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Abstract

Brain activation mapping using functional magnetic resonance imaging (fMRI) has been extensively studied in brain gray matter
(GM), whereas in large disregarded for probing white matter (WM). This unbalanced treatment has been in part due to controversies
in relation to the nature of the blood oxygenation level-dependent (BOLD) contrast in WM and its detachability. However, an
accumulating body of studies has provided solid evidence of the functional significance of the BOLD signal in WM and has
revealed that it exhibits anisotropic spatio-temporal correlations and structure-specific fluctuations concomitant with those of the
cortical BOLD signal. In this work, we present an anisotropic spatial filtering scheme for smoothing WM fMRI data that accounts
for known spatial constraints on the BOLD signal in WM. In particular, the spatial correlation structure of the WM BOLD signal is
highly anisotropic and closely linked to local axonal structure in terms of shape and orientation, suggesting that isotropic Gaussian
filters conventionally used for smoothing fMRI data are inadequate for denoising the WM BOLD signal as they are incapable of
adapting to the underlying domain of the BOLD signal in white matter. The fundamental element in the proposed method is a
graph-based description of the WM that encodes the underlying anisotropy observed across WM, derived from diffusion MRI data.
Based on this representation, and leveraging graph signal processing principles, we design subject-specific spatial filters that adapt
to a subject’s unique WM structure at each position in the WM that they are applied at. We use the proposed filters to spatially
smooth WM fMRI data, as an alternative to the conventional practice of using isotropic Gaussian filters. We test the proposed
filtering approach on two sets of phantoms, showcasing its greater sensitivity and specificity for the detection of slender anisotropic
activations, compared to that achieved with isotropic Gaussian filters. We also present WM activation mapping results on the
Human Connectome Project’s 100-unrelated subject dataset, across seven functional tasks, showing the capacity of the proposed
method for detecting streamline-like activations within axonal bundles.
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1. Introduction

To date, reports on task-based functional magnetic resonance
imaging (fMRI) activation mapping and resting-state functional
connectivity have been overwhelmingly restricted to the gray
matter (GM), whereas white matter (WM) functional data has
been largely ignored or treated as a nuisance regressor. Such
unbalanced treatment of fMRI data within GM and WM, due
in part to controversies in relation to the source of the BOLD
signal in WM, has led to a systematic underreporting of BOLD-
related activity in WM (Mazerolle et al., 2019; Gawryluk et al.,
2014).

Despite past controversies, evidence provided by an increas-
ing body of recent studies, see e.g. Grajauskas et al. (2019)
and Gore et al. (2019) and references therein, has led to more
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widespread acceptance of the detectability and functional rel-
evance of the BOLD signal in WM. For example, Ding et al.
(2013) showed that resting-state BOLD signals in WM ex-
hibit structure-specific temporal correlations along WM tracts,
which coincide with fiber patterns revealed by diffusion tensor
imaging (DTI), and which, under functional load, become more
pronounced in functionally relevant structures (Ding et al.,
2016). More specifically, Mishra et al. (2020) showed that
varying experimental task parameters results in a coupled mod-
ulation of the BOLD signal in the visual cortex and relevant
WM tracts, corroborating past findings of simultaneous BOLD
activations in structurally-connected regions of GM and WM
(Mazerolle et al., 2010). Furthermore, a growing number of
recent studies have shown that low frequency BOLD fluctua-
tions can be used to estimate the dynamic functioning of fiber
tracts (Gore et al., 2019), in both health (Marussich et al., 2017;
Huang et al., 2018b; Li et al., 2020b) and disease (Jiang et al.,
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2019; Ji et al., 2019; Gao et al., 2020), providing a powerful
means to study how information is transferred and integrated
between functionally specialized cortices.

Due to the significantly lower vascularization density in
WM compared to that in GM (Logothetis and Wandell, 2004;
Jochimsen et al., 2010), the overall magnitude of the WM
BOLD signal is substantially lower than that in GM (Yarkoni
et al., 2009), which has been reported to be as low as 10% of
that observed in GM and modulated as a function of distance
from the cortical layer (Li et al., 2019b). In addition to being
weak, the WM BOLD signal is affected by unique confound-
ing factors, suggesting the need for WM-tailored acquisition
and processing schemes. Broadly speaking, the BOLD con-
trast and its detection in WM can potentially be enhanced in
three ways: i) development and use of MRI sequences optimal
for WM fMRI (e.g. increased T2-weighting (Gawryluk et al.,
2009) or tailored field strengths (Mazerolle et al., 2013)); ii)
design of temporal models that account for the unique hemo-
dynamic response function (HRF) in WM, which substantially
differs from that in GM (Yarkoni et al., 2009; Fraser et al., 2012;
Erdoğan et al., 2016)); and iii) design of spatial models that ac-
count for the unique spatial features of the BOLD contrast in
WM, which is highly anisotropic (Ding et al., 2013, 2016). This
paper focuses on the third category, presenting the case for the
importance of filter design when handling fMRI data in WM,
particularly in relation to the inherent differences between the
spatial profiles of BOLD signal in WM relative to those in GM.

1.1. Spatial smoothing tailored to white matter fMRI data
Typical fMRI analysis pipelines rely on the assumption that

the BOLD signal exhibits isotropic spatial profiles at focal ac-
tivated regions (Carp, 2012). Isotropic Gaussian kernels ap-
plied to functional data, which is a staple of conventional fMRI
analysis, is only justified under this assumption, and generally
trades spatial specificity for increased sensitivity. In particular,
by virtue of the matched filter argument, spatial filters are opti-
mal only for detecting activations that conform to the size and
shape of the filter kernel, and can otherwise result in loss of in-
formation regarding the spatial extent and shape of activation
areas (Geissler et al., 2005; Mikl et al., 2008), obliterating all
non-smooth singularities in the data.

In order to improve on the sensitivity-specificity trade-off

afforded by conventional isotropic spatial smoothing, multi-
ple smoothing methods that adapt to local spatial image fea-
tures have been proposed. These include steerable filters
(Knutsson et al., 1983), which enable directionally-adaptive
spatial smoothing (Friman et al., 2003; Eklund et al., 2011;
Zhuang et al., 2017; Abramian et al., 2020b), wavelet trans-
forms (Mallat, 1989; Bullmore et al., 2004), which try to strike
a balance between localization in space and frequency domain
(Ruttimann et al., 1998; Van De Ville et al., 2004; Breakspear
et al., 2006), and non-linear filters (e.g. bilateral filters) that
locally adapt to various features of adjacent voxels (Smith and
Brady, 1997; Rydell et al., 2008; Lohmann et al., 2018). While
such methods have been successfully applied to GM, their adap-
tive properties rely on the spatial features manifested by the
BOLD contrast. Since this contrast is substantially reduced

in WM, the effectiveness of these methods would likely be re-
duced when applied to fMRI data in WM.

Rather than adapting the smoothing operation to features
present in the BOLD signal, alternative adaptive smoothing ap-
proaches incorporate information from the domain on which the
data resides, typically provided by complementary anatomical
images. One common approach is cortical surface smoothing,
shown to provide increased sensitivity and specificity (Jo et al.,
2007; Coalson et al., 2018). Such methods have also been used
to formulate smoothing approaches that respect tissue bound-
aries (Behjat et al., 2019), preventing artifacts resulting from
the mixing of signals from adjacent but differing tissue types
during filtering. In both of these scenarios the anatomical infor-
mation is provided by T1-weighted images.

An important distinguishing feature of the BOLD signal in
WM is that it exhibits a spatial correlation structure grossly
consistent with the directions of water diffusion, as measured
by DTI (Ding et al., 2013), which is present during rest and be-
comes more pronounced under functional loading (Wu et al.,
2017; Ding et al., 2018). The anatomical basis for this observa-
tion can be that up to half of the blood volume in WM resides in
vessels that run in parallel to WM tracts (Doucette et al., 2019).
As a consequence, conventional isotropic Gaussian filters may
prove especially unsuited for the task of increasing the SNR of
the BOLD signal in the highly anisotropic WM domain. Filter-
ing methods adaptive to features of the BOLD signal may prove
more effective, but the low BOLD contrast manifested in WM
will potentially limit their usefulness. On the other hand, the
strong anatomical dependence in the correlation structure of the
BOLD signal in WM suggests that domain-informed smooth-
ing methods can be particularly beneficial. Such methods can
rely on T1-weighted images as well as diffusion-weighted MRI
(DW-MRI) to adapt the filtering to the morphology and the ax-
onal microstructure of WM, respectively. This paper presents
the design and validation of such a filtering scheme.

1.2. Structure-informed processing of fMRI data through GSP
In the past five years, an increasing number of studies have

showcased the use of principles from the recently emerged
field of graph signal processing (GSP) within neuroimaging, in
particular, in proposing intuitive methodologies for structure-
informed processing of fMRI data. The fundamental idea in
GSP is to analyze data recorded at a discrete set of positions
in such way that the underlying structural relationship between
those positions is accounted for, wherein this underlying struc-
ture can be represented in the form of a graph:, i.e., a structure
consisting of a set of nodes and edges. We refer the reader to
Shuman et al. (2013) for an introduction to GSP and to Ortega
et al. (2018) and Stanković et al. (2020) for an overview of re-
cent developments, challenges, and applications.

An increasing number of studies have proposed the use of
region of interest (ROI) based structural connectomes (Sporns
et al., 2005), derived from tractography data, as underlying
backbones for interpreting fMRI data (Atasoy et al., 2016; Ab-
delnour et al., 2018; Huang et al., 2018a). When structural con-
nectomes are interpreted as graphs, a number of their Laplacian
eigenvectors manifest spatial patterns that are reminiscent of
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well-established functional networks, as shown by Atasoy et al.
(2016). Under this framework, methods have been proposed
for spatio-temporal deconvolution of fMRI data (Bolton et al.,
2019), quantification of the coupling strength of resting-state
fMRI data with underlying structure (Medaglia et al., 2018;
Preti and Van De Ville, 2019), implementation of neural field
models (Aqil et al., 2020), prediction of behaviorally relevant
scores (Bolton and van De Ville, 2020), and for characteriza-
tion of functional connectivity dynamics in health (Huang et al.,
2018b), and its changes, for instance, due to concussion (Si-
hag et al., 2020), and under hallucinogenic drugs (Atasoy et al.,
2017).

As alternatives to macro-scale ROI-based graphs, a number
of voxel-wise brain graph designs have been proposed for anal-
ysis of fMRI data. Graphs encoding GM morphology have
been proposed for enhanced activation mapping in GM, for both
group-level (Behjat et al., 2015) and subject-level (Behjat et al.,
2013, 2014) analyses, and for discriminative characterization of
fMRI data across functional tasks (Behjat and Larsson, 2020).
A closely related work to that presented here is by Tarun et al.
(2020), in which DW-MRI data is used to encode the WM fiber
structure, for the task of visualizing WM fiber pathways based
on the functional activity observed at the cortical layer.

1.3. Aim and overview

To the best of our knowledge, no method has to date been
presented to specifically account for the spatial features of the
BOLD contrast in WM when it comes to processing WM fMRI
data. The main objective of this work is to consider the impor-
tance of filter design when handling fMRI data in WM, partic-
ularly, in relation to the inherent difference between the spatial
profiles of BOLD signal in WM relative to those in GM.

In this paper, we develop an adaptive spatial smoothing
method tailored to the processing of fMRI data in WM. Us-
ing diffusion orientation distribution functions (ODF) obtained
from high angular resolution diffusion imaging (HARDI) data,
we construct subject-specific voxel-wise WM graphs. A spec-
tral heat kernel filter is then defined on the spectrum of the re-
sulting graphs, and implemented in a computationally efficient
way for the task of fMRI data filtering, using principles from
GSP. When instantiated at any position within the WM, the
proposed filters adapt to the local axonal orientation, becom-
ing consistent with the spatial correlation structure of the WM
BOLD signal.

The remainder of this paper is organized as follows: in Sec-
tion 2, we review relevant GSP principles and describe our pro-
posed graph and filter designs, as well as the construction of
phantoms. In Section 3, we examine the smoothing filters pro-
duced by the proposed design and evaluate their performance
on two types and on real task fMRI data. We conclude the
paper in Section 4 with a discussion on design consideration,
limitations and future work.

2. Materials and Methods

2.1. Data and preprocessing
Data used in the preparation of this work were obtained from

the WU-Minn Human Connectome Project (HCP) (Van Essen
et al., 2013) database1. We use the 100 unrelated adult subject
sub-group (54% female, mean age = 29.11± 3.67, age range =

22-36), which we denote as the HCP100 subject set. Five of
the subjects were excluded due to incomplete WM coverage of
the DW-MRI data, leaving a total of 95 subjects. The HCP data
acquisition study was approved by the Washington University
Institutional Review Board and informed consent was obtained
from all subjects. We used the minimally preprocessed struc-
tural, task fMRI, and DW-MRI data. Task fMRI data for each
subject consists of 1940 time frames across seven functional
tasks: Emotion, Gambling, Language, Motor, Relational, So-
cial, and Working Memory, comprising 23 experimental con-
ditions in total. The method proposed in this paper heavily re-
lies on the accurate co-registration between the structural and
functional data, as provided by the minimally processed HCP
data. The imaging parameters and image preprocessing steps
have been fully described by Glasser et al. (2013). All data pro-
cessing in this work was done using the Matlab software and
the SPM12 toolbox2. Diffusion ODFs were generated using the
method presented by Yeh et al. (2010) and implemented in the
DSI Studio software packagee3.

The HCP data are provided in a mixture of three spatial reso-
lutions within two neurological spaces (ACPC, i.e., native sub-
ject space, and MNI): 0.7 mm isotropic ACPC for the structural
data, 1.25 mm isotropic ACPC for the DW-MRI data, and 2 mm
isotropic MNI for the fMRI data. A fundamental necessity for
the proposed methodology is to reconcile the three datasets into
a single set of working parameters. However, the resampling
process and the nonlinear conversion between ACPC and MNI
spaces have the potential of negatively affecting the data qual-
ity. The number of voxels is also a relevant parameter, since it
determines to a great extent the memory usage and computation
time of the various processing steps. Given the importance of
axonal orientation information to the proposed method, we also
prioritized minimizing the manipulations applied to the DW-
MRI data.

Based on these considerations, we chose the ACPC space at
the resolution of the diffusion data, i.e., 1.25 mm isotropic, as
the working space. As such, the HCP preprocessed fMRI vol-
umes were warped back into ACPC space and upsampled to the
voxel resolution of the diffusion data. This mapping was done
by leveraging the mni2acpc.nii displacement maps provided
with the HCP preprocessed data, using first order splines as the
basis for interpolation. In addition, the segmentation volume
aparc+aseg.nii, computed via FreeSurfer (Fischl, 2012) and
provided with the HCP data, was downsampled to the work-
ing resolution, from which voxels associated to WM were ex-
tracted.

1https://ida.loni.usc.edu/login.jsp
2https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
3http://dsi-studio.labsolver.org
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2.2. GSP preliminaries
The fundamental idea in GSP is the application of signal pro-

cessing procedures to data residing on the vertices of a graph,
wherein the graph defines the underlying irregular domain of
the data. Let G = (V,E,A) denote an undirected, single-
connected, weighted graph, defined by a vertex set V of size
Ng, denoting the size of the graph, an edge set E consisting of
connecting pairs (i, j) of vertices, and a symmetric adjacency
matrix A whose nonzero elements ai, j represent the weight of
edges (i, j) ∈ E. Let `2(G) denote the Hilbert space of all
square-integrable graph signals f : V → R defined on the ver-
tex set V. A graph signal f ∈ `2(G) is in essence an Ng × 1
vector, whose n-th component represents the signal value at the
n-th vertex of G.

The graph spectral domain, analogous to the Euclidean
Fourier domain, can be defined using a graph’s Laplacian ma-
trix. In particular, the normalized Laplacian matrix of G is de-
fined as L = I − D−1/2AD−1/2, where D denotes the graph’s
degree matrix, which is diagonal with elements defined as
di,i =

∑
j ai, j. Since L is real, symmetric, diagonally domi-

nant, and with non-negative diagonal entries, it is positive semi-
definite; i.e., all its Ng eigenvalues are real and non-negative,
and they are also no larger than 2 due to the normalization used
in the definition of L. This set of eigenvalues defines the spec-
trum of G, denoted as Λ = {0 = λ1 ≤ λ2 . . . ≤ λNg

def
= λmax ≤ 2}.

The associated eigenvectors, denoted {ul}l=1,...,Ng , form an or-
thonormal basis spanning the `2(G) space. A graph signal f can
be transformed into a spectral representation through the use of
the Laplacian eigenvectors as

f̂[l] =

Ng∑
n=1

ul[n]f[n] (1)

= ul
T f, l = 1, . . . ,Ng. (2)

This spectral representation enjoys a perfect reconstruction, that
is, the signal can be recovered as f =

∑Ng

l=1 f̂[l]ul.
In contrast to filters in classical signal processing, graph fil-

ters are shift-variant, adapting their shape to the underlying
graph structure when localized at any given vertex. Conse-
quently, individual filters defined on the spectral domain of
a graph will become spatially-adaptive by the nature of GSP.
This valuable property of graph filters enables the proposed
methodology, but it also prevents the implementation of filter-
ing operations as straightforward convolutions. Rather, in anal-
ogy to frequency-domain filtering in classical signal processing,
graph signal filtering can be conveniently defined in the graph
spectral domain. Given the spectral profile of a desired filter,
k(λ) : [0, 2]→ R, a graph signal f can be filtered with k(λ) as

f̃ =

Ng∑
l=1

k(λl) f̂[l]ul (3)

(2)
=

Ng∑
l=1

k(λl) ul
T f ul, (4)

Implementing (4) requires the Laplacian eigenvectors, i.e., a
full diagonalization of L, which is impractical for large graphs,

(a)

(b)

(c)
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xy

z
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Figure 1: (a) 26 voxels within the 3 × 3 × 3 neighborhood (gray) used to define
edges to the focal voxel (red). (b) 98 voxels within the 5 × 5 × 5 neighborhood
(gray), used to define edges to the focal voxel (red). (c) Scattered dots on the
unit sphere specify the 98 neighborhood directions encoded by the 5 × 5 × 5
voxel neighborhood. Circled dots represent the subset of 26 directions encoded
by the 3 × 3 × 3 voxel neighborhood.

such as those presented in this work. An efficient alternative ap-
proach is to implement the filtering using polynomial approx-
imations of k(λ). We refer the interested reader to Appendix I
for details on the implementation.

2.3. WM graph design

In order to take advantage of GSP tools, it is necessary to de-
fine graphs that encode relevant information in their vertices,
edges, and weights. For the purpose of allowing diffusion-
informed smoothing of the WM BOLD signal, we require
graphs capable of encoding the subject’s axonal microstructure.
Filters defined on the spectral domain of such graphs will be-
come locally adapted to this microstructure due to the shift-
variant nature of graph filters.

We define a WM graph as a graph whose vertex set V con-
sists of all WM voxels, resulting in graphs with 240k ±60k ver-
tices on the HCP100 subject set. The graph’s edge set E is
defined on the basis of voxel adjacency, with pairs of vertices
being connected to each other whenever their associated vox-
els are spatially neighboring. Two neighborhood definitions are
considered, corresponding to cubic lattices of sizes 3 × 3 × 3
(henceforth 3-conn) and 5×5×5 (henceforth 5-conn), where the
focal voxel is located in the center of the lattice. The 3-conn lat-
tice specifies 26 voxels in the neighborhood of the focal voxel,
whereas for the 5-conn lattice, voxels in the outer layer that fall
in parallel to the voxels within the inner layer are excluded, re-
sulting in 98 voxels in the neighborhood; see Figure 1.

The encoding of axonal microstructure by the graph is prin-
cipally achieved through the edge-weighting scheme, inspired
by the work of Iturria-Medina et al. (2007). The weights pro-
vide a discretization of the diffusion ODF at each point, and
include information on the coherence of diffusion orientation
among neighboring voxels. Let Oi(r̂) denote the ODF associ-
ated to voxel vi, with its coordinate origin at the voxel’s center,
and with r̂ denoting the unit direction vector. Let r̂i, j denote
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the unit vector pointing from the center of voxel vi to the cen-
ter of neighboring voxel v j. A discretization of the ODF along
direction r̂i, j can be obtained as

p(i, r̂i, j) =

∫
Ωi, j

Oi(r̂)dΩ, (5)

where Ωi, j denotes the solid angle of 4π/26 (for 3-conn) or
4π/98 (for 5-conn) around r̂i, j and dΩ denotes the infinitesi-
mal solid angle element. This measure can be approximated by
taking Nt samples of the ODF within the solid angle Ωi, j as

p(i, r̂i, j) ≈ p̃(i, r̂i, j) =
1
Nt

Nt∑
k=1

Oi(r̂k
i, j), (6)

where r̂k
i, j denotes the k-th sampling direction within Ωi, j. De-

tails of the sampling process are given in Appendix II. Further-
more, we normalize this metric as

qi, j =
p̃(i, r̂i, j)

2 max j{p̃(i, r̂i, j) | (i, j) ∈ E}
, (7)

which bounds it in the [0, 0.5] range. The maximum value of
0.5 is reached if the ODF at vi shows its maximal diffusion
along r̂i, j, whereas otherwise qi, j < 0.5.

The measure defined in (7) constitutes a normalized dis-
cretization of the diffusion ODF at voxel vi. However, it does
not guarantee symmetry, i.e., generally qi, j , q j,i, which makes
it unsuitable for the edge weights in an undirected graph. Nev-
ertheless, we can obtain a symmetric weight by considering a
bidirectional measure of diffusion given by

wi, j = w j,i = qi, j + q j,i, (8)

which is constrained to the [0, 1] range. Consequently, we de-
fine the graph’s edge weights as

ai, j = a j,i = h(wi, j), (9)

where h(·) : [0, 1] → [0, 1] is a tunable sigmoid function de-
fined as

h(x) =
((1 − α) x) β

((1 − α) x) β + ((1 − x) α) β
∈ [0, 1], (10)

where parameters α ∈ (0, 1) and β > 0 control the threshold
level and the steepness of the transition from 0 to 1, respec-
tively; see Figure 2. Given that diffusion ODFs generally man-
ifest non-zero magnitudes in all directions, with little contrast
between directions of strong and weak diffusion, the threshold-
ing step enables associating weights only to the main directions
of diffusion, without the need to use sharpened ODFs as pre-
sented in our preliminary work (Abramian et al., 2020a). The
choice of the sigmoid function over a Heaviside step ensures
retaining a single connected structure in the graph; that is, any
non-zero value is mapped to a non-zero value. In this work we
use a fixed value of β = 50, but study the effect of varying the
threshold point, in particular, for values α = 0.85, 0.9 and 0.95.

The expression for the edge weight between a pair of voxels
(9) integrates information about the extent of diffusion along

α = 0.85

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.2

0.4
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(x

)

 = 0.9α
 = 0.95α

Figure 2: Sigmoid function used for thresholding edge weights, for three dif-
ferent values of α and a fixed value β = 50.
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Figure 3: Spectral graph heat kernels, defined within the bounds of the spectrum
of a normalized graph Laplacian matrix, i.e., [0, 2].

r̂i, j from both vi and v j, amounting to a measure of orientational
coherence of the diffusion ODFs at these voxels. In addition,
the α parameter of the thresholding function provides added
flexibility to this representation.

2.4. Spectral graph heat kernel filters

We design spatial smoothing filters with a heat kernel profile
in the graph spectral domain, defined by

k(λ) = e−τλ, ∀λ ∈ [0, λmax], (11)

where τ is a free parameter determining the spatial extent of the
filter. Figure 3 shows several realizations of the heat kernel over
a range of τ. When instantiated in the vertex domain, such fil-
ters are roughly similar in shape to the Gaussian filters typically
used for fMRI analysis; however, there is no direct equivalence
between the two filters given the irregular domain represented
by the graph.

The filtering is implemented using the polynomial approxi-
mation scheme described in Appendix I. The polynomial order
required to obtain a suitable approximation of the heat kernel
varies depending on the choice of τ. For the range of τ investi-
gated in this study, we used polynomial approximations of order
15, resulting in negligible approximation error in representing
the filters.

2.5. Circular phantom construction

Due to the discrete nature of graphs, the set of orientations
that can be perfectly captured by edges between voxels is lim-
ited by the neighborhood definition used. To evaluate the influ-
ence of angular resolution on denoising performance, we tested
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the 3-conn and 5-conn neighborhood definitions on a set of cir-
cular phantoms of various orientations and radii. These phan-
toms aim to simulate a wide range of streamline orientations
and curvatures, which could be encountered in practice.

Each phantom consisted of an activation profile in the shape
of a circular streamline, accompanied by an ODF map oriented
along its tangent, representing strong diffusion along the circle.
The phantoms were constructed in 93 different orientations in
3D space, selected in a roughly uniform way by subdividing
the faces of an icosahedron three times, and from the result-
ing polyhedron, selecting its subset of vertices that fall in the
spherical sector of 0 ≤ θ, φ ≤ π/2; see Figure 4(a). Due to
symmetries in the phantoms and the neighborhood definitions,
this set of phantom orientations provides a relatively exhaustive
sampling of the effects of streamline orientation on smoothing
performance. Additionally, to study the effects of curvature, we
created the phantoms with three different radii for each orienta-
tion: 10, 20, and 30 voxels at 1.25 mm isotropic resolution.

2.6. Streamline-based phantom construction

Since the correlation structure of the BOLD signal in WM is
highly anisotropic and resemblant of the diffusion tensor (see
Section 1.1), activation patterns in this tissue are likely to have
elongated shapes which locally follow the direction of diffu-
sion. To validate the performance of the proposed filtering
scheme at detecting such activation patterns, we performed tests
on a set of semi-synthetic phantoms that simulate streamline-
shaped activations. We denote the phantoms as semi-synthetic
since the activation patterns were derived from real diffusion
data from the HCP100 dataset. Each phantom consisted of a
set of non-uniformly spread activation patterns diffusing along
WM streamlines obtained through deterministic tractography of
the HCP100 subject set; see Figures 4(b) and (c). Details of the
construction of the phantoms are given in Appendix III.

Time-series versions of the streamline-based phantoms were
also generated in order to evaluate the performance of the pro-
posed method in the context of a typical general linear model
(GLM) fMRI analysis. These were created by using each
streamline-based phantom as the underlying ground-truth ac-
tivity in a 100-volume fMRI time series with a block design
alternating 20 volume stretches of rest and activity in an off-on-
off-on-off paradigm.

3. Results

We validated the performance of the proposed diffusion-
informed spatial smoothing (DSS) relative to isotropic Gaus-
sian spatial smoothing (GSS) through a series of tests on syn-
thetic phantoms—circular and streamline-based phantoms—as
well as on real data from the HCP100 subject set.

3.1. Diffusion-informed filters

The adaptive properties of DSS filters are illustrated in Fig-
ure 5. The three filters shown were generated using identical
parameters (α = 0.9, τ = 7), and differ only in the location
within the WM where they were instantiated. The filters closely

follow the local diffusion orientation in WM described by the
diffusion ODFs. For highly anisotropic WM regions this results
in slender and strongly oriented filters, yet, as the third column
shows, the filters are also capable of taking isotropic shapes in
regions of low anisotropy or crossing fibers.

The shape of DSS filters can be controlled by setting the τ
parameter of the graph spectral filter kernel (see (11)) and the α
parameter of the weight thresholding function (see (10)). While
the former controls the spatial extent of the filter in a manner
akin to the full width at half maximum (FWHM) of isotropic
Gaussian filters, the latter controls the minimum edge weights
retained by the graph, which in turn, constrains filters to follow
main directions of diffusion. Figure 6 presents a range of differ-
ent filter shapes that can be achieved by varying these parame-
ters. High values of α result in very narrow, streamline-like fil-
ters, whereas lower values result in more isotropic filters. Low
enough values of α negate the diffusion-adaptive properties of
DSS, with the resulting filters adapting solely to the morphol-
ogy of the WM domain (see Supplementary Figure S1).

The choice of neighborhood definition plays a significant role
in the shape of the resulting filters. In combination with the
5-conn neighborhood definition, higher α values can result in
non-local averaging filters when the ODFs are oriented along a
neighborhood direction in the outer shell of the neighborhood
(see Figure 5 middle left, Figure 6 bottom row). This effect is
not present in filters created using the 3-conn neighborhood def-
inition (see Figure S2), which additionally show a more limited
capacity to represent orientation due to the reduced angular res-
olution of the neighborhood definition. More exhaustive results
for both 5-conn and 3-conn filters are presented in Supplemen-
tary Figures S1-S6.

3.2. Validations on circular phantoms
Circular phantoms of 93 different orientations and 3 different

radii were created as described in Section 2.5. Each phantom
was corrupted with 10 realizations of additive white Gaussian
noise of standard deviation 1, and subsequently denoised by
spatial filtering with GSS and DSS over a range of parameters.
The FWHM of GSS and the τ parameter of DSS were varied
over a range from 1 to 8 in unit steps. Both the 3-conn and 5-
conn neighborhood definitions were tested for DSS, which we
will refer to as DSS3 and DSS5, respectively. The α parameter
of DSS was set to 0.9 throughout.

To assess the denoising performance of GSS, DSS3 and
DSS5, we performed receiver operating characteristic (ROC)
analyses. The filtered phantom volumes were each thresholded
at 300 uniformly-spaced consecutive levels spanning the min-
imum and maximum value in each filtered volume. The re-
sulting detections for each threshold level were compared with
the ground truth of the phantom, yielding true positive rates
(TPR) and false positive rates (FPR) that were collected in ROC
curves. The area under the curve (AUC) of the ROC curves was
then computed, resulting in an overall measure of performance.

Figures 7(a) and (b) show the overall performance of DSS3,
DSS5 and GSS as characterized by the AUCs. Due to the lack
of equivalence between DSS and GSS filters, there is no di-
rect correspondence between individual values of FWHM and
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Figure 4: Phantom construction. (a) Circular phantom construction. Left: A subset of vertices of a 3-level subdivided icosahedron, 93 out of 642, were selected.
Vectors pointing from the center of the sphere to these vertices constitute the normal vectors of the planes within which circular phantoms were realized. Right:
Five representative unit circles with orientations corresponding to the vertices on the left of matching color. (b) Streamline-based phantom construction. A WM
streamline constructed using tractography is randomly selected, a focal point along the streamline is randomly selected, and a diffused non-binary activation pattern
is created around the focal point. (c) Axial, coronal and sagittal view of a representative streamline-based phantom with 100 streamline activations, overlaid on
subject’s T1-weighted image.

τ. However, it can be noted that the performance of GSS peaks
at 2 mm FWHM, and diminishes for larger filter sizes. On the
other hand, both DSS3 and DSS5 achieve substantially higher
maximum performances, which are not negatively affected by
increased filter size in the range of τ tested.

The median AUC of DSS5 consistently falls above that of
DSS3 for τ ≥ 2 and all three phantom radii. The performance
gap between DSS5 and DSS3 increases for larger τ, and slightly
increases on circular phantoms with larger radii, i.e., smaller
curvatures. These results corroborate the improvements in de-
tection performance thanks to the increased angular resolution
of the 5-conn neighborhood definition. This is further illus-
trated by Figure 7(c), which shows the performance improve-
ment of DSS5 over DSS3 for individual phantoms orientations.
The wide range of performance gains is representative of the
varying difficulty of representing specific spatial orientations in
the discrete domain of graphs, highlighting the importance of
angular resolution for the proposed filters.

Given the overall superior performance of DSS5 over DSS3,
in the following DSS results are only presented for graphs using
the 5-conn neighborhood definition.

3.3. Validations on streamline-based phantoms

A similar analysis was performed on streamline-based phan-
toms. A single phantom with Ns = 50, 100 and 200 streamline
activations was created for each of the 95 subjects as described
in Section 2.6. As before, each phantom was corrupted with
10 realizations of additive white Gaussian noise of standard de-
viation 1, and denoised by spatial filtering with GSS and DSS
over the same range of parameters. The α parameter of DSS
was set to 0.9, whereas values of 0.85 and 0.95 were also tested

on the 100-streamline phantoms. The denoising performance
of both methods was assessed by applying the same ROC/AUC
analysis described in Section 3.2.

Figures 8(a) and (b) show AUC results on all three types of
phantoms for DSS and GSS, respectively. Due to the substan-
tial amount of noise present in the phantoms, spatial smoothing
using either GSS or DSS generally leads to better performance
compared to no smoothing. DSS outperforms GSS across the
range of τ and FWHM values tested, and across the different
settings. As with the circular phantoms, the performance of
GSS peaks at 2 mm FWHM, with increased size negatively af-
fecting performance beyond that value. DSS shows a similar
pattern, with peak performance achieved for τ of 3 and 4 for
α = 0.9. Both GSS and DSS show better performance on phan-
toms with a greater number of streamlines. Additional results
show that DSS outperforms GSS in both sensitivity and speci-
ficity (see Supplementary Figure S7(a)), and across a range of
SNR values (see Supplementary Figure S7(b)).

To assess the performance of DSS and GSS in combination
with temporal modeling, i.e., as used within fMRI activation
mapping studies, time-series version of the streamline-based
phantoms were generated as described in Section 2.6. The
phantoms were corrupted with additive white Gaussian noise
of standard deviation 1 and subsequently spatially filtered with
GSS and DSS with the same range of parameters used previ-
ously. The smoothed phantoms were subjected to a standard
single-subject analysis in SPM, and the resulting t-maps were
used in the ROC/AUC analysis.

Figures 8(c) and (d) show AUC results from the time-series
phantoms. Due to the increased detection power afforded by
temporal modeling, AUCs are higher for all scenarios in the
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Figure 5: Generation of diffusion-informed smoothing filters. Diffusion ODFs (bottom row) serve as the basis for the creation of a WM graph (middle row). Every
WM voxel corresponds to a vertex in the graph, with weighted connections to neighboring voxels (middle left). The edge weights are determined on the basis
of coherence between the directions of diffusion and the orientation of the graph edges (bottom left). Using this WM graph definition, graph filters from a single
spectral profile become adaptive to the local axonal microstructure when instantiated in different WM regions (top row). Note that both the edges connecting voxels
and the graph filters extend in three dimensions, whereas their 2D axial intersection centered at the focal voxel are shown. Graph parameters: 5-conn neighborhood,
α = 0.9, β = 50; filter parameters: τ = 7. Filters are shown normalized to the [0, 1] range. ODF interpolation and visualization were performed using the public
CSA-ODF package4.

Figure 6: Effects of parameters τ and α on the shape of DSS filters located at
red ROI shown in Figure 5. Graph parameters: 5-conn neighborhood, β = 50.
Filters are shown normalized to the [0, 1] range.

time-series analysis compared to those in the single-volume
analysis. Similarly to the single-volume phantom results, GSS
achieves its best performance for 2 mm filters, and considerably
deteriorates beyond that size. Notably, GSS only provides a
distinct improvement over no smoothing for 2 mm filters. DSS
results also show a negative correlation between filter size and
performance for τ > 2, but the overall performance is superior
to GSS and provides a benefit over no smoothing in most tested
cases, with best results achieved for τ between 2 and 4. After
subjecting the t-maps to activation mapping with false discov-
ery rate (FDR) correction at 5% (Genovese et al., 2002), the de-
tection maps resulting from DSS showed substantially higher
sensitivity and specificity than those from GSS (see Supple-
mentary Figures S8-S10). These results also illustrate that the
diminished performance of both methods on phantoms with a
greater number of streamline activations is a consequence of
increased FPR when using large filters.

Figures 8(a) and (c) also illustrate the effects of varying the α
parameter of DSS in single-volume and time-series phantoms,
respectively. For both types of phantoms higher values of α
generally resulted in better performance. In the case of single-
volume phantoms, filters with α=0.9 outperformed the others

4https://www.nitrc.org/projects/csaodf-hough
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Figure 7: Validation of spatial smoothing on circular phantoms. (a)-(b) AUC
of ROC curves obtained from volumes spatially smoothed with DSS and GSS,
respectively. The markers show the median AUC over 930 ROCs (93 orienta-
tions × 10 realizations), whereas the whiskers represent 5−95% percentiles. (c)
Difference between AUC values for DSS5 and DSS3 for phantoms with 25 mm
radius. The black curve shows the difference between the median performances
shown in (a), whereas the remaining curves show the difference between the 10-
realization medians for each of the 93 phantom orientations. The five colored
curves correspond to the phantom orientations shown in Fig. 4(a).

for small filter sizes, while α=0.95 is superior for larger filter
sizes and across all sizes for time-series phantoms. In addition,
filters with α = 0.95 show minimal decay in performance as
filter size increases for both kinds of phantoms. Filters with
α = 0.85 consistently performed worse than the others.

3.4. Validations on task fMRI data
In order to explore the effects of the proposed smoothing

method on real task fMRI data, we used SPM12 to perform
activation mapping on the HCP100 task fMRI data, comprising
23 experimental conditions across 7 tasks. Each GLM analysis
included 12 motion regressors (raw and temporal derivative) in
addition to regressors for 2 to 8 experimental conditions asso-
ciated with each task. The canonical HRF model, correspond-
ing to a double gamma, was used. Temporal noise modeling
was done using a global AR(1) model. The fMRI data was
smoothed using GSS and DSS with the same parameters used
previously. For GSS, each fMRI volume was first multiplied
with the WM mask, to avoid introducing signal from GM. This

step is not required for DSS, since the method by its nature
functions only in WM. The resulting t-maps were then thresh-
olded to determine significant active voxels after FDR correc-
tion at 5%. Our choice of FDR as the correction method was
due to it only assuming the p-values to be uniformly distributed
under the null hypothesis. Correction methods based on as-
sumptions about the smoothness of the data, such as those based
on Gaussian random field theory, would be difficult to justify for
an adaptive smoothing approach.

Figure 9 shows t-maps and detections from a representative
subject obtained using GSS and DSS across a range of filter
sizes. Visual inspection of the t-maps reveals that GSS results
in generally round features with little oriented structure. For
larger Gaussian filters very little visible structure remains. In
contrast, t-maps obtained using DSS present notable spatial de-
tail, with linear features in the shape of streamlines discernible
across filter sizes. These differences are also present in the de-
tections from both methods. While GSS detections are gen-
erally large and rounded, with very few detections present for
small filters, DSS is capable of detections showing remarkable
spatial detail, and with considerable detection power for small
filter sizes. Specifically, the presented detection maps highlight
the capability of DSS in identifying separate streamline-shaped
activations in two contiguous parallel axonal bundles, which re-
main distinct across the tested filter sizes. On the other hand,
with GSS, these activations are combined into a single active re-
gion when large filters are used, or are not present when small
filters are used. Notably, the case of FWHM = 3 mm shows
activation foci being combined across rather than along axonal
bundles, suggesting that these activations may not be separable
with GSS. Additional activation mapping results are presented
in Supplementary Figures S11 and S12.

In order to quantitatively investigate the degree to which
spatial structure is present in t-maps obtained using the two
smoothing methods, we analyzed the t-maps using structure
tensor methods (Knutsson, 1989). While a thorough introduc-
tion to such methods falls outside the scope of this work, it is
sufficient for our purposes to point out that the eigenvalues and
eigenvectors of the structure tensor provide information on the
presence and orientation of spatial structure, in the form of lines
and edges, at a given point in an image or volume.

For each t-map we constructed a quantitative structure map
by computing the sum of the structure tensor eigenvalues at
every voxel (a measure of the amount of spatial structure in
each voxel). The mean value of each structure map provides a
global measure of the presence of spatial structure in the cor-
responding t-map. Figure 10(a) shows a comparison of this
global structure measure for DSS and GSS. For both methods
the amount of structure present in the t-maps diminishes as the
filter size increases, which is consistent with the loss of spa-
tial detail resulting from smoothing the data. This effect is very
pronounced for GSS, while t-maps generated using DSS exhibit
a more consistent amount of spatial structure across the tested
filter sizes.

To determine the extent to which the structure present in the
t-maps is influenced by the diffusion information introduced by
DSS, we computed the Pearson correlation coefficient between
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Figure 8: Validation of spatial smoothing on streamline-based phantoms. (a)-(b) AUC of ROC curves obtained from volumes spatially smoothed with DSS and
GSS, respectively. (c)-(d) AUC of ROC curves obtained from activation mapping t-maps of time-series streamline-based phantoms smoothed with DSS and GSS,
respectively. The markers show the median AUC over 950 ROCs (95 subjects × 10 realizations), whereas the whiskers represent 5 − 95% percentiles.

the quantitative structure maps and the quantitative anisotropy
(QA) map (Yeh et al., 2013) of the associated subject; see Fig-
ure 10(b). For DSS this correlation is close to zero at τ = 1,
and steadily increases for increased filter sizes. In contrast, the
structure manifested in t-maps obtained through GSS shows a
slight negative correlation with QA for small filter sizes, which
becomes more positive as the filter size increases, but stays
substantially below the correlation obtained with DSS. These
results suggest that DSS is successful at informing the smooth-
ing process with the local diffusion properties of the underlying
WM, with larger values of τ resulting in stronger diffusion en-
coding.

Figure 11 compares the number of detections obtained from
DSS and GSS. To prevent bias due to differences in brain size,
we present the fraction of each subject’s WM mask being de-
clared as active. Overall, the detection rates for both methods
increase as a function of filter size, with DSS exhibiting a more
linear increase than GSS. Moreover, the number of detections
on t-maps obtained from volumes smoothed with GSS using
large FWHM values, 5 to 8 mm, is on average larger than for
maps detected using DSS with any of the tested τ values, as
manifested by comparing the average values of corresponding
tasks.

In the absence of ground truth it is not possible to make
definitive statements on the relationship between differences in
the number of voxels deemed active by each method and poten-
tial differences in their sensitivity and specificity. However, it
can be insightful to quantify the difference between the detec-

tion maps generated with DSS and GSS. To quantify the simi-
larity between a pair of detection maps we computed the Dice
coefficient between them, defined as

dτ,fwhm =
2|Mτ ∩ Mfwhm|

|Mτ| + |Mfwhm|
, (12)

where Mτ denotes the set of detected voxels using DSS with a
given τ, Mfwhm denotes the set of detected voxels using GSS
with a given FWHM, and | · | denotes set cardinality. The Dice
coefficient is constrained to the [0, 1] range, where a value of
1 signifies perfect overlap between the detection maps and a
value of 0 represents no overlap.

For every subject and experimental condition we calculated
Dice coefficients between detection maps obtained with GSS
and DSS of all filter sizes, and arranged them into 8 × 8 Dice
matrices. Additionally, we calculated the maximum Dice coef-
ficient between each DSS filter size and every GSS filter size
for each subject and condition. Figure 12 shows Dice results
for several representative experimental conditions. The overall
similarity between the detection maps obtained with DSS and
GSS is relatively low. The highest ensemble Dice is achieved
for τ = 1 and FWHM = 2 mm, where it reaches a value of
0.6, and diminishes to less than 0.4 for the largest filters tested.
The relationship between the τ and FWHM values that result
in the highest similarity in the detection maps is also shown to
be nonlinear, with values of τ between 5 and 8 giving maps
most similar to those from FWHM = 4 mm. The similarity
between the detection maps also shows considerable variation
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Figure 9: Comparison of representative activation mapping results for a single subject generated with GSS (top) and DSS (bottom), with t-maps shown in grayscale
and detections overlaid in red (FDR-corrected at 5%).
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Figure 10: Structural analysis of task fMRI t-maps, obtained using local struc-
ture tensor analysis (Knutsson, 1989) where the eigenvalues of the structure
tensor denote the amount of spatial structure. (a) Quantification of the amount
of anisotropic structure observed in t-maps, specified by the mean structure
map value, averaged across the task’s experimental conditions. (b) Correlation
between subjects’ QA maps and structure maps, averaged across each task’s ex-
perimental conditions. Markers shows the median value across the 95 subjects.

across tasks and individual experimental conditions (see results
for all experimental conditions in Supplementary Figure S13),
with below-average similarity in the Language and Motor tasks
and above-average in the Gambling and Relational tasks.

In order to determine whether the detections generated by ei-
ther method are a subset of the detections from the other, we ex-
amined the number of common and unique detections produced
by DSS and GSS. For all subjects and experimental conditions,
the detection maps produced by DSS were compared with the
most similar maps produced by GSS. Figure 12, bottom right,
shows the average number of voxel detections common to both
methods, as well as those unique to each method, for the tested

values of τ. These results show that, across filter sizes, both
DSS and GSS produce a considerable number of detections that
are not produced by the other method. This, together with the
generally low Dice results, suggest the presence of substantial
differences in the localization and spatial extent of activations
detected using DSS and GSS.

3.5. Processing time
Although the proposed methodology requires additional MRI

scanning time for the acquisition of DW-MRI data, it does not
impose a dramatic increase in processing time over conven-
tional approaches. Using a workstation with an Intel Core i7-
7700K processor and 64 GB of RAM, the generation of dif-
fusion ODFs from DW-MRI data required approximately 90
seconds. The graph and its Laplacian matrix could then be cal-
culated from the ODFs in under 15 seconds. Both of these op-
erations need only be performed once per subject.

In our implementation, the average filtering time of a single
volume with GSS was 10.3 ms using the imgaussfilt3 Mat-
lab function (the same operation required about 450 ms when
using the smoothing implemented in SPM). On the other hand,
DSS filtering scales efficiently with the number of filter kernels
used. Average single-volume DSS filtering times for a single
kernel were 115 ms for the 5-conn neighborhood and 56 for 3-
conn, and became reduced to 17.7 ms and 11.0 ms, respectively,
when using 8 filter kernels at once. With worst case perfor-
mance, the proposed method gave filtering times of around 45
seconds for a 405-volume series (the longest of those available
in HCP data, corresponding to the Working Memory task).

4. Discussion

4.1. Interpretation of results from simulated data
Previous implementations of voxel-wise graphs on GM (Be-

hjat et al., 2015; Maghsadhagh et al., 2019; Behjat and Larsson,

11

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.25.353920doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.25.353920
http://creativecommons.org/licenses/by/4.0/


Emotion

Gambling

Language

Motor

Relational

Social

Working Memory
Average

1 2 3 4 5 6 7 8
0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

D
e

te
c
ti
o

n
 r

a
ti
o

1 2 3 4 5 6 7 8

FWHM [mm]

0

0.1

0.2

0.3

0.4

D
e

te
c
ti
o

n
 r

a
ti
o

1 2 3 4 5 6 7 8

FWHM [mm]

0

0.02

0.04

0.06

0.08

0.1

0.015

0.015

DSS

GSS

Figure 11: Fraction of voxels within WM mask detected as being significant using DSS (top left) and GSS (bottom left) across 7 functional tasks, over 95 subjects.
Significant voxels were determined after FDR correction at 5%. In the plots on the left, each dot corresponds to one subject, whereas � shows the average value
across the 95 subjects. The plots on the right show the trend of the average value as a function of filter parameters τ and FWHM for GSS and DSS respectively.

2020) have used the 3-conn neighborhood in defining graph
edges. However, given the different nature of the proposed en-
coding for WM graphs, which needs to represent axonal orien-
tations rather than the morphology of GM, we considered the
potential advantages of using larger neighborhood definitions.
To this end, we compared the denoising performance obtained
with graphs using the 3-conn and 5-conn neighborhood defini-
tions on circular phantoms of multiple orientations and radii.
Such phantoms were used because, barring discretization arti-
facts, they offer an exhaustive sampling of all possible orienta-
tions in which data can appear in three dimensions. The results
show a clear improvement from using the larger neighborhood
definition (see Figures 7(a) and (c)), which can be attributed to
its superior angular resolution of 98 neighborhood directions,
against the 26 of the 3-conn definition. Furthermore, com-
paring performances obtained on phantoms of different radii
shows that the larger neighborhood definition provides more
stable performance across spatial curvatures than the smaller
neighborhood, which performs worse for smaller curvatures,
particularly for larger filters. Compared to isotropic Gaussian
smoothing (see Figure 7(b)), both the 3-conn and 5-conn neigh-
borhood definitions used in DSS showed enhanced denoising
performance on circular phantoms. In particular, while the per-
formance of GSS deteriorates for larger filter sizes, the perfor-
mance of DSS reaches a plateau instead, suggesting that the
diffusion-informed nature of DSS filters is capable of mini-
mizing the introduction of spurious signal even for larger filter
sizes.

To better mimic spatial activation patterns manifested as
BOLD contrast in WM, we designed and studied semi-synthetic
streamline-based phantoms, whose diffuse activation patterns
are representative of WM fiber structures, along which corre-

lated BOLD activity is expected (Ding et al., 2013, 2016, 2018).
The phantoms were studied in two settings. In the first setting
the denoising performance was studied in the absence of tem-
poral modeling, in the same way as the circular phantoms. In
this setting, both methods provided an improvement over no
smoothing, but DSS outperformed GSS for all tested filter sizes
(Figure 8(a)). In the second setting the phantoms were studied
within the context of GLM activation mapping, i.e. with tem-
poral modeling. In this scenario, GSS provided only minimal
improvements over no smoothing, whereas DSS provided a no-
table improvement (Figure 8(b)). These phantoms were also
used to study the influence of the α parameter of DSS, which
sets a lower bound on the weight of connections allowed in the
WM graph. Due to the narrower and more directional filters
resulting from higher α values (Figure 5), the increased per-
formance on the streamline-based phantoms would be expected
(Figures 8(a) and (c)). However, this result may not be read-
ily extensible to real fMRI data, as the spread of real activation
patterns is not known.

4.2. Interpretation of results from real data

We compared activation mapping results from DSS and GSS
on task fMRI data from the HCP100 subject set. Structure ten-
sor analysis of the resulting t-maps revealed that the overall
amount of structure present diminished for larger filter sizes, an
effect which is more pronounced for GSS (Figure 10(a)). Such
results reflect the loss of spatial details that happens as a result
of lowpass filtering. However, due to the highly anisotropic
shapes that DSS filters take within the WM (Figure 5), features
in the shape of lines and edges can be present in t-maps even
for larger filter sizes (Figure 9). In addition, the spatial struc-
ture present in the t-maps obtained with DSS is correlated with

12

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.25.353920doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.25.353920
http://creativecommons.org/licenses/by/4.0/


00.20.40.60.81

1

2

3

4

5

6

7

8

Dice coefficient

1

2

3

4

5

6

7

8

FWHM [mm]

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

FWHM [mm]

subject 1

subject 95

1 2 3 4 5 6 7 8

average

Emotion (fear)

Gambling (win)

1 2 3 4 5 6 7 8
FWHM [mm]

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

0 0.5 1
Dice

Language (math)

1 2 3 4 5 6 7 8
FWHM [mm]

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

0 0.5 1
Dice

Relational (match)

1 2 3 4 5 6 7 8
FWHM [mm]

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

0 0.5 1
Dice

Motor (right hand)

1 2 3 4 5 6 7 8
FWHM [mm]

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

0 0.5 1
Dice

Social (mental)

1 2 3 4 5 6 7 8
FWHM [mm]

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

0 0.5 1
Dice

Working Memory (0-bk faces)

1 2 3 4 5 6 7 8
FWHM [mm]

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

0 0.5 1
Dice

0

0.2

0.4

0.6

1 2 3 4 5 6 7 8
FWHM [mm]

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

  00.20.40.60.81

Dice

maxi{d1,i}

maxi{d1,i}

maxi{d8,i}

maxi{d8,i}

Ensemble performance across 7 tasks (23 conditions)

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5
V

o
x
e

ls

Common detections
Detections unique to DSS
Detections unique to GSS

10
3

Figure 12: Dice similarity between detection
maps generated with DSS and GSS. For each
subject and condition, an 8 × 8 Dice ma-
trix was computed, where each element rep-
resented dτ,fwhm, see (12). For a given sub-
ject, if neither DSS nor GSS led to any de-
tections for a given combination of τ and
FWHM, the corresponding element was ex-
cluded from further analysis. The schematic
on top explains how the results were ensem-
bled across subjects, resulting in two plots for
each experimental condition; in the plots on
the right, the mean of the scattered values is
indicated by �. Results are presented for a
representative experimental condition in each
task—see results across the 23 conditions in
Supplementary Figure S13, as well as ensem-
bled across 23 conditions; the ensemble plot
on the left shows the average across condi-
tions, whereas the one on the right shows
the median and range of the mean maximum
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the bottom right shows the average number of
common and unique detections generated by
DSS and GSS across all subjects and condi-
tions, wherein every value of τwas compared
with the FWHM that resulted in the maxi-
mum ensemble Dice coefficient.

regions of high diffusion anisotropy (Figure 10(b)), indicating
that DSS successfully adapts its smoothing to the underlying
WM microstructure.

Due to the differences in their definitions, as well as the adap-
tive nature of DSS, there is no direct correspondence between
GSS and DSS filters. This is corroborated by the low Dice co-
efficients between detection maps resulting from both methods
(Figure 12). While GSS with FWHM ≥ 4 mm generally re-
sults in more detections than DSS with any of the tested filter
sizes (Figure 11), this result is consistent with the lower speci-
ficity that can be expected from GSS due to its lack of domain
adaptation (see Supplementary Figures S8-S10). On the other
hand, example detection maps corroborate that DSS is capable
of resolving slender, streamline-like activation patterns along
axonal pathways across multiple filter sizes (Figure 9, Supple-
mentary Figures S11 and S12) by leveraging information about
the spatial correlation structure of the BOLD signal in WM.

4.3. Limitations
We used a sigmoid function, see (10), as a means of boosting

orientation encoding, allowing diffusion only along main direc-
tions of diffusion coherence. We studied three threshold values,
α = 0.85, 0.9 and 0.95, all of which yielded better performance
than GSS on phantom data, with noticeable variations in perfor-
mance among the three values. However, the general choice of
the thresholding function and its associated parameters is rather
ad-hoc, which is a complication of similar nature as that en-
countered in connectomic studies. Future work should consider
a more rigorous validation of the thresholding scheme for ob-
taining optimal performance, especially on real fMRI data.

Accurate multi-modal co-registration of functional, struc-
tural, and diffusion MRI data is a cornerstone of the proposed
methodology. Within this study, we used preprocessed HCP

data, which have been diligently motion-corrected, distortion-
corrected, and co-registered (Glasser et al., 2013). However,
conducting solid preprocessing steps may not be possible in
some datasets, and if so, results obtained using the proposed
method should be interpreted with care.

A recent body of studies has highlighted substantial differ-
ences of the HRF response in WM from that in GM (Li et al.,
2019b). However, due to the ongoing nature of this research,
we decided to use the standard HRF model that is convention-
ally used in fMRI activation mapping. Given that our work is
comparative, and since the choice of the HRF model affects the
methods in the same way, we do not believe that our conclu-
sions would be substantially affected by the use of a more pre-
cise model. Nevertheless, future work aimed at investigating
the WM BOLD signal can most likely benefit from combining
a more appropriate HRF model with adaptive smoothing of the
BOLD signal by DSS.

4.4. Outlook; potential extensions and other applications
Due to the limited degree to which diffusion ODFs can dif-

ferentiate fiber orientation (Jones et al., 2013), we boost ori-
entation encoding by means of a weight thresholding scheme.
Alternatively, the proposed design can be extended to leverage
fiber orientation distribution functions estimated from either the
diffusion ODFs (Descoteaux et al., 2008) or the raw diffusion
data (Tournier et al., 2007), to obviate the need for threshold-
ing. In the absence of HARDI data but presence of DTI data,
the proposed method can be readily extended to leverage diffu-
sion tensors instead of diffusion ODFs, which can be of particu-
lar interest for reanalyzing the vast extent of currently available
fMRI datasets that are accompanied by DTI data.

In the absence of any DW-MRI data, it would be pos-
sible to adapt the proposed method to use a structure ten-
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sor representation (Knutsson, 1989) derived from T1-weighted
MRI images as the complementary contrast (Abramian et al.,
2020b), wherein the proposed filtering scheme could be ex-
tended to function across the entire brain mask. The resulting
morphology-based spatial smoothing could then be seen as a
GSP-based alternative to non-linear filtering algorithms which
enable spatial smoothing within similar anatomical compart-
ments (Smith and Brady, 1997; Weickert and Scharr, 2002;
Ding et al., 2005; Rydell et al., 2008; Lohmann et al., 2018),
but will not provide adaptation to WM fiber orientations.

In addition to performing denoising through heat kernel
smoothing (i.e., lowpass filtering), the proposed WM graphs
can be used to implement graph-wavelet denoising, similar to
that implemented by Behjat et al. (2015) for GM graphs, us-
ing novel data-driven GSP denoising schemes (de Loynes et al.,
2019) in combination with computationally efficient multi-scale
spectral graph decomposition methods (Li et al., 2019c; Shu-
man, 2020) that can be tractably implemented on large graphs.

In the present study, we only explored spatial smoothing of
task-based fMRI data within the context of activation mapping,
whereas DSS can be readily applied to WM resting-state fMRI
data, where recent studies of WM resting-state fMRI data have
used Gaussian smoothing of the data as a pre-processing step.
Such research appears particularly promising in light of studies
reporting the existence of BOLD-like response in resting-state
data (Liu and Duyn, 2013; Petridou et al., 2013; Karahanoğlu
and Van De Ville, 2015), and the current growing interest in
exploring functional dynamics of WM at rest (Peer et al., 2017;
Ding et al., 2018; Li et al., 2019a; Wang et al., 2020; Li et al.,
2020a).

Another research avenue that can benefit from the proposed
WM graph design is structural studies. The eigenvalues of
cortical surface graphs as well as their eigenmodes have been
leveraged in multiple applications, namely, quantifying cor-
tical folding patterns (Germanaud et al., 2012; Rabiei et al.,
2016; Dubois et al., 2019), age prediction (Wachinger et al.,
2015; Masoumi et al., 2019), and analysis of brain asymmetry
in health (Wachinger et al., 2015; Maghsadhagh et al., 2019)
and in disease (Wachinger et al., 2016a,b; Masoumi et al.,
2019). Such analyses can be extended to leverage the spec-
tra of WM graphs. Analysis on similarly designed graphs using
DW-MRI data—covering the entire brain rather than just the
WM—has shown that an initial subset of the graph eigenmodes
provides informative features to distinguish between subjects
(Tarun et al., 2019). Lastly, ODF-based WM graphs may be
found beneficial in deriving structural connectivity measures
that account for direct as well as indirect pathways, for ex-
ample, as an alternative to the DTI-based conductance model
proposed by Frau-Pascual et al. (2019).

5. Conclusion

The development of methods geared specifically towards
WM can prove substantially helpful in investigating the func-
tional significance of the WM BOLD signal. Notwithstanding
the repository of sophisticated smoothing techniques found in

the literature, to date, studies on WM fMRI data have mainly re-
sorted to isotropic Gaussian smoothing. An apparent reason is
the ease in implementing Gaussian smoothing and its availabil-
ity in widely used open-access software packages, which facil-
itate its routine application. The proposed diffusion-informed
spatial filtering method, in conjunction with the use of WM
specific HRF models and MR sequences, holds promise to aid
better understanding of the functional role of WM.

Code and data availability

An implementation of the methods proposed in this work
will be made available as a MATLAB package on https:

//www.nitrc.org/—customized link to will added in the fi-
nal version of the manuscript. The simulated circular and
streamline-based phantoms used in this work will be made
available https://openneuro.org/—customized link will
be added in the final version of the manuscript.

Acknowledgements

Data used in this work were provided by the Human Connec-
tome Project, WU-Minn Consortium (Principal Investigators:
David Van Essenand Kamil Ugurbil; 1U54MH091657) funded
by the 16 Institutes and Centers of the National Institutes of
Health (NIH) that support the NIH Blueprint for Neuroscience
Research; and by the McDonnell Center for Systems Neuro-
science at Washington University.

This work, and HB, were supported by the Swedish Re-
search Council under Grant 2018-06689, and in part by the
Royal Physiographic Society of Lund, the Thorsten and Elsa
Segerfalk Foundation, and the Hans Werthén Foundation. DA
and AE were supported by the Swedish Research Council under
Grant 2017- 04889, by the ITEA3 / VINNOVA funded project
Intelligence based iMprovement of Personalized treatment And
Clinical workflow supporT (IMPACT), and by the Center for
Industrial Information Technology (CENIIT) at Linköping Uni-
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Appendix I: Spectral graph filtering through polynomial
approximation

Spectral graph filtering can be efficiently implemented using
polynomial approximation schemes, mitigating the need to di-
agonalize large L matrices as those used in the present work.
Using this approach, a spectral kernel k(λ) is first approximated
using a polynomial of suitable order, denoted p(λ) : [0, 2]→ R,
and filtering of signal f is then implemented as

f̃ (3)
=

Ng∑
l=1

p(λl) f̂[l]ul, (13)
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(a) (b)

Figure 13: Uniform sampling within solid angles along different orientations.
(a) An icosahedron with five levels of subdivision, wherein the subset of its ver-
tices that fall within the solid angle 4π/98 around the z-axis direction, marked
with black dots, are treated as a template sampling pattern. (b) The template
sampling pattern (black) is then rotated towards other neighborhood directions;
two directions shown here, in red and blue.

where the vectorized form of (3) is invoked. Noting that Lul =

λlul ⇒ p(L)ul = p(λl)ul, (13) can then be simplified as

f̃ = p(L)
Ng∑
l=1

f̂[l]ul = p(L)f, (14)

where in the last equality we used f =
∑Ng

l=1 f̂[l]ul. Using this
scheme, a filtering is performed through a series of polyno-
mial matrix operations on L, without the need to access the
Laplacian eigenvalues. In this work we leveraged truncated
Chebyshev polynomial approximations of spectral kernels as
presented by Hammond et al. (2011), which have the benefit
of approximating a minimax polynomial, minimizing an upper
bound on the approximation error.

Appendix II: Uniform sampling of ODFs

We define a spherical sampling grid using the vertices of
an icosahedron with five levels of subdivision, which results
in a total of 10,242 vertices on the unit sphere. Due to non-
uniformity in the spatial spread of the vertices, the number and
distribution of vertices that fall within the solid angles Ωi, j sub-
tended along the 26/98 different r̂i, j neighborhood directions
vary. To overcome this bias, we treat the vertices that fall
within Ωi, j around the z-axis as a sampling template, result-
ing in Nt = 389 and 105 template directions for the 3-conn
and 5-conn neighborhood definitions, respectively. The sam-
pling template is then rotated and centered around each neigh-
borhood direction r̂i, j, resulting in a set of sampling directions
{r̂k

i, j | k = 1, . . . ,Nt} (see Figure 13).

Appendix III: Streamline-based phantom construction

For each subject, 10 thousand streamlines, denoted {si(x) ∈
R3}i=1...10000, were generated through deterministic tractography
using the method presented by Yeh et al. (2013) as implemented
in DSI Studio. A subset of S streamlines from a single subject

was randomly selected and used as the basis to produce a phan-
tom. Each streamline si was first voxelized, resulting in a vector
si containing the indices of the voxels through which it passes.
A random source point for the activation was then selected, rep-
resented by an indicator vector di of the same length as si with
a single 1. An adjacency matrix Ai was then defined, specify-
ing that every voxel in si is connected to itself and its neighbors
within a 3 × 3 × 3 neighborhood, with equal weights adding
up to 1. The diffuse activation pattern, denoted pi, was then
constructed as

pi =
An

i di

max An
i di

, (15)

where the exponent n is a parameter that controls the extent of
spatial spread of the activation, and was set to 250 in the design
of all the phantoms used in this work. Finally, the phantom was
created by merging the various activation patterns {pi}i=1...S into
a single volume.
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Brázdil, M., Krupa, P., 2008. Effects of spatial smoothing on fMRI group
inferences. Magnetic resonance imaging 26, 490–503.

Mishra, A., Li, M., Anderson, A.W., Newton, A.T., Ding, Z., Gore, J.C., 2020.
Concomitant modulation of BOLD responses in white matter pathways and
cortex. NeuroImage , 116791.
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