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Abstract 

 
Knowing when the brain learns is crucial for both the comprehension of memory 
formation and consolidation, and for developing new training and neurorehabilitation 
strategies in healthy and patient populations. Recently, a rapid form of offline learning 
developing during short rest periods has been shown to account for most of procedural 
learning, leading to the hypothesis that the brain mainly learns during rest between 
practice periods. Nonetheless, procedural learning has several subcomponents not 
disentangled in previous studies investigating learning dynamics, such as acquiring the 
statistical regularities of the task, or else the high-order rules that regulate its 
organization. Here, we analyzed 506 behavioral sessions of implicit visuomotor 
deterministic and probabilistic sequence learning tasks, allowing the distinction 
between general skill learning, statistical learning and high-order rule learning. Our 
results show that the temporal dynamics of apparently simultaneous learning processes 
differ. While general skill and high-order rule learning are acquired offline, statistical 
learning is evidenced online. These findings open new avenues on the short-scale 
temporal dynamics of learning and memory consolidation and reveal a fundamental 
distinction between statistical and high-order rule learning, the former benefiting from 
online evidence accumulation and the latter requiring short rest periods for rapid 
consolidation.   
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Introduction 

 

Learning is the ability to acquire knowledge or skills through new or repeated 
experiences. To understand the neural mechanisms of learning, it is crucial to identify 
the specific periods during which it occurs. In the laboratory, learning is usually 
assessed by measuring specific knowledge or skill before and after a period of training. 
For example, a seminal experience consists of measuring the speed and accuracy with 
which participants play a sequence – a simplified version of learning a piece of piano 
without the artistic component – before and after practicing it several times (Fischer et 
al. 2002). This type of research revealed that following a training session and during a 
resting or sleep period, the acquisition of new skill may continue to develop, a process 
called offline learning (Robertson et al. 2004). Indeed, performance (Robertson et al. 
2005) or the stability of the memories against interference (e.g., caused by the learning 
of a second sequence) (Brashers-Krug et al. 1996; Shadmehr and Brashers-Krug 1997) is 
enhanced several hours after the end of the practice compared to just after the practice. 
This offline learning, which occurs during awake or sleep periods, has been linked to 
functional brain changes (Shadmehr and Holcomb 1997; Fischer et al. 2005). This 
demonstrates that the neural mechanisms of learning do not necessarily only develop 
during practice. Recently, rapid offline consolidation of skill has also been documented 
in the course of short rest periods, from seconds (Bönstrup et al. 2019, 2020) to minutes 
(Du et al. 2016) during the learning of a perceptual-motor sequence. In Bönstrup et al. 
(2019, 2020), this fast offline learning even accounted for most behavioral gains during 
early skill learning, raising the hypothesis that the brain mainly learns during short rest 
periods and not during the practice itself. However, these studies investigating ultra-fast 
consolidation during sequence learning did not evaluate the relative contribution of 
online and offline learning to different crucial components of learning. Here, we used 
sequence learning tasks with random, probabilistic and deterministic transitions that 
made possible the identification of the short-scale dynamics of general skill (the general 
speed-up in the task), statistical and high-order rule learning.    
 
Statistical learning is a fundamental learning mechanism responsible for picking up 
probabilistic regularities in the environment. The ability of an organism to extract such 
statistical environmental information is critical for its survival (Saffran et al. 1996; Milne 
et al. 2018) and is present across species and modalities (Bulf et al. 2011). In humans, 
this ability is present in babies (Saffran et al. 1996) and at the core of a wide range of 
behaviors, including linguistic processing (Saffran et al. 2001) or perceptual decision 
making (Summerfield and de Lange 2014). One challenge of language acquisition, for 
example, is the segmentation of words from fluent speech. Within a language, the 
transitional probability between two syllables will generally be higher within a word 
than between two words, creating inhomogeneities in transitional probabilities between 
sounds. Such statistical information is used by adults and babies as young as 8 months 
old in order to segment words (Saffran et al. 1996; Mirman et al. 2008).  
 
Nevertheless, learning does not rely solely on the extraction of statistical regularities. 
High-order rule learning is also needed to extract deterministic rules that can be 
generalized to new elements that have never been encountered before. For instance, it 
has been shown that 7-months-old babies can also extract and generalize abstract rules 
from an artificial language (Marcus et al. 1999) and that these rules are captured during 
speech processing (Peña et al. 2002). Such rules are abstract in the sense that they can 
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be applied to new elements in the environment that have never been encountered 
before. They are often said to be “high-order” because the knowledge of several 
elements (n-1, n-2, etc.) is necessary to predict an upcoming element (n). Well-beyond 
language acquisition, the brain is constantly making predictions based on previous 
knowledge in virtually all types of learning (Engel et al. 2001; Friston 2005; Kveraga et 
al. 2007). Such predictions may be inferred from both statistical regularities and high-
order rules. Here, we explore whether statistical learning and high-order rule learning 
are related to different ultra-fast consolidation dynamics. 
 
Learning a new visuomotor skill also requires the development of lower-level 
perceptual and motor skills that do not depend on statistical or high-order rule learning, 
including visuomotor mapping and dexterity (Robertson 2007). We refer to this type of 
learning as general skill learning.  
 
In this study, we used serial reaction time (SRT, Nissen and Bullemer 1987) and 
alternating serial reaction time tasks (ASRT, Howard and Howard 1997), in which 
healthy participants encounter an array of four positions on a screen, each paired with a 
designated response key. Positions are filled sequentially with deterministic (in both 
SRT and ASRT) or probabilistic (in ASRT) patterns and the participant has to push the 
corresponding key as fast and as accurately as possible. These task designs allow the 
distinction between general skill learning, statistical learning and high-order rule 
learning. We identified the short-scale temporal dynamics of these three types of 
learning by measuring the performance gains during short practice (online) or rest 
(offline) periods. Beyond confirming that general skills are mainly learned during short 
rest periods (Du et al. 2016; Bönstrup et al. 2019, 2020), our analyses revealed a critical 
distinction between statistical learning that is acquired during practice and high-order 
rule learning that is acquired during rest periods. These results suggest that the brain 
mechanisms leading to statistical and high-order rule learning are fundamentally 
different, the former requires online evidence accumulation while the latter requires a 
rest consolidation period. 
 

 
 

Figure 1: General design and main results (A) Structure of the sequences used in the SRT 

task and ASRT task. In the SRT task, a deterministic sequence of 12 elements is repeated 
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five times per block. In the ASRT task, a deterministic sequence of 4 elements is interleaved 

with four random elements resulting in an 8-element probabilistic sequence, which is 

repeated ten times per block. (B) The number of participants and sessions in Experiment 1 

(SRT experiment), Experiment 2 (ASRT experiment), and Experiment 3 (long ASRT 

experiment). (C) Type of learning investigated in each experiment. (D) Summary of the 

results. General skill and high-order rule learning occur during rest periods (offline) while 

statistical learning occurs during practice (online). 

 
Results 

 

Dynamics of general skill learning 

 

In the three experiments, average RT per block for all trials (excluding random blocks in 
the SRT task) decreased over time (Experiment 1: Spearman rs = -0.97, p < 10-12; 
Experiment 2: rs = -0.78, p < 10-9; Experiment 3: rs = -0.99, p < 10-155), demonstrating 
general skill learning (Fig. 2A, 2E, 2H for respectively Experiment 1, 2 and 3, black line). 
To investigate whether this learning occurred during practice or rest periods, we 
measured its online and offline contribution as depicted in Fig. 1B and described in the 
methods section. In average across blocks, general skill performance decreased during 
practice (Experiment 1: Monline = -24.58 ± 22.79 seconds, t(62) = -8.49, p < 10-11; 
Experiment 2: Monline = -24.23 ± 9.37 seconds, t(179) = -34.61, p < 10-80; Experiment 3: 
Monline = -13.97 ± 6.63 seconds, t(24) = -10.32, p < 10-9) and increased during rest 
periods (experiment 1: Moffline = 37.22 ± 24.78 seconds, t(62) = 11.88, p < 10-16; 
Experiment 2: Moffline = 25.66 ± 9.35 seconds, t(179) = 36.71, p < 10-84; Experiment 3: 
Moffline = 20.29 ± 26.35 seconds, t(24) = 11.59, p < 10-10) (Fig. 2C, 2F, 2I).  
 
These results suggest that general skill learning mainly occur offline, but the 
performance increase during rest periods might be mainly due to fatigue or inhibition 
release (Rickard et al. 2008; Brawn et al. 2010; Török et al. 2017). To ensure that 
performance increase during rest periods reflects offline learning and not only 
fatigue/inhibition release, we analyzed rest periods following the first blocks of each 
session, during which no performance decrements were observed (average of the first 
blocks of the two sessions for Experiment 1, first block of the session for the Experiment 
2 and average of the first blocks of the eight sessions for Experiment 3). Indeed, no 
decrease in performance occurred during these first session blocks; in Experiment 1 we 
even observed a modest performance increase (Experiment 1: Monline = 11.13 ± 37.82 
seconds, t(62) = 2.32, p = 0.02; Experiment 2: Monline = 0.58 ± 30.25 seconds, t(179) = 
0.26, p = 0.80; Experiment 3: Monline = -0.53 ± 11.94 seconds, t(24) = 0.22, p = 0.83) but 
following rest periods were still accompanied by a general skill performance increase 
(Experiment 1: Moffline = 43.44 ± 46.59 seconds, t(62) = 8.34, p < 10-9; Experiment 2: 
Moffline = 27.77 ± 30.40 seconds, t(179) = 12.22, p < 10-24; Experiment 3: Moffline = 20.29 ± 
10.10 seconds, t(24) = 9.84, p < 10-9) (Fig. 2D, 2G, 2J).  
 
In the ASRT tasks (Experiments 2 and 3), general skill learning over the task was also 
visible when considering only the random-low trials instead of all trials (Experiment 2: rs 

= -0.71, p < 10-7; Experiment 3: rs = -0.96, p < 10-107) and similar online and offline 
dynamics were found when considering only random-low trials when all blocks were 
included (Experiment 2: Monline = -27.38 ± 10.93 seconds, t(179) = -33.51, p < 10-78 and 
Moffline = 28.65 ± 11.08 seconds, t(179) = 34.58, p < 10-80; experiment 3: Monline = -17.89 ± 
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6.38 seconds, t(24) = -13.74, p < 10-12 and Moffline = 18.74 ± 6.24 seconds, t(24) = 14.70, p 
< 10-12) or when only the first blocks were included (Experiment 2: Monline = 0.50 ± 52.60 
seconds, t(177) = 0.12, p = 0.90 and Moffline = 26.55 ± 57.41 seconds, t(177) = 6.15, p < 10-

8; Experiment 3: Monline = -3.92 ± 15.33 seconds, t(24) = 1.25, p = 0.22 and Moffline = 18.74 
± 6.24 seconds, t(24) = 6.57, p < 10-6).  
 
We also investigated whether offline general skill learning across day or week was also 
visible. In Experiment 1, offline change in general skill performance between sessions 12 
hours apart was significant (MLongOffline = 28.23 ± 61.88 seconds, t(62) = 3.59, p < 10-3). In 
Experiment 3, offline change in general skill performance between sessions a week 
apart was not significant (MLongOffline = 5.00 ± 17.25 seconds, t(24) = 1.42, p = 0.17). 
 

 
Figure 2: General skill learning occurs during rest periods. (A) Average reaction time per 

block (black line) and per bin (blue line) for the Experiment 1 (SRT). (B) Depiction of 

online and offline learning measurement. (C) Average online and offline general skill 

learning across all blocks and (D) for only the first block of both sessions for Experiment 1 

(SRT). (E) Average reaction time per block (black line) and per bin (blue line) for 

Experiment 2 (ASRT). (F) Average online and offline general skill learning across all blocks 

and (G) for only the first block for Experiment 2 (ASRT). (H) Average reaction time per 

block (black line) and per bin (blue line) for Experiment 3 (long ASRT). For better 

visualization, a zoom-in for day 1 and day 8 is represented. (I) Average online and offline 

general skill learning across all blocks and (J) for only the first block of the 8 sessions for 

Experiment 3 (long ASRT). Significance is noted by * for p-value < 0.05 and **** for p-
value < 0.0001. 
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Dynamics of statistical learning 

 

Statistical learning, defined as the increase of the difference in reaction time between 
random-high and random-low trials, was present in both ASRT experiments (Experiment 
2: rs = 0.81, p < 10-10; Experiment 3: rs = 0.72, p < 10-32). When looking at online vs. offline 
gain in performance, we observed that statistical learning increased during practice 
(Experiment 2: Monline = 5.22 ± 15.27 seconds, t(179) = 4.58, p < 10-5; Experiment 3: 
Monline = 7.37 ± 6.70 seconds, t(179) = 5.40, p < 10-4) and decreased during rest periods 
(Experiment 2: Moffline = -5.06 ± 13.97 seconds, t(179) = -4.85, p < 10-5; Experiment 3: 
Moffline = -5.05 ± 13.97 seconds, t(179) = 4.84, p < 10-5) (Fig. 3B, 3E). Statistical learning 
also decreased between sessions a week apart in Experiment 3 (MLongOffline = -20.00 ± 
35.65 seconds, t(24) = -2.75, p < 0.02). 
 

 
Figure 3: Statistical learning occurs during practice periods. (A) Average statistical 

learning (RT difference between random-high and random-low trials) per block (black 

line) and per bin (orange line) for Experiment 2 (ASRT). (B) Average online and offline 

statistical learning across all blocks for Experiment 2 (ASRT). (C) Online and offline 

statistical learning across all blocks and with a linear fit for Experiment 2. (D) Average 

statistical learning per block (black line) and per bin (orange line) for Experiment 3 (long 

ASRT). For better visualization, a zoom-in for day 1 and day 8 is represented. (E) Average 

online and offline statistical learning across all blocks with a linear fit for Experiment 3 

(long ASRT). (F) Online and offline statistical learning across all blocks for Experiment 3 

(long ASRT). Significance **** for p value<0.0001. 

 

Dynamics of high-order rule learning 

 

High-order rule learning, defined as the increase of the difference in reaction time 
between pattern and random-high trials, was present only in Experiment 3 (long ASRT) 
(Experiment 2: rs = 0.17, p = 0.27; Experiment 3: rs = 0.67, p < 10-26) (Fig. 4A, only 
Experiment 3 is displayed). When looking at online vs. offline gain in performance, we 
observed that high-order rule learning decreased during practice (Experiment 3: Monline 
= -3.03 ± 6.15 seconds, t(24) = -2.42, p = 0.02) and increased during rest periods 
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(Experiment 3: Moffline = 2.76 ± 6.01 seconds, t(24) = 2.25, p = 0.03) (Fig. 4B). Change in 
high-order rule learning between sessions a week apart in Experiment 3 was not 
significant (MLongOffline = 6.72 ± 22.75 seconds, t(24) = 1.44, p = 0.16). 
 

 
Figure 4: High-order rule learning occurs during rest periods (A) Average high-order rule 

learning (RT difference between pattern and random-high trials) per block (black line) 

and per bin (green line) for Experiment 3 (long ASRT). For better visualization, a zoom-in 

for day 1 and day 8 is represented. (B) Average online and offline high-order rule learning 

across all blocks for Experiment 3 (long ASRT). (C) Online and offline high-order rule 

learning across all blocks and with a linear fit for Experiment 3. Significance is noted * for 

p value<0.5 

 

Discussion 

 

Our brains can learn new skills very quickly. But the short-scale dynamic of this 
learning, and in particular, whether the new skill can be learned online or offline, has 
only recently started to be investigated (Du et al. 2016; Bönstrup et al. 2019, 2020). 
Here, we used three different experiments (one SRT and two ASRT tasks) and a total of 
506 behavioral sessions to characterize the online and offline contribution for three 
types of learning, namely general skill learning, statistical learning and high-order rule 
learning. Our results revealed that the short-scale dynamics of different types of 
learning are mirroring each other, building-up either during practice or during the 
following rest periods. Specifically, statistical learning is acquired during practice 
periods, while general skill and high-order rule learning are acquired during break 
periods. 
 
Statistical learning refers to the process of extracting probabilistic structure from the 
environment (Romberg and Saffran 2010; Sherman and Turk-Browne 2020). In our 
ASRT tasks, statistical learning is evidenced by shorter reaction times during triplets 
that appear frequently (random-high trials) compared to triplets that appear less 
frequently (random-low trials) (Howard and Howard 1997). Performance in statistical 
learning increases during practice and decreases during rest periods (Fig. 3). These 
results suggest that statistical learning benefits from evidence accumulation developing 
during practice and does not consolidate but decays during rest periods. This 
observation may explain why no evidence for offline consolidation of statistical learning 
was found during 12-hour sleep or awake periods (Song et al. 2007; Nemeth et al. 2010).  
 
Conversely, higher-order rule learning, evidenced by faster performance during pattern- 

relative to random-high trials specifically increases offline during rest periods (Fig. 4). 
This type of learning is much lower in magnitude than statistical learning and becomes 
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significant only after many trials or sessions, as in the third experiment. Indeed, while 
the probabilistic learning in the ASRT task is based on acquiring the statistics on low 
order, simple transitions, the high-order rule learning is, as indicated by its name, based 
on acquiring the deterministic rule on high-order, complex transitions, i.e., every other 
trial. A potential explanation for these opposite results for these two learning types is 
that statistical knowledge on simple transitions can be acquired under attentional 
distraction coming from the task itself of mapping visual cues with response keys. In 
contrast, higher-order rule learning could need more attentional resources and 
consequently occurs only between practice periods. It has indeed been shown during 
sequence learning that simple transitions (Jiménez and Vázquez 2005; Rowland and 
Shanks 2006; Nemeth et al. 2011), but not more complex structures (Cohen et al. 1990), 
could be learned under attentional distraction.  
 
Another possible explanation stands in the deterministic vs. probabilistic nature of these 
two types of learning. While deterministic and probabilistic information may be 
considered as a continuum of the same process (deterministic rule is mathematically an 
extreme case of statistical information with probabilities of 0 or 1), past research 
suggests that both processes are linked to different brain regions (Bhanji et al. 2010), 
influenced differently by the explicitness of the information (Stefaniak et al. 2008) and 
better modeled by two distinct hypothesis spaces instead of one (Maheu et al. 2020). It 
is then possible that uncertain regularities (statistical learning) need evidence 
accumulation and can only be acquired online while deterministic regularities (rule 
learning) need a rest period to be consolidated, maybe because they are somehow 
rehearsed or replayed during rest. Future studies will have to dissociate whether this 
difference in dynamics between statistical and high-order rule learning is related to the 
low-order/high-order or the probabilistic/deterministic nature of the learning, or a 
mixture of both. 
 
Our results also demonstrate that general skill learning is acquired during rest periods 
(Fig 2). This result stands both when the measure for general skill learning included all 
trials or only random-low trials, excluding then any predictable patterns from the 
stimulus stream. It thus suggests that the fast-consolidation of procedural learning 
during breaks observed in previous research (Du et al. 2016; Bönstrup et al. 2019, 2020) 
may be less dependent of the sequence learning itself but depends more on a mixture of 
improvement in sensorimotor transformation, dexterity, and familiarization with the 
task. While statistical and high-order rule learning are measured as a difference 
between two types of trials, precluding that the offline gap in performance is due to a 
release of fatigue or reactive inhibition effect (Török et al. 2017), the general skill 
learning is measure by a reaction time, which is very sensitive to fatigue, as depicted by 
the constant decrease in reaction time within blocks in the three experiments (Fig. 2A, E, 
H). To ensure that the offline gap in general skill performance is not simply a release of 
fatigue, we tested the offline change in general skill performance after the first blocks of 
each session during which there is no decrease in reaction time (Fig. D, G, J) and the 
offline gain was still present. Offline improvements in general skills are thus not only 
related to fatigue release but are likely to also reflect consolidation processes (see also 
Bönstrup et al. 2020). 
 
In this study, we identified the short-scale temporal dynamics of three types of learning, 
namely general skill learning, statistical learning and high-order rule learning, extracted 
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from the same information stream. We revealed that they are not developing at the same 
time, with general skill and high-order rule learning developing offline while statistical 
learning is developing online. These results suggest that such types of learning rely on 
separate neural mechanisms with their own dynamics. Our unprecedented dissection of 
the short-scale dynamics of subcomponents of learning challenge the classical view of 
memory acquisition and consolidation, which would be applied indifferently to all types 
of learning. We revealed, on the contrary, that statistical learning occurs only during 
practice and general skill and high-order rule learning occur only during breaks.   
 
 
Methods 

 

Participants 

Two hundred and sixty-eight (268) healthy young volunteers participated in three 

studies (192 women, 76 men, mean age = 22.2 years) for a total of 506 reported 

behavioral sessions. All participants had normal or corrected-to-normal vision, and none 
of them reported a history of any neurological and/or psychiatric condition. Participants 

provided informed consent to the procedure before enrollment, as approved by the 
institutional review board of the local research ethics committee. The three experiments 
were approved by the United Ethical Review Committee for Research in Psychology 

(EPKEB) in Hungary and by the research ethics committee of Eötvös Loránd University, 
Budapest, Hungary. The experiments were conducted in accordance with the 

Declaration of Helsinki. Participants received course credits for taking part in the 
experiment. Data from Experiment 2 were previously published (Kóbor et al. 2017; 

Török et al. 2017). The results of the present paper were not tested nor reported before. 

Figure. 1 summarizes the design of the present study. 
 
Serial Reaction Time (SRT) Task 

During the Serial Reaction Time (SRT) task (Nissen and Bullemer 1987), four empty 

circles were horizontally arranged on the screen. Participants were instructed to 

respond to a stimulus (a dog’s head) that appeared in one of the four open circles by 
pressing one of four corresponding keys on a computer keyboard (Z, C, B, or M on a 

QWERTY keyboard) as quickly and accurately as possible after the appearance of the 
stimulus. Participants used their left and right middle and index fingers to respond to 

the stimuli. The stimulus remained visible until participants pressed the correct key, at 

which time it disappeared. The following stimulus appeared 120 ms after the offset of 
the previous stimulus. The SRT task was programmed and displayed using E-prime 

software (Psychology Software Tools, Inc.). The serial order of the four possible 

positions (coded as 1, 2, 3, and 4) in which target stimuli could appear was determined 
by a twelve-element sequence (2–3–1–4–3–2–4–1–3–4–2–1) (Robertson 2007). An 

experimental session was divided into blocks with either 60 trials corresponding to five 
repetition of the twelve-element sequence or 60 pseudo-random trials in which the 

visual cue no longer played out a deterministic pattern of positions.  
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Alternating Serial Reaction Time (ASRT) Task 

The visual display, response modality, timing, instructions, and program software for 

the ASRT task were similar to those during the SRT task. The serial order of the four 

possible positions (coded as 1, 2, 3, and 4) in which target stimuli could appear was 
determined by an eight-element sequence (Howard and Howard 1997; Song et al. 2007; 

Janacsek et al. 2012). In this sequence, every second element appeared in the same 
order during the entire task, while the other elements’ positions were randomly chosen 

(e.g., 2–r–1–r–3–r–4–r, where numbers refer to a predetermined location in one of the 

four locations and r refer to randomly chosen locations out of the four possible). A total 
of six unique sequences of predetermined elements were created and one of them was 
assigned to each subject in a random order (Howard and Howard 1997). An 
experimental session was divided into blocks starting with five random trials (warm-up) 

followed by the eight-element sequence repeated ten times (Nemeth et al. 2010; 

Nemeth, Janacsek, Király, et al. 2013). Warm-up trials were discarded from the analyses.  
 

Due to the alternating sequence structure, some patterns of three consecutive elements 
(henceforth referred to as triplets) occurred with a higher probability than other ones. 

Each trial was categorized as the last element of either a high- or a low-probability 
triplet. High-probability triplets could be formed either by predetermined elements or 
random ones. In the above sequence example (2–r–1–r–3–r–4–r), the probability that a 

triplet starting with the element ‘2’ and ending with the element ‘1’ occurred was of 
62.5%. Indeed, the item ‘2’ could be either predetermined (50%) or random (50%). If it 

is predetermined, then the last element of the triplet has to be ‘1’; if it is random the last 

element of the triplet could be anything. Thus, the item ‘1’ had 50% probability of 
occurring as the last predetermined element of the triplet plus 12.5% of chances to 

occur as a random element. In contrast, triplets such as 1–x–2 or 4–x–3 occurred with a 
low probability (12.5%) because they could only occur when the third element of the 
triplet was random. Low-probability triplets forming repetitions (e.g., 222) or trills (e.g., 

232) were discarded from analyses as participants often show preexisting response 
tendencies to them (Howard et al. 2004; Soetens et al. 2004). Trials were participants 

pressed a wrong button were also discarded. Participants were not informed of any 

regularity. Each trial could be a pattern trial, a random-high trial or a random-low trial. A 
pattern trial corresponded to a predetermined element ending a triplet (all pattern trials 

are high-probability triplets); a random-high trial corresponded to a random element 
ending a high-probability triplet; a random-low trial corresponded to a random element 
ending a low-probability triplet. This sequence structure allows the distinction between 

(i) general skill learning, measured by a decrease in reaction time (RT) for all trials, (ii) 
statistical learning, measured by the difference in RT between the random-high trials 

and the random-low trials (because they end two types of triplets that appear randomly, 
but random-high trials are more frequent than random-low trials) and (iii) high-order 

deterministic learning, measured by the difference in RT between pattern trials and 

random-high trials (because they end two types of triplets that are similar in term of 
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sequence but pattern trials, unlike random-high trials, are predictable) (Howard and 
Howard 1997; Nemeth, Janacsek, and Fiser 2013). 
 

Procedure: Experiment 1 

Sixty-three participants took part in this experiment. They each performed two sessions 

separated by 12 hours. Each session contained a total of 13 blocks of SRT task, with the 
6th and the 12th block displaying random sequences. Behavioral performances during 
random blocks were discarded from the analyses (but there are visible in Fig. 2A for 

illustration purpose). After each block, the average speed and accuracy for the most 

recent block were displayed to the participants, and they could have a short break 
before starting the next block by pressing a button. The average block duration across 

participants and blocks was 31.33 ± 5.11 seconds. The average break duration across 
participants and breaks was 24.26 ± 19.83 seconds.  

 
Procedure: Experiment 2 

One hundred eighty participants took part in this experiment. They each performed one 

session of 45 blocks of ASRT task. After each block, the average speed and accuracy for 
the most recent block were displayed to the participants, and they could have a short 

break before starting the next block by pressing a button. After 15 blocks and 30 blocks, 

participants had a more extended break and filled questionnaires. The average block 
duration across participants and blocks was 46.45 ± 3.34 seconds. The average short 

break duration across participants and blocks was 18.75 ± 10.7 seconds. The average 
break duration for the two longer breaks with questionnaire was 258.0 ± 99.75 seconds.  
 

Procedure: Experiment 3 
Twenty-five participants took part in this experiment. They each performed eight 

sessions of 25 blocks of ASRT task. Each session was a week apart. After each block, the 
average speed and accuracy for the most recent block were displayed to the 

participants, and they could have a short break before starting the next block by 

pressing a button. The average block duration across participants and blocks was 41.79 
± 3.78 seconds. The average break duration across participants and breaks was 18.56 ± 
3.31 seconds. 
 

Learning measures and statistical analyses 

 

General skill learning was defined as a decrease of RT for all trials across blocks. In ASRT 

tasks, general skill learning was also tested considering random low trials only. 
Statistical and high-order rule learning was measurable only in ASRT experiments. 

Statistical learning was defined as an increase of RT difference between random-low and 

random-high trials (RTrandom-low-RTrandom-high) across blocks. Higher-order rule learning 
was defined as an increase of RT difference between random-high and pattern trials 

(RTrandom-high-RTpattern). High-order rule learning takes a high number of trials or sessions 

in ASRT to become visible. Indeed, in the current study, it was only observable in the 
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long ASRT task (Experiment 3, see Results section). To estimate general skill, statistical 
and high-order rule learning over the tasks, Spearman correlation between learning 

measures (block-average RT for general skill learning or block-average difference in RT 

between two types of triplet for statistical and higher-order deterministic learning) and 
block position was used. To measure the online (over practice blocks) and offline (over 

rest periods) contribution to each type of learning, in both SRT and ASRT tasks, each 
block was binned into five bins. Each bin corresponds to 12 trials (one 12-element 

sequence) in the SRT task and 16 trials (two 8-element sequences) in the ASRT task. 

Online learning was measured as the difference in learning between the last bin of a 
block and the first bin of the same block. Offline learning was measured as the difference 
in learning between the first bin of a block and the last bin of the previous block (Fig. 
2B). For general skill learning, as learning is defined as a decrease in RT, online and 

offline measures were reversed so that learning appears positive on the violin plots (Fig. 

2C). One-sample t-tests against zero were used to assess if learning occurred during 
practice (online) or rest (offline) periods.  
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