bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353755; this version posted October 25, 2020. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

1

9

10

11

12

13

14

15

16

17

18

19

20

available under aCC-BY 4.0 International license.

A Fast Data-Driven Method for Genotype Imputation, Phasing, and

Local Ancestry Inference: Mendellmpute.jl

Benjamin B. Chu!, Eric M. Sobel!3, Rory Wasiolek!, Janet S. Sinsheimer!2-,
Hua Zhou?; Kenneth Lange!3

'Department of Computational Medicine, David Geffen School of Medicine at UCLA, Los
Angeles, USA
?Department of Biostatistics, Fielding School of Public Health at UCLA, Los Angeles, USA
3Departrnent of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, USA

keywords: Imputation; haplotyping; phasing; Julia; GWAS; admixture

1 Abstract

Current methods for genotype imputation and phasing exploit the sheer volume of data in haplotype reference
panels and rely on hidden Markov models. Existing programs all have essentially the same imputation accu-
racy, are computationally intensive, and generally require pre-phasing the typed markers. We propose a novel
data-mining method for genotype imputation and phasing that substitutes highly efficient linear algebra rou-
tines for hidden Markov model calculations. This strategy, embodied in our Julia program MendelImpute. j1,
avoids explicit assumptions about recombination and population structure while delivering similar prediction
accuracy, better memory usage, and an order of magnitude or better run-times compared to the fastest com-
peting method. MendelImpute operates on both dosage data and unphased genotype data and simultaneously
imputes missing genotypes and phase at both the typed and untyped SNPs. Finally, MendelImpute naturally
extends to global and local ancestry estimation and lends itself to new strategies for data compression and

hence faster data transport and sharing.

*Corresponding author. Email: huazhou@ucla.edu
TCorresponding author. Email: klange @ucla.edu

https://doi.org/10.1101/2020.10.24.353755
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353755; this version posted October 25, 2020. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

available under aCC-BY 4.0 International license.

2 Introduction

Haplotyping (phasing) is the process of inferring unobserved haplotypes from observed genotypes. It is possi-
ble to deduce phase from the observed genotypes of surrounding pedigree members [25], but pedigree data are
no longer considered competitive with linkage disequilibrium data. Current methods for phasing and geno-
type imputation exploit public reference panels such as those curated by the Haplotype Reference Consortium
(HRC) [22] and the NHLBI TOPMed Program [27]. The sizes of these reference panels keep expanding: from
1000 samples in 2012 [2], to about 30,000 in 2016 [22], and to over 100,000 in 2019 [27]. Genome-wide as-
sociation studies (GWAS), the primary consumers of imputation, exhibit similar trends in increasing sample
sizes and denser SNP typing [26]. Despite these technological improvements, phasing and imputation meth-
ods are still largely based on hidden Markov models (HMM). Through decades of successive improvements,
HMM software is now more than 10,000 times faster than the original software [9], but the core HMM princi-
ples remain relatively unchanged. This paper explores an attractive data-driven alternative for imputation and

phasing that is faster and more scalable than HMM methods.

Hidden Markov models (HMMs) capture the linkage disequilibrium in haplotype reference panels based
on the probabilistic model of Li and Stephens [20]. The latest HMM software programs include Minimac
4 [10], Beagle 5 [6], and Impute 5 [24]. These HMMs programs all have essentially the same imputa-
tion accuracy [0], are computationally intensive, and generally require pre-phased genotypes. The biggest
computational bottleneck facing these programs is the size of the HMM state space. An initial pre-phasing
(imputation) step fills in missing phases and genotypes at the typed markers in a study. The easier second step
constructs haplotypes on the entire set of SNPs in the reference panel from the pre-phased data [13]. This
separation of tasks forces users to chain together different computer programs, reduces imputation accuracy

[9], and tends to inflate overall run-times even when the individual components are well optimized.

Purely data-driven techniques are potential competitors to HMMs in genotype imputation and haplotyp-
ing. Big data techniques substitute massive amounts of training data for detailed models in prediction. This
substitution can reduce computation times and, if the data are incompatible with the assumptions underly-
ing the HMM, improve accuracy. Haplotyping HMMs, despite their appeal and empirically satisfying error
rates, make simplifying assumptions about recombination hot spots and linkage patterns. We have previously
demonstrated the virtues of big data methods in genotype imputation with haplotyping [7] and without haplo-
typing [8]. SparRec [14] refines the later method by adding additional information on matrix co-clustering.
These two matrix completion methods efficiently impute missing entries via low-rank approximations. Un-
fortunately, they also rely on computationally intensive cross validation to find the optimal rank of the approx-
imating matrices. On the upside, matrix completion circumvents pre-phasing, exploits reference panels, and

readily imputes dosage data, where genotype entries span the entire interval [0, 2].

Despite these advantages, data-driven methods have not been widely accepted as alternatives to HMM

https://doi.org/10.1101/2020.10.24.353755
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353755; this version posted October 25, 2020. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

available under aCC-BY 4.0 International license.

methods. Although it is possible in principle, our previous program [8] did not build a pipeline to handle large
reference panels. Here we propose a novel data-driven method to fill this gap. Our software MendelImpute
(a) avoids the pre-phasing step, (b) exploits known haplotype reference panels, (c) supports dosage data, (d)
runs extremely fast, () makes a relatively small demand on memory, and (f) naturally extends to local and
global ancestry inference. Its imputation error rate is slightly higher than the best HMM software but still
within a desirable range. MendelImpute is open source and forms a part of the OpenMendel platform [29],
which is in the modern Julia programming language [3]. We demonstrate that MendelImpute is capable of
dealing with HRC data even on a standard laptop. In coordination with our packages VCFTools. j1 (handling
VCEF files) and SnpArrays. jl (handling PLINK files), OpenMendel powers a streamlined pipeline for end-
to-end data analysis. In an era where the cost of genotyping arrays continues to drop faster than Moore’s law
and telomere-to-telomere reference panels are within reach [23, 28], MendelImpute offers a compelling mix

of excellent speed, small memory footprint, and simplicity of use.

For each chromosome of a study subject, MendelImpute reconstructs two extended haplotypes E; and
E, that cover the entire chromosome. Both E; and E; are mosaics of reference haplotypes with a few break
points where a switch occurs from one reference haplotype to another. The break points presumably represent
contemporary or ancient recombination events. MendelImpute finds these reference segments and their break
points. From E; and E, it is trivial to impute missing genotypes, both typed and untyped. The extended
haplotypes can be painted with colors indicating the region on the globe from which each reference segment
was drawn. The number of SNPs assigned to each color immediately determine ethnic proportions and plays
into admixture mapping. The extended segments also serve as a convenient device for data compression. One
simply stores the break points and the index of the reference haplotype assigned to each segment. Finally, E;

and E; can be nominated as maternal or paternal whenever either parent of a sample subject is also genotyped.

3 Materials and Methods

Our overall imputation strategy operates on an input matrix X whose columns are sample genotypes at the
typed markers. The entries of X represent alternative allele counts x;; € [0,2] U {missing}. The reference
haplotypes are stored in a matrix H whose columns are haplotype vectors with entries /;; € {0, 1}, representing
reference and alternative alleles, respectively. Given these data, the idea is to partition each sample’s genotype
vector into small adjacent genomic windows. In each window, many reference haplotypes collapse to the same
unique haplotype at the typed SNPs. We find the two unique haplotypes whose vector sum best matches the
sample genotype vector. Then we expand the unique haplotypes into two sets of matching full haplotypes and
intersect these sets across adjacent windows. Linkage disequilibrium favors long stretches of single reference
haplotypes punctuated by break points. Our strategy is summarized in Figure 1. A detailed commentary on

the interacting tactics appears in subsequent sections.

https://doi.org/10.1101/2020.10.24.353755
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353755; this version posted October 25, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a Examine window of typed SNPs b Find optimal haplotype pairs in each window

Reference haplotypes

Reference haplotypes

aligned with genotypes at the mlil2lolol1lo
typed SNPs (untyped SNPs h

not needed) 211]1j0j0f1]0

P hs|1|1|0f0|1]|0

| hal1|o|1|0]0|1

N hs|1|of1|0|0|1

P he{1|0|1|0[0|1

One sample’s unphased hz|ofo|1|0|1|0

genotypes. One marker is hs|lolo|1|/o0] 1|0

missing due to genotyping Target genotype

error . f

1 71[2[1[o]o]?[1]

¢ Connect neighbors in 1 of 2 ways

Parallel connection generates 2 surviving haplotypes:

Unique reference

Find h1, hq using
haplotypes

least squares

Find unique hij1|1jofof1jo| o hi + hy = 21
haplotypes ha|1|0|1|0|0|12
— h;|o|o|1]|0|1]o0

Extract matching
haplotypes

[|#) —h1 —hal]? =2

|2} — by — he||* =2
Hl’/l *h4 *h7H2 =3

hi expands to {hq, ho, h3}

Initialize hy expands to {hq, hs, he}

missing

—— ai[2[1]o]o[o]1]

Candidate haplotypes

d Stitch window-by-window from left to right

Unphased haplotypes

hl,h2,h3 _ hl,hz,hjﬁ {hl} h17h2)h3 h’lah’Qah’G h17h3 h4ah5ah8
ha,hs, he —| hs, h7, hg - {hs} ha hs, he | hs,h7,hg | h2,hs ha, he
.) - . Switch
A switch at window 2 generates 1 surviving haplotype: Phased haplotypes Breakpoint~y
hi, ha, h3 hi,h2, he {} hi hi hi ho, hg
ha,hs,he | | hs,hz, hs {he} hs hs hs hs
Window 1 Window 2 Survivors Window 1 Window 2 Window 3 Window 4

Figure 1: Overview of MendelImpute’s algorithm. (a) After alignment, imputation and phasing are carried
out on short, non-overlapping windows of the typed SNPs. (b) Based on a least squares criterion, we find
two unique haplotypes whose vector sum approximates the genotype vector on the current window. Once
this is done, all reference haplotypes corresponding to these two unique haplotypes are assembled into two
sets of candidate haplotypes. (c) We intersect candidate haplotype sets window by window, carrying along
the surviving set and switching orientations if the result generates more surviving haplotypes. (d) After three
windows the top extended chromosome possess no surviving haplotypes, but a switch to the second orientation
in the current window allows hs to survive on the top chromosome. Eventually we must search for a break
point separating h; from h; or hg between windows 3 and 4 (bottom panel).

https://doi.org/10.1101/2020.10.24.353755
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353755; this version posted October 25, 2020. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

110

111

112

113

114

115

116

available under aCC-BY 4.0 International license.

3.1 Missing Data in Typed and Untyped SNPs

There are two kinds of missing data requiring imputation. A GWAS data set may sample as many as 10°
SNPs across the genome. We call SNPs that are sampled at this stage typed SNPs. Raw data from a GWAS
study may contain entries missing at random due to experimental errors, but the missing rate is usually low, at
most a few percent, and existing programs [2 1] usually impute these in the pre-phasing step. When modern
geneticists speak of imputation, they refer to imputing phased genotypes at the unsampled SNPs present in
the reference panel. We call the unsampled markers untyped SNPs. The latest reference panels contain from
107 to 10% SNPs, so an imputation problem can have more than 90% missing data. We assume that the typed
SNPs sufficiently cover the entire genome. From the mosaic of typed and untyped SNPs, one can exploit local
linkage disequilibrium to infer for each person his/her phased genotypes at all SNPs, typed and untyped. As
a first step one must situate the typed SNPs among the ordered SNPs in the reference panel (Figure 1A). The

Julia command indexin() quickly finds the proper alignment.

3.2 Elimination of Redundant Haplotypes by Hashing

Within a small genomic window of the reference panel, multiple haplotype pairs may be identical at the
typed SNPs. Only the unique haplotypes play a role in matching reference haplotypes to sample genotypes.
MendelImpute identifies redundant haplotypes by hashing. For each reference haplotype limited to the win-
dow, hashing stores an integer representation of the haplotype via a hash function. This integer serves as an
index (key) to locate the reference haplotype (value). Put another way, hashing stores the inverse images of
the map from reference haplotypes to unique haplotypes. In our software, the GroupSlices. j1 package [12]

identifies a unique key for each haplotype.

3.3 Finding Optimal Haplotype Pairs via Least Squares

Suppose there are d unique haplotypes hy,...,h; (entries 0 or 1) in a genomic window (Figure 1B). Consider
a genotype vector X with entries x; € [0,2] U {missing}. The goal is to find the two unique haplotypes h; and

h; such that x ~ h; +h;. The best haplotype pair is selected by minimizing the least squares criterion
[Ix —h; —hj{[3 = ||x][3 +[[hi[[3 + [[h][3 + 2] h; — 2x"h; — 2x"h;

over all (g) + d haplotype combinations. To fill in a missing value x;, we naively initialize it with the mean
at each typed SNP. This action may lead to imputation errors if the typed SNPs exhibit a large proportion of

missingness. We discuss a strategy to remedy this bias in the supplementary sections.

To minimize the criterion (3.1) efficiently, suppose the genotype vectors Xx; constitute the columns of a

genotype matrix X, and suppose the haplotype vectors h; constitute the columns of a haplotype matrix H.

https://doi.org/10.1101/2020.10.24.353755
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353755; this version posted October 25, 2020. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

140

141

142

143

144

available under aCC-BY 4.0 International license.

Given these conventions we recover all inner products x/ h; and h!h; in equation (3.1) as entries of two

matrix products; the two corresponding BLAS (Basic Linear Algebra Subroutines)[18] level-3 calls produce

xih - x(hy i3 - hihy
X"H=| : : and H'H= :

x'h; - x'hy hjh, - [hglf3

nxd dxd

These allow one to quickly assemble a matrix M with entries m;; = ||h;||3 + ||h;||3 +2h!h; and for each
sample x; a matrix N with entries n;; = —ZXZh,- — 2XZh j- Therefore, to find the best haplotype pair (h;,h;) for
the sample x;, we search for the minimum entry m;; + n;; of the d x d matrix M+ N across all indices i > j.
Extremely unlikely ties are arbitrarily broken. Note that the term ||x;||5 can be safely ignored at this step.
Data import and this minimum entry search are the computational bottlenecks of our software. Once such a
haplotype pair is identified, all reference haplotype pairs identical to (h;,h;) in the current window give the

same optimal ¢, error.

3.4 Adaptive Window Widths via Recursive Bisection

The width of genomic windows is an important parameter determining both imputation efficiency and accu-
racy. Empirically, larger window widths give better error rates but also increase the computational burden of
the matrix multiplications and minimum entry search described in Section 3.3. The magnitudes of these bur-
dens depend on local haplotype diversity. Thus, we choose window widths dynamically. This goal is achieved
by a bisection strategy. Initially we view all typed SNPs on a large section of a chromosome as belonging to
a single window. We then divide the window into equal halves if it possesses too many unique haplotypes.
Each half is further bisected and so forth recursively until every window contains fewer than a predetermined
number of unique haplotypes. Empirically, choosing the maximum number d,,,x of unique haplotypes per
window to be 1000 works well for both real and simulated data. When a larger number is preferred, we re-
sort to a stepwise search heuristic for minimizing criterion (3.1) that scales linearly in the number of unique

haplotypes d. This heuristic is described in the supplementary sections.

3.5 Phasing by Intersecting Haplotype Sets

As just described, each window w along a sample chromosome generates an optimal pair of unique haplotypes.
These expand into two sets S,,; and S,,» of reference haplotypes. In the first window we arbitrarily assign S;;
to extended haplotype 1 and S, to extended haplotype 2. From here on the goal is to reconstruct two extended
composite haplotypes E; and E, that cover the entire chromosome. Let w index the current window. The two
sets Sy—1,1 and S,,—1 7 are already phased. The new sets S,,; and S, are not, and their phases must be resolved

and their entries pruned by intersection to achieve extended haplotype parsimony. The better orientation is one

https://doi.org/10.1101/2020.10.24.353755
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353755; this version posted October 25, 2020. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

145

146

147

148

149

151

152

153

154

155

156

157

158

159

160

161

166

167

168

169

170

171

172

173

174

175

176

available under aCC-BY 4.0 International license.

which generates more surviving haplotypes after intersection. Here we count surviving haplotypes across both
sets of an orientation. The better orientation and the corresponding survivor sets are propagated to subsequent
windows. If either intersection is empty at window w, then a break is declared, the empty set is replaced by
the entire haplotype set of window w, and a new reference segment commences. Ties and double empties
virtually never occur. Repeated intersection may fail to produce singleton haplotype sets, in which case we

randomly designate a winner to use for breakpoint search.

For example, suppose S1; = {h;,hy,hs} and S;2 = {hs, hs,hg} are the (arbitrarily) phased sets in window
1. Since window 2 is not yet phased, the two sets S»; = {h;,hy,h¢} and Sy, = {hs,h7,hg} can be assigned
to extended haplotypes 1 and 2, respectively, or vice versa as depicted in Figure 1C. The first orientation
is preferred since it generates two surviving haplotypes h; and hs bridging windows 1 and 2. Thus, {h;}
and {hs} are assigned at window 2 with this orientation and propagated to window 3. In window 3 the
contending pairs are {h;} N{hy,hs} and {hs} N {hy,hs} versus {h;} N{hy,hs} and {hs} N {h;,hs3}. The
former prevails, and {h;} and {hs} are assigned to window 3 and propagated to window 4. In window 4
the opposite orientation is preferred (Figure 1D). In this empty intersection case we set S4; = {hy,h¢} and
S42 = {hs} and continue the process. Later we return and resolve the breakpoint in extended haplotype 1

between windows 3 and 4.

3.6 Resolving Breakpoints

The unique haplotype pairs found for adjacent windows are sometimes inconsistent and yield empty intersec-
tions. In such situations, we search for a good break point. Figure 1D illustrates a single-breakpoint search.
In this example, we slide the putative break point b across windows 3 and 4 in the top extended haplotype to
minimize the least squares value determined by the observed genotype, hs spanning both windows, and the
breakpoint b between h; and hy Uhg. When there is a double mismatch, we must search for a pair (by,b;) of
breakpoints, one for each extended haplotype. The optimal pair can be determined by minimizing the least
squares distances generated by all possible breakpoint pairs (by,b;). Thus, double breakpoint searches scale
as a quadratic. Fortunately, under the adaptive window width strategy described in Section 3.4, the number
of typed SNPs in each window typically is on the order of 10%. In this range, quadratic search remains fairly

efficient.

3.7 Imputation and Phasing of Untyped SNPs

Once haplotyping is complete, it is trivial to impute missing SNPs. Each missing SNP is located on the
reference map, and its genotype is imputed as the sum of the alleles on the extended haplotypes E; and E,.
Observed genotypes are untouched unless the user prefers phased genotypes. In this case MendelImpute will

override observed genotypes with phased haplotypes similar to Minimac 4. Unfortunately, MendelImpute

https://doi.org/10.1101/2020.10.24.353755
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353755; this version posted October 25, 2020. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

177

178

180

181

182

183

184

185

191

192

193

194

195

available under aCC-BY 4.0 International license.

Data Set size (MB) for format:
vef.gz | jlso | bref3 | m3vcf.gz

sim 10K 48 7 18 76
sim 100K 467 54 78 33
sim 1M 4300 741 | 397 NA
1000G chr10 419 190 | 327 111
1000G chr20 183 78 | 148 50
HRC chr 10 | 3200 | 1101 | 1156 505
HRC chr 20 1500 886 | 529 241

Table 1: Storage size required for various compressed reference haplotype formats. Here vcf . gz is the stan-
dard compressed VCF format, jlso is used by MendelImpute, bref3 is used by Beagle 5.1, and m3vcf.gz
is used by Minimac 4. For all jlso files we chose the maximum number of unique haplotypes per window to
be dyqr = 1000. Note we could not generate the m3vcf . gz file for the sim 1M panel because it required too
much memory (RAM).

cannot compute estimated dosages. As shown in Section 4.3 on alternative compression schemes, the extended

haplotypes E; and E, can be output rather than imputed genotypes at the user’s discretion.

3.8 Compressed Haplotype Panels

Large reference files are typically stored as compressed VCF files. Since VCF files are plain text files, they
are large and slow to read. Read times can be improved by computing and storing an additional tabix index
file [19], but file size remains a problem. Consequently, every modern imputation program has developed its
own specialized reference file format (for instance, the m3vcf and bref3 formats of Minimac and Beagle,
respectively) for improving read times and storage efficiency. We propose yet another compressed format for

this purpose: the jlso format, and we compare it against other formats in Table 1.

The jlso format is constructed in three steps: (a) pre-process large reference files window-by-window,
(b) retain only the unique haplotypes in addition to hash maps to reference haplotypes, and (c) save the result
in a binary compressed format via the JLSO.jl package [11]. The resulting jlso files are 30-50x faster
to read and 3-5x smaller in file size (varies depending on window width) than compressed VCF files in the
vcf . gz format. Generating jlso files requires specifying the typed SNPs’ positions, a procedure discussed
in more detail in the supplementary sections. Note that in contrast to the m3vcf format, the jlso format is
not a standalone file format. Rather, it is a container object that facilitates reading and transferring large VCF
files stored as Julia variables. In principle, all files that are large in size or slow to read can be saved in this
alternative format for quicker access. Later we discuss an attractive alternative for storing imputed sample

haplotypes.

https://doi.org/10.1101/2020.10.24.353755
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353755; this version posted October 25, 2020. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

available under aCC-BY 4.0 International license.

Data Set Total SNPs | Typed SNPs | Samples | Ref Haplotypes | min MAF | Missing %
Sim 10K 62704 22879 1000 10000 0.05 0.5%
Sim 100K 80029 23594 1000 100000 0.05 0.5%
Sim 1M 97750 23092 1000 1000000 0.05 0.5%
1000G Chr10 1511445 169914 100 4808 0.25 0.1%
1000G Chrl18 852602 50000* 100 4808 0.01 0.1%
1000G Chr20 669987 27091 100 4808 0.40 0.1%
HRC Chr10 1809068 116817 1000 52330 0.25 1.0%
HRC Chr20 829265 178541 1000 52330 0.01 1.0%

Table 2: Summary of real and simulated data sets. Here min MAF denotes the minimum minor allele fre-
quency of the typed SNPs. Missing % is the percentage of typed SNPs that are randomly masked. (* We used
the top 50,000 most ancestry informative SNPs.)

3.9 Parallel Computing and Memory Requirements

MendelImpute employs a shared-memory parallel computing model where each available core handles an
independent component of the entire problem. Work is assigned via Julia’s multi-threading functionality.
When computing the optimal haplotype pairs in equation (3.1), we parallelize over windows. This requires
allocating ¢ copies of X”H and H” H, where ¢ is the number of CPU cores available. Note the dimensions
of these matrices vary across windows. To avoid accruing allocations, we pre-allocate ¢ copies of 1 X dygy
and dy;qx X dimayx matrices and re-use their top-left corners in windows with d < d,,,4,. For intersecting adjacent
reference haplotype sets (phasing), we parallelize over samples. This step requires no additional memory.
Writing to output is also trivially parallelizable by assigning each thread to write a different portion of the
imputed matrix to a different file, then concatenating these files into a single output file. Data import is not
parallelized. Beyond allocating X" H and H” H, our software requires enough memory (RAM) to load the

target genotype matrix and the compressed haplotype reference panel.

3.10 Real and Simulated Data Experiments

For each data set, we exclude any typed SNPs with fewer than 5 copies of the minor allele and use only

bi-allelic SNPs. Table 2 summarizes the real and simulated data used in our comparisons.

3.10.1 Simulated Data

We simulated three 10 Mb sequence data sets, with 12,000, 102,000, 1,002,000 haplotypes, using the software
msprime [15]. We randomly selected 1000 samples (2000 haplotypes) from each pool to form the target
genotypes and used the remaining to form the reference panels. All SNPs with minor allele frequency greater

than 5% were designated the typed SNPs. Then 0.5% of the typed genotypes were randomly masked to

https://doi.org/10.1101/2020.10.24.353755
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353755; this version posted October 25, 2020. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

available under aCC-BY 4.0 International license.

introduce missing values.

3.10.2 1000 Genomes Data

We downloaded the publicly available 1000 Genomes (1000G) phase 3 version 5a data set [1, 2]. This data set
contains 2504 samples with 49,143,605 phased genotypes across 26 different populations, as summarized in
Table 5 in the supplementary sections. We focused on chromosomes 10, 18, and 20 data in our experiments.
For chromosome 10 and 20, we randomly selected 100 samples to serve as imputation targets and the remain-
ing samples to serve as the reference panel. For chromosome 10, we chose SNPs with minor allele frequency
(MAF) greater than 0.25 to be typed SNPs, while for chromosome 20 we chose SNPs with MAF greater than
0.4 to be typed SNPs. These data sets feature in our speed and accuracy comparisons. For chromosome 18,
we chose the top 50,000 most ancestry informative markers (AIMs) with minor allele frequency > 0.01 as the
typed SNPs [4]. The AIM markers were computed using VCFTools. j1. To avoid samples with likely substan-
tial degrees of continental-scale admixture, we excluded the populations ACB, ASW, CLM, GIH, ITU, MXL,
PEL, PUR, and STU from the reference panel. To illustrate admixture and chromosome painting, our three
sample individuals are taken from the excluded populations. The samples from the remaining populations are
assumed to exhibit less continental-scale admixture and serve as the reference panel. For admixture analysis,
it would be ideal to have samples from the indigenous Amerindian populations as part of the reference panel,
but these populations are not surveyed in the 1000 Genomes data, and so we use East Asian (EAS) and South

Asian (SAS) populations as the best available proxy.

3.10.3 Haplotype Reference Consortium Data

We also downloaded the Haplotype Reference Consortium (HRC) v1.1 data from the European Genotype-
Phenome archive [17] (data accession = EGADO00001002729). This data set consists of 39,741,659 SNPs in
27,165 individuals of predominantly European ancestry. We randomly selected 1000 samples in chromosomes
10 and 20 to serve as imputation targets and the remaining to serve as the reference panel. For chromosome
10, we selected SNPs with MAF greater than 0.25 to be typed, while for chromosome 20 we selected SNPs
with MAF greater than 0.01 to be typed. Finally, we randomly masked 1% of the typed genotypes to mimic

data missing at random.

4 Results

MendelImpute is publicly available at https://github.com/OpenMendel/MendelImpute.jl. Due to
Julia’s flexibility, MendelImpute runs on Windows, Mac, and Linux operating systems, equipped with ei-

ther Intel or ARM hardware. All commands needed to reproduce the following results are available at the

10

https://github.com/OpenMendel/MendelImpute.jl
https://doi.org/10.1101/2020.10.24.353755
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353755; this version posted October 25, 2020. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

267

268

269

270

271

272

273

274

275

276

277

278

available under aCC-BY 4.0 International license.

MendelImpute site in the manuscript sub-folder.

4.1 Speed, Accuracy, and Peak Memory Demand

Table 3 compares the speed, accuracy, and peak memory (RAM) usage of MendelImpute, Beagle 5.1,
and Minimac 4. All programs were run on 10 cores of an Intel 19 9920X CPU with 64 GB of RAM. In
MendelImpute, the number of BLAS threads was set to 1. Note that in our simulated and real data sets the
correct values are known for all missing and masked genotypes. Thus, we can report accuracy as the frac-
tion of genotypes incorrectly imputed for all SNPs, typed or untyped. We do not compute the popular r>
correlation metric for measuring imputation quality for reasons explained in the supplementary sections. All
reference files were previously converted to the corresponding compressed formats, bref3, m3vct, or jlso.
MendelImpute was run under Julia v1.5.0. All target genotypes are unphased, and 0.1%-1% of typed geno-
types are missing at random. All output genotypes are phased and non-missing. For MendelImpute, we set
the maximum number of unique haplotypes per window to d,,x = 1000. Beagle and Minimac were run under
their default settings. Since Minimac 4 requires pre-phased data, we used Beagle 5.1°s built-in pre-phasing

algorithm and report its run-time and RAM usage along side those of Minimac 4.

On large data sets MendelImpute runs 10-30 times faster than Beagle 5.1 and 40-200 times faster than
Minimac 4. On the smaller 1000 Genomes data set it runs 3-5 times faster than Beagle 5.1 and 12-18 times
faster than Minimac 4. Increasing the reference panel size by a factor of 100 on simulated data only increases
MendelImpute’s computation time by a factor of at most three. MendelImpute also scales better than HMM
methods as the number of typed SNPs increases. Thus, denser SNP arrays may benefit disproportionately
from using MendelImpute. The 1000 Genomes data set is exceptional in that it has fewer than 5000 reference
haplotypes. Therefore, traversing that HMM state space is not much slower than performing the corresponding
linear algebra calculations in MendelImpute. Notably, except for the HRC panels, MendelImpute spends at

least 50% of its total compute time importing data.

In terms of error rate, MendelImpute is 2-4 times worse on simulated and real data than Minimac 4
and Beagle 5.1. The sim10k data set is an exception in that MendelImpute’s error rate is 10 times worse,
which we attribute to the size of the reference panel compared to the number of imputed samples. The
error rates of Beagle 5.1 and Minimac 4 are similar, consistent with previous findings [24]. As discussed
in the supplementary sections, it is possible to improve MendelImpute’s error rate by more computationally

intensive strategies such as phasing by dynamic programming.

Finally, MendelImpute requires much less memory for most data sets, particularly those with a large ref-
erence panel or a large proportion of typed SNPs. As explained in the methods section and the supplementary
sections, the genotype matrix and compressed reference panel are compactly represented in memory. Since

most analysis is conducted in individual windows, only small sections of these matrices need to be decom-

11

https://doi.org/10.1101/2020.10.24.353755
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353755; this version posted October 25, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

sim 10K Error Rate Time (sec) Memory (GB)
MendelImpute | 3.00E-04 10 1.6
Beagle 5.1 2.81E-05 189 8.8
Minimac 4 2.38E-05 271 [177] 1.0 [6.6]
sim 100K Error Rate Time (sec) Memory (GB)
MendelImpute | 2.19E-05 14 1.6
Beagle 5.1 8.22E-06 279 20.1
Minimac 4 7.91E-06 3032 [253] 2.6 [14.5]
sim 1M Error Rate Time (sec) Memory (GB)
MendelImpute | 2.21E-05 27 4.4
Beagle 5.1 7.01E-06 769 25.6
Minimac 4 NA NA > 64
1000G chr10 Error Rate Time (sec) Memory (GB)
MendelImpute | 1.09E-02 39 3.7
Beagle 5.1 5.51E-03 196 9.6
Minimac 4 5.24E-03 569 [159] 5.8 [10.2]
1000G chr20 Error Rate Time (sec) Memory (GB)
MendelImpute | 3.28E-02 13 2.6
Beagle 5.1 1.68E-02 33 4.9
Minimac 4 1.65E-02 126 [33] 2.1 [5.0]
HRC chr10 Error Rate Time (sec) Memory (GB)
MendelImpute | 6.87E-03 154 7.3
Beagle 5.1 1.90E-03 1961 324
Minimac 4 1.71E-03 12892 [1712] 22.5 [17.8]
HRC chr20 Error Rate Time (sec) Memory (GB)
MendelImpute | 1.36E-03 133 6.2
Beagle 5.1 5.28E-04 2457 27.4
Minimac 4 6.34E-04 15231 [2276] 33.2 [23.5]

Table 3: Error, time, and memory comparisons on real and simulated data. Error measurement is possible
in these data sets because the correct genotypes are known. Minimac 4’s benchmarks do include the pre-
phasing step done by Beagle 5.1, whose memory and time are reported in brackets. For the sim 1M data, the
m3vct reference panel required for Minimac could not be computed due to excessive memory requirements.
All programs were run on 10 cores of a 3.5 GHz Intel i9 CPU with 64 GB of RAM. In MendelImpute, the
number of BLAS threads was set to 1.

12

https://doi.org/10.1101/2020.10.24.353755
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353755; this version posted October 25, 2020. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

279

281

282

284

285

286

287

288

289

290

291

292

203

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

available under aCC-BY 4.0 International license.

pressed into single-precision arrays at any one time. Consequently, MendelImpute uses at most 7.3 GB of
RAM in each of these experiments. In general, Mendel Impute permits standard laptops to conduct imputation

even with the sizeable HRC panels.

4.2 Local Ancestry Inference for Admixed Populations

MendelImpute lends itself to chromosome painting, the process of coloring each haplotype segment by the
country, region, or ethnicity of the reference individual assigned to the segment. For chromosome painting to
be of the most value, reference samples should be from individuals who are representative of distinct popu-
lations. Within a reference population there should be little admixture. Also the colors assigned to different
regions should be coordinated by physical, historical, and ethnic proximity. The overall proportions of the
colors assigned to a sample individual genome immediately translate into admixture coefficients. Here we
illustrate chromosome painting using chromosome 18 data from the 1000 Genomes Project. The much larger
Haplotype Reference Consortium data would be better suited for chromosome painting, but unfortunately its
repository does not list country of origin. Our examples should therefore be considered simply as a proof of
principle. As already mentioned, the populations present in the 1000 Genomes Project data are summarized

in Table 5 of the supplementary sections.

Figure 2A displays the painted chromosomes 18 of a native Puerto Rican (PUR, sample 1), a Peruvian
from Lima, Peru (PEL, sample 2), and a person of African ancestry from the Southwest USA (ASW, sample
3). Here a total of 17 reference populations potentially contribute genetic segments. They are colored with red,
brown, blue, or green to capture South Asian, East Asian, European, or African backgrounds, respectively.
Note that the samples from South/East Asian populations serve as a proxy for Amerindian ancestral popula-
tions. After coloring, the two PUR extended haplotypes are predominantly blue, the two PEL haplotypes are
predominantly red/brown and blue, while the two ASW haplotypes are predominantly green. Interestingly,
one of the PUR and one of the PEL haplotypes contain a block of African origin as well as blocks of Asian
and European origin, while the ASW haplotypes contain two blocks of European origin. The relatively long
blocks are suggestive of recent admixture. The resulting chromosome barcodes vividly display population

origins and suggest the locations of ancient or contemporary recombination events.

Figure 2B displays the three samples’ admixture proportions estimated from the cumulative lengths of
each color in Figure 2A. From this we can immediately tell the ancestry proportion of these samples. For
instance, based on the chromosome 18 haplotypes, the ancestry of the Puerto Rican (sample 1; PUR) is
estimated to be roughly 20% S/E Asian (likely Amerindian), about 75% European, and 5% African. Of
course, in actual practice we would use all chromosomes of an individual, which would provide a far more
accurate assessment than using just chromosome 18. In addition, the ancestral assignments are only as good
as the choice of reference haplotypes. For instance, the haplotypes of the African American (sample 3; ASW)

contain a small but substantial portion (3%) of Eastern Asian ancestry. This labelling should not be taken too

13

https://doi.org/10.1101/2020.10.24.353755
http://creativecommons.org/licenses/by/4.0/

313

314

315

316

317

318

319

320

321

322

323

324

325

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353755; this version posted October 25, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

ASNP 85K | e B SAS p o0 | B SAS
=B —
— =
111 EE
SNP 639k | = | 075 |
<
. B EAS B B EAS
— ic)
SNP 426k — G>) 050
= = — 8 o
=5 E
— sl | e
= — = = B EUR S B EUR
- = o
SNP 212k | I _= o — 025
= —
. —E
= I =
EERE==
= - e
sy | Bm B EEEEE T o A 000 | ‘ . O AR
39 Sample 1 Sample 2 Sample 3

39 2 39 A 2
o o

Figure 2: MendelImpute used for chromosome painting and ancestry estimation. In the reference popu-
lations, South Asians are shaded in red, East Asians in brown, Europeans in blue, and Africans in green.
Sample 1 is Puerto Rican (PUR), sample 2 is Peruvian (PEL), and sample 3 is African American (ASW). (a)
Painted chromosome 18 barcodes after phasing for three samples. (b) Ancestry proportions estimated from
the cumulative length of the colored segments.

literally but rather may reflect either some distant Amerindian ancestry or regions where many haplotypes are

similar and so ancestry is difficult to discern.

4.3 Ultra-Compressed Phased Genotype Files

As discussed earlier, VCF files are enormous and slow to read. If genotypes are phased with respect to a
particular reference panel, then an alternative is to store each haplotype segment’s starting position and a
pointer to its corresponding reference haplotype. This offers massive compression because long segments
are reduced to two integers. Instead of the default compressed VCF files, MendelImpute can optionally
output such ultra-compressed phased data. Table 4 shows that the ultra-compressed format gives 10-200 fold
compression compared to standard compressed VCF outputs. In principle, all phased genotypes can be stored
in such files. The drawback is that compressed data can only be decompressed with the help of the original
reference panel. Thus, this tactic relies on universal storage and curation of reference haplotype panels.
These panels should be stored on the cloud for easy access and constructed so that they can be consistently

augmented by new reference haplotypes.

14

https://doi.org/10.1101/2020.10.24.353755
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353755; this version posted October 25, 2020. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

available under aCC-BY 4.0 International license.

Data Set vcf.gz ultra-compressed | compression
size (MB) size (MB) ratio
Sim 10K 10.07 0.05 201
Sim 100K 10.71 0.04 267
Sim 1M 11.05 0.04 276
1000G Chr10 31.53 1.37 23
1000G Chr20 13.93 0.43 46
HRC Chr10 155.71 7.47 21
HRC Chr20 70.42 5.86 12

Table 4: Output file size comparison of compressed VCF and ultra-compressed formats.

4.4 Imputation Quality Scores

As explained in the supplementary sections, the popular 72 correlation coefficient [5] between imputed geno-
types and true genotypes is an uninformative metric for measuring MendelImpute’s imputation accuracy. Al-
ternatively, consider the observed genotype x;; € [0,2] U {missing} at SNP i of sample j and the corresponding
imputed genotype g;; derived from the two extended haplotypes of j. If S; denotes the set of individuals with
observed genotypes at the SNP, then MendelImpute’s quality score g; for the SNP is defined as

1 2
g = l—+= (xij_gij>.
‘Sl|]€s, 2

Note that 0 < g; < 1 and that the larger the quality score, the more confidence in the imputed values. Because

gi can only be computed for the typed SNPs, an untyped SNP is assigned the average of the quality scores for
its two closest flanking typed SNPs. Figure 3A plots each SNP’s quality score in the 1000G Chr20 experiment
summarized in Table 3. For each sample, one can also compute the mean least squares error over all p SNPs to
obtain a per-sample quality score. This is shown in Figure 3B. By default MendelImpute outputs both quality

scores. Thus, investigators can perform post-imputation quality control by SNPs and by samples separately.

Empirically, it is rather common for a sample subject to harbor a few poorly imputed windows. Thus, we
observe a long right tail in the histogram for per-sample error in Figure 3. Unfortunately, the bad windows
generally do not exhibit any discernible regional patterns across subjects. We suspect that poorly imputed
widows involve breakpoints that occur near the middle of a window. We plan a detailed analysis of this issue

in future work.

5 Discussion

We present MendelImpute, the first scalable, data-driven method for phasing and genotype imputation.

MendelImpute and supporting OpenMendel software provide an end-to-end analysis pipeline in the Julia

15

https://doi.org/10.1101/2020.10.24.353755
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353755; this version posted October 25, 2020. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

346

347

348

349

350

351

352

353

355

356

357

358

359

360

361

362

363

364

365

available under aCC-BY 4.0 International license.

a 5x10° b
30
4x10°
” 3x10° ¥ 20
-+ -+
C C
) -
(@] 5 (@]
O 2x10 O
10
1x10°
0t , , . 0 : .
0.985 0990 0.995 1.000 099850 099925 1.000
Per-SNP score Per-sample score

Figure 3: Histograms of per-SNP and per-sample quality scores for chromosome 20 in our 1000G analysis.
By default MendelImpute computes (a) per-SNP quality scores and (b) per-sample quality scores. SNPs and
samples with noticeably lower quality scores should be removed from downstream analysis.

programming language that is typically 10-100 times faster than methods based on hidden Markov models,
including Beagle 5.1 (Java) and Minimac 4 (C++). The speed difference increases dramatically as we in-
crease the number of typed SNPs. Thus, denser SNP chips potentially benefit more from MendelImpute’s
design. Furthermore, MendelImpute occupies a smaller memory footprint. This makes it possible for users
to run MendelImpute on standard desktop or laptop computers on very large data sets. Unfortunately we
cannot yet have the best of both worlds, as MendelImpute exhibits a 2-4 fold worse error rate than Beagle
5.1 and Minimac 4. However, as seen in Table 3, MendelImpute’s error rate is still acceptably low. One can
improve its error rate by implementing strategies such as phasing by dynamic programming. This strategy
may decrease error, but it slows down computation and is hence omitted in our comparisons. Regardless, it is
clear that big data methods can compete with HMM based methods on the largest data sets currently available

and that there is still room for improvement and innovation in genotype imputation.

Beyond imputation and phasing, our methods extend naturally to ancestry estimation and data compres-
sion. If each reference haplotype is labeled with its country or region of origin, then MendelImpute can
decompose a sample’s genotypes into segments of different reference haplotypes colored by these origins.
The cumulative lengths of these colored segments immediately yield an estimate of admixture proportions.
Countries can be aggregated into regions if too few reference haplotypes originate from a given country. The
colored segments also present a chromosome barcode that helps one visualize subject variation, recombination
hotspots, and global patterns of linkage disequilibrium. Data compression is achieved by storing the starting
positions of each segment and its underlying reference haplotype. This leads to output files that are 10-250

fold smaller than standard compressed VCEF files. Decompression obviously requires ready access to stable

16

https://doi.org/10.1101/2020.10.24.353755
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353755; this version posted October 25, 2020. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

366

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

available under aCC-BY 4.0 International license.

reference panels stored on accessible sites such as the cloud. Although such an ideal resource is currently part

dream and part reality, it could be achieved by a concerted international effort.

For potential users and developers, the primary disadvantage of MendelImpute is its reliance on the
importation and storage of a haplotype reference panel. Acquiring these panels requires an application process
which can take time to complete. Understanding, storing, and wrangling a panel add to the burden. The
imputation server for Minimac 4 thrives because it relieves users of these burdens [10]. Beagle 5.1 is capable
of fast parallel data import on raw VCF files [6], which neither Minimac 4 nor MendelImpute can currently
match. This makes target data import, and especially pre-processing the reference panel, painfully slow for
both programs. Fortunately, pre-processing only has to happen once. Beagle 5.1 also uniquely supports

imputation without a reference panel and directly imputes multi-allelic markers.

Finally, let us reiterate the goals and achievements of this paper. First, we show that data-driven meth-
ods are competitive with HMM methods on genotype phasing and imputation, even on the largest data sets
available today. Second, we challenge the notion that pre-phasing and imputation should be kept separate;
MendelImpute performs both simultaneously. Third, we argue that data-driven methods are ultimately more
flexible; for instance, MendelImpute readily handles imputation and phasing on dosage data. Fourth, we
demonstrate that data-driven methods yield dividends in ancestry identification and data compression. Fifth,
MendelImpute is completely open source, freely downloadable, and implemented in Julia, an operating sys-
tem agnostic, high-level programming language for scientific research. Julia is extremely fast and enables
clear modular coding. Our experience suggests that data-driven methods will offer a better way forward as we

face increasingly larger reference panels, denser SNP array chips, and greater data variability.

6 Supplement

6.1 Bias Correction for Initializing Missing Data

Since BLAS requires complete data, we must first initialize the missing data in each genotype vector x before
computing M and N in equation (3.1). This may introduce bias in our minimization of criterion (3.1) if there is
a high fraction of missing genotypes in the typed SNPs, for example above 10%. One way to alleviate bias is to
initialize missing data with twice the alternate allele frequency and save all unique haplotype pairs minimizing
criterion (3.1) under this convention. Once haplotype pairs are identified, we re-minimize criterion (3.1) but

now skipping the missing entries of x. That is equivalent to setting x; — hjy — hjx = 0 when x; is missing.

17

https://doi.org/10.1101/2020.10.24.353755
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353755; this version posted October 25, 2020. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

available under aCC-BY 4.0 International license.

6.2 Avoidance of Global Searches for Optimal Haplotype Pairs

Recall that minimizing the criterion (3.1) requires searching through all lower-triangular entries of the d x d
matrix M + N, where d denotes the number of unique haplotypes in the window. When d < 1000, searching
through all (g) + d lower-triangular entries of M + N via MendelImpute’s standard procedure is fast, but this

global search quickly degrades as d — o. Below we outline two heuristic procedures for large d.

6.2.1 Stepwise Search Heuristics

Consider minimizing the loss f;(8) = 3|[x; — HB||3, where the d columns of H € {0,1}"*“ store unique

haplotypes, p is the window width, and x; is a sample genotype vector. The original problem minimizes
fi(B) under the constraint that exactly two f8; = 1 and the remaining f; = 0 or the constraint that exactly one
B; =2 and the remaining f; = 0. As an approximate alternative, one first finds the r unique haplotypes with
the largest influence on f;(3). This is accomplished by identifying the r most negative components of the

gradient
Vfi(B8)=—-H'(x,—HB) = —H'x;+ H'Hj3

at 3 = 0. These are the r directions of steepest descent. Note that Vf;(0) = —H”x; and that H”x; is pre-
computed and cached in N. The residual function g;;(hy) = %\ |x —h; —h||3 is then minimized over hy to
find the candidate pair (h;,h;) generated by each of the vectors h; determined by the gradient V£;(0). The
ingredients to perform these minimizations are already in hand. This heuristic scales as O(rd), much better
than O(d?) in equation (3.1). MendelImpute sets the default » = 100. In the same spirit as the first step,
one can alternatively find for each j the most negative component k of the gradient Vfj(e;), where e; is the
standard unit vector with 1 in position j. This again determines a nearly optimal pair (h;,h;). Under this
tactic the Gram matrix H H comes into play. Note that H” He ;j reduces to its jth column v;. Hence, no new
matrix-by-vector multiplications are necessary in calculating V f;(e;) = —H'x; +v i =Vfi(0)+v;.
Alternatively, one can find the best r unique haplotypes for a given sample x; en masse by arranging all

pairwise column distances of X and H in the matrix

Xt —hal[3 - [lx =3

R=

xi—hal3 -l —hall3]
Then we partially sort each column of R to identify the top r haplotypes matching each sample x;. Here R
is computed via the Distance. j1 package of Julia, which internally performs BLAS level-3 calls analogous
to computing H'H and X" H. Instead of searching through all haplotypes to minimize g; j(hy) for a given

sample x;, one can instead search only over the (;) + r combinations of the top haplotypes. This allows one

to entertain much larger values of r. Empirically, choosing r = 800 works well for most data sets.

18

https://doi.org/10.1101/2020.10.24.353755
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353755; this version posted October 25, 2020. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

available under aCC-BY 4.0 International license.

6.3 Phasing by Dynamic Programming

We also investigated a dynamic programming strategy that gives the global solution for minimizing the number

of haplotype breaks across the extended haplotypes E; and E,. For each given haplotype pair p; = (h;,h;) in

window w, we can compute the squared Hamming distance between it and the pair py = (hy,h;) in window

w+1; in symbols

(0 hj=hehj=h; (0 breaks)
1 h;=h;,h;#h; (1 break)
1 h; #hi,h;=h; (1 break)
4 h;#hi,h;#h; (2 breaks).

d(plapZ) =

Observe that a double break is assigned an error of 4 to favor 2 single breaks across 3 windows as opposed to

a double break plus a perfect match.

Now we describe a dynamic programming strategy for finding the two paths with the minimal number
of unique haplotype breaks. We start with all candidate pairs p; in the leftmost window and initialize sums
s; = 0 and traceback path vectors t; to be empty. One then recursively visits all windows in turn from left to
right. If w is the current window, then every candidate haplotype pair p; in window w is connected to every
candidate pair p; in window w + 1. The traceback path t; is determined by the pair p; minimizing d(p;,p;).
The traceback path t; is constructed by appending py to t; and setting s; = s + d(px,p;). This process is
continued until the rightmost window v is reached. At this point the pair p; with lowest running sum s; is
declared the winner. The traceback path t; allows one to construct the extended haplotypes E; and E; in their
entirety. Unfortunately, too many haplotype pairs per window can overwhelm dynamic programming with
large reference panels. One partial recourse is to discard partial paths and associated partial termini p; that are
unpromising in the sense that their running sums s; are excessively large. This is effective, but the approximate

algorithm is burdened by extra bookkeeping. The bookkeeping of the exact algorithm is already demanding.

6.4 Generating JLSO Compressed Reference Haplotype Panels

Since haplotypes are long binary vectors, the entire haplotype reference panel can be compactly represented
using a single bit per entry. As a first step in compression, the reference panel is divided into non-overlapping
windows of various widths after proper alignment of all typed and reference SNPs in the window. For each
window we save two compressed mini-panels. The first houses the unique haplotypes determined by just
the typed SNPs. The second houses the unique haplotypes determined by all SNPs in the window, typed or
untyped. The former is much smaller than the later, but each entry of both can be compactly represented by a
single bit per entry in memory. Thus, for each window we save two compressed windows in addition to meta

information and pointers that coordinate reference haplotypes with the two mini-panels per each window.

19

https://doi.org/10.1101/2020.10.24.353755
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353755; this version posted October 25, 2020. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

450

451

452

453

454

455

456

457

458

459

460

461

462

464

465

466

available under aCC-BY 4.0 International license.

MendelImpute also requires the list of typed SNPs. This whole ensemble is stored in the jlso file. Because
there are only a limited number of SNP array chips on the market, one can in principle store just a few jlso

files on a universal source such as the cloud.

6.5 Imputation quality scores using r-squared

The popular 72 correlation coefficient between imputed genotypes and true genotypes is a popular metric

2 can still be estimated from

for measuring imputation quality. Although the true genotypes are unknown, r
posterior probabilities of the HMM model [5]. For instance, according to Minimac 3’s online documentation,

for each SNP we can calculate

2= ﬁ %ﬁl(Di _ﬁ)z
p(1—-p)
where p is the alternative allele frequency (of the imputed data), D; is the imputed alternate allele probability
at the ith haplotype, and n is the number of GWAS samples. MendelImpute does not compute posterior
probabilities; for each locus, each haplotype is imputed with O or 1. That is, D; € {0,1}. Thus, using the fact
that p = z—ln Y>, D;, we have

2 = ~ Y7 (D} —2D;p+ p?)
p(1—-p)

3 (X DP 2P X Dit 2np]
- p(1—p)
A X2 Di—4np? + 2np]
B p(1—p)
5 [2np —2np7)
 p(1—p)

= 1
Thus every SNP has 7> = 1 under MendelImpute’s model, which renders it meaningless.

6.6 Summary of 1000 Genomes Reference Panel

A total of 26 different populations contribute to the 1000 Genomes Project data set. These populations are
further organized into five super population. While this information is freely available online, we summarize

it in Table 5 for completeness.

20

https://doi.org/10.1101/2020.10.24.353755
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353755; this version posted October 25, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Population Code | Description Super Population
CHB Han Chinese in Beijing, China East Asian (EAS)
JPT Japanese in Tokyo, Japan East Asian (EAS)
CHS Southern Han Chinese East Asian (EAS)
CDX Chinese Dai in Xishuangbanna, China East Asian (EAS)
KHV Kinh in Ho Chi Minh City, Vietnam East Asian (EAS)
CEU Utah Residents with NW European Ancestry European (EUR)
TSI Toscani in Italia European (EUR)
FIN Finnish in Finland European (EUR)
GBR British in England and Scotland European (EUR)
IBS Iberian Population in Spain European (EUR)
YRI Yoruba in Ibadan, Nigeria Africans (AFR)
LWK Luhya in Webuye, Kenya Africans (AFR)
GWD Gambian in Western Divisions in the Gambia Africans (AFR)
MSL Mende in Sierra Leone Africans (AFR)
ESN Esan in Nigeria Africans (AFR)
ASW Americans of African Ancestry in SW USA Africans (AFR)
ACB African Caribbeans in Barbados Africans (AFR)
MXL Mexican Ancestry from Los Angeles USA Ad Mixed American (AMR)
PUR Puerto Ricans from Puerto Rico Ad Mixed American (AMR)
CLM Colombians from Medellin, Colombia Ad Mixed American (AMR)
PEL Peruvians from Lima, Peru Ad Mixed American (AMR)
GIH Gujarati Indian from Houston, Texas South Asian (SAS)
PJL Punjabi from Lahore, Pakistan South Asian (SAS)
BEB Bengali from Bangladesh South Asian (SAS)
STU Sri Lankan Tamil from the UK South Asian (SAS)
ITU Indian Telugu from the UK South Asian (SAS)

Table 5: The 26 population codes present in the 1000 genomes project.

21

https://doi.org/10.1101/2020.10.24.353755
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353755; this version posted October 25, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

« 7 Availability of source code

s Project name: Mendellmpute.jl

460 Project home page: https://github. com/OpenMendel/MendelImpute. jl
470 Supported operating systems: Mac OS, Linux, Windows

471 Programming language: Julia 1.5

472 License: MIT

a3 8 Author contributions

a7 KL, JS, ES, and HZ conceived this project. BC, KL, RW, JS, ES, and HZ devised the methods. BC, RW,
475 and HZ developed the software. BC and KL accessed the data. BC wrote the original draft of the paper. BC,
a6 KL, RW, JS, ES, and HZ reviewed and edited the draft. KL previewed some of the methods incorporated in
477 MendelImpute in his talk [16].

«s 9 Competing interests

479 The authors declare no competing interests.

s 10 Acknowledgements

ss1 BC and RW were supported by NIH grant T32-HG002536. BC, ES, JS, HZ, and KL were supported by
as2 NIH grant RO1-HG006139. ES, JS, HZ, and KL were supported by NIH grant RO1-GM053275. JS was also
as3 supported by NIH grant RO1-HG009120.

484 We would also like to thank Calvin Chi for his helpful discussions on ancestry estimation and Juhyun Kim

g5 for her helpful discussions on imputation quality scores.

22

https://github.com/OpenMendel/MendelImpute.jl
https://doi.org/10.1101/2020.10.24.353755
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353755; this version posted October 25, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

s References

as7 [1] 1000 Genomes Project Consortium, A. Auton, G. R. Abecasis, D. M. Altshuler, R. M. Durbin, et al. A
488 global reference for human genetic variation. Nature, 526(7571):68-74, 2015.

as0 [2] 1000 Genomes Project Consortium, G. A. McVean, D. M. Altshuler, R. M. Durbin, et al. An integrated
490 map of genetic variation from 1,092 human genomes. Nature, 491(7422):56-65, 2012.

s01 [3] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to numerical computing.
492 SIAM Review, 59:65-98, 2017.

203 [4] R. Brown and B. Pasaniuc. Enhanced methods for local ancestry assignment in sequenced admixed

494 individuals. PLoS Comput Biol, 10(4):e1003555, 2014.

a0s [5] B. L. Browning and S. R. Browning. A unified approach to genotype imputation and haplotype-phase
496 inference for large data sets of trios and unrelated individuals. The American Journal of Human Genetics,
407 84(2):210-223, 2009.

a8 [6] B. L. Browning, Y. Zhou, and S. R. Browning. A one-penny imputed genome from next-generation
499 reference panels. The American Journal of Human Genetics, 103(3):338-348, 2018.

soo [7] G. K. Chen, K. Wang, A. H. Stram, E. M. Sobel, and K. Lange. Mendel-gpu: haplotyping and genotype
501 imputation on graphics processing units. Bioinformatics, 28(22):2979-2980, 2012.

so2 [8] E. C. Chi, H. Zhou, G. K. Chen, D. O. Del Vecchyo, and K. Lange. Genotype imputation via matrix
503 completion. Genome Research, 23(3):509-518, 2013.

soa [9] S. Das, G. R. Abecasis, and B. L. Browning. Genotype imputation from large reference panels. Annual
505 Review of Genomics and Human Genetics, 19:73-96, 2018.

so6 [10] S. Das, L. Forer, S. Schonherr, C. Sidore, A. E. Locke, A. Kwong, S. I. Vrieze, E. Y. Chew, S. Levy,
507 M. McGue, et al. Next-generation genotype imputation service and methods. Nature Genetics,
508 48(10):1284, 2016.

soo [11] R. Finnegan and L. White. invenia/JLSO.jl: Storage container for serialized Julia objects. https:
510 //doi.org/10.5281/zenodo . 3992374, 2020.

si1 [12] A. GreenWell and M. Abbott. GroupSlices.jl: A package for the groupslices and associated functions.
512 https://github.com/mcabbott/GroupSlices. jl, 2019.

s13 [13] B. Howie, C. Fuchsberger, M. Stephens, J. Marchini, and G. R. Abecasis. Fast and accurate genotype
514 imputation in genome-wide association studies through pre-phasing. Nature Genetics, 44(8):955-959,
515 2012.

si16 [14] B.Jiang, S. Ma, J. Causey, L. Qiao, M. P. Hardin, L. Bitts, D. Johnson, S. Zhang, and X. Huang. SparRec:
517 An effective matrix completion framework of missing data imputation for GWAS. Scientific Reports,
518 6:35534, 2016.

s10 [15] J. Kelleher, A. M. Etheridge, and G. McVean. Efficient coalescent simulation and genealogical analysis
520 for large sample sizes. PLoS Comput Biol, 12(5):1-22, 05 2016.

23

https://doi.org/10.5281/zenodo.3992374
https://doi.org/10.5281/zenodo.3992374
https://doi.org/10.5281/zenodo.3992374
https://github.com/mcabbott/GroupSlices.jl
https://doi.org/10.1101/2020.10.24.353755
http://creativecommons.org/licenses/by/4.0/

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353755; this version posted October 25, 2020. The copyright holder for this preprint

[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

available under aCC-BY 4.0 International license.

K. Lange. Lecture on Ultrafast Haplotyping. In New Statistical Methods for Family-Based
Sequencing Studies. Banff International Research Station, http://www.birs.ca/events/2018/
5-day-workshops/18w5154/videos/watch/201808091354-Lange.html, 2018.

I. Lappalainen, J. Almeida-King, V. Kumanduri, A. Senf, J. D. Spalding, G. Saunders, J. Kandasamy,
M. Caccamo, R. Leinonen, B. Vaughan, et al. The European genome-phenome archive of human data
consented for biomedical research. Nature Genetics, 47(7):692—-695, 2015.

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra subprograms for
Fortran usage. ACM Transactions on Mathematical Software, 5(3):308-323, 1979.

H. Li. Tabix: fast retrieval of sequence features from generic tab-delimited files. Bioinformatics,
27(5):718-719, 2011.

N. Li and M. Stephens. Modeling linkage disequilibrium and identifying recombination hotspots using
single-nucleotide polymorphism data. Genetics, 165(4):2213-2233, 2003.

P.-R. Loh, P. Danecek, P. F. Palamara, C. Fuchsberger, Y. A. Reshef, H. K. Finucane, S. Schoenherr,
L. Forer, S. McCarthy, G. R. Abecasis, et al. Reference-based phasing using the haplotype reference
consortium panel. Nature Genetics, 48(11):1443, 2016.

S. McCarthy, S. Das, W. Kretzschmar, O. Delaneau, A. R. Wood, A. Teumer, H. M. Kang, C. Fuchs-
berger, P. Danecek, K. Sharp, et al. A reference panel of 64,976 haplotypes for genotype imputation.
Nature Genetics, 48(10):1279, 2016.

K. H. Miga, S. Koren, A. Rhie, M. R. Vollger, A. Gershman, A. Bzikadze, S. Brooks, E. Howe, D. Porub-
sky, G. A. Logsdon, et al. Telomere-to-telomere assembly of a complete human X chromosome. bioRxiv,
735928, 2019.

S. Rubinacci, O. Delaneau, and J. Marchini. Genotype imputation using the positional burrows wheeler
transform. bioRxiv, 797944, 2019.

E. Sobel, K. Lange, J. R. O’Connell, and D. E. Weeks. Haplotyping algorithms. In Genetic Mapping
and DNA Sequencing, pages 89-110. Springer, 1996.

C. Sudlow, J. Gallacher, N. Allen, V. Beral, P. Burton, J. Danesh, P. Downey, P. Elliott, J. Green, M. Lan-
dray, B. Liu, P. Matthews, G. Ong, J. Pell, A. Silman, A. Young, T. Sprosen, T. Peakman, and R. Collins.
UK BioBank: an open access resource for identifying the causes of a wide range of complex diseases of
middle and old age. PLoS Medicine, 12:¢1001779, 2015.

D. Taliun, D. N. Harris, M. D. Kessler, J. Carlson, Z. A. Szpiech, R. Torres, S. A. G. Taliun, A. Corvelo,
S. M. Gogarten, H. M. Kang, et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed
Program. bioRxiv, 563866, 2019.

S.-K. Yoo, C.-U. Kim, H. L. Kim, S. Kim, J.-Y. Shin, N. Kim, J. S. W. Yang, K.-W. Lo, B. Cho,
F. Matsuda, et al. NARD: whole-genome reference panel of 1779 Northeast Asians improves imputation
accuracy of rare and low-frequency variants. Genome Medicine, 11(1):1-10, 2019.

H. Zhou, J. S. Sinsheimer, D. M. Bates, B. B. Chu, C. A. German, S. S. Ji, K. L. Keys, J. Kim, S. Ko,
G. D. Mosher, J. C. Papp, E. M. Sobel, J. Zhai, J. J. Zhou, and K. Lange. OpenMendel: a cooperative
programming project for statistical genetics. Human Genetics, 139:61-71, 2020.

24

http://www.birs.ca/events/2018/5-day-workshops/18w5154/videos/watch/201808091354-Lange.html
http://www.birs.ca/events/2018/5-day-workshops/18w5154/videos/watch/201808091354-Lange.html
http://www.birs.ca/events/2018/5-day-workshops/18w5154/videos/watch/201808091354-Lange.html
https://doi.org/10.1101/2020.10.24.353755
http://creativecommons.org/licenses/by/4.0/

	Abstract
	Introduction
	Materials and Methods
	Missing Data in Typed and Untyped SNPs
	Elimination of Redundant Haplotypes by Hashing
	Finding Optimal Haplotype Pairs via Least Squares
	Adaptive Window Widths via Recursive Bisection
	Phasing by Intersecting Haplotype Sets
	Resolving Breakpoints
	Imputation and Phasing of Untyped SNPs
	Compressed Haplotype Panels
	Parallel Computing and Memory Requirements
	Real and Simulated Data Experiments
	Simulated Data
	1000 Genomes Data
	Haplotype Reference Consortium Data

	Results
	Speed, Accuracy, and Peak Memory Demand
	Local Ancestry Inference for Admixed Populations
	Ultra-Compressed Phased Genotype Files
	Imputation Quality Scores

	Discussion
	Supplement
	Bias Correction for Initializing Missing Data
	Avoidance of Global Searches for Optimal Haplotype Pairs
	Stepwise Search Heuristics

	Phasing by Dynamic Programming
	Generating JLSO Compressed Reference Haplotype Panels
	Imputation quality scores using r-squared
	Summary of 1000 Genomes Reference Panel

	Availability of source code
	Author contributions
	Competing interests
	Acknowledgements

