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Abstract 13 

Multi-scale macroalgae growth models are required for the efficient design of sustainable, 14 
economically viable and environmentally safe farms. Here, we develop a multi-scale model for 15 
Ulva sp. macroalgae growth and nitrogen sequestration in an intensive cultivation farm, regulated 16 
by temperature, light and nutrients. The model incorporates a range of scales by incorporating 17 
spatial effects in two steps: light extinction at the reactor scale (1 m) and nutrient absorption at 18 
the farm scale (1 km). The model was validated on real data from an experimental reactor 19 
installed in the sea. Biomass production rates, chemical compositions and nitrogen removal were 20 
simulated under different seasons, levels of dilution in the environment and water-exchange rate 21 
in the reactor. This multi-scale model provides an important tool for environmental authorities and 22 
seaweed farmers who desire to upscale to large bioremediation and/or macroalgae biomass 23 
production farms, thus promoting the marine sustainable development and the macroalgae-based 24 
bioeconomy. 25 

 26 
Introduction 27 
 28 

Marine conservation and sustainable development is essential for achieving the United Nations’ 29 
Sustainable Development Goals1. Large scale seaweed farms (> 1 km) could proffer a 30 
sustainable and environmentally safe means for biomass production for biorefineries, to supply 31 
the soaring demand for food, energy and raw materials, without expanding agricultural lands or 32 
freshwater requirements2–5. Furthermore, seaweed aquaculture can be utilized for eutrophication 33 
mitigation6–9, thus contributing to the international effort to abate nutrient over-enrichment in 34 
coastal ecosystems10,11 (i.e. the Mediterranean Action Plan 5). However, the implementation of 35 
commercial cultivation of seaweed beyond East Asia countries is limited, because of a lack of 36 
farming tradition, undeveloped markets, and a questionable economic viability12. Large-scale 37 
commercial macroalgae cultivation, which is considered a new technology in most countries, 38 
could be advanced using multi-scale models. The use of multi-scale models to promote new 39 
technologies in reduced time and cost was demonstrated in the Carbon Capture Simulation 40 
Initiative (CCSI)13. The CCSI, a partnership among national laboratories, industry, and 41 
universities, was established to enable accelerated commercialization of carbon capture 42 
technologies by developing multiscale models and simulation tools, used to improve design and 43 
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reduce scale-up risk. Similarly, advances in cultivations of seaweed from small-scale activities to 44 
large scale implementation could also benefit from the availability of multiple scale models. We 45 
propose that these multi-scale models could facilitate the design and optimization of large 46 
seaweed farms by incorporating in the large scale models data from cultivation activities in a 47 
small scale14,15, and demonstrate it in a study with mathematical and experimental parts. 48 

Current macroalgae growth and nutrient dynamics models were developed for specific 49 
applications. For example, long-term ecological models that attempt to predict macroalgal 50 
productivity and seasonal blooms in prone ecosystems16,17,26,27,18–25 or “black box” culture models 51 
that focus mostly on on-shore photobioreactors or tanks9,28 or offshore extensive cultivation29–31. 52 
These models, which pursue a basic understanding of the thermodynamics of individual algae 53 
thalli and photobioreactors32, can provide a general idea about productivity and seasonal effects 54 
on algae growth. However, they do not incorporate spatial effects at the scale of the farm and its 55 
environment and therefore cannot predict how the algae would behave in a real-life large-scale 56 
farm. On the other hand, as proposed above, multi-scale models that extend from the scale of a 57 
single plant to the scale of the farm could be used for the design of real-life scale seaweed 58 
farms15. Such a multi-scale model could incorporate available small-scale mathematical models 59 
and small-scale experimental data. This challenging task involves the combination of multiple 60 
biological, engineering and environmental factors and is the focus of this research. 61 

Recently, some studies have proposed to apply intensified macroalgae cultivation, usually done 62 
in photobioreactors, also at near- and off-shore seaweed farms33,34. Intensified cultivation 63 
systems rely on frequent harvesting and could benefit from temporal multi-scale models that can 64 
predict biomass production and chemical composition in a time scale of days. As a case study, 65 
we used data from a Mediterranean Sea near-shore intensive growth experimental reactor used 66 
for free-floating Ulva species cultivation, which was described by Chemodanov et al.34. This 67 
reactor employs airlift pumps and bottom aeration and is suitable for shallow coastal areas or 68 
estuarine systems, in which macroalgae have a natural important role in nutrient cycling22. As 69 
these environments are the most prone to harmful eutrophication35,36 which is responsible for 70 
significant environmental and economic damages36, the added value of nutrient bio-sequestration 71 
may increase the economic viability of seaweed cultivation in such locations. 72 

In this study we develop a theoretical multi-scale model for macroalgae growth and nitrogen 73 
sequestration in an intensive cultivation seaweed farm, which is regulated by temperature, light 74 
and nutrients (Fig. 1). The model is used to simulate farm-scale biomass production and nitrogen 75 
removal in a nutrient-enriched environment, at a temporal and spatial resolution and scale that is 76 
not available today. Specifically, the model predicts farmed seaweed biomass and sequestered N 77 
in different seasons. The model incorporates the required nutrient concentrations and how is the 78 
spatial distribution of biomass composition and productivity affected by levels of airlift pumping 79 
and dilution in the environment. Our model enables the investigation of farm spatial and temporal 80 
responses to environmental variations and provides useful insights on the effects of farm design 81 
and operation on the compliance with environmental and commercial requirements (i.e uniform 82 
biomass composition and minimal energy consumption). Altogether, this multi-scale model 83 
provides an important tool for environmental authorities and seaweed farmers who desire to 84 
upscale to large bioremediation and/or macroalgae biomass production farms, thus promoting the 85 
macroalgae-based bioeconomy. 86 

 87 
Results and Discussion 88 
 89 

Calibrated model. The calibration process started with light extinction parameters (𝐾𝑎 and 𝐾0) 90 
and continued to growth function parameters (parameters of eq 1 and SI appendix, eq S1). Based 91 
on a scan of 600 parametric combinations within a pre-defined range, which was built based on 92 
literature values (SI appendix, Table S2), we manually fitted parametric combinations that provide 93 
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both good RMSREs (<15%) and experiment-specific good relative errors (<20%). We used both 94 
criteria to prevent over- or under dominance of specific returns and environmental conditions (i.e 95 
three returns with a low error and one with a high error). The chosen parametric combination 96 
yielded 𝑅MSR𝐸1 = 10.3% for the first step and 𝑅MSR𝐸2 = 13.7% for the second step (SI appendix, 97 
Figs. S5-8 and Table S3). 98 

Light extinction parameters. We found that the model is not sensitive to 𝐾0 in the examined range 99 
as the optical path in water is short. The best fit between in- and ex-situ light intensity 100 
measurements were found using a light extinction coefficient of 𝐾𝑎= 0.15 (SI appendix, Fig. S10), 101 
which is higher than the previously used 𝐾𝑎 = 0.019 for Ulva, but similar to values used for other 102 
algae species37. The higher value better represents the significant effect of biomass density on 103 
light extinction. 104 

Growth function parameters. 𝑓𝑇𝑒𝑚𝑝 parameters, 𝑇𝑜𝑝𝑡 and 𝑇𝑚𝑎𝑥, were adjusted to 18 and 31.5℃, 105 
fitting the literature optimal temperature range of 15-20℃38,39. 𝐾𝐼 was adjusted to 20 μmol photons 106 
m−2·s−1 (SI appendix, Fig. S11). However, 𝐾𝐼 is a flexible parameter and is known to decrease 107 
when the Ulva is acclimated to low light intensities40. 𝜆20 was adjusted to 2.2% day-1 (0.16% light 108 
hour-1, SI appendix, Fig. S11), which is low compared to literature values (5-6.5% day-1). A 109 
limitation of this study is that the calibration system was mostly P-limited (N:P >20 2), a fact that is 110 
not represented in the model and may lead to underestimations of biomass production under P-111 
saturation conditions. Furthermore, the agreement between modelled and measured final 𝑁int 112 
was low, which may be a result of the P-limitation, as high N:P ratio can inhibit N uptake39. 113 

Sensitivity analysis. The parameter with the largest total effect on the total biomass production 114 
and N bio-sequestration (Sobol sensitivity index of 0.35-0.4 in the range of 0 to 1) is 𝐾𝑎. 𝐾𝐼 and 115 
𝜆20, with total sensitivity indexes of 0.15-0.28 and 0.09-0.1, respectively, have a moderate effect, 116 
and µ𝑚𝑎𝑥 has a weak effect (~0.02) on total biomass production and N bio-sequestration. 𝑁𝑒𝑛𝑣, in 117 
comparison, is highly sensitive only to d (sensitivity index of 0.97). The effect of other parameters 118 
within examined range is negligible (<0.01) (Fig. 2). This analysis shows that our multi-scale 119 
model is sensitive to parameters related to light (𝑓𝐼), which, in the simulated climate, limits growth 120 
only in winter when days are short and sky may be cloudy, and when biomass density in reactor 121 
is high. The sensitivity of the model to parameters related to N (𝜓𝑁𝑒𝑥𝑡

 and 𝑓𝑁𝑖𝑛𝑡
), on the other 122 

hand, is low, as both reach a steady state relatively rapidly in 𝑁 rich environments and affect 123 
model outcomes only when 𝑁𝑒𝑥𝑡 and 𝑁𝑖𝑛𝑡 are low (i.e 𝑁𝑒𝑥𝑡 below 𝐾𝑆 or 𝑁𝑖𝑛𝑡 below 𝑁int crit). The 124 
low sensitivity to N related parameters can be understood in greater depth by the time-scale 125 
separation idea41. In diluting environments (d > 0), small changes in d have significant effects on 126 
the results of the multi-scale model as they force rapid 𝑁𝑒𝑛𝑣 and 𝑁𝑒𝑥𝑡 attenuation regardless of 127 
biomass uptake. contrarily, small changes in 𝑄𝑃 have no effect on model results as throughout 128 
the examined range N supply does not limit growth. The model was found to be insensitive to 129 
𝑓𝑇𝑒𝑚𝑝 and 𝑓𝑆 related parameters in the simulated environmental conditions, but this finding should 130 
be examined with a wider range of temperatures and salinities. Model sensitivity to 𝜆20 was 131 
higher than the sensitivity to µ𝑚𝑎𝑥 probably due to the dependence of µ also on other parameters 132 
(T, S, I and 𝑁𝑖𝑛𝑡), that lessen the direct effect of µ𝑚𝑎𝑥 on model results. 133 

Seasonal trends in biomass production and nitrogen removal. Productivity and N 134 
sequestration vary significantly seasonally, ranging between 0 and 26.8 gDW·day-1·m-2 (0-30 135 
gDW·day-1·m-3) and between 0.2 and 1.2 gN·day-1·m-2 (0.2-1.3 gN·day-1·m-3), with average values 136 
of 13.3 gDW·day-1·m-2 (14.9 gDW·day-1·m-3) and 0.7 gN·day-1·m-2 (0.8 gN·day-1·m-3) (Fig. 3). In a 137 
farm of 100 chained reactors (cultivation area of 200 m2), this translates into annual productivity 138 
of 1210 gC·m-2·year-1, almost four times the estimated average productivity of terrestrial biomass 139 
in the Middle East (290 gC·m-2·year-1,42) and N sequestration of 249 gN·m-2 year-1. Peak 140 
production is expected from the end of February till the middle of March, and a second production 141 
peak is found in November. Production during the summer is very low, which is explained by high 142 
water temperatures (SI appendix, Fig. S12). Therefore, effective bio-sequestration cannot be 143 
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applied during the summer in the modeled conditions. The apparent differences in N 144 
sequestration between the diluting environment (d>0), in which high and low 𝑁𝑒𝑛𝑣 water is mixed, 145 
and the non-diluting environment (d=0) is discussed below in the spatial effects section. 146 

To reduce environmental N levels below a defined, environmentally benign, level, different 147 
seasons require different sizes of the seaweed farm. Considering that a 10 µM threshold prevents 148 
extreme eutrophication43, to avoid damage to the environment, in winter, the dimension of the 149 
farm should be 1,462 m2,  in spring the farm should be 914 m2 and in the fall 1,192 m2 (Fig. 4a). 150 
From the perspective of the model, these dimensions of the farm are between 600 to 900 reactor 151 
size macro elements, i.e. the assumption that the single element control volume used in the 152 
analysis is small relative to the entire domain of analysis is acceptable. As important, these 153 
results demonstrate the value of this analysis. They provide a measure on how to design a large 154 
seaweed farm that is safe for the environment. 155 

Following are additional examples of how this multi-scale model can be used to design large 156 
seaweed farms. A farm designed according to winter N sequestration abilities will produce 7.1 157 
tons DW·year-1, whereas farms designed according to spring or autumn sequestration abilities will 158 
produce only 4.4 or 5.8 tons DW·year-1, respectively. As a general trend, in high 𝑁𝑒𝑛𝑣 levels, the 159 
relationship between added reactors and N sequestration is linear, but in lower N levels, closer to 160 
𝐾S, uptake is slower, and more reactors are needed per sequestration unit. Figs. 4b-d present N 161 
and biomass dynamics in the last reactor in a farm designed to achieve the threshold in all 162 
seasons (731 reactors). Fixed year-round cultivation cycles result in time and space non-uniform 163 
chemical composition. However, uniform chemical composition can be achieved by adjusting 164 
lengths of cultivation cycles to environmental conditions, specifically, temperature, day length and 165 
𝑁𝑒𝑛𝑣. Shortening autumn and spring cultivation cycles to 11 and nine days, respectively, for 166 
example, will enable the production of biomass with constant 𝑁𝑖𝑛𝑡, although won’t comply with the 167 
defined 10 µM threshold during the spring (SI appendix, Fig. S13). However, shorter cultivation 168 
cycles come at an expense of higher labor demand and do not necessarily grant higher 169 
accumulated yields. 170 

Spatial effects controlled by dilution and pumping. In our model, spatial effects on biomass 171 
composition and growth rate appear only when 𝑁𝑒𝑛𝑣 decreases to limiting levels. The rate of this 172 
decrease can be controlled by airlift pumping flow and is accelerated in a diluting environment. 173 

Pumping flow. Q𝑝 can be manipulated to control N flux into reactors and thus also chemical 174 
composition and growth rate of the algae (Fig. 5). The immediate effect of Q𝑝 is on the 𝑁env vs 175 
𝑁ext dynamics. High Q𝑝 minimizes differences between 𝑁env and 𝑁ext, which leads to a faster 176 
reduction in 𝑁env

1 and slower reduction in 𝑁ext
2 compared to the trajectories of 𝑁env and 𝑁ext with 177 

lower Q𝑝
3,4. Simulating reactors without pumps (Q𝑝 = 0, dark blue line) decouples 𝑁ext from 𝑁env 178 

and eliminates the spatial effects of nutrient absorption. Thus, although 𝑁env does not change, 179 
rapid depletion of 𝑁ext leads to a decrease in 𝑁int which is followed by a decrease in produced 180 
biomass. Therefore, in the described system pumping is essential. High Q𝑝 promotes bio-181 
sequestration but may result in a steeper spatial gradient of N𝑖𝑛𝑡

5 compared to low Q𝑝
6. Finally, 182 

Q𝑝 can be manipulated according to farm design requirements, controlling farm size and biomass 183 
composition. It should be mentioned that water exchange by pumping has additional important 184 
contributions, such as the supply of inorganic carbon, removal of waste material which may inhibit 185 
growth, and temperature control34,44. Furthermore, in an estuarine environment, pumping water 186 
from 1-2 m below the surface can increase salinity, which is crucial for the growth of marine 187 
macroalgae species. However, water pumping is an energy-consuming component of seaweed 188 
farms and should be optimized to minimize its carbon footprint. Previous trials to cultivate Ulva in 189 
the described reactors without water exchange were unsuccessful in our group34. However, a 190 
thorough review of seaweed cultivation44 mentioned that water exchange in Ulva cultivation can 191 
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be reduced to 10% day-1, equivalent to 15 l·hour-1 in our work, without a significant change in 192 
yield. 193 

Dilution. In highly diluting environments, bio-sequestration would be usually ineffective. However, 194 
such environments are not prone to eutrophication and do not require nutrient removal. Fig. 6 195 
presents the spring system dynamics in a 100-reactors farm, subjected to 5% dilution between 196 
each two reactors, similar to dilution rates used in literature30. Compared to the first reactor 197 
(darkest green), which is not affected by dilution, downstream reactors meet lower 𝑁env 198 
concentrations which are translated into lower 𝑁ext and gradually into lower 𝑁int and lower 199 
biomass production. In the simulated conditions (𝑁env0

 = 500µM), annual decrease in biomass 200 
production due to dilution (968 to 962 kgDW, 0.6%) is significantly smaller than the annual 201 
decrease in N sequestration (50 to 32 kgDW, 36%) (Fig. 3). This difference can be explained by 202 
the production of low protein biomass in the downstream, diluted, areas. Larger farms may not be 203 
practical in high-dilution locations, as downstream 𝑁env concentrations would not allow any 204 
growth beyond what the initial 𝑁int allows. However, using high-protein upstream biomass as a 205 
continuous seeding feedstock for further cultivation may enable sustainable low protein biomass 206 
production in such an environment. Following  a similar concept, previous works suggested 207 
performing a two-step cultivation process, starting with high biomass production in a nutrient-rich 208 
environment and finishing with carbohydrate accumulation in nutrient-limited environment45. As 209 
opposed to the protein-rich biomass that is produced in N enriched environments and can be 210 
used for food and feed applications, such carbohydrate-rich biomass is advantageous for the 211 
extraction of different polysaccharides (i.e starch, ulvan and cellulose) and can be processed into 212 
various forms of biofuels and chemicals4. 213 

A few previous studies assessed the effectiveness of eutrophication bioremediation in China by 214 
macroalgae cultivation. Generally, this was examined by comparing N and P open sea levels in 215 
cultivation season and off-season, by calculating how much nutrients were removed based on 216 
published data and biomass composition analysis, and by following eutrophication symptoms, 217 
such as hypoxia and harmful algal blooms7,46,47. One study, by Fan et al.6, advanced into actively 218 
increasing nutrient removal by ecological engineering, specifically artificial upwelling, which is the 219 
pumping of nutrient-rich deep water to the surface. Fan et al.6 found that artificial upwelling can 220 
increase the average yield of kelp seaweed by 55 g per plant, and developed a few useful 221 
recommendations regarding the conditions in which intensified cultivation can be worthwhile. 222 
Although in a different setup and framework, our work strengthens their recommendation to 223 
optimize pump operation according to algae requirements (nutrients, water exchange and salinity 224 
and temperature control), environmental conditions and regulations, and energy costs. These 225 
considerations change seasonally and spatially, even within the farm itself. Our model, developed 226 
especially for this cause, can help relating to spatial differences during the design and the 227 
operation of seaweed farms.  228 

The environmental significance of this work relates to two major environmental issues: climate 229 
change and water pollution. The model developed in this work can be used to quantify and 230 
optimize the environmental significance of large-scale seaweed farms, specifically eutrophication 231 
mitigation. Thus, bioremediation by seaweed farms can be advanced from an unplanned external 232 
benefit to an inherent part of coastal development. Furthermore, if eutrophication mitigation is 233 
compensated by the authorities, this model can play a key role and incentivize the establishment 234 
of new seaweed farms, accompanied by additional environmental and economic benefits, on the 235 
local (i.e. marine conservation and economic development) and global (i.e. carbon sequestration, 236 
sustainable biomass supply and mitigation of fresh water stress) scales. In addition, with some 237 
modifications, this model can be used to model fish cages and integrated multi-trophic 238 
aquaculture (IMTA) and promote sustainable aquaculture and marine development.  239 

Conclusions 240 
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We developed a multi-scale model for Ulva sp. macroalgae growth and nitrogen sequestration in 241 
an intensive cultivation farm, regulated by temperature, light and nutrients. The model enables 242 
spatial simulations by incorporating light extinction effects at the reactor scale (1 m) and nutrient 243 
absorption effects at the farm scale (1 km). Specifically, we simulated: 1. year-round 244 
productivities and N sequestration in the farm; 2. the farm size required for eutrophication 245 
mitigation in different seasons; and 3. spatial distribution of biomass production, chemical 246 
composition and environmental N along the farm in different dilution rates in the environment and 247 
in different airlift pumping flows. 248 

The high-resolution spatial and temporal model developed in this work, is an important step 249 
toward implementing precision agriculture techniques in seaweed aquaculture. Such advanced 250 
techniques are expected to improve productivities, efficiencies and accompanied environmental 251 
benefits, leading the way to sustainable marine development, accompanied by multiple economic 252 
and environmental benefits regarding climate change and water pollution mitigation. 253 

Future studies need to validate the model on higher-resolution data of all state variables and 254 
engage in uncertainty quantification in different scales. In general, the robustness of the model 255 
will increase by further calibrating it with wider and more diverse empiric data sets, that will raise 256 
additional important constraining factors. Future efforts to improve the model should include 257 
adjusting it to P limited environments and relating to various phenomena that cause uncertainty in 258 
macroalgae cultivation. These phenomena include, for example, an unexplained decline in 259 
biomass, sudden sporulation, age, and history effect on the growth rate, water flow effects on 260 
growth and chemical composition and pest damage. By improving the ability to understand and 261 
describe both temporal and spatial phenomena in a seaweed farm in a resolution of days, these 262 
improved models should help to optimize the design of seaweed farms to combine environmental 263 
improvement and commercial viability. 264 

 265 
Materials and Methods 266 

Our model incorporates multi-scale spatial effects: light extinction at the reactor scale and nutrient 267 
absorption at the farm scale, into a mathematical model of the Ulva sp. macroalgae metabolism 2 268 
(See schematic description in Fig. 1). The spatial effects employ the following multiscale 269 
procedures: 1. from a single thallus scale (1 cm) to a reactor scale (1 m), relating to light 270 
extinction in the reactor, and 2. from a reactor scale to a farm-scale (1 km), relating to nutrient 271 
absorption in the farm.  272 

The model was calibrated using experimental data from the reactor scale and qualified with a 273 
sensitivity analysis. Thereafter, biomass production rates, chemical compositions and farm-scale 274 
nitrogen removal was simulated under different seasons, levels of dilution in the environment (0-275 
5% dilution ratio between every two reactors) and water-exchange rate in the reactor (0, 15 and 276 
460 l·hour-1). The entire code of this project is available as an open source in 277 
https://doi.org/10.5281/zenodo.4062432. 278 

Model assumptions. The Ulva metabolic model assumes that the dynamics of the limiting 279 
nutrient, in this case nitrogen (N), under the constraining effects of environmental conditions (light 280 
intensity (I), temperature (T) and salinity (S)) predicates the dynamics of biomass growth and 281 
chemical composition. In the marine environment, the limiting nutrient is usually N48 and our 282 
model focuses on N limited environments. However, similar models can be developed also for 283 
other elements such as phosphorus (P) and ferrous that may limit growth too in some marine 284 
environments. Our model also assumes that the organic carbon reserve, depending on carbon 285 
uptake and photosynthesis rates, is not limiting within the modelled conditions. The model follows 286 
the Droop Equation concept, in which the effect of the external, environmental, nutrient 287 
concentration on growth is mediated by internal nutrient concentrations (“cell quota”)16,49. This is 288 
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rather important as changes in internal N concentration occur gradually in a typical time scale of 289 
days whereas significant changes in environmental N concentrations may occur much faster, on 290 
a time scale of hours50. 291 

Our multi-scale model relates to cultivation in semi-closed reactors with controlled water 292 
exchange.  This leads to the differentiation between nutrient concentrations inside the reactor that 293 
interact with the biomass directly, named here external N, and nutrient concentrations outside the 294 
reactor that are affected only secondarily named here environmental N. Environmental N is the 295 
connecting agent that passes onwards in the flow the accumulating signal of changing N 296 
concentrations, which is translated into spatial differences in biomass composition and growth 297 
rate. 298 

We used as a reference a cultivation reactor (cage) described by Chemodanov et al.34. Each 299 
reactor is assumed to be well-mixed by bottom aeration and is connected to an airlift pump that 300 
supplies the reactor with fresh seawater and nutrients. We also assume water flow through 301 
reactor boundaries is negligible. 302 

We simulate the large-scale farm as composed of a continuum of macroscopic reactor size 303 
elements (compartments). This type of mass transfer model is commonly used in pharmaceutics 304 
which studies mass transfer through macroscopic units referred to as compartment51. The model 305 
assumes that the conditions in each reactor size control volume (compartment) can be accurately 306 
represented by one average value (external N) and that the domain of analysis (farm) is much 307 
larger than the macroscopic reactor size element.  308 

We define our large-scale farm model as a 3D model (SI appendix, Fig. S1). The x-axis is the 309 
direction of the flow and all simulations relate to one row of reactors in this direction. Each reactor 310 
constitutes an N sink, causing the spatial change of environmental N concentrations in the 311 
direction of the flow (x). By assuming the width of this change is small concerning the distance 312 
between the rows, this model becomes applicable also to multiple rows of reactors, with no 313 
variation in the y-axis. Finally, although light extinction increases with depth, potential variations in 314 
biomass with depth (z-axis) can be averaged out due to the well-mixed reactors' assumption. 315 

Model Governing Equations. The multi-scale model is based on four governing ordinary 316 
differential equations (ODEs), describing the mass balance of four state variables: biomass 317 
density in a reactor (m, g Dry Weight (DW)·l-1, eq 1), biomass internal concentration of N 318 
(𝑵𝐢𝐧𝐭, % 𝐠𝐍 · 𝐠𝐃𝐖−𝟏, 𝐞𝐪 𝟐), external concentration of N in the reactor (𝑵𝐞𝒙𝐭, µ𝐦𝐨𝐥 − 𝐍 · 𝒍−𝟏, 𝐞𝐪 𝟑) 319 
and the environmental N concentration outside the reactor (𝑵𝐞𝐧𝐯, µ𝐦𝐨𝐥 − 𝐍 · 𝒍−𝟏, 𝐞𝐪 𝟒) under 320 
varying temperatures, light intensities and salinities. 321 

𝜕𝑚

𝜕𝑡
=  (µ −𝜆)𝑚, 

  µ =  µ𝑚𝑎𝑥𝑓𝑇𝑒𝑚𝑝𝑓𝑆min {𝑓𝑁𝑖𝑛𝑡
, 𝑓𝑃𝑖𝑛𝑡

, 𝑓𝐼} 

Initial Condition (I.C):  𝑚(𝑥,𝑡=0) = 𝑚0 

(1) 

Where µ (h-1) is biomass specific growth rate formulated of µ𝑚𝑎𝑥  (h-1), the maximum specific 322 
growth rate, and 𝑓𝑇𝑒𝑚𝑝, 𝑓𝑆, 𝑓𝑁𝑖𝑛𝑡

, 𝑓𝑃𝑖𝑛𝑡
 and 𝑓𝐼, which are the T, S, 𝑁int,, 𝑃int,  and I growth functions2 323 

(see more in SI). 𝜆 is biomass specific losses rate as a function of T and is formulated of 𝜆20 (h-1), 324 
the specific rate of biomass losses and 𝜃, an empiric factor of biomass losses2. 𝜆 does not 325 
include losses by grazing, sporulation and fragmentation by storms, which vary between different 326 
environments and are highly affected by extreme events. We adjusted daily specific growth and 327 
losses rates to hourly rates, assuming for simplicity that growth and biomass losses occur only 328 
during light hours (see details in SI). This assumption ignores night growth that occurs due to 329 
metabolites produced during light-time photosynthesis52, and thus distorts growth distribution 330 
throughout the day. However, the assumption does not affect total daily growth and therefore 331 
does not impair the model accuracy at a temporal resolution of days to weeks. 332 
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𝜕𝑁𝑖𝑛𝑡

𝜕𝑡
= 𝜓𝑁𝑒𝑥𝑡

− 𝑁intµm 

𝜓𝑁𝑒𝑥𝑡
=

𝑁intmax−𝑁int

𝑁intmax−𝑁intmin

𝑉max𝑁ext

𝐾𝑆+ 𝑁ext
  

I.C:  𝑁int (𝑥,𝑡=0) = 𝑁int 0 

(2) 

Where 𝜓𝑁𝑒𝑥𝑡
 (μmol-N·gDW-1·h-1) is the N uptake function, formulated of 𝑁intmax and 𝑁intmi𝑛 (% gN ·333 

gDW−1), the maximum and minimum 𝑁int concentrations, respectively, 𝑉m𝑎𝑥 (μmol-N·gDW-1·h-1), 334 
the maximum N uptake rate and 𝐾S (μmol-N·l-1), the N half-saturation uptake constant. −𝑁intµm 335 
describes 𝑁𝑖𝑛𝑡 dilution in biomass by growth. 336 

𝜕𝑁𝑒𝑥𝑡

𝜕𝑡
=

Q𝑝(𝑁𝑒𝑛𝑣 − 𝑁𝑒𝑥𝑡)

𝑉𝑐𝑎𝑔𝑒

− 𝜓𝑁𝑒𝑥𝑡
𝑚 

I.C:  𝑁ext (𝑥,𝑡=0) = 𝑁ext0
 

(3) 

Where 𝑄p (l·h-1) is the airlift pumping flow and 𝑉𝑐𝑎𝑔𝑒 (m3) is the reactor volume. The change in 𝑁𝑒𝑥𝑡 337 
is the sum of N in incoming airlift pump flow, N in reactor overflow and N uptake by the biomass 338 
in the reactor. 339 

𝜕𝑁𝑒𝑛𝑣

𝜕𝑡
=

[−Q𝑠(𝑁𝑒𝑛𝑣𝑥−1
(1 − 𝑑) − 𝑁𝑒𝑛𝑣𝑥

) − Q𝑝(𝑁𝑒𝑛𝑣𝑥
− 𝑁𝑒𝑥𝑡𝑥

)]

𝑉𝑐𝑎𝑔𝑒

 

I.C:   𝑁env(𝑥,𝑡=0)
= 𝑁ext0

, Boundary Condition (B.C):  𝑁env(𝑥=0,𝑡)
=𝑁ext0

 

(4) 

Where 𝑁𝑒𝑛𝑣𝑥
 is 𝑁𝑒𝑛𝑣 below reactor x at time t, 𝑁𝑒𝑛𝑣𝑥−1

 is 𝑁𝑒𝑛𝑣 below reactor x-1 at time t, 𝑑 (%) is 340 
the dilution ratio between every two reactors and Q𝑠 (l·h-1) is the stream flow through an area 341 
equivalent to the reactor narrow-side cross-section. Thus, the change in 𝑁𝑒𝑛𝑣 is the sum of 342 
incoming N flows (upstream flow and reactor overflow) and outflowing flows (downstream flow 343 
and airlift pumping into the reactor). All four ODEs were solved numerically with hourly time steps. 344 

Scale Elements in Model. The multi-scale model has two scale elements:1. light extinction at the 345 
reactor scale that requires dynamic averaging of light intensity per biomass unit, and 2. nutrient 346 
absorption at the farm scale that requires following the dynamics of environmental N. 347 

Single Thallus to Reactor. In the metabolic model of a single thallus scale, growth is affected 348 
directly by incident light intensity (eq 5). In transition to a reactor scale, light intensity is averaged 349 
per biomass unit, as formulated by Oca et al.9 (eq 6). This formulation considers water depth in 350 
the reactor, biomass density and light extinction coefficients of both water and biomass. In both 351 
equations, we multiplied 𝐼0 by a 0.43 𝑃𝐴𝑅 constant, representing the ratio of the sunlight which is 352 
suitable for photosynthesis53. 353 

𝑓(𝐼) =
𝐼

𝐾𝐼 + 𝐼
 𝑃𝐴𝑅 

(5) 

Where 𝐼 and 𝐾𝐼 (μmol photons·m−2·s−1) are incident light intensity and light half-saturation 354 
constant, respectively. 355 

𝑓(𝐼) =
𝐼𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝐾𝐼 + 𝐼𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑃𝐴𝑅 

𝐼𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝐼0

𝐾0𝑍 + 𝐾𝑎𝑆𝐷
[1 − exp(−(𝐾0𝑍 + 𝐾𝑎𝑆𝐷))] 

(6) 

Where 𝐼𝑎𝑣𝑒𝑟𝑎𝑔𝑒 and 𝐼0 (μmol photons·m−2·s−1) are average photon irradiance in the reactor and 356 
incident photon irradiance at water surface, respectively, 𝑆𝐷 (gDW·m-2) is stocking density of 357 
biomass per unit of water surface in the reactor, 𝐾0 (m-1) is water light extinction coefficient, Z (m) 358 
is maximum water depth in the reactor and 𝐾𝑎 (m2·gDW-1) is Ulva light extinction coefficient. 359 
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Reactor to Farm. In a single well-mixed reactor, nutrient reduction by biomass is local and does 360 
not accumulate along the stream. Therefore, eq 4, describing changes in 𝑁𝑒𝑛𝑣, is redundant. 361 
However, in a seaweed farm, spatial variations in 𝑁𝑒𝑛𝑣 cannot be described without eq 4 that 362 
connects the reactors and the environment. Eq 3, describing changes in 𝑁𝑒𝑥𝑡, was derived from 363 
the Convection–Diffusion equation54 (eq 7). Eq 4, describing changes in 𝑁𝑒𝑛𝑣, is based on the 364 
same equation, without the uptake term. 365 

𝜕𝑁𝑒𝑥𝑡

𝜕𝑡
= ∇ ∙ (𝐷∇𝑁𝑒𝑥𝑡) − ∇ ∙ (v𝑁𝑒𝑥𝑡) − 𝜓𝑁𝑒𝑥𝑡

𝑚 

(7) 

Where 𝐷 (m2·s-1) is the average diffusivity coefficient of dissolved inorganic N species and v (m·s-366 
1) is the velocity field in which the dissolved nitrogen is moving. Both eq 3 and eq 4 are derived 367 
from this equation, with specific simplifying assumptions: 1. 𝐷 constant in space; 2. 368 
incompressible velocity flow, and 3. zero net diffusivity, as the reactor is well-mixed and there is 369 
no concentration gradient (∇𝑁𝑒𝑥𝑡 = 0). Therefore, 𝑁𝑒𝑥𝑡 in the reactor is affected only by the N 370 
supply by airlift pump (normalized to reactor volume) and N uptake by algae. Eq 4, describing 371 
changes in 𝑁𝑒𝑛𝑣, follows the same principal form but without the uptake term. 372 

Model Calibration. We calibrated the model parameters using experimental growth data of Ulva 373 
cultivation in a single well-mixed sea-based reactor from Chemodanov et al.34 (SI appendix, Figs. 374 
S3-4 and Table S1). Model was calibrated by manipulating model parameters and minimizing two 375 
types of root mean square relative errors (RMSRE): 1. RMSRE between biomass growth 376 
projected values (PV) based on in-situ I measurements compared to biomass growth PV based 377 
on ex-situ measurements, and 2. RMSRE between ex-situ I based PV and experimentally 378 
measured growth values. See full description of calibration process in SI appendix. 379 

Sensitivity analysis. To examine how each parameter, in a defined range (SI appendix, Table 380 
S2), influences model simulations output, we analyzed farm-scale sensitivity of state variables 381 
using SALib, the Sensitivity Analysis Library in Python55. Specifically, the analysis focused on the 382 
projected values of total produced biomass, total accumulated 𝑁𝑖𝑛𝑡 and average final 𝑁𝑒𝑛𝑣, under 383 
the simulation frame of a 100-reactors’ farm and one cultivation period per season, that should 384 
suffice to observe both temporal and spatial effects of the different parameters. First, 10 values 385 
and 420 random parametric combinations of all model parameters (SI appendix, Table S2) were 386 
generated using the Saltelli method56,57. Next, each combination was run through the model, 387 
producing an array of possible biomass production, N accumulation and final 𝑁𝑒𝑛𝑣 results. Finally, 388 
the results were analyzed using the Sobol analysis58, giving each parameter a first order and total 389 
sensitivity index between zero and one. 390 

Model Simulations. The model was applied to simulate year-round cultivation of Ulva sp. in a 391 
row of cultivation reactors in a nutrient-enriched estuary environment located in a semi-arid 392 
climate. Data regarding nutrient concentrations, salinities, water temperature and flow was taken 393 
from the long-term study of Suari et al.59 on the Alexander estuary, located in the center of Israel 394 
(SI appendix, Fig. S12 and Table S4). I data was extracted from the IMS database from the Israel 395 
Meteorological Services (https://ims.data.gov.il/he/ims/6). Although S varies with depth and can 396 
change dramatically according to flesh flood events and formation of sandbar breaches59, effect 397 
on growth was minor and we used a constant value of S=30 PSU. All constraining environmental 398 
factors except nutrients were assumed to be constant in space. Each cultivation cycle started with 399 
a constant set of initial conditions (𝑚0, 𝑁𝑖𝑛𝑡,0, 𝑁𝑒𝑥𝑡,0 and 𝑁𝑒𝑛𝑣,0) which applied to all reactors. 400 
Harvesting back to initial biomass was performed every two weeks, and accumulated biomass 401 
production was calculated. In addition, N removal from the environment was calculated as the 402 
difference between total N in final and initial biomass. Specific simulations of seasonal N removal 403 
capacity were used to project the number of reactors needed to achieve a 10 µM-N level 404 
threshold, which is below levels found in extremely eutrophicated zones43, in each season. 405 
Finally, a spatial perspective was added by examining the system dynamics under various 406 
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pumping levels and in a diluting environment, in which the enriched 𝑁𝑒𝑛𝑣 water is diluted by 407 
mixing with lower 𝑁𝑒𝑛𝑣 water (i.e. 5% dilution between each two reactors). 408 
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Figures 574 

 575 

Fig. 1. A schematic description of the multi-scale model. The thallus scale (1 cm, green circle) is 576 
composed of a simple metabolic model of Ulva, in which the production of new biomass (Ulva 577 
icon) is affected by internal nitrogen (N, full green cloud) and by constraining environmental 578 
conditions, including light intensity, salinity and temperature (yellow clouds). The reactor scale (1 579 
m, U shape pictures) adds light extinction effects (yellow graduated arrow), the concentration of 580 
external N in the reactor and the concentration of environmental N outside the reactor (dark/light 581 
blue clouds, depending on N concentration). The farm-scale (1 km, row of reactors starting at 582 
Reactor #1 and counting downstream to Reactor #n) adds the nutrient reduction caused by 583 
absorption in reactors along with the flow (Blue graduated arrow). Green and blue clouds 584 
represent the model state variables. Numbers represent the following processes: 1. Biomass 585 
growth; 2. Dilution of internal N by growth; 3. N uptake; 4-5. Water exchange by airlift pumping 586 
and overflow, and 6. Biomass losses.  587 
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Fig. 2. Illustrated sensitivity of simulated biomass production (black circles), N sequestration (blue 588 
stars) and final environmental N levels (grey squares) to model parameters, as measured by the 589 
Sobol method.  590 
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Fig. 3. Mean productivity (gDW·m-2·day-1, green dashed line) and mean nitrogen sequestration 591 
(gN·m-2·day-1) in a non-diluting environment (d =0, dark blue stars) and a diluting environment (d 592 
=0.05, 5% dilution between each two reactors, light blue stars) vs week of the year for a farm of 593 
100 reactors. 594 

595 
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 Fig. 4. (a) Final 𝑁env concentration (µM-N) as a function of the number of reactors in different 596 
seasons (Winter in blue, Spring in red and Autumn in yellow), (b-d) 𝑁env, 𝑁int and 𝑚 dynamics 597 
along 14 days’ cultivation periods in different seasons, for the last reactor in a farm of 731 598 
reactors.  599 
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 600 

Fig. 5. 𝑁env, 𝑁ext, 𝑁int and 𝑚 dynamics along a 14 days cultivation period, simulating Q𝑝 values of 601 
0, 15 and 460 l·hour-1. Arrows highlight differences between first and last reactor: 𝑁env differences 602 
for Q𝑝=460 l·hour-1 (1) and for Q𝑝=15 l·hour-1 (3), 𝑁ext differences for Q𝑝=460 l·hour-1 (2) and for 603 
Q𝑝=15 l·hour-1 (4) and 𝑁int differences for Q𝑝=460 l·hour-1 (5) for Q𝑝=460 l·hour-1 (6). Simulation 604 
parameters and IC: 731 reactors, spring season, 𝑁env0

= 250 µM-N, 𝑑 = 0. 605 

  606 
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 607 

Fig. 6. 𝑁env, 𝑁int and 𝑚 dynamics along a 14 days cultivation period in a diluting environment in a 608 
farm of 100 chained reactors. The lines represent 𝑁env, 𝑁int or 𝑚 in each fifth reactor, starting 609 
from x=1 (darkest green) and progressing downstream along the arrows towards the last reactor 610 
(x=100, lightest green). Simulation parameters and IC: spring season, 𝑁env0

= 500 µM-N, 𝑑 =611 
0.05. 612 

 613 
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