1	Running head: Evaluation of GeneMax Advantage
2	
3	Evaluation of Zoetis GeneMax Advantage genomic predictions in commercial Bos taurus
4	Angus cattle ¹
5	
6	Brian. C. Arisman* †, Troy N. Rowan † ‡, Jordan M. Thomas†, Harly J. Durbin† ‡, David J.
7	Patterson †, Jared E. Decker † $\ddagger \2
8	
9	* Agricultural and Medical Biotechnology, University of Kentucky, Lexington, Kentucky, 40506
10	†Division of Animal Sciences, University of Missouri, Columbia, Missouri, 65211
11	‡Genetics Area Program, University of Missouri, Columbia, Missouri, 65211
12	§Informatics Institute, University of Missouri, Columbia, Missouri, 65211
13	
14	¹ JED was supported by USDA-NIFA Hatch MO-HAAS0027, USDA-NIFA MO-MSAS0014
15	(National Animal Genome Research Program), USDA-NIFA 2016-68004-24827, and USDA-
16	NIFA 2018-68008-27891. DJP was supported by USDA-NRI 2000-35203-9175, USDA-NRI
17	2005-55203-15750, USDA-NIFA 2007-55618-18238, USDA-NIFA 2013-68004-20364, and
18	USDA-NIFA 2018-68008-27891. We acknowledge the support of the University of Missouri
19	College of Agriculture, Food, and Natural Resources Thompson Research Center for providing
20	labor, funds, and time for the collection of samples and data.
21	² Corresponding author: DeckerJE@missouri.edu
22	

24 **ABSTRACT:** The GeneMax (GMX) Advantage test, developed by Zoetis, uses approximately 25 50,000 single nucleotide polymorphisms (SNP) to predict the genomic potential of a commercial 26 Angus heifer. Genetic predictions are provided for Calving Ease Maternal, Weaning Weight, 27 Heifer Pregnancy, Milk, Mature Weight, Dry Matter Intake, Carcass Weight, Marbling, and 28 Yield. Indices of economically important traits are estimated on an index score (1-100 scale) and 29 are divided into three indices; Cow Advantage index, Feeder Advantage index, and Total 30 Advantage index. The indices provide a genomic prediction of the profitability of the cow's 31 calves. Therefore, test results can inform selection and culling decisions made by commercial 32 beef cattle producers. To measure the accuracy of the trait predictions, data from commercial 33 Angus females and their progeny at the University of Missouri Thompson Research Center was 34 utilized to analyze weaning weight, milk, marbling, fat, ribeye area, and carcass weight. Progeny 35 phenotypic data was matched to the respective dam, then the cow's genomic predictions were 36 compared to the calf's age-adjusted phenotypes using correlation and linear models. All tested 37 GeneMax scores of the dam were significantly correlated with and predicted calf performance. 38 Our predicted effect sizes, except for fat thickness, were similar to those reported by Zoetis. In 39 conclusion, the GeneMax Advantage test accurately ranks animals based on their genetic merit 40 and is an effective selection tool in commercial cowherds.

41

42 Key words: genomic prediction, validation, *Bos taurus*, growth, carcass

44	
----	--

INTRODUCTION

|--|

46	Prediction of quantitative traits using DNA markers in beef cattle was first commercialized in the
47	1990s. However, many of these tests relied on a small number of markers and failed validation
48	trials (Van Eenennaam et al., 2007). Genomic prediction, the use of thousands of genome-wide
49	DNA markers (Nejati-Javaremi et al., 1997; Meuwissen et al., 2001), has proven to be a much
50	more efficacious strategy in driving genetic improvement (García-Ruiz et al., 2016; Taylor et al.,
51	2016). Still, many farmers, ranchers (Weaber et al., 2014), extension professionals, and even
52	academics question the effectiveness of genomic prediction in commercial beef cattle.
53	Demonstrations of the ability of genomic tests to accurately predict genetic merit may encourage
54	farmers and ranchers to adopt this technology and accelerate genetic progress in commercial
55	herds. Our objective is to evaluate the effectiveness of the Zoetis GeneMax Advantage (genomic
56	predictions designed for commercial heifers) in predicting the genetic merit of Angus cattle. We
57	hypothesize that, because this test was built using principles of genomic prediction, the dam's
58	GeneMax scores will significantly predict her calves' performance.
59	
60	MATERIALS AND METHODS
61	An Animal Care and Use Committee protocol is not necessary for this project as DNA samples
62	were collected as part of routine animal production practices. However, the University of
63	Missouri has a demonstration ACUC protocol, number 7491, which covers the procedures used
64	in this research.
65	Phenotypic and pedigree data were collected at the University of Missouri's Thompson Research

66 Center and entered into Angus Genetics Inc. Beef Improvement Records (BIR) program through

67	AngusOnline.org. Pedigree, phenotype, and GeneMax Advantage score information were
68	retrieved as Excel files from AngusOnline.org in June of 2018. Phenotypic records were
69	collected from 1995 to 2018, however only calves born from 2003 to 2011 and from 2014 to
70	2018 had data reported to BIR and genotyped dams (Figure 1). Summary statistics are presented
71	in Table 1. Excel files were read into R (Team, 2018) and similar files from different years were
72	combined. Packages utilized included readr (Wickham et al., 2018b), ggplot2 (Wickham, 2016),
73	tidyr (Wickham and Henry, 2018), dplyr (Wickham et al., 2018a), and stringr (Wickham, 2018).
74	
75	For statistical analyses, the calf phenotype was compared with the dam's GeneMax score. For
76	each of the traits, Pearson and Spearman correlations were calculated.

78 To control for potential confounding factors, mixed models were used to evaluate the

relationship between calf phenotype and dam's GeneMax Score. We used the model:

$$y = X\beta + Zu + e$$

80 where, y is the phenotype of the calf; β are fixed effects of year of birth, sex, and dam GMX 81 Score; u is the random effect of sire, and e is the residual. Both u and e are $\sim N(0, I)$. There were 82 47 bulls who sired calves with weaning weight records, 37 bulls who sired calves with hot carcass weight, marbling, and ribeye area records, and 23 bulls who sired calves with fat 83 thickness records. For each of the traits, three models were compared: a full model including 84 85 dam GMX Score and the random effect of sire, a reduced model that did not include the effect of sire, and a reduced model that did not include the effect of dam GMX Score. For growth traits, 86 87 the birth year of the calf was considered the contemporary group. For carcass traits, contemporary group was defined by the harvest date. For each trait, a χ^2 test was run between 88

89 the first and second models to determine if the inclusion of the random effect of sire was significant. A χ^2 test was also run between the first and third models to determine the 90 91 significance of the inclusion of the cow's GeneMax Advantage score. For weaning weight, we also fit models that included age-of-dam as a fixed effect factor and dam as a random effect. 92 Further, a model was also executed that included both Weaning Weight (WW) GMX Score and 93 94 Milk GMX Score. Models containing 1) WW GMX Score, 2) Milk GMX Score, and 3) WW and 95 Milk GMX Scores were compared to see which best fit the data. Because there is a trend over 96 time for weaning weight phenotypes and we do not have a random sample of DNA tested cows, 97 calves born in the early 2000s may have low weaning weights compared to calves born in later years (Figure 1d) but ranked high in their own contemporary group (weaning weight ratio, 98 Figure 1e). Thus, we also measured the association between the dam's GMX WW scores and 99 100 GMX Milk scores with the calf's weaning weight ratio (no contemporary group effect was 101 included in these models).

102

Estimates of GeneMax Advantage score effects were retrieved from Zoetis technical bulletin GMX-00116 (Zoetis Genetics and Angus Genetics Inc., 2018). Effects were converted from Imperial to scientific units, divided by 10 to represent a 1-point GeneMax score increase, and divided by 2 to change from molecular breeding values to expected progeny differences (transmitting abilities). Our GeneMax score effect estimates were compared to Zoetis' published estimates using a two-tailed Z-test.

109

110 **Results**

111 For each trait evaluated, the Pearson's correlation and Spearman's correlation between the calf's 112 phenotype and the dam's GMX Score were statistically different from zero (Table 2). Further, 113 from the six regression models, the dam's GMX Score had a significant effect on the calf's 114 phenotype (**Table 3**). Except for fat thickness, our estimated effect sizes were not statistically 115 different compared with those published by Zoetis (Table 3). When weaning weight was 116 adjusted for age-of-dam as a factor and a random effect of dam, the estimated effect of a 1-point 117 change in WW GMX Score increased to 0.29 ± 0.08 kg (p-value = 6.4e-4). Conversely, when 118 Milk GMX Score was evaluated in a model containing age-of-dam, random dam effect, or both, 119 the estimated effect of Milk GMX Score was not different from zero (p-value > 0.9). When 120 weaning weight ratio was the dependent variable to more accurately account for an animal's rank 121 in its contemporary group, WW GMX score was significantly predictive in the simple model 122 with sex and random size $(0.08944\pm0.02057, p-value = 1.8e-05)$ and in the more complicated 123 model with age-of-dam and random dam effect (0.1011 ± 0.0321 , p-value = 0.002). When Milk 124 GMX Score was compared to weaning weight ratio, the effect was not significant (p-value = 125 0.16). A model containing both GMX WW Score and GMX Milk Score provided a better fit to 126 the data and estimated larger effects for the GMX Scores compared with the models using one 127 GMX Score (Table 4). Calf phenotypes were plotted against dam's GMX Score in Figure 2.

128

129 Discussion

In the last ten years, the use of DNA information to produce genomic predictions has changed
substantially. For example, when first launched in 2010, the IGENITY MBVs (molecular
breeding values) were only based on 384 DNA markers (Weber et al., 2012). However, even the
initial genomic predictions (which were use as indicator traits in a multi-step genomic-enhanced

134	EPD analysis) trained with a couple thousand animals accurately predicted genetic merit (Weber
135	et al., 2012). In the last ten years, hundreds of thousands of beef cattle have been genotyped from
136	multiple breeds, increasing the power of these datasets not just for genetic prediction, but also for
137	basic research (Decker, 2015). Since 2015, breed associations have switched to single-step
138	methods, in which pedigree and genomic data are combined in a single analysis (Lourenco et al.,
139	2015). Pedigree information is not typically known for commercial cattle, so a DNA marker
140	effects model is typically used to predict genetic merit for commercial cattle. However, the
141	estimated breeding values produced by a genomic relationship model and a marker effects model
142	are equivalent (Hayes et al., 2009). The marker effects used to calculate GMX scores in the
143	Zoetis GeneMax Advantage test are based off of the American Angus Association single-step
144	BLUP analysis (Zoetis Genetics and Angus Genetics Inc., 2018).
145	
146	All traits had relatively weak correlations between the calf's phenotype and the dam's GMX
147	Score. However, this is to be expected as this analysis does not account for Mendelian sampling
148	(random shuffle of genes between generations), contemporary group effects (management and
149	environment effects), sire effects, or the heritability of the trait. Nevertheless, as all correlations
150	were significantly different from zero, it does demonstrate the predictive ability of the GeneMax
151	Advantage test.
152	

Regression analysis allowed a more sophisticated evaluation of the relationship between a dam's
GMX Score and her calf's phenotype. These models accounted for variation due to sex, year of
birth or slaughter date, and sire effects. However, this model still did not account for Mendelian
sampling or other non-additive genetic effects, including genotype-by-environment effects. The

157	amount of variation due to Mendelian sampling is large and theoretically equal to half of the
158	additive genetic variance. These sources of variation are likely why we still observe substantial
159	spread around the regression lines in Figure 2. Genetic predictions are not designed to predict
160	performance of individual animals, but rather the average performance of a large group of
161	progeny out of a parent compared to the progeny average of a different parent or population
162	average. Our results show that the GeneMax Advantage test accurately predicts the average
163	progeny performance for weaning weight, milk, marbling, carcass weight, ribeye area and fat
164	thickness. Our estimates of the effects of GeneMax scores, except for fat thickness, in a
165	validation population were not significantly different from those published by Zoetis.
166	
167	Regardless of whether we expressed weaning growth as a weight or as a ratio within
168	contemporary group, WW GMX Score accurately predicted variation in weaning growth.
169	Further, when we adjusted for age-of-dam and accounted for dependency between data with a
170	random dam effect, the magnitude the WW GMX effect increased from 0.18 to 0.29. This larger
171	estimate is closer to that published by Zoetis. However, Milk GMX scores were not predictive of
172	weaning weight ratio or when more complicated models were used. This likely reflects the well-
173	known difficulty of predicting maternal effects (Willham, 1980). For example, in the 2014
174	Angus genomic-enhanced EPD calibration based on 57,550 animals, the correlation between
175	weaning weight and Milk EPD was 0.36. The average of the other traits was 0.66 (range of 0.45
176	to 0.78). In 2016, when 108,211 animals were used to estimate molecular breeding values, the
177	correlation between weaning weight and Milk EPD was 0.37, range of 0.56 to 0.80 for other
178	traits (Albers, 2016). Further, only 491 observations were available when analyzing weaning
179	weight ratio or age-of-dam effects, compared to 781 observations for the models that only fit

180	contemporary group, sex, and sire. Thus, the difficulty of predicting maternal effects and the
181	smaller sample sizes affected the more complicated Milk GMX models.
182	
183	We note that the Zoetis GeneMax Advantage prediction is designed to work in high-percentage
184	Angus animals and is not designed for cattle with substantial ancestry from other breeds
185	(Kachman et al., 2013). However, other similar genomic predictions for crossbred cattle should
186	be equally accurate provided they contain the appropriate breeds in a large, multi-breed training
187	population.
188	
189	Genetic predictions, whether based on pedigree or genomic relationships, work when trained
190	using ample and appropriately structured data. Models using contemporary group effects and
191	random effects to account for covariance between relatives appropriately separate additive
192	genetic variation from other sources of variation, including management and environment. While
193	genetic predictions were never intended to predict the performance of a single individual, the
194	average progeny performance is accurately predicted by the additive genetic merit of the parent.
195	However, biological variation remains, including non-additive genetic effects and interactions
196	(Smith et al., 2019; Braz et al., 2020) and especially Mendelian sampling (Cole and VanRaden,

- 197 2011) between full- or half-siblings. The increased adoption of genomic technologies in
- 198 commercial cattle production has the opportunity to significantly increase long-term genetic gain
- 199 through more accurate replacement animal selection.

201 Conclusions

202	Genomic predictions, including the Zoetis GeneMax Advantage, accurately predict a
203	straightbred, commercial Angus animal's genetic merit and the average performance of their
204	offspring. Academics and extension professionals can confidently state to farmers and ranchers
205	that genomic predictions in commercial animals are accurate and effective.
206	
207	Disclosures
208	The authors declare no competing interests.
209	
210	Literature Cited
211	Albers, C. 2016. Angus Announces Routine Calibration of GE-EPDs. Angus Media. Available
212	from: http://www.angus.org/pub/newsroom/Releases/032116-recalibration.html
213	Braz, C. U., T. N. Rowan, R. D. Schnabel, and J. E. Decker. 2020. Extensive genome-wide
214	association analyses identify genotype-by-environment interactions of growth traits in
215	Simmental cattle. bioRxiv. doi:10.1101/2020.01.09.900902. Available from:
216	https://doi.org/10.1101/2020.01.09.900902
217	Cole, J. B., and P. M. VanRaden. 2011. Use of Haplotypes to Estimate Mendelian Sampling
218	Effects and Selection Limits. J. Anim. Breed. Genet. 128:1-4. doi:10.1111/j.1439-
219	0388.2011.00922.x. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22059578
220	Decker, J. E. 2015. Agricultural Genomics: Commercial Applications Bring Increased Basic
221	Research Power. G. Gibson, editor. PLoS Genet. 11:3. doi:10.1371/journal.pgen.1005621.
222	Available from: http://dx.plos.org/10.1371/journal.pgen.1005621
223	Van Eenennaam, a L., J. Li, R. M. Thallman, R. L. Quaas, M. E. Dikeman, C. a Gill, D. E.
224	Franke, and M. G. Thomas. 2007. Validation of commercial DNA tests for quantitative beef

- 225 quality traits. J. Anim. Sci. 85:891–900. doi:10.2527/jas.2006-512. Available from:
- 226 http://www.ncbi.nlm.nih.gov/pubmed/17178813
- 227 García-Ruiz, A., J. B. Cole, P. M. VanRaden, G. R. Wiggans, F. J. Ruiz-López, and C. P. Van
- 228 Tassell. 2016. Changes in genetic selection differentials and generation intervals in US Holstein
- 229 dairy cattle as a result of genomic selection. Proc. Natl. Acad. Sci.
- 230 doi:10.1073/PNAS.1519061113.
- 231 Genetics, Z., and A. G. Inc. 2018. More Informed Commercial Angus Replacement Heifer
- 232 Decisions with GeneMax® AdvantageTM. Available from: https://www.zoetisus.com/animal-
- 233 genetics/beef/pdf/zoetis-gmx-advantage-technical-bulletin-final.pdf
- Hayes, B. J., P. M. Visscher, and M. E. Goddard. 2009. Increased accuracy of artificial selection
- by using the realized relationship matrix. Genet. Res. (Camb). doi:10.1017/S0016672308009981.
- 236 Kachman, S. D., M. L. Spanger, G. L. Bennett, K. J. Hanford, L. A. Kuehn, W. M. Snelling, R.
- 237 M. Thallman, M. Saatchi, D. J. Garrick, R. D. Schnabel, J. F. Taylor, and E. J. Pollak. 2013.
- 238 Comparison of molecular breeding values based on within- and across-breed training in beef
- 239 cattle. Genet. Sel. Evol. 45:30. doi:10.1186/1297-9686-45-30. Available from:
- 240 http://www.gsejournal.org/content/45/1/30
- 241 Lourenco, D. A. L., S. Tsuruta, B. O. Fragomeni, Y. Masuda, I. Aguilar, A. Legarra, J. K.
- 242 Bertrand, T. S. Amen, L. Wang, D. W. Moser, and I. Misztal. 2015. Genetic evaluation using
- single-step genomic best linear unbiased predictor in American Angus. J. Anim. Sci.
- doi:10.2527/jas.2014-8836.
- 245 Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard. 2001. Prediction of total genetic value
- using genome-wide dense marker maps. Genetics. 157:1819–1829. Available from:
- 247 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1461589&tool=pmcentrez&renderty

- 248 pe=abstract
- 249 Nejati-Javaremi, A., C. Smith, and J. P. Gibson. 1997. Effect of Total Allelic Relationship on
- Accuracy of Evaluation and Response to Selection. J. Anim. Sci. 75:1738–1745.
- 251 Smith, J. L., M. L. Wilson, S. M. Nilson, T. N. Rowan, D. L. Oldeschulte, R. D. Schnabel, J. E.
- 252 Decker, and C. M. Seabury. 2019. Genome-wide association and genotype by environment
- interactions for growth traits in U.S. Gelbvieh cattle. BMC Genomics. 20:926.
- 254 doi:10.1186/s12864-019-6231-y. Available from:
- 255 https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6231-y
- 256 Taylor, J. F., K. H. Taylor, and J. E. Decker. 2016. Holsteins are the genomic selection poster
- 257 cows. Proc. Natl. Acad. Sci. U. S. A. 113. doi:10.1073/pnas.1608144113.
- 258 Team, R. D. C. 2018. R: A Language and Environment for Statistical Computing. R. D. C.
- 259 Team, editor. R Found. Stat. Comput. 1. Available from: http://www.r-project.org
- 260 Weaber, R. L., J. E. Beever, H. C. Freetly, D. J. Garrick, S. L. Hansen, K. A. Johnson, M. S.
- 261 Kerley, D. D. Loy, E. Marques, H. L. Neibergs, E. J. Pollak, R. D. Schnabel, C. M. Seabury, D.
- 262 W. Shike, M. L. Spangler, and J. F. Taylor. 2014. Analysis of US Cow-Calf Producer Survey
- 263 Data to Assess Knowledge, Awareness and Attitudes Related to Genetic Improvement of Feed
- 264 Efficiency. In: 10th World Congress on Genetics Applied to Livestock Production. Vancouver,
- 265 Canada.
- 266 Weber, K. L., D. J. Drake, J. F. Taylor, D. J. Garrick, L. A. Kuehn, R. M. Thallman, R. D.
- 267 Schnabel, W. M. Snelling, E. J. Pollak, and a. L. Van Eenennaam. 2012. The accuracies of
- 268 DNA-based estimates of genetic merit derived from Angus or multibreed beef cattle training
- 269 populations. J. Anim. Sci. 90:4191–4202. doi:10.2527/jas.2011-5020.
- 270 Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

- 271 Available from: http://ggplot2.org
- 272 Wickham, H. 2018. stringr: Simple, Consistent Wrappers for Common String Operations.
- 273 Available from: https://cran.r-project.org/package=stringr
- 274 Wickham, H., R. François, L. Henry, and K. Müller. 2018a. dplyr: A Grammar of Data
- 275 Manipulation. Available from: https://cran.r-project.org/package=dplyr
- 276 Wickham, H., and L. Henry. 2018. tidyr: Easily Tidy Data with "spread()" and "gather()"
- 277 Functions. Available from: https://cran.r-project.org/package=tidyr
- 278 Wickham, H., J. Hester, and R. Francois. 2018b. readr: Read Rectangular Text Data. Available
- 279 from: https://cran.r-project.org/package=readr
- 280 Willham, R. L. 1980. Problems in estimating maternal effects. Livest. Prod. Sci. 7:405–418.
- 281 doi:10.1016/0301-6226(80)90080-9. Available from:
- 282 https://linkinghub.elsevier.com/retrieve/pii/0301622680900809
- 283 Zoetis Genetics. (2016). Understanding and using GeneMax Advantage Results. Retrieved
- 284 September 4, 2018, from https://www.angus.org/AGI/UnderstandingGMXAdvantageResults-08-
- **285** 26-16.pdf

287 Tables and Figures

Table 1. Summary statistics of data used for GeneMax Advantage evaluation.

	Number (Number with matched calves)	Mean	Standard Deviation	Median	Minimum	Maximum	Range	Skew	Kurtosis
Weaning Weight, kg	781	263.01	26.3	264.44	178.26	347.45	169.19	-0.17	3.05
Weaning Weight Ratio	491	100.05	9.04	100	67	130	63	-0.08	3.53
Marbling Score	374	6.53	1.14	6.55	3.2	9.2	6	-0.22	3.1
Hot Carcass Weight, kg	376	398.65	40.31	401.88	249.48	504.85	255.37	-0.62	3.93
Fat Thickness, cm	290	1.77	0.48	1.7	0.53	4.14	3.61	1.1	6.33
Ribeye Area, cm²	374	84.79	9.31	84.52	57.42	112.9	55.48	0.12	2.87
WW GMX Score	554 (231)	45.59	20.39	45	3	97	94	0.19	2.27
Milk GMX Score	554 (231)	51.57	21.17	53	3	97	94	-0.14	2.18
CW GMX Score	554 (196)	49.18	19.41	48	7	95	88	0.11	2.27
Marb GMX Score	555 (196)	64.33	21.2	67	7	98	91	-0.44	2.25
RE GMX Score	556 (196)	50.54	20.07	49	7	97	90	0.19	2.06

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.23.353144; this version posted October 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Fat GMX Score	557 (188)	43.28	19.85	42	3	93	90	0.26	2.18
------------------	-----------	-------	-------	----	---	----	----	------	------

291 Table 2. Pearson and Spearman correlation tests between the dam's Zoetis GeneMax Advantage

292 Score (Kalamazoo, MI) and the calf's phenotype.

GeneMax Trait	Pearson Correlation (95% Confidence Interval)	Pearson Correlation P-value	Spearman Correlation	Spearman Correlation P-value
Weaning Weight	0.178 (0.109 to 0.245)	5.4e-07	0.182	3.0e-07
Maternal Milk	0.183 (0.114 to 0.250)	2.5e-07	0.162	5.3e-06
Marbling	0.273 (0.176 to 0.364)	8.4e-08	0.247	1.3e-06
Carcass Weight	0.125 (0.024 to 0.223)	1.5e-02	0.145	4.8e-03
Fat Thickness	-0.181 (-0.291 to -0.068)	1.9e-03	-0.191	1.1e-03
Ribeye Area	0.120 (0.019 to 0.219)	2.0e-02	0.112	3.0e-02

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.23.353144; this version posted October 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Table 3. Estimated effects of GMX Scores on production traits. Each row represents a different

linear mixed model. Models contained contemporary group and sex as fixed effects and sire as a

random effect. Difference from zero *P*-values from χ^2 test comparing full and reduced model.

297 Difference from Zoetis effects estimated from a Z-test.

GMX Score	Estimate	Std. Error	t-value	Difference from zero <i>P</i> -value	Zoetis effect	Difference from Zoetis <i>P</i> - value
WW	0.18 kg	0.04 kg	4.43	1.1e-05	0.25 kg	0.08
Milk	0.13 kg	0.04 kg	3.62	3.2e-04	0.14 kg	0.88
Marb	0.01	0.002	4.97	1.1e-06	0.01	0.21
CW	0.20 kg	0.09 kg	2.14	3.3e-02	0.32 kg	0.19
RE	0.06 cm^2	0.02 cm^2	3.10	2.2e-03	0.07 cm^2	0.58
Fat	-0.003 cm	0.001 cm	-2.34	2.0e-02	-0.03 cm	<1.0e-22

299 Table 4. Estimated effects of dam's WW and Milk GMX Scores on calf's weaning weight. P-

300 values from χ^2 test comparing full model with both traits versus reduced models with single trait.

GMX Score	Estimate	Std. Error	t-value	<i>P</i> -value
WW	0.20 kg	0.04 kg	4.92	1.0e-06
Milk	0.15 kg	0.04 kg	4.20	3.0e-05

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.23.353144; this version posted October 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

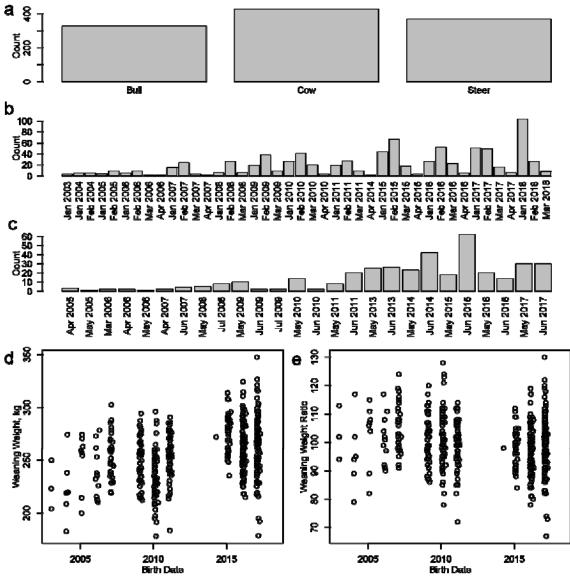


Figure 1. Graphical summary of data available for analysis. a) Counts of animals by sex. An
animal can be counted as both a bull and a steer, for example if it was a bull at weaning but
castrated prior to entering the feedlot. b) Counts of animals by birth month and year. c) Counts of
animals by slaughter month and year. d) Weaning weight plotted against birth date. e) Weaning
weight ratio plotted against birth date.

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.23.353144; this version posted October 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

307

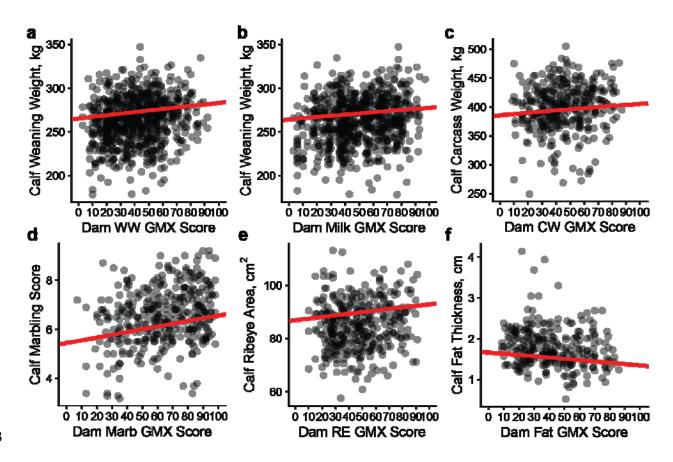


Figure 2. Calf's phenotype plotted against dam's GMX Score. a) Weaning weight versus WW
GMX Score, b) Weaning weight versus Milk GMX Score, c) Carcass weight versus CW GMX

311 Score, d) Marbling score versus Marb GMX Score, e) Ribeye area versus RE GMX Score, and f)

- 312 Fat Thickness versus Fat GMX Score. Red line represents the intercept and slope estimated from
- 313 the linear models reported in Table 3.
- 314