where	 necessary	 by	mechanisms	 discovered	 in	 related	
beta-coronaviruses.	This	unprecedented	effort	of	community-driven	biocuration	resulted	in	
over	 forty	 diagrams	 with	 molecular	 resolution	 constructed	 since	 March	 2020.	 It	
demonstrates	that	expertise	in	biocuration,	clear	guidelines	and	text	mining	solutions	can	
accelerate	 the	 passage	 from	 the	 published	 findings	 to	 a	 meaningful	 mechanistic	
representation	of		knowledge.	The	COVID	19	Disease	Map	can	provide	the	tipping	point	to	
shortcut	research	data	generation	and	knowledge	accumulation,	creating	a	formalized	and	
standardized	streamline	of	well	defined	tasks.		

This	approach	to	an	emerging	pandemic	leveraged	the	capacity	and	expertise	of	an	entire	
swath	of	the	bioinformatics	community,	bringing	them	together	to	improve	the	way	we	build	
and	 share	 knowledge.	 By	 aligning	 our	 efforts,	 we	 strive	 to	 provide	 COVID-19	 specific	
pathway	models,	synchronize	content	with	similar	resources	and		encourage	discussion	and	
feedback	at	every	stage	of	the	curation	process.	With	new	results	published	every	day,	and	
with	the	active	engagement	of	the	research	community,	we	envision	the	COVID-19	Disease	
Map	as	an	evolving	and	continuously	updated	knowledge	base	whose	utility	spans	the	entire	
research	and	development	spectrum	from	basic	science	to	pharmaceutical	development	and	
personalized	medicine.	

Moreover,	 our	 approach	 includes	 a	 large-scale	 effort	 to	 create	 interoperable	 tools	 and	
seamless	 downstream	 analysis	 pipelines	 to	 boost	 the	 applicability	 of	 established	
methodologies	 to	 the	 COVID-19	 Disease	 Map	 content.	 This	 includes	 harmonisation	 of	
formats,	support	of	standards,	and	transparency	in	all	steps	to	ensure	wide	use	and		content	
reusability.	Preliminary	results	of	such	efforts	are	presented	in	the	case	studies.		

The	 COVID-19	 Disease	 Map	 Community	 is	 open	 and	 expanding	 as	 more	 people	 with	
complementary	expertise	join	forces.	In	the	longer	run,	the	map’s	content	will	help	to		find	
robust	signatures	related	to		SARS-CoV-2	predisposition	or	response	to	various	treatments,	
along	with	the	prioritization	of	new	potential	drug	targets	or	drug	candidates.	We	aim	to	
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provide	the	tools	to	deepen	our	understanding	of	the	mechanisms	driving	the	infection	and	
help	boost	drug	development	supported	with	testable	suggestions.	We	aim	at	building	armor	
for	new	treatments	to	prevent	new	waves	of	COVID-19	or	similar	pandemics.	
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