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Abstract 
Hippocampal ripples are transient neuronal features observed in high-frequency 
oscillatory bands of local field potentials, and they occur primarily during periods of 
behavioral immobility and slow-wave sleep. Ripples have been defined based on 
mathematically engineered features, such as magnitudes, durations, and cycles per event. 
However, the "ripples" could vary from laboratory to laboratory because their definition 
is subject to human bias, including the arbitrary choice of parameters and thresholds. In 
addition, local field potentials are often influenced by myoelectric noise arising from 
animal movement, making it difficult to distinguish ripples from high-frequency noises. 
To overcome these problems, we extracted ripple candidates under few constraints and 
labeled them as binary or stochastic "true" or "false" ripples using Gaussian mixed model 
clustering and a deep convolutional neural network in a weakly supervised fashion. Our 
automatic method separated ripples and myoelectric noise and was able to detect ripples 
even when the animals were moving. Moreover, we confirmed that a convolutional neural 
network was able to detect ripples defined by our method. Leave-one-animal-out cross-
validation estimated the area under the precision-recall curve for ripple detection to be 
0.72. Finally, our model establishes an appropriate threshold for the ripple magnitude in 
the case of the conventional detection of ripples. 
 
 

 
Introduction 
Ripples are one form of the local field potential (LFP) oscillations observed in the 
hippocampus. As the name “ripple” suggests, hippocampal ripples were first recognized 
based on their visually distinctive waveforms; they are characterized by 150–250 Hz 
components and durations of < 150 ms (O’Keefe, 1976). Ripples mainly occur during 
periods of awake immobility, consummatory behavior, and slow-wave sleep (Buzsáki et 
al., 1992), thereby contributing to memory consolidation (Girardeau et al., 2009; Ego-
Stengel and Wilson, 2010) and relating to memory retrieval (Wu et al., 2017; Norman et 
al., 2019). In conventional strategies for the detection of ripples in LFPs, ripples are 
determined based on criteria such as the ripple band root mean square (RMS) amplitude, 
duration, cycles per event, and animal head speed (Ramirez-Villegas et al., 2015; 
Karlsson and Frank, 2009; Kay et al., 2016; Fernández-Ruiz et al., 2019; Shin et al., 2019; 
Hannah et al., 2019). In this process, analysts need to define ripples by arbitrarily setting 
the thresholds of these parameters. Therefore, the thresholds often vary among 
researchers, and "ripples" are inconsistent among laboratories, potentially leading to 
different conclusions. 

Another problem is that the thresholds are usually predetermined and fixed in 
experiments, although the LFP waveforms may differ among animals, recording sites, 
and electrodes. Thus, in some laboratories, including those of our research group, when 
detected, ripples are manually screened by eye (Ramirez-Villegas et al., 2015; Norimoto 
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et al., 2018). Eye inspection requires a great deal of skill and is subject to human bias. 
This task is also laborious and hinders upscaling to large data sets. Thus, overall, the 
current method of detecting ripples has problems related to objectivity, consistency, and 
reproducibility. 

Deep convolutional neural networks (CNNs) are, in general, an appropriate tool for 
capturing the shapes or local features of objects. A CNN is a mathematical model inspired 
by the visual cortex system (Fukushima, 1980; Krizhevsky et al., 2012). CNNs have been 
studied since the ILSVRC2012 (ImageNet Large Scale Visual Recognition Challenge 
2012), and the ability of these models to classify images is beyond that of humans (He et 
al., 2016). In the present study, we used a one-dimensional CNN to define ripples with 
reduced human bias. The one-dimensional CNN extracts local features from LFP signals 
in the time domain and learns to discriminate true and false ripples at a stochastic scale. 
Additionally, based on the defined ripples, we evaluated the ability of the CNN to detect 
a ripple event from a series of 400-ms periods of raw LFPs. 
 
 
 
Materials and Methods 
Animal Ethics 

All animal experiments were performed following the University of Tokyo Animal 
Experiments Implementation Manual with the Animal Experiment Committee's approval 
to minimize pain for experimental animals (approval number: P29-14). All mice were 
housed based on a 12-h dark-light cycle (light from 07:00 to 19:00) at 22 ± 1°C with food 
and water provided ad libitum. Five postnatal 9- to 12-week-old male C57BL/6J mice 
(SLC, Shizuoka, Japan) were used. 
 
Preparation of Recording Electrodes 

Each recording electrode for hippocampal LFP consisted of four tetrodes (diameter 17 
µm, size 0007, and polyimide-coated platinum-iridium alloy (90/10%), California Fine 
Wire Company) with depths from the brain surface that were independently adjustable. 
The main body for fixing the substrate (EIB-36-PTB, Neuralynx) was three-
dimensionally designed with 3D CAD Fusion360 (AUTODESK) and was formed with a 
photocurable 3D printer (Form2, Formlabs). The platinum coating was applied at the tips 
of tetrodes so that the impedances ranged from 150–300 kΩ. 

 
Surgery 

Mice were anesthetized with 3% isoflurane inhalation. Under a concentration of 1.0–
1.5% isoflurane, electrode implantation was performed as follows. Anesthesia was 
confirmed by the lack of paw withdrawal, whisker movement, and eye-blink reflexes. 
The skin was subsequently removed from the head. A craniotomy (2.5 × 2.0 mm2) was 
performed, which was centered at 1.8 mm posterior to the bregma and 1.8 mm 
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ventrolateral to the sagittal suture. Two screws (0.8 × 3.0 mm2; Muromachi Kikai Co., 
Ltd.) were embedded in the skull at the bilateral cerebellum until they reached the brain 
surface. The tips of the tetrodes were placed on the brain surface. One of the four 
electrodes was used as a reference by placing it in a shallow layer in which cortical firings 
were not recorded. The surface of the brain and the areas around the tetrodes were covered 
with Kwik-Sil Silicone Elastomer (World Precision Instruments). The skull surface was 
thinly covered with an adhesive (Super Bond C&B, Sun Medical) and was fixed on the 
skull using dental cement (Refine Bright, Yamahachi Dental Mfg., Co.). The screw used 
in this process served as a ground, and this ground and the ground of the board (EIB36-
PTB, Neuralynx) were connected with a wire. A wire (A633, COONER WIRE) to record 
myoelectric potential was inserted into the trapezius muscles (muscles at the base of the 
head and neck). Finally, the ground wire and wire used to record the myoelectric potential 
were covered with dental cement. After the surgeries, electrodes were covered with a cap 
made with a hot-melt type 3D printer (UP Plus2, Sun Stella Co., Ltd.). Then, each mouse 
was returned to its cage. 
 
Adjusting the Recording Electrode Positions in the Hippocampus 

After the operation, the electrode positions in the hippocampus were adjusted while the 
mice were in their home cages. Every screw for adjustment was tightened one turn every 
few minutes, which deepened the screw by 250 µm, until 1,000 µm from the brain surface 
was reached. With the waveforms monitored, each screw was tightened from 1/8 to 1/4 
turn each time until the recording electrode reached a point just above the hippocampus. 
Then, each screw was loosened two turns and was left still for one day. Each screw was 
tightened by 1/4 turn each day until each electrode reached the target depth, and the 
maximum rotation angle of the screw was limited to 1/8 turn per day. The adjustment was 
stopped at the point at which large-amplitude ripples were observed. 
 
Electrophysiological Recording 

The hippocampal LFP and trapezius myoelectric potential (MEP) were simultaneously 
recorded for five mice. After the recording electrodes in the hippocampus reached the 
desired depths, which was more than 14 days after surgery, the recording was performed 
with a data acquisition system (CerePlex Direct, Blackrock) for up to five days in the 
home cages of mice or a novel environment depending on the trial day, as shown in Table 
1. 
 

Mouse # Day 1 Day 2 Day 3 Day 4 Day 5 

#1 Home - - - - 

#2 Home Novel Home Novel - 

#3 Home Novel Home Novel - 

#4 Home Novel Home Novel  
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#5 Home Novel Home Novel Novel 
 
Table 1. Recording Environments. Mice #1, #2–4, and #5 were recorded for one day, four consecutive days, and five straight 
days, respectively. On the first and third days, experiments were performed in the home cages of mice. On the second, fourth, and 
fifth days, experiments were performed in a novel environment. 

 
The sampling rate for recording the raw hippocampal LFP and trapezius MEP was 2 

kHz. The raw data were recorded after applying a 500-Hz low-pass filter. Data were 
recorded under free-moving conditions and with food and water provided ad libitum. The 
novel environment was more spacious than the home cages, and it included three different 
objects. All recordings were performed under a 12-hour light-dark cycle with the dark 
period beginning at 19:00. 

 
Histochemical Verification of Recording Sites 

After the recording experiments, the mice were anesthetized with urethane. Anesthesia 
was confirmed by the lack of paw withdrawal, whisker movement, and eye-blink reflexes. 
Overall, 25-µA currents were applied via electrodes in the hippocampus for 10 seconds 
to burn tissues at the recording sites. After the chest was dissected, ice-cooled phosphate- 
mM of KH2PO4) and 4% paraformaldehyde (PFA) phosphate buffer solution (4% PFA, 
in PBS) were perfused from the left ventricle. The head was cut and allowed to stand 
overnight. The brain was then removed and immersed in 4% PFA overnight and then 
immersed twice in a 30% sucrose/PBS solution overnight. The brain was snap-frozen on 
dry ice and stored at -80°C. Coronal sections with a thickness of 40 µm were prepared 
using a cryostat (CM3050 S, Leica). Each brain section was mounted on a microscope 
slide, stained with Cresyl Violet, and enclosed with a coverslip. Recording sites in the 
hippocampus were validated with records of the 3D coordinates of tetrodes, the number 
of electrodes, and the burn marks in coronal sections. 
 
Data Source 

The identifiers used for the data are shown in Table 2. 
 

 
Table 2. Data Source. The name of each data directory indicates the day of the surgery and the first day of the recording. To record 
hippocampal LFP, up to three tetrodes, or 12 electrodes, were inserted in the hippocampus. 

 
Tools for Data Analysis 

MATLAB 2017b (MathWorks, Natick, MA, USA; 
https://www.mathworks.com/products/matlab.html) was used to read the recorded data 

 Tetrodes 
Mouse # Data Directory Hippocampus Trapezius 

#1 180709_mouse4 (180530 ope) tt2, tt6 tt8 
#2 180909-12_mouse11 (180802 ope) tt2, tt6, tt7 tt3 
#3 181001-04_mouse15 (180907 ope) tt2, tt6, tt7 tt8 
#4 181007-12_mouse17 (180919 ope) tt2, tt6, tt7 tt8 
#5 181016-19_mouse18 (180928 ope) tt2, tt6, tt7 tt8 
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from disks. For other analyses, Python 3.6.8 (https://www.python.org/) was used. Table 
3 shows the explicitly imported Python packages. 
 

 
Table 3. Explicitly Imported Libraries. The table shows the explicitly imported Python libraries used in this research, although 
there were other implicitly working packages and dependent packages. 

 
Definition of Ripple Candidates 

The recorded hippocampal LFP amplitude vector was downsampled from 2 kHz to 1 
kHz using the imported function “scipy.signal.decimate,” in which an eighth-order 
Chebyshev type-one filter was used as an anti-aliasing filter. This process can be 
expressed by the pseudocode below. 
 

𝐚LFP_hipp_1kHz(𝒕) ← fdown_sample 𝐚LFP_hipp_2kHz(𝒕 )  (1) 

 
where 𝐚LFP_hipp_1kHz(𝒕) ∈ ℝ  is the downsampled hippocampal LFP amplitude vector 

with a virtual sampling rate of 1 kHz, fdown_sample(⋅) is the imported Python function 

“scipy.signal.decimate,” and 𝐚LFP_hipp_2kHz(𝒕 ) ∈ ℝ  is the hippocampal LFP amplitude 

vector recorded at a sampling rate of 2 kHz. Then, the ripple band LFP was extracted by 
filtering the downsampled LFP series 𝐚LFP_hipp_1kHz(𝒕) with a bandpass filter for the ripple 

band (150–250 Hz) based on the pseudocode below. 
 

𝐚ripple_band(𝒕) ← fripple_band_filter 𝐚LFP_hipp_1kHz(𝒕)  (2) 

 
where 𝐚ripple_band(𝒕) is the extracted ripple band LFP amplitude vector and fripple_band_filter 

is the imported Python function “ripple_detection.core.filter_ripple_band.” By taking the 
square of the ripple band LFP amplitude [mV] at each time point, the ripple band LFP 
power [mV2] was calculated. 
 

pripple_band(𝑡)  =  aripple_band(𝑡) (3) 
 

Library Version Project Page Note 
apex - https://github.com/NVIDIA/apex - 
cleanlab 0.1.0 https://github.com/cgnorthcutt/cleanlab Northcutt et al., 2019 
cliffsDelta - https://github.com/neilernst/cliffsDelta - 
numpy 1.17.0 https://numpy.org - 
torch 1.2.0 https://pytorch.org Also called as PyTorch 
ranger 9.3.19 https://github.com/lessw2020/Ranger-Deep-

Learning-Optimizer 
- 

ripple_detection 0.1.7.dev0 https://github.com/Eden-Kramer-
Lab/ripple_detection 

Kay et al., 2016 

statsmodels 0.11.0 https://github.com/statsmodels/statsmodels - 
scipy 1.2.0 https://www.scipy.org - 
scikit-learn 0.21.2 https://scikit-learn.org - 
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where pripple_band(𝑡) and a _ (𝑡) are the ripple band LFP power [mV2] and ripple 

band LFP amplitude [mV] at time 𝑡 , respectively. The ripple band LFP power was 
smoothed over time using a 32-ms Gaussian kernel with the parameter 𝜎 = 4 ms. This 
was conducted with the imported Python function 
“ripple_detection.core.gaussian_smooth” as expressed in the following pseudocode: 
 

𝐩smoothed_ripple_band(𝒕) ← fGaussian_smoother 𝐩ripple_band(𝒕)  (4) 

 
where 𝐩smoothed_ripple_band(𝒕) is a Gaussian-smoothed ripple band LFP power vector and 

fGaussian_smoother(⋅)  is the imported Python function 

“ripple_detection.core.gaussian_smooth” with the parameter 𝜎 = 4 ms. Then, the ripple 
band LFP magnitude [mV] at time 𝑡 was defined as the root of the smoothed ripple band 
LFP power [mV2] at the corresponding time as follows: 
 

mripple_band(𝑡) = psmoothed_ripple_band(𝑡) (5) 

 
where mripple_band(𝑡) is the ripple band LFP magnitude [mV] at time 𝑡. 

Ripple candidates were defined as LFP events with ripple band LFP magnitudes that 
continuously exceeded 1 SD for at least 15 ms. The defined onsets and offsets were 
redefined to the time points at which the ripple band LFP magnitude reached the mean 
value based on the imported Python function 
“ripple_detection.core.extend_threshold_to_mean,” as shown below. 
 

mripple_band =
∑ mripple_band(𝑡)

𝑇
 (6) 

 
where 𝑇 is the total sampling time for the electrode, which is calculated by multiplying 
the recording time [sec] by the virtual sampling rate of 1,000 [Hz]. Consequently, every 
ripple candidate was defined with a set of onset and offset times. As shown in Fig. 1, the 
normalized ripple band LFP magnitude at time 𝑡 was calculated as follows: 
 

mnormalized_ripple_band(𝑡) =
mripple_band(𝑡)

s
ripple_band

 (7) 

 
where mnormalized_ripple_band(𝑡) is the normalized ripple band LFP magnitude at time 𝑡 and 

s
_

 is the standard deviation of the ripple band LFP magnitude [mV] over time 

𝑡 as 
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s
ripple_band

=  
mripple_band(𝜏) − mripple_band

𝑇
 (8) 

 
Definition of the “Three Variables” of Ripple Candidates 

From every ripple candidate, the following “three variables” were calculated: the 
duration of each ripple candidate [ms], the normalized peak magnitude of each ripple 
candidate [a.u.], and the mean normalized magnitude of the MEP of the trapezius for each 
ripple candidate [a.u.] (Fig. 2, 4). 

The duration [ms] was defined as follows: 
 

d(i) = 𝑡 (i) − 𝑡 (i) (9) 
 
where d(i) is the duration [ms] of the i-th ripple candidate and 𝑡 (𝑖) and 𝑡 (𝑖) are 
the offset [ms] and onset [ms] of the i-th ripple candidate, respectively. Note that from 
the definition of ripple candidates (see the previous section), the ripple band LFP 
magnitude at both onsets and offsets was the mean of the ripple band LFP magnitude for 
each recording electrode. 
 

     mripple_band(𝑡 (i))

= mripple_band(𝑡 (i))

= mripple_band

 (10) 

 
where mripple_band(𝑡) is the ripple band LFP magnitude [mV] at time 𝑡, as defined in 
Equation (5), and mripple_band is the mean of the ripple band LFP magnitude for each 
recording electrode, as defined in Equation (6). 

The normalized ripple peak magnitude [a.u.] was defined as follows: 
 

mnormalized_ripple_peak(i) =
mripple_peak(i)

s
ripple_peak

 (11) 

 
mripple_peak(i)

← max {mripple_band(𝜏) 𝜏 =  𝑡 (i),  𝑡 (i) + 1,   … ,  𝑡 (i)}  
(12) 

 

mripple_peak =
∑ mripple_peak(i)_ .

N _ .
 (13) 

 

s
ripple_peak

=  
mripple_peak(i) − mripple_peak

N _ .

_ .

 (14) 

 
where mnormalized_ripple_peak(i) is the normalized ripple peak magnitude [a.u.] for the i-th 
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ripple candidate, mripple_band(𝜏) is the ripple band LFP magnitude [mV] at time 𝜏, as 
defined in Equation (5), and N _ . is the sample size of ripple candidates defined 
from the corresponding electrode. 

The mean normalized magnitude of the MEP of the trapezius for ripple candidates 
[a.u.] was defined as follows. First, the magnitude of the MEP was obtained as the same 
as the pseudocode and Equations (1) and (3)–(5). 
 

𝐚MEP_1kHz(𝒕) ← fdown_sample 𝐚MEP_2kHz(𝒕 )  (15) 

 

pMEP_1kHz(𝑡)  =  aMEP_1kHz(𝑡) (16) 
 

𝐩smoothed_MEP_1kHz(𝒕) ← fGaussian_smoother 𝐩MEP_1kHz(𝒕)  (17) 

 

mMEP_1kHz(𝑡) = psmoothed_MEP_1kHz(𝑡) (18) 

 
where 𝐚MEP_1kHz(𝒕)  ∈ ℝ  is the downsampled MEP amplitude vector with a virtual 

sampling rate of 1 kHz, fdown_sample(⋅)  is the imported Python function 

“scipy.signal.decimate,” 𝐚MEP_2kHz(𝒕 ) ∈ ℝ is the MEP amplitude vector recorded at 2 

kHz, fGaussian_smoother(⋅)  is the imported Python function 

“ripple_detection.core.gaussian_smooth” with the parameter 𝜎 = 4 ms, and mMEP_1kHz(𝑡) 

is the magnitude of the MEP at the time 𝑡. Finally, by averaging the magnitude of the 
MEP during a ripple and dividing the result by SD, we defined the normalized magnitude 
of the MEP for a ripple candidate [a.u.] as follows: 
 

mMEP(i) =
∑ mMEP_1kHz(𝜏)

  ( )
  ( )

d(i)
 (19) 

 

mnormalized_MEP(i) =
mMEP(i)

s
MEP

 (20) 

 

mMEP  =  
∑ mMEP(i)_ .

N _ .
 (21) 

 

s
MEP

=
∑ (mMEP(i) − mMEP)_ .

N _ .
 (22) 

 
where mMEP(i)  is the mean magnitude of the MEP of the i -th ripple candidate, 
mnormalized_MEP(i)  is the normalized mean magnitude of the MEP of the i -th ripple 
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candidate, and N _ . is the sample size of the ripple candidates defined from the 

corresponding electrode. 
 
Relationship Between the Hippocampal LFP and Myoelectricity of the Trapezius 

After being given a random initial sampling time ranging from 0–1,023 ms, 
hippocampal LFP data from each recording electrode were binned to consecutive 1,024-
ms samples without overlaps. Additionally, the MEP of the trapezius during the 
corresponding periods was sampled. 

In each 1,024-ms bin, the mean magnitude of the MEP was determined as shown below. 
 

mMEP_bin(j)  =  
∑ mMEP_1kHz(𝜏)  ( )  ,

  ( )

1,024
 (23) 

 
where mMEP_bin(j)  is the mean magnitude of the MEP [mV] of the j-th MEP sample, 

 𝑡 (j) is the onset [ms] of the j-th time bin, and mMEP_1kHz(𝜏) is the magnitude of the 

MEP [mV] at time 𝜏, as calculated from the pseudocode and Equations (15)–(18). Then,  
the mean magnitude of MEP was normalized as follows: 
 

mnormalized_MEP_bin(j) =
mMEP_bin(j)

s
MEP_bin

 (24) 

 

mMEP_bin  =  
∑ mMEP_bin(j)_ .

N _ .
 (25) 

 

s
MEP_bin

=
∑ mMEP_bin(j) − mMEP_bin

_ .

N _ .
 (26) 

 
From the hippocampal LFP in each time bin, the FFT power [mV2 Hz-1] of f Hz 

component ( f  = 0, 1, …, 499) was obtained using the imported Python function 
“scipy.fftpack.fft.” 

The Pearson correlation coefficients between the mean magnitude of the MEP [a.u.] 
and the FFT powers [mV2 Hz-1] of f Hz were calculated as follows: 
 

r
normalized_MEP_bin ,   ( )

=
∑ mnormalized_MEP_bin(j) − mnormalized_MEP_bin p(f, j) − p(f) /N

s
normalized_MEP_bin

· s ( )
 

(27) 

 

mMEP_bin  =  
∑ mnormalized_MEP_bin(j)

N
 (28) 
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s
normalized_MEP_bin

=
∑ mnormalized_MEP_bin(j) − mnormalized_MEP_bin

N
 (29) 

 

p(f)  =  
∑ p(f, j)

N
 (30) 

 

s ( )  =  
∑ p(f, j) − p(f)

N
 (31) 

 
where r

normalized_MEP_bin,   ( ) is the Pearson correlation coefficient [a.u.] between the 

normalized mean magnitude of the MEP [a.u.] and the FFT power [mV2] of the f Hz 
component (f = 0, 1, …, 499) of the hippocampal LFP for 1,024-ms bins, j is the index 
for time bins, N  is the total number of time bins, and p(f, j) is the FFT power [mV2 
Hz-1] of the f Hz component of the j-th 1,024-ms hippocampal LFP sample (Fig. 3). 
 

Partial Correlation 
The partial correlation between variables P and 𝑄, controlling for the influence of 

variable 𝑅, can be expressed as r _ , as shown as below. 

 

r _ =
r   − r ∙ r

1 − r   ∙ 1 − r
 (32) 

 
where r , r , and r  are the Pearson correlation coefficients between the index 

variables. 
 

Construction of a Deep Convolutional Neural Network (CNN) 
Based on Fawaz et al. (2019), as one of the best models for time series classification, 

we chose ResNet (He et al., 2015), a deep CNN. We implemented ResNet with six minor 
revisions using PyTorch 1.2.0 (https://pytorch.org/), a framework for machine learning. 
We call the modified model “our CNN” in this paper (Fig. 6). Specifically, the six 
modifications were as follows. (i) The first filter length in each “block” was shortened 
from 8 to 7. (ii) The activation function was changed from the ReLU function (Hahnloser 
et al., 2000) to the LeakyReLU function (Maas et al., 2013), and the differential 
coefficient in the negative region was 0.1. (iii) The number of filters in every 
convolutional layer was quadrupled (e.g., 64 to 256). (iv) Two fully connected layers and 
a softmax layer were added at the end in the same order as listed. These two layers 
functioned as a stochastic classifier for two-class classification tasks. Dropout (Srivastava 
et al., 2014) was applied in the first fully connected layer to prevent overfitting. Note that 
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in our model, dropout was only applied on the downstream side of the batch normalization 
(Ioffe and Szegedy, 2015) layers because it was reported that the coapplication of dropout 
and batch normalization functions might lead to incongruity in results (Li et al., 2019). 
(v) The model performed mixed-precision training based on the imported Python module 
“apex”; the model was able to process data not only in a 32-bit floating format but also 
in a 16-bit floating format. (vi) The model was replicated on four GPUs (ASUS GeForce 
GTX 1080 TI 11GB Turbo × 4) with the imported Python module “torch.nn.parallel,” 
and a multi-GPU parallel computing model was formed. 
 
Isolating and Trimming Each Ripple Candidate as the CNN Inputs 

Our CNN requires an input vector to be a fixed length. We fixed the input length at 
400 ms for a sampling rate of 1 kHz. Thus, the i-th input vector was expressed as 𝐱𝐢 ∈

ℝ . If an input vector 𝐱𝐢 ∈ ℝ  includes multiple ripple candidates, the output may be 
unclear. Therefore, the following two steps were performed for each ripple candidate: (i) 
isolating the candidate and (ii) setting the time length to 400 ms by either zero-padding 
or trimming. 

First, each ripple candidate 𝐜𝐢  ∈ ℝ ( )  was isolated from the onset to the offset as 
follows. 
 

𝐜   =   c _ ,  c _ ,   … ,  c _ ( ) ∈ ℝ ( ) (33) 

 
where d(i) is the duration [points] (or [ms]) of the i-th ripple candidate as defined in 
Equation (9). When the duration of a candidate was less than 400 ms, the candidate was 
padded with zeros to be extended symmetrically from the middle time (i.e., zero-padding). 
If the duration was 400 ms or longer, the LFP signal around the middle time was extracted 
(i.e., trimming). The zero-padding and trimming functions are as follows: 
 

𝐜𝟒𝟎𝟎_𝐢 =
𝟎𝐩𝐫𝐞(i) ,  𝐜𝐢 ,  𝟎𝐩𝐨𝐬𝐭(i)                           𝑤ℎ𝑒𝑛    d(i)  ≤ 400 [𝑚𝑠]

c _( ( )    ),  c _( ( )    ), … , c _( ( )    )     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (34) 

 

𝑡 (𝑖)  =  
𝑡 (i) +  𝑡 (i)

2
 (35) 

 
where  𝐜𝟒𝟎𝟎_𝐢 ∈ ℝ   is the 400-ms padded or trimmed data sequence derived from the 

i-th ripple candidate 𝐜   ∈ ℝ ( ); d(i) is the duration [ms] for the i-th ripple candidate; 

𝟎𝐩𝐫𝐞(i) ∈ ℝ ( ) and 𝟎𝐩𝐨𝐬𝐭(i) ∈ ℝ ( ) ( )  are zero vectors to pad; D (i) is 

defined as D (i) = ⌊
   ( )

⌋; 𝑡 (i) and 𝑡 (i) are the offset and onset [ms] of 

the i-th ripple candidate, respectively; and c _  is the hippocampal LFP amplitude [mV] 

at time 𝑡, which is also a component of the i-th ripple candidate 𝐜 . 
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Data Splitting 
Data splitting was performed according to the ID numbers allocated to mice to estimate 

matrices on unseen data. The following ten subdatasets were defined. Subdatasets SD1*, 
SD2*, SD3*, SD4*, and SD5* were defined as datasets that “only included” the data from 
mice #1, #2, #3, #4, and #5, respectively. Subdatasets SD1-, D2-, D3-, D4-, and D5- were 
defined as datasets that “excluded” the data from mice #1, #2, #3, #4, and #5, respectively. 
 
Confident Learning to Define Ripples 

To define ripples from ripple candidates, we conducted Confident Learning with the 
imported Python module “cleanlab” (Northcutt et al., 2019; 
https://github.com/cgnorthcutt/cleanlab).  Confident Learning was applied to process 
each dataset via a process similar to the 5-fold cross-validation method. First, in each 
dataset, ripple candidates were randomly divided into five folds (e.g., “fold A–E”) 
without overlaps. Then, the labels of one of the five folds (e.g., “fold A”) were estimated 
using the remaining folds (e.g., “folds B–E”) as training data. 

Thus, label estimation by Confident Learning was performed 50 times in total (ten 
datasets × five patterns according to the folds). Each ripple candidate was tagged with 
five estimated labels depending on the datasets considered to run Confident Learning. For 
example, the ripple candidate acquired from mouse #1 was included in the subdatasets 
SD1*, SD2-, SD3-, SD4-, and SD5-. Then, the candidate was independently assigned five 
labels for the five datasets. 
 
Optimization of our CNN to Define Ripples in Confident Learning 

Our CNN requires the input length to be fixed. We set the input length to 400 [points] 
(or [ms] in our case since the virtual sampling rate was 1 kHz). The mini-batch size was 
set to 6,000. The cross-entropy loss function was used. The learning rate was fixed to 
1.0 × 10 . Training was performed in a supervised manner for two epochs. At the 
beginning of each epoch, the order by which samples {𝐜𝟒𝟎𝟎_𝐢} (i = 1, 2, …) were fed into 

the CNN was shuffled. As the optimizer, the imported Python class “ranger. Ranger” was 
used based on combining two mechanisms: RAdam (Tong et al., 2019) and Lookahead 
(Zhang et al., 2019). The dropout rate of the first fully connected layer from the input side 
was set to 0.5 during the training stage. 

Additionally, during the inference stage, the dropout value was set to zero, and batch 
normalization was performed in inference mode. The forward path of our CNN used to 
define ripples can be expressed by the following pseudocode and equation set: 
 

𝐲𝐢 ← f _ 𝐜𝟒𝟎𝟎_𝐢  (36) 
 

𝐲𝐢 =
y _

y _
 =  

P 𝐜 ∈ F _

P 𝐜 ∈ T _

 ⇔  
1 − P 𝐜 ∈ T _

P 𝐜 ∈ T _

 (37) 

 
where 𝐜𝟒𝟎𝟎_𝐢 ∈ ℝ  is the 400-ms data sequence derived by padding or trimming the i-
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th ripple candidate 𝐜   ∈ ℝ ( ), as defined in Equation (31); f _ (⋅) is the forward 

path used by our CNN to define ripples; F _  and T _  are the labels 

indicating false and true ripples estimated by our CNN, respectively; and P 𝐜 ∈

T _  is the probability that candidate 𝐜  is defined as a true ripple by our CNN. 

Based on the output 𝐲𝐢, estimated labels (= T _  or F _ ) were allocated 

for each ripple candidate 𝐜  by setting a decision threshold (= d _ ) as follows: 

 

y _ = P 𝐜 ∈ T _  ≥  d _      ⇒     𝐜 ∈ T _

y _ = P 𝐜 ∈ T _  <  d _ ⇒     𝐜 ∈ F _

 (38) 

 
Optimization of our CNN for Ripple Detection 

Our CNN requires the input length to be fixed. We set the input length to 400 [points] 
(or [ms] in our case since the virtual sampling rate was 1 kHz). The mini-batch size was 
set to 1,792. The modified cross-entropy loss function was used, as expressed in the 
following section titled “Balancing the Loss Function for an Imbalanced Dataset.” The 
learning rate was exponentially reduced with the training iteration number from the initial 
value of 1.0 × 10  to the final value of 1.0 × 10  based on the imported Python class 
“torch.optim.lr_scheduler.StepLR” (the exponential learning decay). The training was 
performed for three epochs in a supervised manner on labels acquired by an unsupervised 
Gaussian mixed model. At the beginning of each epoch, input signals {𝐬𝐢} (i = 1, 2, …) 
were resampled by the random systematic sampling method over time, and the order of 
inputs for the CNN was shuffled. Note that for simplicity, 400-ms raw LFP signals that 
included more than any part of two ripples, tagged as T _ , were excluded from 
our analyses. As the optimizer, the imported Python class “ranger.Ranger” was used. The 
dropout rate of the first fully connected layer from the input side was set to 0.5 only during 
the training stage. During the inference stage, the dropout value was set to zero, and batch 
normalization was performed in inference mode. The forward path of our CNN used to 
detect ripples can be expressed by the following pseudocode and equation. 
 

𝐲 ← f _ (𝐬 ) (39) 

 

𝐲 =
y _

y _
 =  

P(𝐬 ∈ R )

P(𝐬 ∈ R )
⇔  

1 − P(𝐬 ∈ R )

P(𝐬 ∈ R )
 (40) 

 

where 𝐬 ∈ ℝ  is the i-th 400-ms raw LFP signal, f _ (⋅) is the forward path of 

our CNN used to detect ripples, 𝐲  is the i-th output vector, and R  and R  are the labels 
and indicate that 𝐬  includes zero ripples or just one ripple, respectively. 

Based on the output 𝐲 , predicted labels (= R  or R ) were allocated for each 400-ms 
raw LFP signal 𝐬𝐢 (i = 1, 2, …) by setting a decision threshold (= d _ ) as 

follows: 
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y _ = P(𝐬𝐢 ∈ R )  ≥  d _         ⇒     𝐬 ∈ R

y _ = P(𝐬𝐢 ∈ R )  <  d _ ⇒     𝐬 ∈ R
 (41) 

 
Balancing the Loss Function for an Imbalanced Dataset 

In the ripple detection task, the sample sizes of the “ripple-not-including” group 
(labeled R ) and “one-ripple-including group” (labeled R ) were imbalanced; the ripple-
not-including group (R ) was more than 100 times larger than the one-ripple-including 
group (R ). To reflect the loss from the minority group (R ) during training, we modified 
the cross-entropy loss function in a cost-sensitive learning framework (Kukar et al., 1998). 
The cost function for the k-th training loop using the original cross-entropy loss function, 
J(θ) , is written as follows: 
 

J(θ) =
1

M
f (y _ , y _ )

=
1

M
−y log y _ − 1 − y _ log 1 − y _

 (42) 

 
where M is the mini-batch size, m is the index of the samples in a mini-batch, y _  is the 

predicted probability for the m-th sample in the mini-batch to belong to the ripple-not-
including group (R ) based on Equation (38), and y _  is the ground truth label (0: ripple-

not-including group; 1: one-ripple-including group) for the m-th sample in the mini-batch. 
To address the sample size imbalance among classes, we modified the original cross-
entropy loss function J(θ)  in Equation (39) to J′(θ)  by weighting the losses from each 
class considering the encounter rate for our CNN as follows: 
 

J′(θ) =
1

M
f y _ , y _

=
1

M
−w( , )y _ log y _ − w( , ) 1 − y _ log 1 − y _

 (43) 

 

w( , ) =
r ( , )

r ( , ) + r ( , )

 (44) 

 

w( , ) =
r ( , )

r ( , ) + r ( , )

= 1 − w( , )

 (45) 
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r ( , ) =
N( , )

N( , ) + N( , )
 (46) 

 

r ( , ) =
N( , )

N( , ) + N( , )

= 1 − r ( , )

 (47) 

 
where J′(θ)  is the modified cost function of the k-th training loop using the weighted 
cross-entropy loss function; w( , ) and w( , ) are the weights multiplied by the losses 
from the ripple-not-including group and the one-ripple-including group during the k-th 
training loop, respectively; r ( , ) and r ( , ) are the encounter rates 

of the ripple-not-including group and the one-ripple-including group, respectively; and 
N( , ) and N( , ) are the cumulative sample sizes of the ripple-not-including group 
and the one-ripple-including group through the k-th training loop, respectively.  
 
 
 
Results 
Thresholds in Existing Ripple Detection Methods and the Defined “Ripples” 

Existing ripple detection methods first define ripples by selecting ripple candidates. 
Second, they sort the candidates by setting thresholds for features such as the ripple band 
RMS magnitude or power of each candidate, the duration of each candidate, and the 
animal head speed for each candidate. However, such thresholds can be arbitrarily set by 
analysts. There were no consistent values or acceptable ranges for the thresholds among 
the research groups. Here, we examined the effects of differences in the thresholds on 
defined “ripples.” Specifically, we used hippocampal LFP data and MEP data from the 
trapezius; these data were simultaneously recorded over up to five consecutive days from 
five mice. 

First, ripple candidates were defined based on the definition of Kay et al. (2016) (Fig. 
1; see Materials and Methods) with the following two modifications. First, the threshold 
of the peak magnitude of a ripple band was reduced from 2 SD to 1 SD, and second, the 
process of sorting ripple candidates using animal head speed was removed. These two 
modifications were implemented to include more true latent ripples in ripple candidate 
sets. 

To define ripples from the candidates, we used the MEP of the trapezius and not the 
animal head speed for the following reasons. Existing methods define ripples only when 
the animal head speed is less than a threshold (e.g., 4 cm/s). Generally, vibrations or 
impacts on recording electrodes generate noise in recorded signals. Thus, setting a 
threshold for animal head speed avoids noise at times when detecting ripples is difficult 
due to physical activities. However, the reliability of animal head speed as a variable is 
relatively low compared to that of the ripple duration (e.g., < 50 ms), mainly because of 
the video-capturing limitations in timely and the spatial resolution (e.g., ≤ 60 fps and ~50 
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MPs); additionally, the MEP has higher time and amplitude resolutions (e.g., at a 
sampling rate of 20 kHz and for 16-bit signed integer data). Thus, we chose not animal 
head speed but MEP as an indicator of the noisy LFP period associated with animal 
movements. 

First, from each ripple candidate, the following “three variables” were calculated: the 
duration [ms], normalized peak ripple magnitude [a.u.], and mean normalized magnitude 
of the MEP of the trapezius for a ripple candidate [a.u.] (see Materials and Methods). 
Additionally, “three ln-variables” were calculated by taking the natural logarithm of each 
of the “three variables.” Next, each ripple candidate was plotted in a 3D space with the 
“three ln-variables” as the axes (Fig. 2). In Fig. 2, detecting ripples with one of the 
existing methods (Ramirez-Villegas et al., 2015; Karlsson and Frank, 2009; Kay et al., 
2016; Fernández-Ruiz et al., 2019; Shin et al., 2019; Hannah et al., 2019) is equal to 
establishing a specific cube in the 3D space in parallel with the axes and selecting the 
ripple candidates in the cube as ripples. For example, the dark and light green cubes in 
Fig. 2 are constructed based on the thresholds used by Kay et al. (2016) and Fernández-
Ruiz et al. (2019), respectively. Here, we assumed that the mean normalized magnitude 
of the MEP of the trapezius for a ripple candidate [a.u.] is directly proportional to the 
animal head speed in the same time resolution with the corresponding research and the 
corresponding conversion equation is as follows. 
 

mnormalized_MEP(i)  =  
e

4
 |𝑣 (i)| (48) 

 
where m _ (i) is the normalized mean magnitude of the MEP [mV] of the i-

th ripple candidate, as defined in Equation (20), e is Napier's constant, and 𝑣  is the 
mean animal head speed [cm/s] during the i-th ripple candidate. As a result, the ripple 
candidates included in the cubes corresponding to the methods of Kay et al. (2016) and 
Fernández-Ruiz et al. (2019) were not consistent. As graphically shown in Fig. 2, it was 
revealed that “ripples” are sensitive to the thresholds that must be set in the existing 
detection methods. 
 
Relationship Between the Hippocampal LFP and Animal Movements 

As mentioned in the previous section, screening ripple candidates using the animal 
head speed in the existing ripple detection methods leads to poor ripple detection due to 
noise during animal movement. Thus, we use the mean normalized magnitude of the MEP 
for screening. If these two assumptions are valid, inversely, the larger the mean 
normalized magnitude of the MEP is, the larger the amplitude of the ripple band (150–
250 Hz) LFP should be. We checked this hypothesis with our data. 

The Pearson correlation coefficients between the mean magnitude of the MEP [a.u.] 
and the FFT power at f Hz [mV2 Hz-1] (f = 0, 1, …, 499) were calculated for 1,024-ms 
samples  (Fig. 3; see Materials and Methods, especially Equations (23)–(31)). In all five 
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mice, at 44–448 Hz [mV2 Hz-1], the correlations were statistically significant (ps < .05, 
the test for no correlation). This result can be interpreted as follows: while mice moved 
around, there were transient neuronal activities in the hippocampus. However, this result 
provided supporting evidence for the hypotheses discussed earlier: the recorded 
hippocampal LFPs are contaminated by noise caused by animal movements, and the mean 
normalized magnitude of the MEP [a.u.] is a useful barometer for noisy periods. 
 
Defining Ripples Based on Gaussian Mixed Clustering 

As considered in the previous section, the existing detection methods are designed to 
exclude false ripples from ripple candidate sets. The sorting process can be optimized. 
In existing methods, although each ripple candidate is associated with the “three 
variables” determined at the same time, the threshold of each variable is individually 
determined; that is, the multivariate nature of these variables is not considered. In 
general, when trying to separate multivariate samples into two classes, an appropriate 
multivariate model yields better outcomes than individually applying univariate models. 
Here, the higher the correlation among variables is, the more dominant the positive 
effect of a multivariate model (Ichihara, 1990). Therefore, we assumed that the 
multivariate nature of the “three ln-variables” should be considered in defining 
hippocampal ripples.  

Thus, we first determined the correlations among the “three ln-variables.” The partial 
correlation coefficients among these were calculated to exclude a possible spurious 
correlation (Table 4). For all three patterns, the partial correlations were statistically 
significant (ps < .05, multiple comparison using the test for no correlation with 
Bonferroni correction). These results suggest that the process used to distinguish false 
ripples from ripple candidates can be optimized using a multivariate approach. 
 

 
Table 4. Partial correlations among the “three ln-variables” of ripple candidates 
The partial correlation between variables P and Q, controlling for the influence of variable R, or r _ , is defined in Equation (32). 
The table shows the partial correlations among the “three ln-variables” of ripple candidates: ln(duration) [a.u.], ln(normalized ripple 
peak magnitude) [a.u.], and ln(mean normalized magnitude of MEP) [a.u.] for each ripple candidate. Each pair of the three “ln-
variables” was correlated (ps < .05, multiple comparison using the test for no correlation with Bonferroni correction).  

 
Next, we defined ripples by using the multivariate nature of the “three ln-variables.” 

First, the histograms of the ln-variables were plotted (Fig. 4). From the histograms, we 
hypothesized that each distribution of the variables could be approximated as the sum of 
two Gaussian functions. Thus, with the assumption that ripple candidates should be 
divided into two clusters in the 3D space with axes set based on the three ln-variables, we 
separated the ripple candidates into two clusters by using a Gaussian mixed model 
(GMM; Fig. 5). As mentioned earlier, true ripples are expected to be included in one 
cluster, the centroid of which is smaller in the dimension of the mean normalized 

ln(duration) X Z Y 
ln(normalized peak magnitude) Y X Z 
ln(mean normalized magnitude of MEP) Z Y X 

r _  0.46 ± 0.02 0.20 ± 0.03 −0.37 ± 0.14 
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magnitude of the MEP. We named this cluster “Cluster T.” The other cluster, “Cluster F,” 
is expected to include false ripples. We labeled the ripple candidates assigned to Cluster 
T and Cluster F as T _  and F _ , respectively. 

 
Defining Ripples by Using Our CNN in a Weakly Supervised Manner 

Each ripple candidate was labeled with T _  and F _ . However, the 
labels contained errors, or noise was present. In particular, GMM clustering uses only 
limited information from ripple candidates. The inputs for GMM clustering were the three 
ln-variables: ln(the duration of each ripple candidate) [a.u.], ln(the normalized peak 
magnitude of each ripple candidate) [a.u.], and ln(the mean normalized magnitude of the 
MEP of the trapezius for each ripple candidate) [a.u.]. The former two variables are 
predefined features extracted from each ripple candidate, and the final variable provides 
information about the noises associated with animal activities, as discussed earlier. The 
dimensionality reduction into the three ln-variables could not be appropriate. 

Moreover, label errors can be found and mitigated by Confident Learning. 
Specifically, the imported Python module “cleanlab” (Northcutt et al., 2019) acts as an 
arbitrary classifier to estimate the latent true labels without hyperparameters. We 
conjectured that “noisy” labels, T _  and F _ , could be “cleaned” by 

using the module with a CNN and a raw LFP input, because CNNs can search for better 
local features in original signals. The cleaned labels T _  and F _  are 

obtained from using optimal information about waveforms to distinguish true and false 
ripples, which is difficult for humans. Therefore, we calculated the cleaned labels 
T _  and F _  as follows. 

First, we constructed a deep CNN (Fig. 6; see Materials and Methods). We simply call 
this model “our CNN” in this paper. Because only a fixed-length input (e.g., 400 ms at a 
sampling rate of 1 kHz in our case) can be used with this CNN, we isolated each ripple 
candidate and converted it to a 400-ms data series (Fig. 7; see Materials and Methods).  

Next, data splitting was performed in Confident Learning (Fig. 8). The splitting aims 
to determine whether the different datasets influence label definition with Confident 
Learning and prevent “data leakage” in the subsequent ripple detection experiments. 

Consequently, each ripple candidate was tagged with five kinds of cleaned labels 
according to the five datasets, including the candidate. Between any pair of datasets, the 
cleaned labels' concordance rate was ≥ 0.93 (Fig. 9). This result suggested that the cleaned 
labels were robust for data analysis in Confident Learning, at least based on the applied 
settings. Additionally, the predicted probabilities for the T _  group for any pair of 

datasets were positively correlated (Fig. 10; ps < .05, multiple comparisons using the test 
for no correlation with Bonferroni correction), although there were some comparatively 
small correlation coefficients (e.g., 0.24).  

Next, we checked the properties of the ripple candidates subgrouped based on the labels 
T _ , F _ , T _  and F _ . From the following analyses, we 
considered cleaned labels from only one dataset. For the ripple candidates defined from 
the mouse #1, #2, #3, #4, and #5, the cleaned labels determined from using the subdataset 
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SD2-, SD1-, SD1-, SD1-, and SD1- was considered, respectively (Fig. 11). For the noisy 
and cleaned labels, all four label combinations (2 × 2) were assessed. We named these 
combinations T2T group ( T _  to T _ ), T2F group ( T _  to 
F _ ), F2T group (F _  to T _ ), and F2F group (F _  to 
F _ ) (Figs. 12 & 13). 

The medians of the “three variables” were different between any two groups for each 
mouse (Figs. 14A, 15A, and 16A; ps < .01; multiple comparisons using the Brunner-
Munzel test with the Benjamini-Hochberg correction after the Kruskal-Wallis test). We 
also calculated the above comparisons' effect sizes to quantify how substantial the 
supported differences were, independently of the sample size. Here, we adopted Cliff’s 
delta statistic (Cliff, 1996) as an index of the effect size because it does not require any 
assumption regarding the data distribution nor homoscedasticity between two compared 
groups. Cliff’s delta statistic can range from -1 to 1, and the absolute value indicates the 
difference; specifically, < 0.147 is negligible, < 0.330 is small, < 0.474 is medium, and ≥ 
0.474 is large (Romano, 2006). 

First, the Cliff’s delta statistic for the durations [ms] of F2T vs T2T, F2F, or T2F groups 
were 0.13 ± 0.04 (negligible), 0.61 ± 0.12 (large), and 0.47 ± 0.13 (large), respectively 
(Fig. 14B; n = 5 mice, mean ± std.). These results show that regarding the duration 
distribution, F2T group, or the ripples found by Confident Learning stage, was not close 
to F2F nor T2F group but to T2T group. Indeed, the median durations for T2T, F2T, F2F, 
and T2F group were 66 ± 2, 60 ± 3, 127 ± 31, and 95 ± 13 [ms], respectively (n = 5 mice, 
mean ± std.). Previous research that used multiple electrodes called silicon probes to 
detect ripples based on oscillation trends showed that the mode of the duration of sharp 
waves superimposed on ripples was 50 ms in rats (Sullivan et al., 2011, Buzsáki, 2015). 
Considering the duration profile, the ripples defined based on the proposed method for 
T2T and F2T group, or T _ , were more similar to the ripples defined with the 

silicon probes in the previous study than were those for the F2F and T2F groups, or 
F _ . 

Second, the Cliff’s delta statistic for the mean normalized magnitude of the MEP [a.u.] 
of F2T vs T2T, F2F, and T2F group were 0.93 ± 0.02 (large), 0.31 ± 0.08 (small), and 
0.78 ± 0.08 (large), respectively (Fig. 15B; n = 5 mice, mean ± std.). These results show 
that regarding the distribution of the mean normalized magnitude of the MEP, F2T group, 
or the ripples found by Confident Learning stage, was not close to T2T nor T2F group 
but rather to F2F group, which had the largest median among the four groups. This is 
different from existing ripple detection methods, which avoids detecting ripples with 
activity-related noises. 

Third, the Cliff’s delta statistic for the normalized peak magnitude [a.u.] of F2T vs F2F 
groups was 0.13 ± 0.08 (negligible) (Fig. 16B; n = 5 mice, mean ± std.). This result 
indicates that ripple peak magnitude was not a dominant factor of the classification on 
Confident Learning stage.  

In summary, the F2T group reflects the phenomenon of hippocampal ripples, and the 
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proposed method succeeded in defining ripples even during movement at a stochastic 
scale. Notably, the distribution of the mean normalized magnitude of the MEP for F2T 
group was substantially shifted upward compared with that of the T2T group; that is, 
Cliff’s delta between the two groups was 0.93 ± 0.02 (Fig. 15B; n = 5 mice, mean ± std.). 

 

Detecting Ripples by Using Our CNN 
Next, we determined whether our CNN detects “ripples” from unseen LFP signals 

(here, “ripple” is a ripple defined using our method). Specifically, we determined whether 
our CNN could classify 400-ms raw LFP signals into two classes: a ripple-not-including 
group and a one-ripple-including group, which were labeled R  and R , respectively (Fig. 
17A). To evaluate the results, we used the leave-one-animal-out cross-validation method 
(Fig. 17B). 

First, we defined two groups: the ripple-not-including group (R ) and one-ripple-
including group (R ). The ripple-not-including group (R ) included 400-ms raw LFP 
signals that did not include any part of ripple candidates. The one-ripple-including group 
(R ) included 400-ms raw LFP signals, each of which included just one “reasonable 
ripple,” which was tagged as T _  and had a ripple peak magnitude that exceeded 

7 SD. Note that for simplicity, we excluded 400-ms raw LFP signals that included any 
part of more than two ripples from this experiment. The threshold of the ripple peak 
magnitude, 7 SD, was determined based on the observation from Fig. 16 that the ripples 
with ripple peak magnitudes above this level were especially reliable; notably, supervised 
learning should be performed with highly dependable labels. 

As a result, the area under the precision-recall curve for detecting a “reasonable ripple” 
in each 400-ms raw LFP signal was 0.72 ± 0.10 (Fig. 18; n = 5 mice, mean ± std.). Since 
this score exceeded the chance level of 0.50, our trained CNN was validated. Here, the 
output of our CNN was a stochastic scale, and a decision threshold was used to obtain 

predicted labels (R  or R ; Fig. 17A). For example, if setting the decision threshold to 
0.5 (since the task was a two-class classification problem), predicted labels were 
determined (as Equation (38)), and confusion matrices were obtained (Fig. 19). Regarding 
the one-ripple-including group (R ), the precision, recall, and F1-score were 0.15 ± 0.13, 
0.96 ± 0.03, and 0.24 ± 0.18, respectively (Fig. 20; n = 5 mice, mean ± std.). Although 
the sample size of the one-ripple-including group (R ) was less than 1/100 of that of the 
ripple-not-including group (R ), the precision for detecting a ripple was smaller than the 
recall. This result was caused by our original cost-sensitive learning design for 
imbalanced data (see Materials and Methods, Equations (42)–(47)). In fact, without the 
modification of the original cross-entropy loss function, the predictions of our CNN for 

ripple detection all fell within the majority group, i.e., the ripple-not-including group (R ). 

 

Reverse Estimation of the Optimal Threshold Based on the Ripple Peak Magnitude 
There has been considerable debate regarding the best threshold value for the ripple 
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peak magnitude in existing methods of ripple detection. Here, we explored whether there 
is an optimal threshold that would maximize the F1-score for detecting ripples using the 
trained and validated CNN obtained from the previous experiment. 

To search for the optimal threshold, we used “suspicious ripples,” which were defined 
as ripples labeled as T _  with ripple peak magnitudes from 1 SD to 7 SD. 

Additionally, we defined one-suspicious-ripple-including group (R ) that included 400-
ms raw LFP signals, each of which included just one “suspicious ripple.” The optimal 
threshold of the ripple peak magnitude was determined by using the trained CNN to 
separate the one-suspicious-ripple-including group (R ) into the ripple-not-including 
group (R ) and the one-ripple-including group (R ). 

First, we plotted the probabilities predicted by the trained CNN for samples from the 
one-suspicious-ripple-including group (R ) that belonged to the one-ripple-including 
group (R ) (Fig. 21). From 1 to 10 SD, the range of the ripple peak magnitude [mV] was 
split into 0.1 SD bins without overlaps. For each bin, the mean and standard deviation of 
the probabilities predicted by the trained CNN were calculated. 

Moreover, a sigmoid function, including parameters a and b, was fit based on all 
observed data pairs. 
 

P(𝐬 ∈ R )  =  
1

1 + exp{−b mnormalized_ripple_peak(i) −  a }
 (49) 

 
where mnormalized_ripple_peak(i) is the normalized ripple peak magnitude [a.u.] of the i-th 

suspicious ripple based on Equations (1)–(5) and (11)–(14), 𝐬  is the 400-ms raw LFP 
signal that includes the i-th suspicious ripple, and a and b are the parameters used for 
fitting. Specifically, a is the normalized ripple peak magnitude value predicted by the 
fitted sigmoid function at the inflection point, and b is the slope of the fitted sigmoid 
function at the inflection point as 
 

b =  
𝑑P(𝐬 ∈ R )

𝑑mnormalized_ripple_peak(i)
|

normalized_ripple_peak( ) . (50) 

 
The fitted values a and b were determined to be 3.12 ± 0.74 and 0.83 ± 0.10, respectively 
(n = 5 mice, mean ± std.). Additionally, the mean predicted probabilities in every bin and 
the determined sigmoid function yielded the coefficient of determinations R  of 0.97 ± 
0.02 (n = 5 mice, mean ± std.), indicating reasonable agreement. These results suggested 
that setting the ripple peak magnitude to 3.12 ± 0.74 maximizes the F1-score for detecting 
ripples based on existing ripple detection methods. 
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Discussion 
Our proposed method defined ripples using a CNN trained in a weakly supervised 

manner based on “noisy labels” obtained through GMM clustering. These two machine 
learning steps made it possible to utilize the temporal local features of LFPs and ripples. 
In the detection stage, our CNN's input was a series of 400-ms hippocampal raw LFPs 
recorded with one electrode. The output was the probability of the input including a “true” 
ripple. 

 
From the perspective of duration, the ripples defined by our method (T _  or 

T2T and F2T group) were closer to the ripples defined by a multielectrode method in a 
previous study than were the false ripples defined by our method (F _ ; T2F and 

F2F group). Additionally, concerning the mean normalized magnitude of the MEP of the 
trapezius [a.u.], F2T group was larger than that of T2T group. Thus, with Confident 
Learning, the proposed method enables the detection of ripples during both stable and 
moving states, the latter of which is not possible with existing methods. Previous studies 
reported that ripples occur even when animals feed or walk (Buzsáki, 2015). Our 
approach offers a way to define/detect ripples during active states with just a single 
electrode. 

Since the proposed method defines ripples probabilistically, it is not needed to sort out 

small ripple candidates. With our approach, binarized predicted labels (R : ripple-not-

including, or R :  one-ripple-including) can be obtained by adjusting the cut-off 
parameter of the ripple probability, without losing small ripples using a predefined 
threshold for the ripple band peak magnitude.  

Furthermore, the capacity for handling small ripples contributes to the enhanced 
robustness of detecting ripples at the recording site in the hippocampus and extending the 
time limitation for continuously and stably detecting ripples. The LFP amplitude is 
inversely proportional to the distance between the virtual origin and the recording sites 
(Buzsáki et al., 2012). Also, it is known that recording electrodes tend to “slip,” especially 
in the electrode's longitudinal direction under freely moving conditions, at least because 
brain tissue is characterized by elasticity. Under these settings, our method can be 
effectively applied to detect ripples, especially in experiments at day-to-week scales. The 
quality enhancement of ripple detection in terms of stabilization and prolongation is ideal 
for revealing the relationships between hippocampal ripples and memory consolidation 
or long-term memory in detail. 

 
From the viewpoint of conventional digital signal processing (DSP) or time-frequency 

analysis, the length of the convolution filters (K), a hyperparameter of our CNN, is related 
to the frequency bands' limits to extract features based on convolution.  

Our CNN extracted temporal local features over 37 consecutive ms periods. In our 
settings, 7-, 5-, and 3-unit length convolution filters were included in each of three blocks 
of our CNN, and the effective sampling rate of the hippocampal LFP was 1 kHz. 
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Therefore, 37 ms (= 1 + {(7 - 1) + (5 - 1) + (3 - 1)} × 3 ms) was the total consecutive time 
in which local features were extracted with our CNN.  

It is possible that low-frequency components, which are difficult to express in 37 ms, 
may not be treated by our CNN. In fact, ripples (150–250 Hz) often overlap with sharp 
waves (5–50 Hz; O’Keefe, 1976; Buzsaki, 2015; Watanabe, 2017) and gamma waves 
(25–75 Hz; Ramirez-Villegas et al., 2015).  

If these low-frequency components are not utilized, the following three modifications 
should be made: (i) enlarge each filter length and (ii) use the Inception module (Szegedy 
et al., 2014), or (iii) like the SincNet (Ravanelli et al., 2019) to add a relatively long 
bandpass filter to the first layer of the neural network. 

 
Our method has a limitation; for simplicity, it is assumed that there is not more than 

one ripple event within a 400-ms LFP input sequence for our CNN in the detection step. 
However, this limitation is not practical. Ripples often appear in clusters (i.e., events with 
< 100 ms intervals between them). The proportion of clustered ripples is approximately 
50% during brief pauses and approximately 20% during prolonged periods of immobility 
while awake or periods of sleep in home cages (Buzsáki, 2015).  

Our CNN to detect ripples should be modified to detect when and how many ripples in 
a time series. This refinement might be realized by mimicking object detection models in 
2D or 3D. Specifically, the faster RCNN model (Ren et al., 2015) or the CenterNet model 
(Zhou et al., 2019) may be potential candidates. When using the 1D modified versions of 
these models, it is needed to balance the relationship among the following three 
components: the convolutional filter's length, the maximum frequency band to extract 
features, and the temporal resolution (because of the Gabor uncertainty). 
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Figures 

 
Figure 1. Selection of ripple candidates. Top: An LFP trace recorded from the CA1 
pyramidal layer of the right hippocampus from a freely moving mouse. Middle: The 
corresponding 150–250 Hz-bandpass LFP trace as expressed in Equation (1&2). Bottom: 
The corresponding normalized ripple band LFP magnitude as defined in Equation (1–8). 
Superimposed red areas show the periods selected as ripple candidates. 
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Figure 2. Three-dimensional visualization of ripple candidates. Ripple candidates 
were three-dimensionally plotted with a natural logarithm scale for the duration, mean 
normalized magnitude of the myoelectricity potential (MEP) of the trapezius, and 
normalized ripple peak magnitude (ripple band: 150–250 Hz) for each ripple (about the 
definitions, see Equations (9)–(22) in Materials and Methods). Each panel shows data for 
each mouse. Mice #1, #2–#4, and #5, data were continuously recorded for one, four, and 
five days, respectively. For visualization purposes, 0.20% and 0.05% of all ripple 
candidates recorded from mice #1 and #2–#5, respectively, were randomly sampled and 
plotted. The light and dark green cubes show the regions in which the ripple candidates 
are defined as "ripples" with the criteria of Fernández-Ruiz et al. (2019) and Kay et al. 
(2016); these cubes do not overlap. 
  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.23.353102doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.353102


 

 
Figure 3. Relationship between the hippocampal LFP and animal movement. The 
Pearson correlation coefficients between the normalized mean of MEP of the trapezius 
(mnormalized_MEP_bin(j) [a.u.]; j is the index for 1,024-ms bin) and the FFT power of the f-

Hz component of the hippocampal LFP (p(f, j) [mV2 Hz-1]; j is the index for 1,024-ms 
bin) plotted against frequencies [Hz] (see Equations (23)–(31) in Materials and Methods). 
Each panel shows data for each mouse. The correlations from 44–448 Hz were 
statistically significant in all mice (*p < .05; the test for no correlation, ns, for the 1,024-
ms time samples in each panel). 
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Figure 4. Distributions of the three parameters of the ripple candidates. Histograms 
of the ln(duration), ln(normalized ripple peak magnitude), and ln(mean normalized 
magnitude of the myoelectric potential (MEP) of the trapezius) for each ripple candidate. 
Each panel shows data for each mouse. We postulated that each distribution could be 
approximated as the sum of two Gaussian functions. 
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Figure 5. Ripples labeled using Gaussian mixed model clustering. Each plot in the 3D 
space shows true ripple-like events (Blue; tagged as T _ ) and false ripple-like 

events (Red; tagged as F _ ) defined with Gaussian mixed model clustering. Note 

that the axes of the 3D space coincide with the variables used in Gaussian clustering: 
ln(duration) [a.u.], ln (normalized ripple peak magnitude) [a.u.], and ln(normalized mean 
magnitude of the MEP of the trapezius) [a.u.]. The data cloud as a whole (T _  

and F _ ) and light and dark green cubes are the same as those in Fig. 2. Note that 

the decision boundary determined by Gaussian mixed model clustering is a hyperplane in 
this 3D space. 

  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.23.353102doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.353102


 
Figure 6. The structure of our CNN. A. A chunk (Blue) is the smallest unit in our CNN. 
A chunk has two parameters: K and N. N × convolution filters, each of which was of 
length K ([ms] in our usde case), were installed in the first layer. B shows the mini-batch 
size and the sample size used in training loops to accelerate the computing process. In 
batch normalization (Ioffe and Szegedy, 2015), the filtered traces are normalized and 
perturbed. Then, the output is activated by the Leaky ReLU activation function (Maas et 
al., 2013) with a differential coefficient of 0.1 in the negative region (α = 0.1). B. A block 
(Red) is the second smallest unit, and it includes three chunks with the parameters K = 7, 
5, and 3. C. The whole structure of our CNN. To extract local features from input signals, 
blocks 1–3 were connected not only through the convolution pathway but also through 
residual connections (this model is called ResNet in general). Global average pooling was 
performed to “squash” the time dimension of the extracted features. Fully connected 
layers were adopted to add weights to the convolutional filters of the last layer and 
optimally use the extracted features for classification tasks. 
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Figure 7. Isolating and trimming each ripple candidate as an input into our CNN. A. 
When a ripple candidate was 400 ms or less, it was extended with symmetrical zero-
padding to 400 ms. B. Otherwise, information in the range of [-200 ms, +200 ms) from 
the middle time of a candidate was extracted (see Equation (34) in Materials and 
Methods). These synthesized 400-ms data series were used as inputs to our CNN to define 
ripples (see Equations (36)–(38) in Materials and Methods). 
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Figure 8. Data splitting for applying Confident Learning. Data were split to define 
ripples and run Confident Learning and to avoid “data leakage” in the ripple detection 
experiment. For subdataset SD1-, SD2-, SD3-, SD4-, and SD5-, each mouse data was 
excluded from the original dataset. For subdataset SD1*, SD2*, SD3*, SD4*, and SD5*, 
the data obtained for each mouse were treated as a dataset. 
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Figure 9. Concordance rates of ripple labels defined with CNNs trained on different 
datasets. The matrices show the concordance rates of the labels ( T _  or 
F _ ) estimated with Confident Learning. That is, every ripple candidate was 
included in five datasets (e.g., a ripple candidate recorded for mouse #1 was included in 
the subdataset SD1*, SD2-, SD3-, SD4-, and SD5- as shown in Fig. 8). Therefore, each 
ripple candidate was classified five times as a true-ripple-like event (T _ |𝒟) or 
false-ripple-like event (F _ |𝒟) according to the subdatasets.  
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Figure 10. Correlations among estimated probabilities as true ripples based on our 
CNN and different datasets. The matrices show the Pearson correlation coefficients of 

predicted probabilities as ripples (= P 𝐜 ∈ T _  as in Equation (37)) estimated 

with Confident Learning between subdatasets shown in Fig. 8. 
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Figure 11. Ripples defined using our CNN. Each plot in the 3D space shows a true 
ripple-like event (Blue; labeled T _ ) or false ripple-like event (Red; labeled 

F _ ) defined with our CNN trained in a weakly supervised manner. The data cloud 

(T _  and F _ ) and light and dark green cubes are the same as those in Figs. 

2 and 5. Note that the input to our CNN was not the three “ln-variables”, as in the case of 
the Gaussian mixed model, but a 400-ms LFP raw trace. Additionally, the decision 
boundaries in this 3D space were not hyperplanes, unlike those in Gaussian clustering in 
Fig. 5. 
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Figure 12. Representative traces of ripple candidates with labels estimated by our 
CNN. Representative LFP and MEP traces acquired from mouse #1. A. Hippocampal raw 
LFP. B. The corresponding trace of the hippocampal ripple band LFP (150–250 Hz). C. 
The corresponding trace of the normalized magnitude of the myoelectric potential (MEP) 
of the trapezius [a.u.]. D. Predicted probabilities estimated by our CNN to define ripples. 
Note that colored rectangles show the four subgroups of ripple candidates: Blue, T2T 
group (T _  to T _ ); Green, T2F group (T _  to F _ ); Pink, 

F2T group (F _  to T _ ); Red, F2F group (F _  to F _ ). 

  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.23.353102doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.353102


 
Figure 13. Average traces of ripple candidates. The average traces of the ripple 
candidates obtained based on the middle time. Rows correspond to each mouse, and 
columns correspond to the following four subgroups: Blue, T2T group (T _  to 

T _ ); Green, T2F group ( T _  to F _ ); Pink, F2T group 

(F _  to T _ ); Red, F2F group (F _  to F _ ). Black solid 

lines show the means. Colored areas express the standard deviations at the corresponding 
temporal distance from the means. 
 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.23.353102doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.353102


 
Figure 14. The distributions of the durations among the ripple candidate subgroups. 
A. Boxplots of the duration of each ripple candidate for the ripple subgroups: T2T 
(T _  to T _ ; Blue), F2T (F _  to T _ ; Light Blue), T2F 

(T _  to F _ ; Pink), F2F (F _  to F _ ; Red). In all four 

groups for any mouse, the differences in medians were statistically significant (ps < .01; 
Brunner-Munzel test with the Bonferroni correction after the Kruskal-Wallis test). B. 
Cliff’s delta statistics for the duration of each ripple candidate, as the effect size, between 
all pairs of the four groups (mean (+/-) std., n = 5 mice). 
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Figure 15. The distributions of the mean normalized magnitude of the myoelectric 
potential (MEP) among ripple candidate subgroups. A. Boxplots of the mean 
normalized magnitude of the myoelectric potential (MEP) of each ripple candidate 
concerning ripple subgroups: T2T (T _  to T _ ; Blue), F2T (F _  

to T _ ; Light Blue), T2F (T _  to F _ ; Pink), F2F (F _  to 

F _ ; Red). In all four groups for any mouse, the differences in medians were 

statistically significant (ps < .01; Brunner-Munzel test with the Bonferroni correction 
after the Kruskal-Wallis test). B. Cliff’s delta statistics for the mean normalized 
magnitude of the myoelectric potential (MEP) of each ripple candidate, as the effect size, 
between all pairs of the four groups (mean (+/-) std., n = 5 mice).  
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Figure 16. The distributions of the normalized ripple peak magnitudes among ripple 
candidate subgroups. A. Boxplots of the normalized ripple peak magnitudes for each 
ripple candidate concerning ripple subgroups: T2T (T _  to T _ ; Blue), 

F2T (F _  to T _ ; Light Blue), T2F (T _  to F _ ; Pink), 

F2F (F _  to F _ ; Red). In all four groups for any mouse, the differences 

in medians were statistically significant (ps < .01; Brunner-Munzel test with the 
Bonferroni correction after the Kruskal-Wallis test). B. Cliff’s delta statistics for the 
normalized ripple peak magnitude for each ripple candidate, as the effect size, between 
all pairs of the four groups (mean (+/-) std., n = 5 mice).  
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Figure 17. Experimental scheme for detecting ripples. A. The experimental design for 
ripple detection using our CNN. Our CNN requires the input signal vector (𝐬 ) to be a 
fixed length, 400 points (e.g., 400 ms for a 1 kHz sampling rate) in this study. Each input 
signal 𝐬  was separated into the ripple-not-including group ( R ) or the one-ripple-
including group (R ). The ripple-not-including group (R ) consisted of the 400-ms raw 
LFP signals that did not include any parts of the ripple candidates. The one-ripple-
including group (R ) consisted of the 400-ms raw LFP signals, each of which included 
just one “reasonable ripple,” which was tagged as T _  and had a ripple peak 

magnitude that exceeded 7 SD. The output of our CNN, P(𝐬 ∈ R ), was interpreted as 
the probability that the input to belonged to the one-ripple-including group (R ), which 
was binarized by a decision threshold (d _ ) when necessary. B. Data splitting 

was performed based on the leave-one-animal-out cross-validation method. In each 
iteration, data obtained for each mouse were used as test data. 
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Figure 18. Precision-recall curves for ripple detection. Each panel shows the 
precision-recall curve  for each fold in the leave-one-animal-out cross-validation method. 
The curves were calculated from the precision and recall results for ripple detection based 
on when the decision threshold changed from zero to one (see Fig. 17 and Equation (41) 
in Materials and Methods). The AUC (area under curve) ranged between zero and one 
and reflects the two-class classification ability of the proposed approach averaged over 
the decision thresholds; this approach is appropriate for imbalanced datasets, such as in 
this case. 
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Figure 19. Confusion matrices for ripple detection. The panels show confusion 
matrices for ripple detection when the binarization threshold is fixed to 0.5 (see Fig. 17A 
and Equation (41) in Materials and Methods). Each 400-ms raw LFP sample was classify 
into two groups: a ripple-not-including group (R ) and a one-ripple-including group (R ). 
Each row shows the confusion matrices for each fold in the leave-one-animal-out cross-
validation method (Left Column: original values, Right Column: values normalized by the 
sample sizes of actual groups). 
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Test Mouse #  𝐑𝟎 𝐑𝟏 Macro Avg. 
Weighted 

Avg. 
Accuracy 

#1 

Precision 1.000 0.082 0.541 0.993 

0.913 
Recall 0.912 0.986 0.949 0.913 

F1-score 0.954 0.151 0.552 0.948 

Sample Size 1,242,919 9,856   
       

#2 

Precision 1.000 0.051 0.526 0.994 

0.892 
Recall 0.891 0.981 0.936 0.892 

F1-score 0.942 0.097 0.520 0.937 

Sample Size 6,951,052 41,632   
       

#3 

Precision 1.000 0.290 0.645 0.995 

0.984 
Recall 0.984 0.930 0.957 0.984 

F1-score 0.992 0.442 0.717 0.988 

Sample Size 5,939,153 41,411   
       

#4 

Precision 1.000 0.045 0.522 0.998 

0.951 
Recall 0.951 0.971 0.961 0.951 

F1-score 0.975 0.086 0.530 0.973 

Sample Size 7,146,207 17,081   
       

#5 

Precision 0.999 0.289 0.644 0.993 

0.977 
Recall 0.978 0.930 0.954 0.977 

F1-score 0.989 0.441 0.715 0.983 

Sample Size 5,606,586 54,023   
       

Mean ± Std. 
Precision 1.000 ± 0.000 0.151 ± 0.127 0.576 ± 0.063 0.994 ± 0.002 

0.943 ± 0.040 Recall 0.943 ± 0.041 0.960 ± 0.028 0.951 ± 0.010 0.943 ± 0.040 
F1-score 0.970 ± 0.022 0.243 ± 0.183 0.607 ± 0.100 0.966 ± 0.022 

Figure 20. Metrics for detecting ripples. A summary of the metrics for detecting ripples 
when the decision threshold was fixed to 0.5 is given. Note that the F1-score of ripple 
detection (surrounded by the red rectangle) can be optimized by searching for optimal 
decision thresholds (as Equation (41)) using validation data. However, we did not try that 
because of the difficulty of splitting data from five mice into training, validation, and test 
datasets.  
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Figure 21. Reverse estimation of the optimal threshold based on the ripple peak 
magnitude. The optimal threshold for ripple detection based on the ripple peak 
magnitude was reversely estimated using our CNN. This approach was verified to 
effectively detect ripples at AUCs higher than those attainable by chance, as shown in 
Fig. 18. From 1 SD to 10 SD, the range of the ripple peak magnitude [mV] was split into 
bins every 0.1 SD without overlaps. We trained the CNN to predict samples from the one-
suspicious-ripple-including group (R ) to belong to the ripple-not-including group (R ) 
or one-ripple-including group (R ). Sigmoid functions (Purple, see Equation (49) in 
Materials and Methods) were fit based on the mean predicted probabilities for the one-
ripple-including group (R ) for each bin (the coefficient of determination R  = 0.97 ± 
0.02, mean ± std., n = 5 mice). 
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