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Plasticity within the corticostriatal network is known to regulate the balance between 1 

behavioral flexibility and automaticity. Repeated training of an action has been shown to 2 

bias behavior towards automaticity, suggesting that training may trigger activity-dependent 3 

corticostriatal plasticity. However, surprisingly little is known about the natural activity 4 

patterns that may drive plasticity or when they occur during long-term training. Here we 5 

chronically monitored neural activity from primary motor cortex (M1) and the dorsolateral 6 

striatum (DLS) during both training and offline periods, i.e., time away from training 7 

including sleep, throughout the development of an automatic reaching action. We first show 8 

that blocking striatal NMDA receptors during offline periods prevents the emergence of 9 

behavioral consistency, a hallmark of automaticity. We then show that, throughout the 10 

development of an automatic reaching action, corticostriatal functional connectivity 11 

increases during offline periods. Such increases track the emergence of consistent behavior 12 

and predictable cross-area neural dynamics. We then identify sleep spindles during non-13 

REM sleep (NREM) as uniquely poised to mediate corticostriatal plasticity during offline 14 

periods. We show that sleep spindles are periods of maximal corticostriatal transmission 15 

within offline periods, that sleep spindles in post-training NREM reactivate neurons across 16 

areas, and that sleep-spindle modulation in post-training NREM is linked to observable 17 

changes in spiking relationships between individual pairs of M1 and DLS neurons. Our 18 

results indicate that offline periods, in general, and sleep spindles, specifically, play an 19 

important role in regulating behavioral flexibility through corticostriatal network plasticity.  20 
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Introduction 21 

 22 

Automaticity allows animals to capitalize on invariance in the environment through the 23 

development of actions that, while inflexible to changes, are performed highly consistently in 24 

response to a specific stimulus1–5. It has been demonstrated that the consistent production of an 25 

action emerges with repeated training over multiple days and is accompanied by coordinated 26 

neural activity across the corticostriatal network during action execution6–10. Importantly, the 27 

emergence of such actions has also been shown to require striatal NMDA receptor activation10–12, 28 

suggesting that cortical activity pattens that modulate the striatum may be important drivers of 29 

activity-dependent plasticity13,14 and the emergence of coordinated corticostriatal activity. 30 

However, surprisingly little is known about the natural activity patterns related to repeated task 31 

training that underlie the emergence of automaticity.  32 

 33 

One intriguing possibility is that time away from training - “offline” periods, including sleep - may 34 

play a role in modifying the corticostriatal network. This possibility is motivated by evidence that 35 

sleep-dependent reactivations of cortical neural ensembles active during task performance are 36 

essential for initial learning15–18. It is possible that the coordinated reactivations of both cortical 37 

and striatal ensembles modify the corticostriatal network and impact behavior during long-term 38 

training19–22. However, how cortical reactivation events engage downstream striatal ensembles 39 

remains unclear. Moreover, how such cross-area activity may precisely modify the corticostriatal 40 

network and impact network activity during subsequent awake behavior is unexplored.  41 

 42 

Currently, our understanding of how sleep impacts distributed brain networks is largely derived 43 

from the systems consolidation theory, where it has been shown that coordinated activity patterns 44 

across hippocampus and cortex lead to the formation of stable long-term memories in cortex that 45 

do not require the hippocampus23–25. Notably, whether sleep impacts the connectivity across 46 

hippocampus and cortex has not been established. Therefore, one possibility is that, in the 47 

corticostriatal network, we similarly observe coordinated cross-area activity patterns during sleep 48 

but do not find evidence for the modification of corticostriatal connectivity during offline periods. 49 

Alternatively, it is possible that we find evidence that cross-area activity patterns during sleep 50 

modify the connectivity between cortex and striatum and impact network activity during 51 

subsequent behavior.  52 

 53 

Here we establish that offline periods play an essential role in modifying the corticostriatal network 54 

during the emergence of automaticity and identify sleep spindles as uniquely poised to mediate 55 

such plasticity. We show that during post-training NREM, sleep-dependent reactivation events are 56 

coordinated across both cortex and striatum during sleep spindles and link such spindle-57 

modulation to changes in functional connectivity across the corticostriatal network. These results 58 

suggest that sleep plays an important role in modifying cross-area connectivity within offline 59 

periods and that the modulation of activity patterns during sleep may offer novel therapeutic targets 60 

for unlearning maladaptive habits26,27.  61 

 62 

Results 63 

 64 

To study how corticostriatal network activity evolves during long-term training, we implanted six 65 

adult rats with either microwire electrode arrays (n = 4) or custom built high-density silicon 66 
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probes28 (n = 2) in both primary motor cortex (M1) and the dorsolateral striatum (DLS), which 67 

receives the majority of M1 projections to the striatum29 (Figure 1a). Neural activity across 68 

regions was monitored as rats underwent ~eight days of reach-to-grasp task training (range: 5-14 69 

days, mean: 8.67 days). Each recording day consisted of a 2-3 hour pre-training block (“pre-70 

sleep”), a 100-150 trial training block, and a second 2-3 hour post-training block (“post-sleep”; 71 

Figure 1b; pre-sleep length: 157.2 ± 5.8 minutes, post-sleep length: 166.6 ± 6.3 minutes, mean ± 72 

SEM). The reach-to-grasp task requires rats to reach and grasp a food pellet through a small 73 

window present in their behavioral box. During pre- and post-sleep, behavioral states, i.e., wake, 74 

non-REM sleep (NREM), and REM sleep, were classified using standard methods based on 75 

cortical local field potential (LFP) power and movement measured from video or 76 

electromyography (EMG) activity30. 77 

 78 

Offline striatal NMDA receptor activation is required to develop a consistent behavior 79 

 80 

With repeated training on the reach-to-grasp task, animals developed a consistent reaching 81 

trajectory (Figure 1c) and reaching velocity profile (Figure 1d). Measuring the correlation 82 

between the mean reaching velocity profile on each day of training and the final day of training 83 

revealed that a consistent day-to-day reaching action emerged within the first eight days of training 84 

(Figure 1e). Such day-to-day invariance in skilled reaching is consistent with the emergence of 85 

automaticity1–3,31. To further test the automaticity of reaching after the emergence of invariant 86 

behavior, we moved the location of the food pellet such that reaches to the old pellet location 87 

would no longer be successful. If an animal were reaching flexibly, we would expect that reaching 88 

behavior would quickly adapt to the new position. Alternatively, if an animal were reaching 89 

automatically, we would expect that reaches would remain consistent despite decreased success. 90 

Consistent with automaticity, reach trajectories remained consistent and did not adapt to the new 91 

pellet position despite a large decrease in success rate (Supplemental Figure 1). We also 92 

examined whether such automaticity emerged with long-term training or existed at the start of 93 

training by testing whether animals could reach flexibility during the first two days of exposure to 94 

the task (n = 2 rats with no neural implant). These animals were able to reach to each of the two 95 

different pellet positions with comparable success rates (animal 1: 43% and 72% success rate; 96 

animals 2: 44% and 50% success rate, ~200 trials in each animal), indicating that their reaching 97 

behavior was flexible prior to repeated training. Altogether this indicated that our training 98 

paradigm led to the formation of inflexible and automatic reach-to-grasp behavior. 99 

 100 

To further test the link between offline plasticity in the corticostriatal network and increases in 101 

behavioral consistency, we trained a new cohort of animals (n = 6 rats) and infused 1µl of either 102 

NMDA receptor antagonist AP5 (5µg/µl) or saline into DLS immediately after training on each 103 

day (Figure 1f). This revealed that offline striatal NMDA activation was essential for the 104 

emergence of a consistent reaching behavior, as day-to-day changes in reach consistency were 105 

significantly decreased with AP5 infusions, compared to saline infusions or day-to-day 106 

improvements observed in the learning cohort (Figure 1g; n = 24 correlation change values with 107 

AP5 infusions, -0.03 ± 0.03 correlation value, n = 24 correlation change values with saline 108 

infusions, 0.07 ± 0.02 correlation value, n = 40 correlation change values in learning cohort, 0.04 109 

± 0.01 correlation value; AP5 infusions vs. saline infusions: t(23) = 2.8, P = 8×10-3, paired-sample 110 

t-test, AP5 infusions vs. learning cohort: t(62) = 2.3, P = 0.03, two-sample t-test, saline infusions 111 

vs. learning cohort: t(62) = 1.3, P = 0.20, two-sample t-test). Importantly, task engagement, as 112 
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measured by reaction time from trial start to reach, did not differ for trials on subsequent days after 113 

AP5 or saline infusions (AP5: 218.2 ± 3.2ms, saline: 222.4 ± 3.0ms, t(5198) = -0.96, P = 0.34, 114 

two-sample t-test). Altogether, these results were consistent with the notion that offline plasticity 115 

in the corticostriatal network following training is critical for the emergence of automaticity.  116 

 117 

Corticostriatal functional connectivity increases during offline periods  118 

 119 

To measure long-term changes in corticostriatal functional connectivity during the emergence of 120 

automaticity, we measured LFP coherence across individual pairs of M1 and DLS electrodes. LFP 121 

signals can be stably recorded across multiple days allowing LFP coherence to provide a stable 122 

long-term measure of multi-region connectivity32,33. Specifically, within the corticostriatal 123 

network, theta coherence (4-8Hz) has been previously shown to reflect coordinated population 124 

spiking activity8,9,34. Therefore, we measured 4-8Hz LFP coherence during pre- and post-sleep on 125 

each day of training to determine when corticostriatal functional connectivity changed during long-126 

term training (Figure 2a). LFP coherence was calculated specifically during NREM to control for 127 

any differences in the time spent in each behavioral state during pre- and post-sleep. Common-128 

mode referencing was applied, separately in each region, to decrease common noise and minimize 129 

volume conduction8. We found that there was a significant correlation between each day’s mean 130 

4-8Hz LFP coherence across all channel pairs and reach velocity profile correlation (r = 0.44, P = 131 

7×10−3, Pearson’s r), indicating that offline LFP coherence reflects changes in corticostriatal 132 

functional connectivity that are related to the emergence of a consistent behavior. 133 

 134 

We next sought to determine whether LFP coherence increased during training or offline periods. 135 

To do this, we specifically examined LFP channel pairs that increased in coherence from day one 136 

to day eight (33% of pairs increased, 17% decreased, and 50% did not change; increase or decrease 137 

defined as a change in coherence of at least 0.25). Remarkably, within the subset of channels that 138 

showed training-related increases in coherence over learning, increases occurred largely offline, 139 

i.e., between each day’s post-sleep and the next day’s pre-sleep, rather than online during training, 140 

i.e., between pre- and post-sleep on the same day (Figure 2b&c). More specifically, the 141 

distribution of online LFP coherence changes was not significantly different than zero, while the 142 

distribution of offline LFP coherence changes was skewed toward larger increases (Figure 2d; 143 

online LFP coherence changes: t(422) = 1.2, P = 0.23, offline LFP coherence changes: t(422) = 144 

18.8, P = 5×10−57, one-sample t-test). Importantly, the subset of channels that showed training-145 

related increases had a close relationship to the emergence of consistent behavior (Figure 2e; r = 146 

0.73, P = 4×10−7, Pearson’s r), providing evidence that offline increases in corticostriatal 147 

functional connectivity are relevant to the consistency of behavior during the emergence of 148 

automaticity. 149 

 150 

Offline increases in functional connectivity predict the emergence of low-dimensional cross-151 

area neural dynamics during behavior 152 

 153 

We next examined how offline increases in corticostriatal functional connectivity may impact 154 

corticostriatal network activity during subsequent reach-to-grasp performance. We extracted low-155 

dimensional neural trajectory representations of DLS spiking activity during reaching using 156 

principle components analysis (PCA). We then examined the evolution of how spiking activity in 157 

M1 could predict DLS neural trajectories over the course of training (Figure 3a). We found that 158 
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the ability to predict DLS neural trajectories during reaching from M1 spiking activity increased 159 

with training, while the ability to predict the trajectory representations of DLS activity during a 160 

baseline, non-reaching, period did not significantly change (Figure 3b; reach activity: first two 161 

days of training: 0.15 ± 0.05 Pearson’s r, last two days of training: 0.46 ± 0.05 Pearson’s r, t(30) 162 

= -4.4, P = 1×10−4, two-sample t-test; baseline activity: first two days of training: 0.03 ± 0.02 163 

Pearson’s r, last two days of training: 0.01 ± 0.03 Pearson’s r, t(30) = 1.0, P = 0.30, two-sample 164 

t-test). Notably, the ability to predict DLS neural trajectories during reaching from M1 spiking 165 

activity was significantly correlated to the mean 4-8Hz LFP coherence measured offline on each 166 

day of training (Figure 3c), indicating that offline increases in LFP coherence track the emergence 167 

of predictable cross-area dynamics during subsequent reach-to-grasp performance. 168 

 169 

Corticostriatal transmission strength within offline periods is maximal during sleep spindles 170 

in NREM 171 

 172 

Given the evidence that offline periods are relevant for changes in corticostriatal functional 173 

connectivity, we next sought to identify the activity patterns that may be responsible for driving 174 

such plasticity across M1 and DLS. To do this, we first examined how corticostriatal transmission 175 

strength, i.e., the degree to which M1 neural activity drives DLS activity, differed across 176 

behavioral states during offline periods (Figure 4a). To measure this, we characterized putative 177 

monosynaptically connected pairs of M1 and DLS units (n = 1,100 M1 and 579 DLS units) by 178 

determining whether there was a significant peak in the cross correlation of their spiking activity 179 

at the short-latency time lag consistent with the conduction and synaptic delays between M1 and 180 

DLS (~6ms time lag from M1 to DLS activity9; Figure 4b; 3,969/10,286 M1 and DLS unit pairs 181 

were classified as putatively connected; Supplemental Figure 2a&b). We then compared the 182 

short-latency cross correlation magnitude (1-10ms time lag) for the population of putatively 183 

connected M1 and DLS pairs across behavioral states. To account for differences in firing rates 184 

across behavioral states (Supplemental Figure 2c&d), we normalized each pair’s cross 185 

correlation by the mean cross correlation value from 50-100ms time lag, where no consistent 186 

spiking relationship is expected between putatively connected pairs of M1 and DLS units. This 187 

revealed that corticostriatal transmission strength was maximal during NREM, compared to REM 188 

or wake (Figure 4c & Supplemental Figure 3a&b).  189 

 190 

Given the heterogeneous nature of NREM activity, we next explored the dynamics of 191 

corticostriatal transmission within NREM. We specifically detected NREM rhythms in M1 that 192 

have been previously related to activity-dependent plasticity in cortex, i.e., sleep spindles, slow 193 

oscillations, and delta waves18,35–37, and examined whether activity in DLS was also modulated 194 

during these rhythms (Figure 4d). We found that both LFP signals and spiking in DLS were 195 

significantly modulated during slow oscillations, delta waves, and sleep spindles detected in M1 196 

(Figure 4e&f; Supplemental Figure 4). To compare corticostriatal transmission strength during 197 

these rhythms, we measured the short-latency cross correlation magnitude for the population of 198 

putatively connected M1 and DLS pairs using the spiking activity during each sleep rhythm. 199 

Importantly, we applied a previously established normalization method to isolate and subtract off 200 

the influence of firing rate changes or LFP phase-locking differences across NREM rhythms on 201 

cross correlations38. This revealed that sleep spindles were unique periods of boosted corticostriatal 202 

transmission strength, compared to slow oscillations or delta waves (Figure 4g & Supplemental 203 

Figure 3c&d). Altogether, this indicated that sleep spindles during NREM may be particularly 204 
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relevant periods for activity-dependent plasticity within the corticostriatal network, given the high 205 

transmission of activity from M1 to DLS. 206 

 207 

Striatal reactivations during sleep spindles reflect cortical input 208 

 209 

We next assessed whether sleep spindles, or other NREM rhythms, were significant predictors of 210 

day-to-day changes in behavioral consistency. We found that sleep spindle density (events/minute) 211 

during post-sleep, but not pre-sleep, was a significant predictor of day-to-day changes in reaching 212 

consistency (pre-sleep sleep spindles: r = 0.07, P = 0.70, post-sleep sleep spindles: r = 0.38, P = 213 

0.01, Pearson’s r). Neither delta waves nor slow oscillations were significantly predictive of day-214 

to-day changes in reaching consistency (pre-sleep delta waves: r = 0.02, P = 0.87, post-sleep delta 215 

waves: r = 0.03, P = 0.83, pre-sleep slow oscillations: r = -0.11, P = 0.51, post-sleep slow 216 

oscillations: r = -0.08, P = 0.60, Pearson’s r). Given the evidence that corticostriatal transmission 217 

is boosted during sleep spindles, a possible explanation for the unique relationship between post-218 

training sleep spindle density and day-to-day increases in behavioral consistency is that sleep 219 

spindles drive activity-dependent corticostriatal plasticity that impacts behavior. If this were the 220 

case, we would expect relevant M1 and DLS neural populations to be preferentially engaged 221 

during sleep spindles after training. In fact, we found that reach modulated (RM) M1 units, 222 

characterized by a significant modulation of activity during the reaching action, were significantly 223 

more modulated during sleep spindles after training, while non-RM M1 units did not significantly 224 

change in modulation from pre- to post-sleep (Figure 5a&b; RM M1 units: P = 0.02, non-RM M1 225 

units: P = 0.75, two-sample Kolmogorov–Smirnov test between distributions from pre- and post-226 

sleep, followed by a shift test to assess how quartiles of the distributions differed; P values for the 227 

rest of Figure 3 reflect these statistical tests). 228 

 229 

How does this then affect downstream neural activity during sleep spindles in DLS? Surprisingly, 230 

both RM and non-RM DLS unit populations were significantly more modulated during sleep 231 

spindles after training (Figure 5c&d; RM DLS units: P = 8×10-3, non-RM DLS units: P = 2×10-232 
3). One possibility is that this occurs because DLS activity during sleep spindles is driven by M1 233 

input, rather than strictly reflecting reach modulation, as is the case for M1 neurons. Consistent 234 

with this, we were able to separate DLS unit populations that increased or did not increase in sleep 235 

spindle modulation after training based on putative connectivity with M1 units (Figure 5e&f; RM 236 

DLS units with strong RM M1 input: P = 1×10-3, RM DLS units with weak or no RM M1 input: 237 

P = 0.82, non-RM DLS units with strong RM M1 input: P = 3×10-3, non-RM DLS units with weak 238 

or no RM M1 input: P = 0.24; strong RM M1 input was defined as putative connectivity with three 239 

or more RM M1 units). In contrast, DLS units did not increase in modulation during either delta 240 

waves (Supplemental Figure 5) or slow oscillations (Supplemental Figure 6) after training. 241 

Altogether, this suggests that, while reactivations during sleep spindles reflect task modulation in 242 

M1, DLS reactivations reflect cortical input, suggesting a potential role for sleep spindles in 243 

reinforcing task-related corticostriatal connectivity, including novel connectivity such as 244 

projections from RM M1 units to previously non-RM DLS units. 245 

 246 

Sleep spindle modulation predicts offline changes in corticostriatal transmission strength 247 

 248 

We next sought to directly examine whether sleep spindle modulation following training was 249 

related to modifications of the corticostriatal network within offline periods. To measure 250 
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modifications of the corticostriatal network during offline periods, we calculated cross correlations 251 

of spiking activity across individual pairs of M1 and DLS units during the first and second half of 252 

each pre- and post-sleep period (Figure 6a-c). Cross correlations were generated specifically with 253 

spiking activity during NREM to control for any differences in time spent in each behavioral state. 254 

Consistent changes in the short-latency cross correlation magnitude from the first to second half 255 

of pre- or post-sleep would indicate a modification of corticostriatal transmission strength within 256 

the offline period. Given the evidence of reactivation during sleep spindles between RM M1 and 257 

putatively connected DLS units, we first specifically examined transmission strength changes 258 

within the pairs in this population that were significantly modulated to spindles (708/3,969 pairs 259 

in pre-sleep and 1,062/3,969 pairs in post-sleep). Strikingly, we observed an increase in 260 

corticostriatal transmission strength during post-sleep, but no significant change during pre-sleep 261 

(Figure 6d&e; pre-sleep: one-sample t-test: t(707) = -0.9, P = 0.37; post-sleep: one-sample t-test: 262 

t(1061) = 10.8, P = 6×10-26). Furthermore, increases in corticostriatal transmission strength across 263 

individual pairs of M1 and DLS units during post-sleep, but not pre-sleep, were correlated to the 264 

mean sleep spindle modulation of that pair (Figure 6f&g). Importantly, the amount of time spent 265 

in NREM was similar during pre- and post-sleep (Supplemental Figure 7). In contrast, 266 

transmission strength across RM M1 and putatively connected DLS unit pairs that were not 267 

significantly modulated to sleep spindles (1,164/3,969 pairs in pre-sleep and 989/3,967 pairs in 268 

post-sleep) did not change during either pre- or post-sleep and, within this population, changes in 269 

corticostriatal transmission strength across individual pairs of M1 and DLS units were not 270 

significantly correlated to the mean sleep spindle modulation of that pair (Supplemental Figure 271 

8). These results suggested that, following training, offline corticostriatal transmission strength 272 

changes are linked to sleep spindle modulation. 273 

 274 

The interaction between sleep spindles and slow oscillations impact the role of sleep spindles 275 

within the corticostriatal network 276 

 277 

To understand why changes in corticostriatal transmission strength occurred specifically in post-278 

sleep, but not pre-sleep, we examined the interaction between sleep spindles and slow oscillations, 279 

a relationship known to be relevant for sleep-dependent processing18,38,39. We found that the 280 

distribution of temporal proximity to preceding slow oscillations in post-sleep significantly 281 

differed from the distribution in pre-sleep, with slow oscillations in closer proximity to sleep 282 

spindles during post-sleep (Figure 7a; P=2×10−29, two-sample Kolmogorov–Smirnov test). We 283 

found that this close proximity of slow oscillations to sleep spindles increased firing rates during 284 

sleep spindles in both M1 and DLS (Figure 7b&c, M1 units: P = 0.02, DLS units: P = 0.02, two-285 

sample Kolmogorov–Smirnov tests, followed by a shift test to assess how quartiles of the 286 

distribution differed). Notably, the rate of sleep spindles within 500ms after a slow oscillation was 287 

correlated to the mean change in corticostriatal transmission strength across all pairs of M1 and 288 

DLS units during post-sleep (Figure 7d). This suggested that proximity to slow oscillations may 289 

be an important factor in whether sleep spindles drive plasticity. Altogether, our results provide 290 

evidence for offline plasticity within the corticostriatal network after training and that sleep 291 

spindles, and their interactions with slow oscillations, are important mediators of such plasticity.   292 
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Discussion 293 

 294 

Skilled behaviors exist in a continuum between being flexible - adapting quickly to changes in the 295 

environment - and automatic - inflexible to changes but cognitively efficient1–4. Plasticity within 296 

the corticostriatal network is thought to regulate the balance between flexibility and 297 

automaticity4,5,26. In this study, we study long-term training that resulted in automaticity, as 298 

evidenced by day-to-day invariance in reaching behavior that persisted even when the food pellet 299 

was moved such that reaches were no longer successful in retrieving the pellet. We show that, 300 

during such long-term training, corticostriatal functional connectivity increased during offline 301 

periods and provide evidence that sleep spindles uniquely engage the corticostriatal network to 302 

mediate such plasticity. 303 

 304 

Our results provide evidence that sleep plays an important role in modifying cross-area 305 

connectivity during learning. While coordinated cross-area reactivations during sleep have been 306 

reported across several brain networks19,40–45, how such coordinated activity patterns precisely 307 

shape the connectivity across brain regions remains largely unexplored (but see 19). For example, 308 

studies informing the systems consolidation theory have posited that coordinated activity patterns 309 

across the hippocampus and cortex during sleep drive intra-cortical plasticity23,25,46. However, it is 310 

not known whether sleep impacts hippocampal-cortical connectivity, despite evidence for a change 311 

in hippocampal-cortical coupling after learning47. Our results thus suggest that the systems 312 

consolidation theory may need to be broadened to consider a role for sleep in increasing the 313 

coupling between connected regions that can impact subsequent wake network activity and 314 

behavior. As evidence for cross-area reactivations in different brain networks continues to grow48, 315 

it will be important to consider how such activity patterns may impact both local and cross-area 316 

plasticity. 317 

 318 

Our measures of cross-area connectivity are based on the coordination of LFP signals and single 319 

unit spike timing across M1 and DLS. We observed a subset of both LFP electrodes and 320 

corticostriatal neuron pairs showing evidence of increased connectivity with training, indicating 321 

the selective strengthening of corticostriatal connectivity - but what is the neural basis for these 322 

changes? One possibility is that our functional measures of connectivity reflect changes in synaptic 323 

strength of M1 projections to the DLS. This is consistent with evidence for the strengthening of 324 

cortical inputs to the striatum with motor training49. An alternative possibility is that coordinated 325 

inputs to both M1 and DLS drive increased functional connectivity. We believe our results are 326 

most consistent with a physical change in synaptic strength, as we observed evidence of increased 327 

cross-area connectivity in two distinct states, NREM, reflected as increased LFP coherence, and 328 

awake task performance, reflected in the emergence of predictable cross-area dynamics. Future 329 

work is required to determine whether our observations are consistent with structural changes in 330 

synaptic strength. 331 

 332 

We also provide evidence that sleep spindles are uniquely poised to mediate the enhancement of 333 

corticostriatal coupling during the offline period following training. While sleep spindles have 334 

been previously suggested to be important for plasticity36,50, the precise link between sleep 335 

spindles, plasticity, and behavior has remained unclear. Here we also show that striatal NMDA 336 

activation during the offline periods following training is required for increases in behavioral 337 

consistency. This suggests that sleep spindles may be important drivers of corticostriatal plasticity 338 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.25.354282doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.25.354282
http://creativecommons.org/licenses/by-nd/4.0/


9 

 

through NMDA activation. This is consistent with work showing that corticostriatal plasticity is 339 

NMDA-dependent13,14, as well as in vitro work examining how sleep spindle activity patterns 340 

might drive plasticity50. Additionally, we provide evidence that the proximity of sleep spindles to 341 

preceding slow oscillations is an important regulator of plasticity, consistent with previous 342 

work18,39. As slow oscillations have been linked to NMDA receptor activation51, one intriguing 343 

possibility is that slow oscillations gate sleep spindle plasticity through the activation of NMDA 344 

receptors. 345 

 346 

Our results link offline corticostriatal plasticity to the emergence of predictable low-dimensional 347 

cross-area activity. It has been previously demonstrated that M1 exhibits consistent low-348 

dimensional population neural dynamics during consistently produced motor actions52. There is 349 

also growing evidence that subcortical regions such as the DLS are important for stabilizing 350 

cortical activity patterns and the emergence of consistent behaviors8,12. Consistent with this idea, 351 

task-related coordination of M1 and DLS activity emerges with skill acquisition8–10. Here we link 352 

offline increases in corticostriatal functional connectivity to the ability to predict low-dimensional 353 

population activity in DLS from M1 activity. This suggests a model in which consistent low-354 

dimensional neural dynamics emerge across the motor network with training and that motor 355 

network plasticity during offline periods is important for the emergence of such consistent cross-356 

area dynamics. 357 

 358 

Lastly, we link offline corticostriatal plasticity in the corticostriatal network to the emergence of 359 

fast and consistent reaching behavior, reflected in the invariance of day-to-day reaching velocity 360 

profile. This is consistent with a range of studies demonstrating that sleep benefits speed and 361 

consistency in motor tasks in humans53,54 and rodents37,55, as well as rodent brain-machine 362 

interface (BMI) tasks17,18. Therefore, our results suggest the possibility that a fundamental role of 363 

sleep is to modify the corticostriatal network to impact the consistency of behavior in a range of 364 

tasks. Further work is required to determine the precise role of offline corticostriatal plasticity in 365 

different contexts. One important avenue of research is to explore whether sleep can impact 366 

corticostriatal connectivity in the context of maladaptive automatic behaviors, such as addiction, 367 

that have been linked to the corticostriatal network26,56. Notably, there is evidence that the 368 

reactivation of a stored memory can make the memory temporarily labile27 and recent work has 369 

shown that the modulation of NREM rhythms can regulate modulate memory consolidation vs. 370 

forgetting18. Therefore, it will be informative to determine whether similar manipulations could be 371 

used in the context of maladaptive automatic behaviors to provide a therapeutic benefit.  372 
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Figure 1. Offline striatal NMDA receptor activation is required to develop a consistent 373 

behavior. a. Schematic displaying primary motor cortex (M1) and dorsolateral striatum (DLS) 374 

recording locations (left) and labeled M1 projections showing direct input to the DLS (right). b. 375 

Schematic showing each day’s recording blocks during long-term training. c. Individual reach 376 

trajectories in grey overlaid with mean reach trajectory across trials in red for each day of training 377 

in example animal. d. Average reach velocity profile in x and y dimensions for each day of training 378 

in example animal. e. Reach velocity profile correlation for first eight days of training for 379 

individual animals in grey overlaid with mean ± SEM across animals in black. f. Day-to-day 380 

evolution in reach velocity profile correlation with post-training DLS infusions of either AP5 or 381 

saline in example animal. g. Comparison of day-to-day changes in reach velocity profile 382 

correlation with post-training saline infusion, post-training AP5 infusion, or no infusion in learning 383 

cohort animals, showing specific decrease in day-to-day reach velocity profile correlation with 384 

post-training AP5 infusion. Individual day-to-day changes as grey dots overlaid with mean ± SEM 385 

across all day-to-day changes in color.  386 
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Figure 2. Corticostriatal functional connectivity increases during offline periods. a. 387 

Schematic depicting M1 and DLS electrode pairs with high 4-8Hz LFP coherence (>0.6 coherence 388 

value measured in NREM) during pre- and post-sleep on one day of training and pre-sleep on the 389 

next day of training, showing an increase in the number of high LFP coherence pairs occurring 390 

offline rather than online, in example animal. b. LFP coherence spectrums (measured in NREM) 391 

across example M1 and DLS electrode pair for pre- and post-sleep periods represented in panel a. 392 

showing an increase in 4-8Hz LFP coherence largely occurring offline rather than online. c. LFP 393 

coherence (4-8Hz measured in NREM) for each pre- and post-sleep period throughout learning for 394 

example M1 and DLS electrode pair, showing increases in coherence largely occurring offline 395 

rather than online, overlaid with reach velocity profile correlation values for each day of training. 396 

d. Comparison of distributions of online (left) and offline (right) changes in LFP coherence (4-397 

8Hz measured in NREM) averaged across training days for M1 and DLS electrode pairs across 398 

animals. e. Correlation between each day’s mean LFP coherence (mean 4-8Hz measured in NREM 399 

during both pre- and post-sleep) and reach velocity profile correlation value.  400 
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Figure 3. Offline increases in functional connectivity predict the emergence of low-401 

dimensional cross-area neural dynamics during behavior. a. Trial-averaged neural trajectory 402 

(PC1 and PC2) of DLS activity during reaching (one second before to one second after pellet 403 

touch) on day one (left) and day eight (right) of training in example animal, overlaid with 404 

prediction of DLS neural trajectory from M1 spiking activity. b. Ability to predict DLS neural 405 

trajectory (PC1 and PC2) during reaching and during a baseline, non-reaching, period from M1 406 

spiking activity on each day of training (mean ± SEM across animals). c. Correlation between each 407 

day’s mean LFP coherence (mean 4-8Hz measured in NREM during both pre- and post-sleep) and 408 

ability to predict DLS neural trajectory (PC1 and PC2) during reaching from M1 spiking activity.  409 
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Figure 4. Corticostriatal transmission strength within offline periods is maximal during sleep 410 

spindles in NREM. a. M1 local field potential (LFP) spectrogram and behavioral state detection 411 

from example session. b. Example M1 and DLS single unit sorting from high-density silicon probe 412 

(top) and cross correlation of spiking activity centered on DLS unit spiking for an example pair of 413 

M1 and DLS units showing a short-latency peak indicating putative monosynaptically connectivity 414 

(bottom). c. Comparison of normalized cross correlations of spiking activity from all putatively 415 

connected pairs of M1 and DLS units across behavioral states, showing that corticostriatal 416 

transmission strength is maximal in NREM (width of line represents mean ± SEM). d. Snippet of 417 

LFP and single unit spiking activity from M1 and DLS during NREM overlaid with detected 418 

NREM rhythms in M1. e. Mean LFP and spiking activity during slow oscillations, delta waves, 419 

and sleep spindles in both M1 and DLS in example animal (top) and percentage of M1 and DLS 420 

units across animals significantly phase locked to M1 LFP during each NREM rhythm 421 

(significance threshold of P = 0.05, Rayleigh test of uniformity, bottom). f. Comparison of firing 422 

rate modulation distributions for M1 (left) and DLS (right) units across animals during slow 423 

oscillations, delta waves, sleep spindles, and a baseline NREM period. g. Comparison of 424 

normalized cross correlations of spiking activity for all putatively connected pairs of M1 and DLS 425 

units across NREM rhythms, showing that corticostriatal transmission strength is maximal during 426 

sleep spindles (width of line represents mean ± SEM).   427 
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Figure 5. Striatal reactivations during sleep spindles reflect cortical input. a. Trial-averaged 428 

spiking activity during reaching for all reach modulated (RM) and non-RM M1 units across days 429 

and animals. b. Comparison of distributions of sleep spindle modulation during pre- and post-sleep 430 

for RM (top) and non-RM (bottom) M1 units, showing increased modulation from pre- to post-431 

sleep specifically in RM M1 units. c. Trial-averaged spiking activity during reaching for all reach 432 

modulated (RM) and non-RM DLS units across days and animals. d. Comparison of distributions 433 

of sleep spindle modulation during pre- and post-sleep for RM (top) and non-RM (bottom) DLS 434 

units, showing increased modulation from pre- to post-sleep in both RM and non-RM DLS units. 435 

e. Comparison of distributions of sleep spindle modulation during pre- and post-sleep for RM DLS 436 

units with strong RM M1 input (top) and weak or no RM M1 input (bottom), showing increased 437 

modulation from pre- to post-sleep specifically in RM DLS units with strong RM M1 input. f. 438 

Comparison of distributions of sleep spindle modulation during pre- and post-sleep for non-RM 439 

DLS units with strong RM M1 input (top) and weak or no RM M1 input (bottom), showing 440 

increased modulation from pre- to post-sleep specifically in non-RM DLS units with strong RM 441 

M1 input.  442 
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Figure 6. Sleep spindle modulation predicts offline changes in corticostriatal coupling. a. 443 

Schematic of NREM spiking activity snippets from example M1 and DLS units depicting the 444 

evolution of M1 and DLS spiking relationships from the first to second half of pre- (left) and post-445 

sleep (right). b. Cross correlations of spiking activity during NREM from example M1 and DLS 446 

unit pair during the first and second half of pre-sleep, showing no change in cross correlation 447 

magnitude. c. Same as b for post-sleep, showing an increase in short-latency cross correlation 448 

magnitude. d. Cross correlations of spiking activity during NREM for all pairs of RM M1 and 449 

putatively connected DLS units that are significantly modulated to sleep spindles during the first 450 

and second half of pre-sleep, showing no change in cross correlation magnitude (width of line 451 

represents mean ± SEM). e. Same as d for post-sleep, showing an increase in short-latency cross 452 

correlation magnitude. f. Correlation between change in short-latency cross correlation magnitude 453 

and mean sleep spindle modulation for all pairs of RM M1 and putatively connected DLS units 454 

that are significantly modulated to sleep spindles during pre-sleep. g. Same as f for post-sleep.455 
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Figure 7. The interaction between sleep spindles and slow oscillations impact the role of sleep 456 

spindles within the corticostriatal network. a. Distributions of the temporal proximity to 457 

preceding slow oscillations for all sleep spindles during pre- and post-sleep across days and 458 

animals. b. Firing rate across M1 units during sleep spindles with close proximity to slow 459 

oscillations (<0.5 seconds) and all other sleep spindles (width of line represents mean ± SEM). c. 460 

Comparison of distributions of peak firing rates for M1 (left) and DLS (right) units during sleep 461 

spindles with close proximity to slow oscillations (<0.5 seconds) and all other sleep spindles. d. 462 

Correlation between each days’ post-sleep density of sleep spindles in close proximity to slow 463 

oscillations (<0.5 seconds; normalized by subtracting the rate in pre-sleep and normalized within 464 

each animal by z-scoring across days) and mean change in short-latency cross correlation across 465 

all pairs of RM M1 and putatively connected DLS units that are significantly modulated to sleep 466 

spindles (normalized by subtracting the change in pre-sleep and normalized within each animal by 467 

z-scoring across days).  468 
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Supplemental Figure 1. Animals do not adapt quickly to new pellet position after long-term 469 

reach-to-grasp training. a. Reach trajectories from example session following reach-to-grasp 470 

task training paradigm, showing that reach trajectories with the pellet in the learned position or a 471 

new position are largely overlapping. b. Histogram of single-trial correlation values for individual 472 

reach trajectories to the mean reach trajectory for trials with the pellet in the learned pellet position 473 

or a new pellet position in first example animal (left; two-sample Kolmogorov–Smirnov test 474 

between distributions from trials with pellet in learned position and pellet in new position) and 475 

success rate in pellet retrieval for learned and new pellet positions (right). c. same as b for second 476 

example animal.  477 
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Supplemental Figure 2. Electrophysiology recordings from M1 and DLS a. Illustration of 478 

target electrode locations in M1 and DLS and dimensions of microwire electrode and silicon 479 

probes. b. Cross correlations of spiking activity across all pairs of putatively connected and not 480 

putatively connected pairs of M1 and DLS units (width of line represents mean ± SEM) and pie 481 

chart depicting percentage of all pairs that are classified as significantly connected. c. Comparison 482 

of firing rates in M1 across behavioral states, before and after training (1,100 M1 units; 3.4 ± 0.1 483 

spikes/second in pre NREM vs. 3.7 ± 0.1 spikes/second in post NREM, mean ± SEM, paired-484 

sample t-test: t(1099) = -6.8, P = 1×10-11; 4.2 ± 0.1 spikes/second in pre REM vs. 4.4 ± 0.1 485 

spikes/second in post REM, mean ± SEM, paired-sample t-test: t(1099) = -5.5, P = 6×10-8; 4.0 ± 486 

0.1 spikes/second in pre wake vs. 4.4 ± 0.1 spikes/second in post wake, mean ± SEM, paired-487 

sample t-test: t(1099) = -9.5, P = 1×10-20). d. Comparison of firing rates in DLS across behavioral 488 

states, before and after training (579 DLS units; 1.9 ± 0.1 spikes/second in pre NREM vs. 2.1 ± 489 

0.1 spikes/second in post NREM, mean ± SEM, paired-sample t-test: t(578) = -6.5, P = 1×10-10; 490 

2.5 ± 0.1 spikes/second in pre REM vs. 2.7 ± 0.1 spikes/second in post REM, mean ± SEM, paired-491 

sample t-test: t(578) = -5.5, P = 8×10-8; 2.4 ± 0.1 spikes/second in pre wake vs. 2.8 ± 0.1 492 

spikes/second in post wake, mean ± SEM, paired-sample t-test: t(578) = -6.8, P = 3×10-11).  493 
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Supplemental Figure 3. Corticostriatal transmission strength across behavioral states and 494 

NREM rhythms. a. Comparison of normalized cross correlations across behavioral states for all 495 

putatively connected pairs of M1 and DLS units in example animals implanted with either 496 

microwire electrode array (top) or high-density silicon probe (bottom), showing that corticostriatal 497 

transmission strength is maximal in NREM sleep (width of line represents mean ± SEM) b. 498 

Comparison of mean short-latency correlation magnitude (1-10ms time lag) across behavioral 499 

states, values from days for animals implanted with microwires in grey, silicon probes in red, and 500 

mean ± SEM across animals in black (n = 52 days across 7 rats; wake: 3.2*10-4 ± 0.3*10-4 501 

correlation value, REM: 2.7*10-4 ± 0.5*10-4 correlation value, NREM: 5.1*10-4 ± 0.4*10-4 502 

correlation value; wake vs. REM: t(51) = 1.8, P = 0.08, paired-sample t-test, REM vs. NREM: 503 

t(51) = -7.0, P = 6*10-9, paired-sample t-test, wake vs. NREM: t(51) = -7.7, P = 4×10-10, paired-504 

sample t-test). c. Comparison of normalized cross correlations across NREM rhythms for all 505 

putatively connected pairs of M1 and DLS units in example animals implanted with either 506 

microwire electrode array (top) or high-density silicon probe (bottom), showing that corticostriatal 507 

transmission strength is maximal during sleep spindles (width of line represents mean ± SEM). d. 508 

Comparison of mean short-latency correlation magnitude (1-10ms time lag) across NREM 509 

rhythms, values from days for animals implanted with microwires in grey, silicon probes in red, 510 

and mean ± SEM across animals in black (n = 52 days across 7 rats; sleep spindles: 9.9*10-4 ± 511 
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0.8*10-4 correlation value, delta waves: 7.5*10-4 ± 0.6*10-4 correlation value, slow oscillations: 512 

5.7*10-4 ± 1.7*10-4 correlation value; sleep spindles vs. slow oscillation: t(51) = 4.0, P = 2*10-4, 513 

paired-sample t-test, delta waves vs. slow oscillations: t(51) = 1.2, P = 0.22, paired-sample t-test, 514 

sleep spindles vs. delta waves: t(51) = 2.4, P = 0.01, paired-sample t-test).  515 
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Supplemental Figure 4. Corticostriatal modulation across NREM rhythms. a. Comparison of 516 

firing rate modulation distributions for M1 (left) and DLS (right) units during slow oscillations 517 

and a baseline NREM period (M1: P = 3*10-28, DLS: P = 6*10-10, two-sample Kolmogorov–518 

Smirnov test, followed by a shift test to assess how quartiles of the distribution differed). b. 519 

Comparison of firing rate modulation distributions for M1 (left) and DLS (right) units during delta 520 

waves and a baseline NREM period (M1: P = 1*10-16, DLS: P = 2*10-3, two-sample Kolmogorov–521 

Smirnov test, followed by a shift test to assess how quartiles of the distribution differed). c. 522 

Comparison of firing rate modulation distributions for M1 (left) and DLS (right) units during sleep 523 

spindles and a baseline NREM period (M1: P = 4*10-24, DLS: P = 2*10-4, two-sample 524 

Kolmogorov–Smirnov test, followed by a shift test to assess how quartiles of the distribution 525 

differed).  526 
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Supplemental Figure 5. Delta wave modulation change with training. a. Trial-averaged 527 

spiking activity during reaching for all reach modulated (RM) and non-RM M1 units across days 528 

and animals. b. Comparison of distributions of delta wave modulation during pre- and post-sleep 529 

for RM (top) and non-RM (bottom) M1 units (RM M1 units: P = 6×10-4, non-RM M1 units: P = 530 

0.40, two-sample Kolmogorov–Smirnov test between distributions from pre- and post-sleep, 531 

followed by a shift test to assess how quartiles of the distributions differed; P values for the rest 532 

of Supplemental Figure 5 legend reflect these statistical tests). c. Trial-averaged spiking activity 533 

during reaching for all reach modulated (RM) and non-RM DLS units across days and animals. d. 534 

Comparison of distributions of delta wave modulation during pre- and post-sleep for RM (top) and 535 

non-RM (bottom) DLS units (RM DLS units: P = 0.17, non-RM M1 units: P = 0.51). e. 536 

Comparison of distributions of delta wave modulation during pre- and post-sleep for RM DLS 537 

units with strong RM M1 input (top) and weak or no RM M1 input (bottom; RM DLS units with 538 

strong RM M1 input: P = 0.14, RM DLS units with weak or no RM M1 input: P = 0.72). f. 539 

Comparison of distributions of delta wave modulation during pre- and post-sleep for non-RM DLS 540 

units with strong RM M1 input (top) and weak or no RM M1 input (bottom; non-RM DLS units 541 

with strong RM M1 input: P = 0.85, non-RM DLS units with weak or no RM M1 input: P = 0.01).  542 
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Supplemental Figure 6. Slow oscillation modulation change with training. a. Trial-averaged 543 

spiking activity during reaching for all reach modulated (RM) and non-RM M1 units across days 544 

and animals. b. Comparison of distributions of slow oscillation modulation during pre- and post-545 

sleep for RM (top) and non-RM (bottom) M1 units (RM M1 units: P = 2×10-4, non-RM M1 units: 546 

P = 0.02, two-sample Kolmogorov–Smirnov test between distributions from pre- and post-sleep, 547 

followed by a shift test to assess how quartiles of the distributions differed; P values for the rest 548 

of Supplemental Figure 6 legend reflect these statistical tests). c. Trial-averaged spiking activity 549 

during reaching for all reach modulated (RM) and non-RM DLS units across days and animals. d. 550 

Comparison of distributions of slow oscillation modulation during pre- and post-sleep for RM 551 

(top) and non-RM (bottom) DLS units (RM DLS units: P = 0.28, non-RM M1 units: P = 0.44). e. 552 

Comparison of distributions of slow oscillation modulation during pre- and post-sleep for RM DLS 553 

units with strong RM M1 input (top) and weak or no RM M1 input (bottom; RM DLS units with 554 

strong RM M1 input: P = 0.27, RM DLS units with weak or no RM M1 input: P = 0.85). f. 555 

Comparison of distributions of slow oscillation modulation during pre- and post-sleep for non-RM 556 

DLS units with strong RM M1 input (top) and weak or no RM M1 input (bottom; non-RM DLS 557 

units with strong RM M1 input: P = 0.85, non-RM DLS units with weak or no RM M1 input: P = 558 

0.14).  559 
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Supplemental Figure 7. Comparison of time spent in each behavioral state during pre- and 560 

post-sleep. a. Comparison of durations spent in each behavioral state during pre- and post-sleep 561 

across days and animals (NREM: 41.2 ± 2.4 minutes of pre NREM vs. 44.3 ± 2.5 minutes of post 562 

NREM, mean ± SEM, paired-sample t-test: t(51) = -1.03, P = 0.31; REM: 17.2 ± 1.4 minutes of 563 

pre REM vs. 16.3 ± 1.4 minutes of post REM, mean ± SEM, paired-sample t-test: t(51) = 0.56, P 564 

= 0.58; wake: 98.8 ± 3.6 minutes of pre wake vs. 106.0 ± 4.3 minutes of post wake, mean ± SEM, 565 

paired-sample t-test: t(51) = -1.5, P = 0.14).  566 
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Supplemental Figure 8. Corticostriatal transmission strength changes for non-sleep spindle 567 

modulated pairs of M1 and DLS units. a. Cross correlations of spiking activity during NREM 568 

for all pairs of RM M1 and putatively connected DLS units that are not significantly modulated to 569 

sleep spindles during the first and second half of pre-sleep (left) and post-sleep (right), showing 570 

no changes in cross correlation magnitude (width of line represents mean ± SEM) b. Correlation 571 

between change in short-latency cross correlation magnitude and mean sleep spindle modulation 572 

for all pairs of RM M1 and putatively connected DLS units that are not significantly modulated to 573 

sleep spindles during pre-sleep (left) and post-sleep (right).   574 
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Methods 575 

 576 

Animal care and surgery (Supplemental Figure 2). This study was performed in strict 577 

accordance with guidelines from the USDA Animal Welfare Act and United States Public Health 578 

Science Policy. Procedures were in accordance with protocols approved by the Institutional 579 

Animal Care and Use Committee at the San Francisco Veterans Affairs Medical Center. This study 580 

consists of experiments performed with fourteen male Long-Evans rats (approximately 12-16 581 

weeks old), housed under controlled temperature and a 12-h light/12-h dark cycle with lights on at 582 

6:00 a.m. Animal experiments were performed during the light period. All surgical procedures 583 

were performed using sterile techniques under 2–4% isoflurane. Six animals were implanted with 584 

either microwire electrodes (n = 4 animals; 32 or 64 channel 33µm diameter Tungsten microwire 585 

arrays with ZIF-clip adapter; Tucker-Davis Technology) or high-density silicon probes (n = 2 586 

animals; 256 channel custom-built silicon probes) targeted to both the forelimb area of M1, 587 

centered at 3.5mm lateral and 0.5mm anterior to bregma and implanted in layer V at a depth of 588 

1.5mm, and the DLS, centered at 4mm lateral and 0.5mm anterior to bregma and implanted at a 589 

depth of 4mm. Six additional animals were implanted with infusion cannulas (PlasticsOne; 26Ga) 590 

targeted to the DLS. Surgery involved exposure and cleaning of the skull, preparation of the skull 591 

surface (using cyanoacrylate), and implantation of skull screws for overall headstage stability. In 592 

the animals implanted with neural probes, a reference screw was implanted posterior to lambda, 593 

contralateral to the neural recordings and a ground screw was implanted posterior to lambda, 594 

ipsilateral to the neural recordings. Craniotomy and durectomy were then performed, followed by 595 

implantation of neural probes or infusion cannulas and securing of the implant with C&B 596 

Metabond (Parkell, Product #S380) and Duralay dental acrylic (Darby, Product #8830630). In four 597 

of the animals implanted with neural probes, the forearm was also implanted with a pair of twisted 598 

electromyography (EMG) wires (0.007” single-stranded, Teflon-coated, stainless steel wire; A-M 599 

Systems) with a hardened epoxy ball (J-B Weld Company) at one end preceded by 1–2mm of 600 

uncoated wire under the ball. Wires were inserted into the muscle belly and pulled through until 601 

the ball came to rest on the belly. EMG wires were braided, tunneled under the skin to a scalp 602 

incision and soldered into an electrode interface board (ZCA-EIB32; Tucker-Davis Technology). 603 

The postoperative recovery regimen included administration of buprenorphine at 0.02mg/kg and 604 

meloxicam at 0.2mg/kg. Dexamethasone at 0.5mg/kg and trimethoprim/sulfadiazine at 15mg/kg 605 

were also administered postoperatively for 5 days. All animals recovered for at least one week 606 

before the start of behavioral training. 607 

 608 

In vivo electrophysiology. Units, local field potentials (LFP), and EMG activity were recorded 609 

using an RZ2 system (Tucker-Davis Technologies). For the microwire animals, spike data was 610 

sampled at 24,414Hz and LFP/EMG data at 1,017Hz. To record spiking data in these animals, 611 

thresholds for spiking activity were set online using a standard deviation of 4.5 (calculated over a 612 

1-min baseline period using the RZ2 system). Waveforms and timestamps were stored for any 613 

event that crossed that threshold. Spike sorting was then performed using Offline Sorter v.4.3.0 614 

(Plexon) with a principal component analysis-based clustering method followed by manual 615 

inspection. Spikes were sorted separately for each day, combining pre-sleep, training, and post-616 

sleep sessions. We accepted units based on waveform shape, clear cluster boundaries in principal 617 

component space and 99.5% of detected events with an ISI>2ms. For silicon probe animals, signals 618 

were recorded at 24,414Hz. In these animals, spike times and waveforms were detected from the 619 

broadband signal using Offline Sorter v.4.3.0 (Plexon). Spike waveforms were then sorted using 620 
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Kilosort2 (https://github.com/MouseLand/Kilosort2). We accepted units based on manual 621 

inspection using Phy (https://github.com/cortex-lab/phy) and 99.5% of detected events with an 622 

ISI>2ms.  623 

 624 

Viral injection (Figure 1a). To label anterograde projections in M1 we injected 750nl of AAV8-625 

hsyn-JAWs-KGC-GFP-ER2 virus into two sites (1.5mm anterior, 2.7mm lateral to bregma, at a 626 

depth of 1.4mm and 0.5 posterior, 3.5mm lateral to bregma, at a depth of 1.4mm). Two weeks after 627 

injection rats were anesthetized and transcardially perfused with 0.9% sodium chloride, followed 628 

by 4% formaldehyde. The harvested brains were post-fixed for 24 h and immersed in 20% sucrose 629 

for 2 days. Coronal cryostat sections (40-μm thickness) were then mounted and imaged with a 630 

fluorescent microscope. 631 

 632 

Reach-to-grasp task (Figure 1; Supplemental Figure 1). Rats naïve to any motor tasks were 633 

first tested for forelimb preference. This involved presenting approximately ten food pellets to the 634 

animal and observing which forelimb was most often used to reach for the pellet. Rats then 635 

underwent surgery for either neural probe or cannula implantation in the hemisphere contralateral 636 

to preferred paw. Following the one-week recovery period, rats were trained using an automated 637 

reach-box, controlled by custom MATLAB scripts and an Arduino microcontroller. This setup 638 

requires minimal user intervention, as described previously (Wong, et al., 2015). Each trial 639 

consisted of a pellet dispensed on the pellet tray followed by an alerting beep indicating that the 640 

trial was beginning, then the door would open. Animals had to reach, grasp, and retrieve the pellet. 641 

A real-time ‘pellet detector’ using an infrared sensor centered over the pellet was used to determine 642 

when the pellet was moved, indicating the trial was over and then the door was closed. All trials 643 

were captured by a camera placed on the side of the behavioral box (n = 2 animals monitored with 644 

a Microsoft LifeCam at 30 frames/second; n = 12 animals monitored with a Basler ace acA640-645 

750uc at 75 frames/second). For animals implanted with neural probes, each animal underwent 646 

five to fourteen days of training (~100–150 trials per day). For the infusion cannula implanted 647 

animals, each animal underwent ten days of training (100 trials per day). Rats had fifteen seconds 648 

to complete each trial, and trials were separated by a ten second inter-trial-interval. Reach 649 

trajectories were captured from video using DeepLabCut (Mathis, et al., 2018) to track the center 650 

of the rat’s paw as well as the food pellet. Reach trajectories consisted of the paw trajectory from 651 

500ms before to 500ms after “pellet touch”, which was classified as the frame in which the paw 652 

was closest to the pellet, before the pellet was displaced off the pellet holder. Only trials in which 653 

the pellet was displaced off the pellet holder were considered. We assessed behavioral consistency 654 

throughout training in both neural probe and cannula implanted animals by calculating the 655 

correlation between the mean velocity profile of reaches on each day of training and the mean 656 

velocity profile of reaches on the last day of training. These correlations were computed separately 657 

for the x and y dimensions and then averaged. At the end of training, we tested whether reaching 658 

behavior was automatic in two of the neural probe implanted animals by performing a 100 trial 659 

training session on the subsequent day with the pellet moved to a new location (~10mm lateral 660 

from original pellet position) and observing whether the animal’s reaching behavior changed. We 661 

performed a similar experiment for two additional animals naïve to the task and without neural 662 

implant to test whether reaching was flexible or automatic at the start of training. These animals 663 

performed ~200 trials on two consecutive days. To calculate single-trial reach trajectory 664 

correlations, we first generated a mean trajectory in each dimension (x and y) for trials with the 665 

pellet in the learned position and trials with the pellet in the new position (mean trajectories were 666 
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computed separately for each pellet position). Single trial trajectories were then correlated to the 667 

mean trajectory in each dimension and then averaged across the x and y dimension. To compare 668 

across pellet positions, we considered reach trajectories up to pellet touch (from 500ms before 669 

pellet touch to pellet touch), as automatic reaches with the pellet in the new position often missed 670 

the pellet and pellet holder completely.  671 

 672 

DLS infusions (Figure 1). To test if blocking the activation of striatal NMDA receptors during 673 

the offline period after training disrupts increases in behavioral consistency, we infused either 1ul 674 

of saline or NMDA blocker AP5 (5µg/µl) at an infusion rate 200nl/minute into the DLS 675 

immediately following training in six animals for ten consecutive days. In the first five days of 676 

training, we infused three rats with AP5 and three rats with saline, for the second five days, we 677 

switched the infusion, i.e., animals that received AP5 in the first five days, received saline for the 678 

second five days, and vice-versa.  679 

 680 

Sleep classification (Figure 4a; Supplemental Figure 7). All neural data analyses were 681 

conducted using MATLAB 2019a (MathWorks) and functions from the EEGLAB 682 

(http://sccn.ucsd.edu/eeglab/) and Chronux (http://chronux.org/) toolboxes. Sleep was classified 683 

using cortical LFP signals and movement measured by video or EMG activity. LFP was 684 

preprocessed by artifact rejection, including manual rejection of noisy channels and z-scoring of 685 

each channel across the entire recording session. A mean LFP channel was then generated in M1 686 

for sleep classification by averaging across all M1 channels. This mean M1 LFP channel was then 687 

segmented into non-overlapping 10 second windows. In each window the power spectral density 688 

was computed using the Chronux function mtspecgramc and then averaged over the delta (1–4Hz) 689 

and theta (5-10Hz/2-15Hz) frequency bands. Both LFP power bands were then normalized by z-690 

scoring. Epochs with high delta power (>0 z-scored delta) and no movement were classified as 691 

NREM, epochs with high theta and low delta power (>0 z-scored theta and <0 z-scored delta) were 692 

classified as REM sleep, and other epochs were classified as wake (Watson, et al., 2016). All 693 

consecutive NREM or REM epochs that were less than 30 seconds long (3 consecutive epochs) 694 

were reclassified as wake. 695 

 696 

Assessing corticostriatal functional connectivity using LFP coherence (Figure 2; Figure 3). 697 

To measure corticostriatal functional connectivity across days, we measured LFP coherence during 698 

NREM across all M1 and DLS electrode pairs on each pre- and post-sleep session using chronux 699 

function cohgramc. For these analyses, we first applied common-mode referencing using the 700 

median signal, i.e., at every time-point, the median signal across all channels in a region was 701 

calculated and subtracted from every channel to decrease common noise and minimize volume 702 

conduction. Common-mode referencing was performed independently for the channels in each 703 

region, i.e., M1 and DLS. We classified “high coherence LFP pairs” as electrodes with a mean 4-704 

8Hz coherence >0.6. To compare online changes in LFP coherence (from pre- to post-sleep on the 705 

same day) to offline changes in LFP coherence (from post-sleep on one day to pre-sleep on the 706 

next day), we computed a single value per pair for both online and offline coherence changes by 707 

averaging values across days of training.  708 

 709 

Predicting cross-area activity (Figure 3). To assess cross-area dynamics, we first extracted low-710 

dimensional representations of DLS activity by performing principal component analysis (PCA) 711 

on trial-averaged activity of DLS neurons time-locked to pellet touch and binned at 100ms, 712 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.25.354282doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.25.354282
http://creativecommons.org/licenses/by-nd/4.0/


33 

 

specifically for time bins from five seconds before to five seconds after pellet touch. Principal 713 

components were computed using MATLAB function pca. Spiking activity from five seconds 714 

before to five seconds after pellet touch and binned at 100ms was then projected onto each of the 715 

first two components to generate low-dimensional neural trajectory representations of population 716 

activity in DLS. We then fit a linear regression model to predict DLS reach-related neural 717 

trajectories from one second before to one second after pellet touch from single unit spiking 718 

activity in M1. A separate model was used to predict each principle component, using MATLAB 719 

function fitlm and five-fold cross validation. For each time bin of the neural trajectory, the 720 

preceding 500ms of spiking activity for all M1 units, binned at 100ms, were used as predictors. A 721 

model was also fit on baseline, non-reaching, neural trajectories, calculated by projecting DLS 722 

spiking activity from five seconds to four second before pellet touch onto each of the first two 723 

computed principal components. The predictive ability of these models was assessed by 724 

calculating the correlation between the actual neural trajectories and the predicted trajectories. 725 

 726 

NREM rhythm detection (Figure 4d). The NREM rhythm detection applied here is based on an 727 

algorithm we have developed previously (Kim et al., 2019, Silversmith, et al., 2020). A mean LFP 728 

channel was generated in M1 for NREM rhythm classification by averaging across all channels 729 

(same as used for sleep classification). To detect sleep spindles, this mean signal was filtered in 730 

the spindle band (10 – 16 Hz) using a zero-phase shifted, third order Butterworth filter. A smoothed 731 

envelope was calculated by computing the magnitude of the Hilbert transform of this signal then 732 

convolving it with a Gaussian window. Next, we determined two upper thresholds for spindle 733 

detection based on the mean and standard deviation (s.d.) of the spindle band envelope during 734 

NREM. Epochs in which the spindle envelope exceeded 2.5 s.d. above the mean for at least one 735 

sample and the spindle power exceeded 1.5 s.d. above the mean for at least 500ms were detected 736 

as spindles. Then, spindles that were sufficiently close in time (<300 ms) were combined. To detect 737 

slow oscillations and delta waves, the mean M1 signal was filtered in a low frequency band (2nd 738 

order, zero phase shifted, high pass Butterworth filter with a cutoff at 0.1Hz followed by a 5th 739 

order, zero phase shifted, low pass Butterworth filter with a cutoff at 4Hz). Next, all positive-to-740 

negative zero crossings during NREM were identified, along with the previous peaks, the 741 

following troughs, and the surrounding negative-to-positive zero crossings. Each identified epoch 742 

was considered a slow oscillation if the peak was in the top 15% of peaks, the trough was in the 743 

top 40% of troughs and the time between the negative-to-positive zero crossings was greater than 744 

300ms but did not exceed 1 second. Each identified epoch was considered a delta wave if the peak 745 

was in the bottom 85% of peaks, the trough was in the top 40% of troughs and the time between 746 

the negative-to-positive zero crossings was greater than 250ms. 747 

 748 

Characterizing putatively monosynaptically connected M1 and DLS units (Figure 4b; 749 

Supplemental Figure 2b). We characterized putatively monosynaptically connected pairs of M1 750 

and DLS units by calculating the cross correlation of spiking activity binned at 1ms during the first 751 

five minutes of NREM during pre- and post-sleep concatenated together (10 minutes total) on each 752 

day of training for each pair of M1 and DLS units. We then measured the mean value of the short-753 

latency cross correlation for each pair (1-10ms time lag centered on DLS spiking; consistent with 754 

the conduction and synaptic delay between M1 and DLS; Koralek et al., 2013) and compared this 755 

value to a shuffled distribution generated by shuffling DLS spike time bins and recalculating the 756 

cross correlation 1,000 times. If the non-shuffled short-latency correlation magnitude was greater 757 

than 95% of the shuffled distribution values, we classified the pair of units as putatively connected. 758 
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 759 

Comparing corticostriatal transmission strength across behavioral states (Figure 4c; 760 

Supplemental Figure 3a&b). To compare corticostriatal transmission strength across behavioral 761 

states, we generated a cross correlation of spiking activity binned at 1ms from each behavioral 762 

state (NREM, REM, and wake) for all putatively connected pairs of M1 and DLS units, during 763 

both pre- and post-sleep. To account for firing rate differences across states, each pair’s cross 764 

correlation was normalized by subtracting the mean cross correlation values from 100-150ms time 765 

lag. 766 

 767 

Comparing corticostriatal transmission strength across NREM rhythms (Figure 4g; 768 

Supplemental Figure 3c&d). To compare corticostriatal transmission strength across NREM 769 

rhythms, we generated a cross correlation of spiking activity binned at 1ms from each NREM 770 

rhythm (sleep spindles, delta waves, and slow oscillations) for all putatively connected pairs of 771 

M1 and DLS units. Spiking during sleep spindles consisted of spiking during the one second 772 

centered on sleep spindle peak (-500ms to 500ms). Spiking during slow oscillations and delta 773 

waves consisted of spiking during the one second around upstate peak (-500ms to 500ms). To 774 

account for the influence of firing rate differences or changes in LFP-phase locking across NREM 775 

rhythms, we applied a normalization step we previously developed (Silversmith, et al., 2020). 776 

Briefly, we generated shuffled cross correlations between each M1 and DLS unit pair, with DLS 777 

spike times shuffled with respect to the NREM rhythm in which it fired. In this approach, both 778 

units maintain all their first-order relationships with the NREM rhythm; for example, the number 779 

of spikes, phase locking values, and phase preferences of individual units do not change after 780 

shuffling. However, the shuffling breaks the statistical relationship between the two neurons under 781 

examination. We repeated this shuffling 25 times and then subtracted the mean shuffled cross 782 

correlation from the unshuffled cross correlation. 783 

 784 

NREM rhythm modulation (Figure 4e&f; Supplemental Figure 4). To determine the sleep 785 

spindle modulation of individual M1 and DLS units, spiking during each sleep spindle was time 786 

locked to the peak of the filtered LFP and binned at 10ms. Spiking was averaged across sleep 787 

spindles and modulation was calculated by taking the minimum to maximal firing rate bin in the 788 

second around sleep spindle peak (-500ms to 500ms) divided by the minimum to maximal firing 789 

rate bin in a second long baseline period before each spindle (-1500ms to -500ms relative to spindle 790 

peak). To determine slow oscillation and delta wave modulation of individual M1 and DLS units, 791 

spiking during each slow oscillation or delta wave was time locked to the peak of the upstate and 792 

binned at 10ms. Spiking was averaged across slow oscillations or delta waves and modulation was 793 

calculated by taking the minimum to maximal firing rate bin in the second around upstate peak (-794 

500ms to 500ms) divided by the minimum to maximal firing rate bin in a second long baseline 795 

period before each slow oscillation or delta wave (-1500ms to -500ms relative to upstate peak). 796 

 797 

Characterizing reach modulated (RM) units (Figure 5; Supplemental Figure 5; 798 

Supplemental Figure 6). To characterize M1 and DLS reach modulated units, we generated trial-799 

averaged peri-event time histograms (PETHs) of spiking activity for individual units during 800 

reaching locked to pellet touch in 25ms bins, from 5 seconds before to 5 seconds after pellet touch 801 

(400 total bins). Each unit’s PETH was then z-scored and reach modulation was measured by 802 

taking the sum of the absolute value of the time bins from 1 second before pellet touch to 1 second 803 

after pellet touch (80 total bins). We then generated a distribution of shuffled modulations by 804 
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shuffling all time bins and recalculating the modulation of the shuffled PETH and repeating this 805 

shuffling procedure one thousand times. Units with a non-shuffled modulation greater than the 806 

99% percentile of the shuffled distribution were considered significantly reach modulated.  807 

 808 

Characterizing DLS units with strong or weak M1 reach modulated input (Figure 5e&f; 809 

Supplemental Figure 5e&f; Supplemental Figure 6e&f). To characterize DLS units with strong 810 

or weak M1 reach modulated input, we calculated the number of reach modulated M1 units that 811 

were putatively connected to each DLS unit. If a DLS unit was connected to 3 or more reach 812 

modulated M1 units, we classified that DLS unit as having strong M1 reach modulated input, if a 813 

DLS unit was connected to 2 or less M1 reach modulated units, we classified that DLS unit as 814 

having weak or no M1 reach modulated input.  815 

 816 

Measuring corticostriatal transmission strength changes within pre- and post-sleep (Figure 817 

6; Supplemental Figure 8). To measure changes in corticostriatal transmission strength within 818 

pre- and post-sleep, we generated a cross correlation of spiking activity binned at 1ms from NREM 819 

activity during the first and second half of pre- and post-sleep. This was done for two populations 820 

of M1 and DLS unit pairs. The first population was all M1 and DLS unit pairs that contained a 821 

RM M1 unit, a DLS unit that was putatively connected to a RM M1 unit, and contained both M1 822 

and DLS units that were significantly modulated to sleep spindles. The second population was all 823 

M1 and DLS unit pairs that contained a RM M1 unit, a DLS unit that was putatively connected to 824 

a RM M1 unit, and contained M1 and DLS units that were both not significantly modulated to 825 

sleep spindles. To determine which units were modulated to sleep spindles, we generated peri-826 

event time histograms (PETHs) of sleep spindle activity locked to spindle peak in 10ms bins from 827 

2 seconds before to 2 second after spindle peak (400 bins), averaged across all spindles. Sleep 828 

spindle modulation was then calculated by taking the minimum to maximal firing rate bin within 829 

the 1 second period centered on spindle peak (-500ms to 500ms). We then generated a distribution 830 

of shuffled modulations by shuffling the time bins and recalculating the modulation of this shuffled 831 

PETH. This shuffling procedure was repeated one thousand times to generate a distribution. Units 832 

with a non-shuffled modulation greater than the 99% percentile of the shuffled distribution were 833 

considered significantly sleep spindle modulated.  834 

 835 

Sleep spindle and slow oscillation proximity (Figure 7). Slow oscillation to sleep spindle 836 

proximity was determined by measuring the temporal proximity of the preceding slow oscillation 837 

zero-crossing (positive to negative LFP) to each sleep spindle peak. To determine the influence of 838 

slow oscillation proximity on sleep spindle modulation, we generated two PETHs locked to spindle 839 

peak and binned at 10ms for each unit. The first PETH was generated with sleep spindles that had 840 

a preceding slow oscillation within 500ms (“nested spindles”) and the second PETH was generated 841 

with sleep spindles that did not have a preceding slow oscillation within 500ms (“isolated 842 

spindles”). As there were more isolated spindles than nested spindles, the number of events used 843 

to generate each PETH was matched by randomly selecting isolated spindles to match the number 844 

of nested spindles. Modulation was then assessed by determining the peak firing rate bin in each 845 

PETH.  846 
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