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Abstract 

The etiology of diseases driven by dysregulated mRNA metabolism can be elucidated by 

characterizing the responsible RNA-binding proteins (RBPs). Although characterizations of RBPs 
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have been mainly focused on their binding sequences, not much has been investigated about their 

preferences for RNA structures. We present nearBynding, an R/Bioconductor pipeline that 

incorporates RBP binding sites and RNA structure information to discern structural binding 

preferences for an RBP. nearBynding visualizes RNA structure at and proximal to sites of RBP 

binding transcriptome-wide, analyzes CLIP-seq data without peak-calling, and provides a flexible 

scaffold to study RBP binding preferences relative to diverse RNA structure data types. 

 

Key words: RNA structure, RNA binding protein, binding motif, CLIP-seq 

 

Background 

 RNA-binding proteins (RBP) play diverse, important roles from RNA biogenesis to degradation. 

Over 1,500 human genes code for RBPs, making them among the largest families of the human 

proteome [1]. Dysregulation of RBP binding can drive diseases such as cancer, muscular dystrophy, 

neurodegeneration, and developmental abnormalities [2–4]. Parsing RBP binding specificity and 

function is therefore central in understanding human biology and diseases. Most RBPs demonstrate 

at least some RNA sequence, structure, or modification preferences in their binding sites [5–7]. Some 

RBPs recognize RNA structure more than sequence [8,9], but binding preferences to structured RNA 

have thoroughly been described for only a few proteins, and RNA structure surrounding protein 

binding events is rarely characterized. 

 

One of the most precise methods for determining transcriptome-wide RBP binding is UV cross-

linking immunoprecipitation with deep sequencing (CLIP-seq). Current practice when analyzing CLIP 

data to identify RBP binding sites is to call peaks, which binarizes data to intervals of bound or 

unbound RNA. Although peak-calling simplifies many downstream analyses, this binarization 

sacrifices information that could be gleaned from relative peak intensity and amplifies the error at mis-
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called positions. Analyzing CLIP data in a non-binarized format potentially enables more nuanced 

motif-finding by preserving levels of binding preferences in the input data. Motifs ascribed to RBPs 

are often insufficient for explaining a large proportion of binding occurrences [10–15]. Describing the 

unexplained binding of RBPs—especially for RBPs that bind structured RNA—will increase our 

potential to elucidate the etiology of diseases driven by dysregulated mRNA metabolism.  

 

Besides sequence, RBP binding can also be impacted by RNA structures. Therefore, 

integration of nucleotide-resolution RNA folding information with CLIP-seq is critical to discern 

transcriptome-wide RBP binding. Unfortunately, RNA structures are diverse and much more difficult 

to discern than RNA sequence. Currently, high-throughput RNA structure is obtained using in silico 

prediction algorithms such as Sfold, RNAfold, or RNAshapes [16–18]. In their simplest form, RNA 

structure prediction algorithms input the sequence of the RNA and discern probable RNA structure 

using pre-coded, experimentally-defined biophysical metrics. Sequence-based RNA structure 

predictions are, however, unable to account for how RNA modifications or RBPs may impact RNA 

structure in vivo because they calculate folding of a naked RNA strand. Despite these assumptions, 

predicted structure information provides a valuable complement to CLIP-seq data as it provides an 

approximation of the geometry of the RNA landscape where the RBP binds.  

 

Several machine learning algorithms have been developed to resolve structure-based RBP 

motifs using CLIP data and RNA structure prediction [19–21]. Binding occurrences of some RBPs are 

almost accurately predicted by some of these machine learning algorithms such as RPI-Net. For 

example, selected datasets of TAF15, ELAVL1, and HNRNPC have area under the receiver 

operating characteristic [AUROC] >0.98 (where 1 is perfect classification and 0.5 is random chance), 

but the binding preferences of others remain difficult to predict with these approaches (e.g. AUROC = 

0.724 for ALKBH5 and <0.85 for ZC3H7B, C22ORF28, and C17ORF85 datasets), and many datasets 
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for RBPs have not been explored [21]. The dampened prediction accuracy of these RBPs is perhaps 

due to biological confounders, such as subcellular localization or cofactors that affect binding 

preference, which cannot be discerned from CLIP data alone. The predictive power of these state-of-

the-art algorithms may be limited by their reliance exclusively on sequence-based RNA structure 

prediction and their lack of accommodation for experimentally-derived RNA structure information 

(reviewed [22,23]). A further limitation of these algorithms is that they predict RNA structures only 

from short intervals [22]. Although more computationally efficient, this approach sacrifices the 

possibility of long-range contacts that affect secondary structure or of tertiary conformations, which 

may shield or expose binding sites. 

 

Visualization techniques serve as another critical complement to interpreting binding 

predictions. Algorithms such as GraphProt and iDeepS incorporate a post-processing step to easily 

visualize the sequence and structure preferences [19,20], but these algorithms only provide 

visualization of structure information for a short binding motif (7-12 nucleotides). They also do not 

offer insight about the RNA structure surrounding those motifs, despite evidence that such local 

context can be important in RBP binding [24,25]. On the other hand, current methods interrogating 

RNA structure binding contexts beyond the binding site can only be performed in a low-throughput 

manner [24,25]; therefore, RBPs known to have preferred proximal secondary structures are sparse. 

 

We develop a new algorithm nearBynding to model RBP binding through the integration of 

CLIP-seq and RNA structure data, which can be derived from in silico predictions or experiments. The 

nearBynding pipeline is unique in three ways: first, it visualizes RNA structure at and also proximal to 

RBP binding sites in a transcriptome-wide manner; second, it is a flexible scaffold to study RBP 

binding preferences relative to diverse RNA structure data types; and third, it can analyze RBP 

binding from CLIP-seq data without peak-calling. We perform this integration by extending the kernel 
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correlation algorithm StereoGene [26] to assess correlation between continuous or interval features 

from RNA structure and RBP binding along the transcriptome. Directly estimating correlation among 

pairs of continuous or interval features allows users to analyze track features associated with binding 

and RNA structure without peak calling and associated data loss. Notably, the cross-correlation 

model in StereoGene can also represent trends between proximal coordinates of RNA structure and 

CLIP-seq to allow for identification of extended binding structure. We benchmark nearBynding using 

simulated data and replicate CLIP experiments. We demonstrate its utility by comparing our results to 

known RBP binding preferences, employing diverse data types to predict RBP binding preferences 

that are unusable by currently-available RBP motif-finding software, and using these discovered RBP 

binding preferences to hypothesize RBP characteristics that may predispose binding preferences for 

or against specific RNA structures. 

 

The software for nearBynding is developed in an R/Bioconductor package by the same name 

to enable broad usage. In its simplest form, the nearBynding software estimates RNA binding 

preference from a BAM file of aligned CLIP-seq reads and a list of transcripts that correspond to an 

annotated genome in GTF format. The software also allows extensions for additional inputs, such as 

experimental RNA annotations including nucleotide modification data to complement RBP binding. 

This additional integrative analysis leverages both data sources to offer insights into RNA structure 

that nucleotide sequence alone cannot provide and makes this pipeline a diverse, flexible tool to 

study the context of RBP binding. 

 

Results 

Overview of the nearBynding pipeline for transcriptome-wide RBP binding prediction 

We present nearBynding—a pipeline that incorporates RBP binding sites and RNA structure 

information to discern local RNA structure for regions bound by an RBP (Fig. 1A). To visualize the 
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local binding context of an RBP, nearBynding uses a list of transcripts, an annotated genome, and 

aligned CLIP-seq data as inputs. RNA structure and RBP binding data is mapped to a concatenated 

transcriptome produced from only the transcript intervals of interest, and StereoGene [26] is called to 

calculate the cross-correlation of RBP binding from CLIP-seq data and RNA structure. 

 

RNA structure contexts can be categorized into one double-stranded context (stem) and five 

single-stranded contexts: hairpin, multibranch, internal, exterior, and bulge (Fig. 1B). By default, the 

nearBynding pipeline uses RNA structure probabilities predicted from sequence by CapR [6] for the 

selected transcriptomic intervals (see Methods). While CapR provides the default structural data 

input, the computational methods in the pipeline can be adapted for alternative inputs of custom RNA 

structure tracks or intervals, such as RNA modifications that affect RNA structure (e.g. N6-

methyladenosine [m6A]). In all cases, StereoGene generates cross-correlation densities for all RNA 

folding contexts relative to RBP binding. Since cross-correlation shows the relative position of one 

track (e.g., RBP binding) to another track (e.g., RNA structure), we can use it as a tool to visually 

represent RNA structure context upstream, at, and downstream of RBP binding. 

 

Binding profiles illustrating RNA structures at and proximal to RBP binding can be visualized 

either as line plots with standard errors for cases with multiple replicates or as heatmaps (Fig. 1C). 

These simple visuals provide a holistic RBP binding profile that can be used to predict RBP binding 

transcriptome-wide, especially in cases where mutations may modify RNA structure. In addition to 

allowing visual assessment, the nearBynding pipeline includes functions to quantitatively compare 

RBP binding motif cross-correlation distributions between two different RBPs. Specifically, users are 

able to pairwise compare the Wasserstein, or earth-mover, distance [27] between RBP binding 

profiles. For example, a short Wasserstein distance suggests similarity between two RBP profiles, 

which may imply binding competition or cooperation between RBPs.  
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In the default analysis pipeline implemented in the nearBynding software, CLIP-seq samples 

can be input as a BAM file containing aligned reads or as a BED file containing peak intervals or 

protein-RNA cross-linked sites. Some input data, such as binding peaks or cross-linking sites 

identified by other programs, have already corrected the data for background signals. However, in 

cases where the input is raw aligned CLIP data, it is prudent to provide a background input to the 

nearBynding pipeline to ensure the observed signal is from the RBP of interest rather than from 

experimental artifacts such as cell-specific transcript levels or size-matched input noise. For example, 

the binding profiles for HNRNPK in HepG2 and K562 cells were much more similar after background 

signal was removed (Wasserstein distance of 1.80 between non-corrected profiles versus 0.23 for 

background-corrected profiles) (Fig. S1). 

 

Benchmarking on simulated data 

The nearBynding pipeline is unique because it can visualize RNA structure at and proximal to 

RBP binding, incorporate diverse RNA structure data types, and analyze minimally processed CLIP-

seq data. Because of the uniqueness of this pipeline, we were unable to directly compare it to other 

algorithms available, so we designed simulated data studies to benchmark a full range of biological 

variables that may impact performance (Fig. 2). Briefly, we tested three factors that may impact RBP 

binding context signal strength: peak concordance between tracks, foreground to background ratio of 

the RBP binding track, and peak width range of the RBP binding track. Each simulation contained a 

pairwise analysis of the cross-correlation between an RNA structure track [RNA] and a CLIP-seq 

track [CLIP], where a greater amplitude for cross-correlation density reflects better co-occurrence of 

the two tracks. The RNA structure track peak distances and heights were varied to simulate the range 

of predicted RNA structure probabilities and random distribution of these structures across the 

transcriptome. The RNA structure track consisted of 10,000 peaks 31 to 500 units apart (unless 
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otherwise stated), 5 units in width, and 0.02 to 1 units in height. The CLIP-seq track simulated signal 

from aligned CLIP-seq data and contained a mixture of both background and foreground signal. Since 

the width of RBP binding peaks cannot be narrower than the length of CLIP-seq sequencing reads, 

the CLIP-seq track contained 30-unit-wide peaks (unless otherwise stated) to simulate the 30-nt 

reads of CLIP-seq data deposited in the ENCODE portal [28]. The CLIP-seq track was also shifted 12 

units to the left of and equal in height to the RNA structure track peaks. 

 

First, we tested the impact of the frequency of an RBP binding to its target RNA structure 

across the transcriptome, which may be affected by the accessibility of the RNA structure and the 

binding strength of the protein. To simulate this effect, we varied the frequency of the foreground 

signal peak concordance of the simulated CLIP-seq track relative to the simulated RNA structure 

track (Fig. 2A). We hypothesized that tracks with a higher frequency of RBP binding to target RNA 

structure would provide stronger binding signals than RBPs with sparser target binding. Supporting 

this hypothesis, the result of the nearBynding pipeline for the simulated data showed that cross-

correlation signal strength correlates positively with peak concordance. 

 

Next, we simulated artifacts associated with collecting CLIP-seq reads, such as background 

signal from input by varying the height of the background signal of the simulated CLIP-seq track 

relative to the foreground signal (Fig. 2B). We hypothesized that simulations with a greater 

foreground (dark grey) to background signal (light grey) would have stronger RBP binding signals. As 

expected, cross-correlation signal strength correlated positively with the ratio of foreground to 

background. Both peak concordance and foreground to background ratio greatly affected signal 

strength, with the nearBynding pipeline requiring a foreground to background signal greater than 0.05 

to detect the binding signal (Fig. 2C). Therefore, our pipeline performance may be optimal when 
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applied to data collected by protocols that minimize noise (e.g., via additional washing steps) rather 

than protocols that document all binding events at the expense of greater noise. 

 

We further employed our simulated data to test the sensitivity of nearBynding to the uniformity 

of binding peak width. Specifically, we increased the range of the simulated CLIP-seq peak widths to 

accommodate the possibility that RBPs may have variable binding footprints (Fig. 2D). Though the 

shape of the cross-correlation density track changed to reflect greater variation in peak widths, the 

amplitude and position of the signal maximum did not. Therefore, we conclude that differences in 

peak width have no effect on signal amplitude. 

 

Our pipeline relies on a concatenated transcriptome as an input for StereoGene. However, 

RBP-bound transcripts may not be evenly distributed across the concatenated transcriptome. 

Therefore, we tested the dependence of nearBynding on the distribution of peaks along a 

concatenated transcriptome by shifting the locations of the simulated peaks such that they were all 

uniformly distributed or clustered near either end of the CLIP-seq track (Fig. S2). Compared to peak 

concordance and foreground to background ratio, only a negligible loss in signal amplitude was 

observed for the most extremely skewed data (Fig. S2). Overall, our results demonstrate that the 

order in which transcripts are concatenated, which could possibly affect the distribution of peaks, has 

negligible effect on binding signal relative to other variables tested. 

 

Cross-correlation tracks reproducibly cluster RBP data across biological replicates 

The context-dependence of RNA binding can be expected to lead to variable signal 

concordance in binding predictions from CLIP-seq data with the same RBP. Replicates from the 

same cell type would likely manifest technical differences whereas analyses of the same RBP across 

different cell types may depict biological differences in RBP binding. Analyses of the same RBP 
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between replicates within the same cell type can be expected to have greater concordance than 

analyses from different cell types. We sought to make qualitative assessments about the fidelity of the 

nearBynding pipeline’s ability to reproducibly identify such RBP binding context by clustering RBP 

binding profiles.  

 

The ENCODE portal [28] has enhanced CLIP (eCLIP) datasets for 103 RBPs in HepG2 and 

120 RBPs in K562, with each dataset containing two replicates and an input control. Of these, 73 

RBPs are common across both cell lines. Genome-wide RNA structure profiling showed that 3’ 

untranslated regions (UTR), which are targets for many RBPs, are generally highly structured in cells 

[29,30]. Therefore, in order to test our pipeline on a robust dataset, we restricted our analysis of RBP 

binding to 3’UTR regions. We collected isoform information of all 3’UTRs expressed in HepG2 and 

K562 using RNA-seq data from ENCODE [28]. We generated cell type-specific binding profiles by 

selecting eCLIP reads that aligned to isoforms expressed in the corresponding eCLIP cell type. The 

3’UTRs for the expressed transcripts were then submitted to the nearBynding pipeline to determine 

RBP binding preferences for these regions. 

 

First, we wanted to test how well biological replicates of the same RBP in the same cell type 

clustered. We used the Wasserstein distance [27] to determine the amplitude and distance required 

to transform one RBP binding profile into another. We calculated the sum of Wasserstein distances 

between the cross-correlation density tracks of all RNA structure contexts for every sample within 

each cell type. 71 of 206 replicates in HepG2 (34%) and 115 of 240 replicates in K562 (48%) most 

closely clustered in pairs with their corresponding biological replicate, and 50% of HepG2 and 58% of 

K562 replicates were within the top three closest distances of their corresponding biological replicate 

(Fig. 3A and S3A). 
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Next, we interrogated the reproducibility of RBP binding profiles across cell lines. The cross-

correlation densities of biological replicates for each RBP were averaged, and these averaged values 

were used to calculate the Wasserstein distances for all RNA structural contexts. For every RBP in 

K562 cells, we ranked how similar its binding profile was to RBPs in HepG2 cells. 15 of 73 RBPs 

(21%) clustered closest with their counterparts in the other cell line, and 21 of 73 RBP counterparts 

(29%) were within the top three closest distances in the other cell line (Fig. 3B). The inverse 

comparison—the distance of HepG2 RBPs against all K562 RBPs—also had 29% of RBPs cluster 

within the top three distances of their counterparts (Fig. S3B). The concordance of RBP binding 

profiles across cell lines were lower than biological replicates of the same cell lines. This difference 

may be either due to the distance algorithm disproportionately weighing noisy signals and placing 

dissimilar binding profiles close and similar profiles distant from one another or an RBP having 

dissimilar binding profiles between cell types. 

 

To distinguish between these possibilities for why not all RBPs cluster closely across cell lines, 

we visually inspected binding profiles to test whether qualitative assessments align with the 

Wasserstein distance algorithm. We randomly selected 25 binding profiles that clustering labelled as 

either similar (rank 3 or less; e.g., TIA1) or dissimilar (rank 30 or greater; e.g., LARP7) across cell 

types (Fig. 3C and Table S1). We then performed crowd-sourced validation, where ten individuals 

were asked to visually bin these same pairs as either similar or dissimilar based on a 200-nucleotide 

binding profile window. All 25 pairs tested were binned accurately by the majority of validations (Fig. 

S3C), demonstrating that Wasserstein distance is a reliable means of identifying similar samples. We 

concluded that RBPs with binding profiles across cell types that cluster tightly have similar binding 

profile shapes, whereas RBPs that do not cluster across cell types have dissimilar binding profile 

shapes. 
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RBP binding profiles recapitulate known structural preferences 

Next, we tested whether the binding profiles generated by nearBynding reflect known RBP 

structural binding preferences. Although PUM2 preferentially binds 3’UTRs in a sequence-specific 

manner, there is evidence that PUM2 also has a structural component to its binding preferences: in 

vitro analysis shows that PUM2 dissociates from double-stranded regions faster than single-stranded 

regions and that it stably binds regions flanked by stem structures [25]. The PUM2 binding profile 

(Fig. 1C) showed that PUM2 has minimal structure preference at the point of binding (distance = 0), 

but it does prefer stem context upstream and downstream of its point of contact. 

 

PUS1 has a weak trinucleotide binding sequence motif and modifies nucleotides at the 5’ end 

of stem loops flanked by single-stranded runs for the vast majority of its high-confidence targets [24]. 

Consistent with PUS1 binding and modifying the 5’ base of stems, its binding profile showed a 

preference for single-stranded regions at the end of the transcript (exterior context) upstream and 

double-stranded (stem) context downstream of PUS1 binding (Fig. 4A). 

 

LIN28B has two RNA-binding domains: a cold shock domain (CSD) and tandem zinc-binding 

motifs (ZFs). Although LIN28 has a preference for binding GGAGA motifs, target motifs are generally 

single-stranded [13]. NMR spectroscopy suggests that although LIN28 binds stem-rich regions, the 

CSD binds hairpins and the ZFs bind bulges containing the sequence motif associated with the stem 

[31]. These same results were apparent in the binding profile, which showed enrichment for stem, 

bulge, and hairpin contexts at or proximal to the LIN28 binding site (Fig. 4B). 

 

STAU2 contains three double-stranded RNA-binding domains (dsRBDs) and binds stretches of 

base-paired sequences of variable lengths [32]. Although the dsRBDs bind tightest to perfectly 

complementary stem structures, they are able to bind stems that contain bulges [32]. Consistent with 
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expectations, the binding profile of STAU2 was strongly enriched for stem context, had slight 

enrichment for bulge context, and was generally depleted for single-stranded contexts such as 

hairpin, multibranch, and exterior (Fig. 4C).  

 

There is a range of resolutions among CLIP techniques. For example, eCLIP provides 30-

nucleotide reads surrounding the protein–RNA cross-linking site, whereas better resolution can be 

achieved with techniques such as individual-nucleotide resolution CLIP (iCLIP) and RNA hybrid iCLIP 

(hiCLIP) that are able to identify the RNA–protein cross-link site with single-nucleotide resolution. The 

resolution of nearBynding’s profiles reflects the resolution of the input data. For example, by using 

hiCLIP cross-link sites of STAU1 [33], which binds dsRNA similar to STAU2, nearBynding was able to 

demonstrate that STAU1 contacts ssRNA—preferably hairpin context and possibly other ssRNA 

contexts at the binding point—but that this ssRNA was directly 3’ of the double-stranded stem context 

(Fig. 4D). The authors of the hiCLIP data hypothesized that cross-linking sites were enriched at 

ssRNA because bases within the duplexes are inaccessible for protein–RNA cross-linking [33]. 

Further, the cross-linking site was often 3’ of a stem–hairpin–stem structure. Although there are only 

a few experimentally-confirmed RNA structure binding preferences for us to use as true positives, our 

binding profiles effectively recapitulate documented RBP preferences. 

 

Besides investigating wild-type (WT) protein binding relative to background signal, 

nearBynding can be applied to researching mutant RBPs by comparing WT and mutant protein 

binding. Whereas a comparison of WT versus input control depicts the full complement of RBP 

binding across the transcriptome, a comparison of WT versus a mutant allows visualization of the 

function-dependent binding of an RBP. For example, binding data is available for WT UPF1 as well 

as two helicase-dead mutants, K498A and DEAA, which are deficient in ATP binding and hydrolysis, 

respectively [34]. Both helicase-dead UPF1 mutants retain the ability to bind RNA, but they exhibit a 
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complete loss in target discrimination [34]. The binding profiles of WT UPF1 minus helicase-dead 

signals suggested that UPF1 requires helicase activity to occupy stem contexts and select against the 

unstructured multibranch and exterior contexts (Fig. 4E and S4). 

 

Called peaks or aligned tracks for RBP binding produce similar binding profiles 

Current practice for analyzing CLIP data is to call RBP-bound peaks using algorithms such as 

CLIPper [35] and Piranha [36]. We selected 29 different RBPs in HepG2 and K562 cells that 

demonstrate strong, reproducible binding signals at 3’UTRs based on analysis from ref. [30] (Fig. 

S5A), which came to 40 unique cell type–RBP combinations. We used these high-confidence 

datasets to test whether nearBynding can produce comparable peak binding profiles from peak-

callers and aligned reads. We collected eCLIP aligned reads for these RBPs from the ENCODE 

portal [28] and ran Piranha on all replicates with parameters as described in the original paper [36]. 

We also downloaded CLIPper-derived peaks of the eCLIP data from the ENCODE data portal [35]. 

These three different inputs—aligned eCLIP tracks, Piranha peaks, and CLIPper peaks—were run 

through the nearBynding pipeline, and binding was assessed for 3’UTR-annotated regions of the 

transcriptome. We calculated Wasserstein distances between all 40 unique cell type–RBP 

combinations with 3 different input types each. Visualizing their distances in 2D on a multidimensional 

scaling plot showed only minor differences in the binding profile for RBPs based on the input source 

(Fig. S5B). Bootstrap analysis further indicated that the binding profiles for the three input sources of 

the same protein are closely clustered compared to randomly chosen binding profiles from other 

proteins in the same cell line (Fig. S5C). Therefore, the difference between profiles for different RBPs 

is far greater than the difference within the same experiment queried via different inputs. 
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Inform RBP binding preferences using experimentally-derived RNA annotations  

nearBynding is not restricted to in silico RNA structure prediction input, so we next interrogated 

RBP binding profiles with experimentally-derived RNA structure data. Guanine-rich RNA sequences 

can interact via Hoogsteen base-pairing and fold into non-canonical structural motifs called G-

quadruplexes (G4s) [37]. Although many tools are available to predict putative G4s, they are prone to 

false-positives, since G4 folding is often dependent on the wider context of the RNA sequence and 

RBP regulation [29,38]. We therefore used rG4-seq data [39] to map G4s that form in cells. Although 

the rG4-seq data was collected from HEK293 cells and ENCODE provided RBP binding data from 

HepG2 and K562 cells, we reasoned that these cell lines would have enough G4s in common that we 

could observe general G4 binding trends. Indeed, we observed strong RBP binding at G4s for 

multiple published G4-binding proteins such as NONO, FUS, GRSF1, DROSHA, and DDX42 (Fig. 5A 

and S6A) [40–44]. Additionally, many of the RBPs that exhibited the strongest G4-binding signal—

PRPF4, GTF2F1, FAM120A, CSTF2T, and DDX6—have recently been shown to bind at putative G4 

sites in mRNA UTRs [45]. However, some published G4-binding proteins such as FMR1 did not 

exhibit a robust signal, perhaps due to cell-type-specific variations in binding (Fig. 5A and Table S2). 

Our analysis also identified RBPs such as YBX3, PRPF8, ZNF800, PPIG, and NOLC1 that are 

depleted for G4s at their binding sites in HepG2 and K562. However, these proteins have not 

previously been documented for their preference against G4 binding, which warrants future 

investigation. 

 

We wondered whether our protein-level data can help identify domains that play a role in G4 

binding preference. To increase the amount of data available, we pooled HepG2 and K562 data and 

took the maximum G4 density signal—positive or negative—from every RBP’s binding profile as a 

metric for G4 binding preference. We used the Pfam database [46] and protein sequence information 

to identify protein domains present within the RBPs. Across 13 common protein domains identified, 
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most did not affect G4 binding (Table 1, Fig. S6B). RGG repeats are the most common motif in G4-

binding RBPs (e.g., FUS) [47] and, based on our analysis, RBPs with RG-rich domains did 

demonstrate increased G4 binding. Proteins that contain SAP, dsRBD, and G-patch domains also 

had increased G4 binding, though there is no literature evidence of this preference. In contrast, RBPs 

that contain an armadillo domain had significantly decreased G4 binding, with 6 out of 8 armadillo-

containing proteins demonstrating G4 depletion in their binding preference. 

 

Lastly, m6A modification is an abundant RNA modification that affects RNA structure [48]. 

Since m6A modifications affect RNA folding but are not considered in currently-available in silico 

folding algorithms, we tested whether m6A-iCLIP (miCLIP-seq) data could be used as an input for 

nearBynding to observe protein binding contexts relative to m6A modification. Multiple RBPs are 

involved in the writing, reading, and erasing of m6A, such as RBM15, IGF2BP1/3, and FTO, 

respectively [49–51]. We used miCLIP-seq data [52] and eCLIP data [28] from HepG2 to determine 

whether these m6A-interacting RBPs show binding preferences relative to m6A modification. As 

expected, RBM15, IGF2BP1, and IGF2BP3 all demonstrated a preference for binding m6A-modified 

RNA (Fig. 5B). In contrast, FTO did not seem to occupy m6A-modified regions of the transcriptome, 

perhaps reflecting its role as an m6A eraser. Though the density amplitude for these analyses were 

modest, likely due to a small signal to noise ratio in the miCLIP-seq data, they demonstrate the 

diversity of data types that can inform RBP binding contexts using nearBynding. 

 

Table 1 | Influence of RBP domains on G4 binding signal. Statistics from pooled HepG2 and K562 

binding profiles. G4 signal difference is the difference in mean G4 binding signal between proteins 

with and without the indicated domain. Effect size is Cohen’s d and the p-value is of a Welch’s t-test 

comparing G4 signal of proteins with and without the indicated domain. 
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Domain G4 Signal 
Difference 

Effect 
Size p-value 

armadillo -2.41 0.913 0.00147 
RGG-repeat 1.57 0.592 0.00612 
SAP 0.836 0.312 0.0123 
dsRBD 1.57 0.589 0.0219 
G-patch 1.77 0.662 0.0385 
alpha-beta 0.476 0.178 0.198 
winged-helix 1.88 0.707 0.238 
RRM 0.385 0.144 0.301 
K-homology -0.384 0.143 0.402 
helicase 0.428 0.16 0.436 
WD40 -0.479 0.179 0.66 
P-loop 0.0385 0.0143 0.935 
zinc finger 0.000907 0.000338 0.999 

 

Discussion 

nearBynding provides a pipeline to discern RNA structure at and proximal to the site of protein 

binding within regions of the transcriptome defined by the user. Protein-binding data can be input as 

either aligned CLIP reads or peak-called files. RNA structure can be input based on in silico 

sequence-based prediction or derived from experiments. RNA structure binding profiles can be 

visually and quantitatively compared across multiple formats. Using simulation datasets, we verified 

that nearBynding is capable of discerning signal even with a foreground to background ratio of 0.05 

and peak concordance less than 40%. Using extensive ENCODE eCLIP datasets, we established 

that nearBynding reproduces binding profiles between biological replicates and across cell lines. In 

addition, these binding profiles recapitulated known RBP binding preferences and identified protein 

domains that may bind G4.  

 

Our analyses further revealed that some RBPs demonstrate cell-type-specific binding profiles. 

The same RBP may have dissimilar binding profiles between cell types due to different target 

transcripts being expressed, other RBPs affecting RBP targets, or different co-binders affecting the 

binding of the interrogated RBP between cell types. Therefore, RBP binding profiles should not be 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.24.352591doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.24.352591
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 18 

assumed based on existing data; instead, RBP binding data for the interrogated cell type ought to be 

used if available. Future comprehensive analyses using multiple cell lines may reveal consensus 

binding profiles for a subset of RBPs or among groups of cell types.  

  

Of note, a strong cross-correlation signal between RBP binding and RNA structures does not 

necessarily imply that an RBP binds that specific structure. It is possible that the RNA is prone to 

adopting a structure when it is not bound by the RBP. DROSHA, for example, binds G4-forming 

regions only when these regions are unfolded [43]. Because many G4-forming sequences are 

actively unfolded in vivo, we cannot know without further molecular experimentation whether an RBP 

binds to G4s or RBP-associated sequences are prone to forming G4s. We speculate that a 

phenomenon similar to DROSHA’s binding drove the enrichment of dsRBD-containing RBPs among 

the higher G4 signals (Table 1), since G4-forming sequences are necessarily GC-rich and likely form 

stable regions of dsRNA. Biochemical experimentation such as kinetics assays or crystal structures 

are necessary to definitively ascertain RBP binding. 

 

One limitation of nearBynding is that it does not easily accommodate in vitro RBP binding data 

such as those derived from SELEX or RNA Bind-N-Seq. To incorporate these in vitro data, the user 

would need to create an annotated genome containing sequences for every oligonucleotide probe in 

the queried experiment. Currently, the nearBynding pipeline uses aligned CLIP-seq data to evaluate 

RBP binding preferences, but it does not require peak-calling. It has been previously observed that 

modeling RBP binding as a list of bound regions across the transcriptome provides only a coarse 

approximation of RBP binding motifs [19]. Quantitative RBP affinities for different segments of the 

transcriptome, such as is provided by the amplitudes of aligned CLIP-seq reads, may be better used 

to distinguish RBP target motifs according to their binding frequency. Some differences may exist in 

RBP binding profiles when CLIPper-called peaks, Piranha-called peaks, or aligned eCLIP reads were 
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served as the input for the same experiment. However, the differences between binding profiles for 

different RBPs is far greater than the differences for the same RBP interrogated using different inputs, 

demonstrating the possibility of omitting the step of peak calling for RBP binding analysis. 

Additionally, nearBynding currently only supports the consideration of background signal for RBP 

binding, such as for an input control in a CLIP experiment. Future work will support the possibility of 

removing background RNA structure signal, such as for an input control in RNA immunoprecipitation 

(RIP) experiments that use antibodies targeting RNA structures or modifications [51,53]. 

 

Notably, nearBynding does not incorporate RNA sequence into the RBP binding profiles as a 

default. While sequence is inarguably an important component of RBP binding, our primary aim is to 

elaborate on how structure-based folding predictions are addressed. However, in cases of single-

nucleotide RBP binding information such as iCLIP or hiCLIP [33,54] (see Fig. 4D), it would likely be 

possible to assess RNA sequence preferences relative to RBP binding by separating each of the four 

nucleotides into individual RNA tracks, similar to how CapR separates six RNA structures into 

different tracks.  

 

To our knowledge, every state-of-the-art algorithm that incorporates RNA structure into 

predictions of RBP binding motifs relies on RNA sequence alone to predict RNA secondary structure 

[55]. Similarly, all nearBynding analyses that use CapR-predicted RNA structures assume that the 

mRNA being folded is naked and unmodified, with only the queried RBP binding it. To address these 

limitations, we encoded the option for users to input experimentally-derived RNA structure 

information. This flexibility could be used to study the binding of non-canonical RNA structures (e.g., 

G4s, triple helices) and RNA modifications, such as m6A or N4-acetylcytidine. In addition, users can 

improve the study of canonical RNA structure binding by incorporating structural information collected 

via chemical probing (e.g., selective 2′-hydroxyl acylation analyzed by primer extension [SHAPE] or 
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dimethyl sulfate [DMS]). Future work will characterize the impact of chemical probing-informed RNA 

structure data on RBP profiles relative to in silico-derived RNA structure.  

 

Our long-term goal in developing nearBynding is to interrogate RBP binding relative to RNA 

structure, but users could alternatively study the binding of one RBP relative to another instead. In 

this case, we will input both RBPs’ binding data as individual tracks for analyses. Future work will 

build on this idea to characterize RBP complexes relative to RNA structure.  

 

Availability of data and materials: 

The nearBynding pipeline is available at Bioconductor 

(https://bioconductor.org/packages/nearBynding/, BioC 3.12). nearBynding v99.12 was used for all 

data analysis and the latest updates are at https://github.com/vbusa1/nearBynding. nearBynding is 

entirely coded in R (v4.0) and its license is Artistic-2.0. nearBynding was run on macOS Catalina 

(10.15.4) but has been effectively run on Windows and Linux OS as well. Some processed data and 

the code necessary to generate the simulated data and figures presented in this paper are available 

at https://github.com/vbusa1/nearBynding_manuscript. CapR [6] (v1.1.1) is available 

at https://github.com/fukunagatsu/CapR and StereoGene [26] (v2.20) is available 

at http://stereogene.bioinf.fbb.msu.ru/ . 

 

Methods 

nearBynding inputs 

In order to provide predicted RNA structure context for RBP binding, the nearBynding pipeline 

requires the following pieces of input data: (1) CLIP-seq alignment tracks for the RBP of interest, (2) 

an annotated genome and associated FASTA sequence, and (3) a list of transcripts of interest. It is 

recommended that all transcripts selected are expressed in the cell type used for the CLIP-seq 
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experiment. Alternative RNA structure information can optionally be included, and it is recommended 

that the data is derived from the same cell type. 

RBP binding data | All eCLIP BAM files and CLIPper peak files are available in the ENCODE 

repository (v102 https://www.encodeproject.org/) [28]. STAU1 hiCLIP data is available in the iMaps 

repository (https://imaps.genialis.com/iclip/search/collection/hi-clip-reveals-m-rna-secondary-

structures) [33]. UPF1 WT, K498A, and DEAA CLIP-seq data is from [34] (GEO: GSE69586). Peak 

calling was conducted using Piranha [36] v1.2.1 (http://smithlabresearch.org/software/piranha/) as 

described in the original paper: bin size of 36 nucleotides and the single covariate being the log of the 

read counts from the control input. 

Genome | We used FASTA and GTF files from the Ensembl release 100 Homo sapiens GRCh38 

genome (ftp://ftp.ensembl.org/pub/release-100/) [56]. 

List of transcripts | HepG2 and K562 isoform information was derived from RNA-seq data 

available in the ENCODE repository (identifiers ENCSR181ZGR and ENCSR885DVH, respectively); 

HEK293 isoform information was derived from WT RNA-seq data [57] (accessible through the Gene 

Expression Omnibus (GEO) accession number GSE122425). 

Experimental RNA structure data | Single-nucleotide resolution profiling of m6A (miCLIP-seq) in 

HepG2 cells is from [52] (GEO: GSE121942). rG4-seq data in HEK293 cells is from [39] (GEO: 

GSE77282). Both of these datasets were aligned to hg19 and so were lifted over to hg38 using a 

UCSC chain file before input into nearBynding 

(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/liftOver/hg19ToHg38.over.chain.gz) [58]. 

 

Map data to pseudochromosomes 

Users must first choose which regions of the transcripts of interest to interrogate (e.g. UTRs, 

exons, whole transcript), based on annotations available in the genome GTF file. nearBynding 

creates (1) a chain file that will be used to map the selected regions of transcripts end-to-end, 
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excluding the intergenic regions and undesired transcripts that comprise the majority of the genome, 

and (2) a file detailing the names and sizes of all the chain file’s pseudochromosomes. The chain file 

can then be used to transfer genome references of the CLIP-seq data from the whole-genome 

alignment to the transcriptome alignment of interest. If external RNA structure data is being studied, 

its genome references would need to be transferred to the transcriptome alignment as well using the 

same chain file. Chain files cannot accommodate overlapping intervals since they cause ambiguous 

regions in the transfer process, so it is recommended that users supply the highest-expressed 

isoform of every gene expressed in the cell type of the CLIP-seq data to create the concatenated 

pseudochromosomes. 

 

CapR RNA structure prediction 

nearBynding pulls the sequences of selected regions of transcripts of interest from the genome 

FASTA file based on genome annotations using bedtools [59] 

(https://bedtools.readthedocs.io/en/latest/). Probabilistic RNA structure for the selected regions are 

derived from in silico folding predictions by CapR, which includes RNAfold software in its structure 

predictions [6]. Each nucleotide is scored as having a 0 to 1 probability of adopting one of six different 

contexts by CapR. The data for the six different folding conformations are then separated and the 

transcript fragments are concatenated into pseudo-chromosomes. In secondary structure 

representation, RNA bases are depicted as vertices of polygons with edges of RNA backbone or 

hydrogen bonds (Fig. 1B). The six different RNA structure contexts are defined thus: stem context is if 

a base participates in hydrogen-bonding with another base; exterior context is if a base does not form 

a polygon such as that the end of a transcript; hairpin context is if a single-stranded base is involved 

in a polygon with only one hydrogen-bonding edge; bulge context is if a single-stranded base is 

involved in a polygon with two hydrogen-bonding edges and where all stem context vertices are 

contiguous in the polygon; internal context is if a single-stranded base is involved in a polygon with 
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two hydrogen-bonding edges and where stem context vertices are not contiguous in the polygon; 

multibranch context is if a single-stranded base is involved in a polygon with at least three hydrogen-

bonding edges [6]. 

 

Relative binding position calculation 

To visualize the RNA structure landscape surrounding protein binding, StereoGene [26] is 

used to calculate the cross-correlation between RNA structure and protein binding. nearBynding 

analyzes local structure in single-nucleotide frames, which sacrifices some of the computational 

efficiency of StereoGene but maximizes RBP binding resolution. Cross-correlation densities are 

within the range -1 to +1, where -1 suggests perfect depletion of an RBP for a tested RNA structure 

context, 0 represents no binding preference, and +1 suggests perfect RBP binding for a tested RNA 

structure context. Since actual correlation densities are far more modest, they are reported as density 

x 100 for visualization. 

 

nearBynding output analyses 

nearBynding allows users to calculate the similarity between output binding profiles via 

Wasserstein distance, where small values indicate greater similarity. Users can also assess the 

grouping of different categories of points via bootstrapping and the Kolmogorov–Smirnov test (Fig. 

S5C). 

The protein domain data used to compare G4 binding preferences is available in the Pfam 

repository [46] (v33.1 http://pfam.xfam.org/). RGG-repeat-containing proteins are listed in the 

supplementary data of ref. [60]. 
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Figure 1 | Overview of the pipeline. A. The user inputs CLIP-seq data (aligned reads or called 
peaks), a list of transcripts, and an annotated genome. Optionally, in silico folding of RNA intervals 
can be replaced by an experimentally-derived RNA structure track. RBP binding and RNA structure 
data are mapped to the concatenated transcriptome and cross-correlated. The nearBynding pipeline 
outputs cross-correlation densities and their distributions to estimate RNA binding. B. Examples of six 
RNA structure contexts predicted by CapR [6] for which the nearBynding pipeline can be applied. C. 
Example heatmap and line plot visualizations of PUM2 binding from eCLIP data in two replicates of 
K562 cells estimated from the cross-correlation densities and visualized as part of the nearBynding 
software. The line plot shows the average signal as a dark line and error bars as a lighter-colored 
shading. The heat map only shows the average value at every position if multiple samples are used 
to calculate density values to model binding. 
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Figure 2 | Cross-correlation distribution tracks of simulated RNA binding data to benchmark the 
performance of the nearBynding pipeline. In the simulations, the RNA structure track [RNA] is shifted 
twelve units to the right relative to the CLIP track [CLIP] to model proximal RNA structure, as reflected 
by the maximum cross-correlation density at distance=12. For A, B, and D, the middle grey peaks 
represent RNA structure data and the dark grey peaks represent CLIP simulation data. A. Cross-
correlation distribution tracks with differing peak concordance. B. Cross-correlation distribution tracks 
with differing foreground to background signal ratios. The lightest grey regions of peaks represent 
background. C. Maximum cross-correlation density values for pairs of tracks with varying peak 
concordance and foreground to background signal ratios. D. Cross-correlation distribution tracks with 
differing peak width range. 
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Figure 3 | Binding profiles of all RBPs with eCLIP data in ENCODE clustered using Wasserstein 
distance. A. Histogram of ranks for Wasserstein distances of paired biological replicates in K562 
cells. B. Histogram of Wasserstein distance ranks for the same RBP across HepG2 and K562 cell 
lines. The ranks of TIA1 and LARP7 across cell lines are indicated. C. Example binding profiles for 
TIA1 (top), an RBP that is similar across cell types, and LARP7 (bottom), an RBP that is dissimilar 
across cell types, in HepG2 (left) and K562 (right) cells. 
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Figure 4 | Application of the nearBynding pipeline to analyze RBP binding profiles for proteins with 
known structure preference. Binding profiles for (A) PUS1, (B) LIN28B, and (C) STAU2 from eCLIP 
data. D. Binding profile for STAU1 from hiCLIP cross-link site data. E. Binding profile of helicase-
dependent UPF1 binding based on subtraction of DEAA UPF1 signal from WT. 
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Figure 5 | A. G4 binding profiles for all 120 proteins with eCLIP data in K562 cells. RBPs with 
molecular evidence of G4 binding in the literature are indicated in red on the left. RBPs with the most 
positive and most negative correlation signals are highlighted by the grey blocks and listed on the 
right. B. m6A binding profiles for RBM15, IGF2BP1, IGF2BP3, and FTO based on miCLIP-seq data. 
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Figure S1 | Binding profiles of HNRNPK immunoprecipitation alone (top), size-matched input alone 
(middle), or HNRNPK IP minus size-matched input signal (bottom) for HepG2 (left) and K562 (right) 
cell lines. 
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Figure S2 | Graphical depiction of simulated skewing and cross-correlation distribution tracks of 
simulated data with differing peak skews. 
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Figure S3 | A. Histogram of Wasserstein distance ranks of paired biological replicates in HepG2 
cells. B. Histogram of Wasserstein distance ranks for the same RBP in HepG2 versus K562 cell lines. 
C. Proportion of each pairwise comparison binned either similar (blue) or dissimilar (red) by crowd-
sourced validation and organized by Wasserstein distance-determined similarity. 
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Figure S4 | Binding profile of helicase-dependent UPF1 binding based on subtraction of K498A UPF1 
signal from WT. 
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Figure S5 | A. Heat map of high-signal eCLIP samples across mRNAs, generated as in ref. [30].RBP 
and cell type are listed for RBPs that primarily bind 3’UTRs. B. Distances between binding profiles 
with RBP binding defined by peak-callers or aligned reads mapped into Cartesian space via 
multidimensional scaling. Signal was tested across all six predicted RNA structure contexts in HepG2 
(top) and K562 (bottom) cell lines. C. Kolmogorov-Smirnov test comparing the mean distance 
between binding profiles for Piranha, CLIPper, and aligned-read inputs of the same protein versus 
bootstrapping for three random binding profiles in K562 (left) and HepG2 (right) cell lines. 
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Figure S6 | A. G4 binding profiles for all 103 proteins with eCLIP data in HepG2 cells. RBPs with 
molecular evidence of G4 binding in the literature are indicated in red along the left. RBPs with the 
most positive and most negative correlation signals are highlighted by grey blocks and listed on the 
right. B. Sina plots comparing maximal G4 binding signals that contain or do not contain the protein 
domains indicated for K562 and HepG2 proteins. Protein domains tested are alpha-beta (AB), 
armadillo, double-stranded RNA-binding (dsRBD), G-patch, helicase, K homology (KH), phosphate-
binding loop (P-loop), RGG-repeats (RG), RNA-recognition motif (RRM), SAP, WD40, winged helix, 
and zinc finger. 
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