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ABSTRACT: The GeneMax (GMX) Advantage test, developed by Zoetis, uses approximately 24 

50,000 single nucleotide polymorphisms (SNP) to predict the genomic potential of a commercial 25 

Angus heifer. Genetic predictions are provided for Calving Ease Maternal, Weaning Weight, 26 

Heifer Pregnancy, Milk, Mature Weight, Dry Matter Intake, Carcass Weight, Marbling, and 27 

Yield. Indices of economically important traits are estimated on an index score (1-100 scale) and 28 

are divided into three indices; Cow Advantage index, Feeder Advantage index, and Total 29 

Advantage index. The indices provide a genomic prediction of the profitability of the cow’s 30 

calves. Therefore, test results can inform selection and culling decisions made by commercial 31 

beef cattle producers. To measure the accuracy of the trait predictions, data from commercial 32 

Angus females and their progeny at the University of Missouri Thompson Research Center was 33 

utilized to analyze weaning weight, milk, marbling, fat, ribeye area, and carcass weight. Progeny 34 

phenotypic data was matched to the respective dam, then the cow’s genomic predictions were 35 

compared to the calf’s age-adjusted phenotypes using correlation and linear models. All tested 36 

GeneMax scores of the dam were significantly correlated with and predicted calf performance.  37 

Our predicted effect sizes, except for fat thickness, were similar to those reported by Zoetis. In 38 

conclusion, the GeneMax Advantage test accurately ranks animals based on their genetic merit 39 

and is an effective selection tool in commercial cowherds.  40 

 41 

Key words: genomic prediction, validation, Bos taurus, growth, carcass 42 

  43 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.23.353144doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.353144


INTRODUCTION 44 

 45 

Prediction of quantitative traits using DNA markers in beef cattle was first commercialized in the 46 

1990s. However, many of these tests relied on a small number of markers and failed validation 47 

trials (Van Eenennaam et al., 2007). Genomic prediction, the use of thousands of genome-wide 48 

DNA markers (Nejati-Javaremi et al., 1997; Meuwissen et al., 2001), has proven to be a much 49 

more efficacious strategy in driving genetic improvement (García-Ruiz et al., 2016; Taylor et al., 50 

2016). Still, many farmers, ranchers (Weaber et al., 2014), extension professionals, and even 51 

academics question the effectiveness of genomic prediction in commercial beef cattle. 52 

Demonstrations of the ability of genomic tests to accurately predict genetic merit may encourage 53 

farmers and ranchers to adopt this technology and accelerate genetic progress in commercial 54 

herds. Our objective is to evaluate the effectiveness of the Zoetis GeneMax Advantage (genomic 55 

predictions designed for commercial heifers) in predicting the genetic merit of Angus cattle. We 56 

hypothesize that, because this test was built using principles of genomic prediction, the dam’s 57 

GeneMax scores will significantly predict her calves’ performance.  58 

 59 

MATERIALS AND METHODS 60 

An Animal Care and Use Committee protocol is not necessary for this project as DNA samples 61 

were collected as part of routine animal production practices. However, the University of 62 

Missouri has a demonstration ACUC protocol, number 7491, which covers the procedures used 63 

in this research. 64 

Phenotypic and pedigree data were collected at the University of Missouri’s Thompson Research 65 

Center and entered into Angus Genetics Inc. Beef Improvement Records (BIR) program through 66 
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AngusOnline.org. Pedigree, phenotype, and GeneMax Advantage score information were 67 

retrieved as Excel files from AngusOnline.org in June of 2018. Phenotypic records were 68 

collected from 1995 to 2018, however only calves born from 2003 to 2011 and from 2014 to 69 

2018 had data reported to BIR and genotyped dams (Figure 1). Summary statistics are presented 70 

in Table 1. Excel files were read into R (Team, 2018) and similar files from different years were 71 

combined. Packages utilized included readr (Wickham et al., 2018b), ggplot2 (Wickham, 2016), 72 

tidyr (Wickham and Henry, 2018), dplyr (Wickham et al., 2018a), and stringr (Wickham, 2018). 73 

 74 

For statistical analyses, the calf phenotype was compared with the dam’s GeneMax score. For 75 

each of the traits, Pearson and Spearman correlations were calculated.  76 

 77 

To control for potential confounding factors, mixed models were used to evaluate the 78 

relationship between calf phenotype and dam’s GeneMax Score. We used the model:  79 

� �  �� � �� � 	 

where, y is the phenotype of the calf; β are fixed effects of year of birth, sex, and dam GMX 80 

Score; u is the random effect of sire, and e is the residual. Both u and e are ~N(0, I). There were 81 

47 bulls who sired calves with weaning weight records, 37 bulls who sired calves with hot 82 

carcass weight, marbling, and ribeye area records, and 23 bulls who sired calves with fat 83 

thickness records. For each of the traits, three models were compared: a full model including 84 

dam GMX Score and the random effect of sire, a reduced model that did not include the effect of 85 

sire, and a reduced model that did not include the effect of dam GMX Score. For growth traits, 86 

the birth year of the calf was considered the contemporary group. For carcass traits, 87 

contemporary group was defined by the harvest date. For each trait, a 
� test was run between 88 
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the first and second models to determine if the inclusion of the random effect of sire was 89 

significant. A 
� test was also run between the first and third models to determine the 90 

significance of the inclusion of the cow’s GeneMax Advantage score. For weaning weight, we 91 

also fit models that included age-of-dam as a fixed effect factor and dam as a random effect. 92 

Further, a model was also executed that included both Weaning Weight (WW) GMX Score and 93 

Milk GMX Score. Models containing 1) WW GMX Score, 2) Milk GMX Score, and 3) WW and 94 

Milk GMX Scores were compared to see which best fit the data. Because there is a trend over 95 

time for weaning weight phenotypes and we do not have a random sample of DNA tested cows, 96 

calves born in the early 2000s may have low weaning weights compared to calves born in later 97 

years (Figure 1d) but ranked high in their own contemporary group (weaning weight ratio, 98 

Figure 1e). Thus, we also measured the association between the dam’s GMX WW scores and 99 

GMX Milk scores with the calf’s weaning weight ratio (no contemporary group effect was 100 

included in these models).  101 

 102 

Estimates of GeneMax Advantage score effects were retrieved from Zoetis technical bulletin 103 

GMX-00116 (Zoetis Genetics and Angus Genetics Inc., 2018). Effects were converted from 104 

Imperial to scientific units, divided by 10 to represent a 1-point GeneMax score increase, and 105 

divided by 2 to change from molecular breeding values to expected progeny differences 106 

(transmitting abilities). Our GeneMax score effect estimates were compared to Zoetis’ published 107 

estimates using a two-tailed Z-test. 108 

 109 

Results 110 
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For each trait evaluated, the Pearson’s correlation and Spearman’s correlation between the calf’s 111 

phenotype and the dam’s GMX Score were statistically different from zero (Table 2). Further, 112 

from the six regression models, the dam’s GMX Score had a significant effect on the calf’s 113 

phenotype (Table 3). Except for fat thickness, our estimated effect sizes were not statistically 114 

different compared with those published by Zoetis (Table 3). When weaning weight was 115 

adjusted for age-of-dam as a factor and a random effect of dam, the estimated effect of a 1-point 116 

change in WW GMX Score increased to 0.29 ± 0.08 kg (p-value = 6.4e-4). Conversely, when 117 

Milk GMX Score was evaluated in a model containing age-of-dam, random dam effect, or both, 118 

the estimated effect of Milk GMX Score was not different from zero (p-value > 0.9). When 119 

weaning weight ratio was the dependent variable to more accurately account for an animal’s rank 120 

in its contemporary group, WW GMX score was significantly predictive in the simple model 121 

with sex and random sire (0.08944±0.02057, p-value =  1.8e-05) and in the more complicated 122 

model with age-of-dam and random dam effect (0.1011±0.0321, p-value = 0.002). When Milk 123 

GMX Score was compared to weaning weight ratio, the effect was not significant (p-value = 124 

0.16). A model containing both GMX WW Score and GMX Milk Score provided a better fit to 125 

the data and estimated larger effects for the GMX Scores compared with the models using one 126 

GMX Score (Table 4).  Calf phenotypes were plotted against dam’s GMX Score in Figure 2. 127 

 128 

Discussion 129 

In the last ten years, the use of DNA information to produce genomic predictions has changed 130 

substantially. For example, when first launched in 2010, the IGENITY MBVs (molecular 131 

breeding values) were only based on 384 DNA markers (Weber et al., 2012). However, even the 132 

initial genomic predictions (which were use as indicator traits in a multi-step genomic-enhanced 133 
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EPD analysis) trained with a couple thousand animals accurately predicted genetic merit (Weber 134 

et al., 2012). In the last ten years, hundreds of thousands of beef cattle have been genotyped from 135 

multiple breeds, increasing the power of these datasets not just for genetic prediction, but also for 136 

basic research (Decker, 2015). Since 2015, breed associations have switched to single-step 137 

methods, in which pedigree and genomic data are combined in a single analysis (Lourenco et al., 138 

2015). Pedigree information is not typically known for commercial cattle, so a DNA marker 139 

effects model is typically used to predict genetic merit for commercial cattle. However, the 140 

estimated breeding values produced by a genomic relationship model and a marker effects model 141 

are equivalent (Hayes et al., 2009). The marker effects used to calculate GMX scores in the 142 

Zoetis GeneMax Advantage test are based off of the American Angus Association single-step 143 

BLUP analysis (Zoetis Genetics and Angus Genetics Inc., 2018). 144 

 145 

All traits had relatively weak correlations between the calf’s phenotype and the dam’s GMX 146 

Score. However, this is to be expected as this analysis does not account for Mendelian sampling 147 

(random shuffle of genes between generations), contemporary group effects (management and 148 

environment effects), sire effects, or the heritability of the trait. Nevertheless, as all correlations 149 

were significantly different from zero, it does demonstrate the predictive ability of the GeneMax 150 

Advantage test. 151 

 152 

Regression analysis allowed a more sophisticated evaluation of the relationship between a dam’s 153 

GMX Score and her calf’s phenotype. These models accounted for variation due to sex, year of 154 

birth or slaughter date, and sire effects. However, this model still did not account for Mendelian 155 

sampling or other non-additive genetic effects, including genotype-by-environment effects. The 156 
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amount of variation due to Mendelian sampling is large and theoretically equal to half of the 157 

additive genetic variance. These sources of variation are likely why we still observe substantial 158 

spread around the regression lines in Figure 2. Genetic predictions are not designed to predict 159 

performance of individual animals, but rather the average performance of a large group of 160 

progeny out of a parent compared to the progeny average of a different parent or population 161 

average. Our results show that the GeneMax Advantage test accurately predicts the average 162 

progeny performance for weaning weight, milk, marbling, carcass weight, ribeye area and fat 163 

thickness. Our estimates of the effects of GeneMax scores, except for fat thickness, in a 164 

validation population were not significantly different from those published by Zoetis. 165 

 166 

Regardless of whether we expressed weaning growth as a weight or as a ratio within 167 

contemporary group, WW GMX Score accurately predicted variation in weaning growth. 168 

Further, when we adjusted for age-of-dam and accounted for dependency between data with a 169 

random dam effect, the magnitude the WW GMX effect increased from 0.18 to 0.29. This larger 170 

estimate is closer to that published by Zoetis. However, Milk GMX scores were not predictive of 171 

weaning weight ratio or when more complicated models were used. This likely reflects the well-172 

known difficulty of predicting maternal effects (Willham, 1980). For example, in the 2014 173 

Angus genomic-enhanced EPD calibration based on 57,550 animals, the correlation between 174 

weaning weight and Milk EPD was 0.36. The average of the other traits was 0.66 (range of 0.45 175 

to 0.78). In 2016, when 108,211 animals were used to estimate molecular breeding values, the 176 

correlation between weaning weight and Milk EPD was 0.37, range of 0.56 to 0.80 for other 177 

traits (Albers, 2016). Further, only 491 observations were available when analyzing weaning 178 

weight ratio or age-of-dam effects, compared to 781 observations for the models that only fit 179 
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contemporary group, sex, and sire. Thus, the difficulty of predicting maternal effects and the 180 

smaller sample sizes affected the more complicated Milk GMX models. 181 

 182 

We note that the Zoetis GeneMax Advantage prediction is designed to work in high-percentage 183 

Angus animals and is not designed for cattle with substantial ancestry from other breeds 184 

(Kachman et al., 2013). However, other similar genomic predictions for crossbred cattle should 185 

be equally accurate provided they contain the appropriate breeds in a large, multi-breed training 186 

population.  187 

 188 

Genetic predictions, whether based on pedigree or genomic relationships, work when trained 189 

using ample and appropriately structured data. Models using contemporary group effects and 190 

random effects to account for covariance between relatives appropriately separate additive 191 

genetic variation from other sources of variation, including management and environment. While 192 

genetic predictions were never intended to predict the performance of a single individual, the 193 

average progeny performance is accurately predicted by the additive genetic merit of the parent. 194 

However, biological variation remains, including non-additive genetic effects and interactions 195 

(Smith et al., 2019; Braz et al., 2020) and especially Mendelian sampling (Cole and VanRaden, 196 

2011) between full- or half-siblings. The increased adoption of genomic technologies in 197 

commercial cattle production has the opportunity to significantly increase long-term genetic gain 198 

through more accurate replacement animal selection. 199 

 200 

Conclusions 201 
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Genomic predictions, including the Zoetis GeneMax Advantage, accurately predict a 202 

straightbred, commercial Angus animal’s genetic merit and the average performance of their 203 

offspring. Academics and extension professionals can confidently state to farmers and ranchers 204 

that genomic predictions in commercial animals are accurate and effective. 205 

 206 
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Tables and Figures 287 

Table 1. Summary statistics of data used for GeneMax Advantage evaluation. 288 

Number 
(Number 

with 
matched 
calves) Mean 

Standard 
Deviation Median Minimum Maximum Range Skew Kurtosis 

Weaning 
Weight, 
kg 

781 263.01 26.3 264.44 178.26 347.45 169.19 -0.17 3.05 

Weaning 
Weight 
Ratio 

491 100.05 9.04 100 67 130 63 -0.08 3.53 

Marbling 
Score 

374 6.53 1.14 6.55 3.2 9.2 6 -0.22 3.1 

Hot 
Carcass 
Weight, 
kg 

376 398.65 40.31 401.88 249.48 504.85 255.37 -0.62 3.93 

Fat 
Thickness, 
cm 

290 1.77 0.48 1.7 0.53 4.14 3.61 1.1 6.33 

Ribeye 
Area, cm2 

374 84.79 9.31 84.52 57.42 112.9 55.48 0.12 2.87 

WW 
GMX 
Score 

554 (231) 45.59 20.39 45 3 97 94 0.19 2.27 

Milk 
GMX 
Score 

554 (231) 51.57 21.17 53 3 97 94 -0.14 2.18 

CW GMX 
Score 

554 (196) 49.18 19.41 48 7 95 88 0.11 2.27 

Marb 
GMX 
Score 

555 (196) 64.33 21.2 67 7 98 91 -0.44 2.25 

RE GMX 
Score 

556 (196) 50.54 20.07 49 7 97 90 0.19 2.06 
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Fat GMX 
Score 

557 (188) 43.28 19.85 42 3 93 90 0.26 2.18 

 289 
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Table 2. Pearson and Spearman correlation tests between the dam’s Zoetis GeneMax Advantage 291 

Score (Kalamazoo, MI) and the calf’s phenotype. 292 

GeneMax Trait 

Pearson 
Correlation 

(95% Confidence 
Interval) 

Pearson 
Correlation 

P-value 
Spearman 

Correlation 

Spearman 
Correlation 

P-value 

Weaning Weight 
0.178 

(0.109 to 0.245) 
5.4e-07 0.182 3.0e-07 

Maternal Milk 
0.183 

(0.114 to 0.250) 
2.5e-07 0.162 5.3e-06 

Marbling 
0.273 

(0.176 to 0.364) 
8.4e-08 0.247 1.3e-06 

Carcass Weight 
0.125 

(0.024 to 0.223) 
1.5e-02 0.145 4.8e-03 

Fat Thickness 
-0.181 

(-0.291 to -0.068) 
1.9e-03 -0.191 1.1e-03 

Ribeye Area 
0.120 

(0.019 to 0.219) 
2.0e-02 0.112 3.0e-02 
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Table 3. Estimated effects of GMX Scores on production traits. Each row represents a different 294 

linear mixed model. Models contained contemporary group and sex as fixed effects and sire as a 295 

random effect. Difference from zero P-values from χ2 test comparing full and reduced model. 296 

Difference from Zoetis effects estimated from a Z-test. 297 

GMX 
Score Estimate Std. Error t-value 

Difference 
from zero 
P-value 

Zoetis 
effect 

Difference 
from 

Zoetis P-
value 

WW 0.18 kg 0.04 kg 4.43 1.1e-05 0.25 kg 0.08 
Milk 0.13 kg 0.04 kg 3.62 3.2e-04 0.14 kg 0.88 
Marb 0.01 0.002 4.97 1.1e-06 0.01 0.21 
CW 0.20 kg 0.09 kg 2.14 3.3e-02 0.32 kg 0.19 
RE 0.06 cm2 0.02 cm2 3.10 2.2e-03 0.07 cm2 0.58 
Fat -0.003 cm 0.001 cm -2.34 2.0e-02 -0.03 cm <1.0e-22 
 298 
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Table 4. Estimated effects of dam’s WW and Milk GMX Scores on calf’s weaning weight. P-299 

values from χ2 test comparing full model with both traits versus reduced models with single trait. 300 

GMX Score Estimate Std. Error t-value P-value 
WW 0.20 kg 0.04 kg 4.92 1.0e-06 
Milk 0.15 kg 0.04 kg 4.20 3.0e-05 
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 301 
Figure 1. Graphical summary of data available for analysis. a) Counts of animals by sex. An 302 
animal can be counted as both a bull and a steer, for example if it was a bull at weaning but 303 
castrated prior to entering the feedlot. b) Counts of animals by birth month and year. c) Counts of 304 
animals by slaughter month and year. d) Weaning weight plotted against birth date. e) Weaning 305 
weight ratio plotted against birth date.    306 
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 307 

308 

Figure 2. Calf’s phenotype plotted against dam’s  GMX Score. a) Weaning weight versus WW 309 

GMX Score, b) Weaning weight versus Milk GMX Score, c) Carcass weight versus CW GMX 310 

Score, d) Marbling score versus Marb GMX Score, e) Ribeye area versus RE GMX Score, and f) 311 

Fat Thickness versus Fat GMX Score. Red line represents the intercept and slope estimated from 312 

the linear models reported in Table 3. 313 
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