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Abstract 

While it is well understood that the brain experiences changes across short-term 
experience/learning and long-term development, it is unclear how these two mechanisms interact 
to produce developmental outcomes. Here we test an interactive model of learning and 
development where certain learning-related changes are constrained by developmental changes in 
the brain against an alternative development-as-practice model where outcomes are determined 
primarily by the accumulation of experience regardless of age. Participants (8-29 years) 
participated in a three-wave, accelerated longitudinal study during which they completed a 
feedback learning task during an fMRI scan. Adopting a novel longitudinal modeling approach, 
we probed the unique and moderated effects of learning, experience, and development 
simultaneously on behavioral performance and network modularity during the task. We found 
nonlinear patterns of development for both behavior and brain, and that greater experience 
supported increased learning and network modularity relative to naïve subjects. We also found 
changing brain-behavior relationships across adolescent development, where heightened network 
modularity predicted improved learning, but only following the transition from adolescence to 
young adulthood. These results present compelling support for an interactive view of experience 
and development, where changes in the brain impact behavior in context-specific fashion based on 
developmental goals. 
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Introduction 
 

The brain is a dynamic system capable of reshaping itself across time to adapt to its external 
environment. For some developmental processes (e.g., cognitive control or risk-taking; Casey, 
2015; or socioemotional development; Blakemore & Mills, 2014),  these changes unfold across 
long time horizons (e.g., months or years). However, functional development does not require 
years, or even months, to show measurable changes. Indeed, a broad literature has demonstrated 
that brain function rapidly adapts to task demands and feedback to support skill acquisition or goal-
directed behavior (e.g., Daw et al., 2006; Bassett et al., 2011; McCormick & Telzer, 2017a; 2017b; 
2018; Telesford et al., 2017; Gerraty et al., 2018). However, it remains unclear to what extent these 
short-term, learning-related changes in brain activation overlap with the long-term, maturational 
plasticity seen across years and decades of development (Galván, 2010). Here, we test two 
potential explanations for how experience and development interact across time to explain changes 
in learning performance and the functional brain systems that support that performance across 
time. To probe these interactions, we adopt a novel application of longitudinal modeling that 
allows us to consider changes across minutes, years, and the course of development 
simultaneously. This approach offers an integrated perspective of learning and development as co-
dependent processes of neural and behavior plasticity which interact across time. 

While traditionally thought of as a period of vulnerability (Steinberg et al., 2008; Casey et 
al., 2008; Shulman et al., 2016), adolescence is also a period associated with increases in flexible 
behavior and the capacity to learn from feedback in the environment (Johnson & Wilbrecht, 2011; 
Crone & Dahl, 2012; Casey, 2015; Vigilant et al., 2015), with neural changes associated with age 
supporting increased learning (Van Duijvenvoorde et al., 2008; Peters et al., 2016; McCormick & 
Telzer, 2017a; Peters & Crone, 2017). In general. the ability to learn and engage in other complex 
cognitive tasks (Casey et al., 2005; Luna et al., 2010), improves with age through the first decades 
of life. However, this co-occurrence does not by itself imply that maturation is necessary for the 
age-related improvements in learning seen during development. With increased age also comes 
more experience and practice at skills needed to support task performance. Under this view, 
development involves the accumulation of practice or training of neural systems, and the neural 
mechanisms for this process should closely resemble those involved in short-term learning. In 
concrete terms, this would imply that developmentally younger individuals can be trained to 
perform as well as older individuals given sufficient practice.  

In contrast, an interactive view of learning and development would suggest that certain 
kinds of neural changes in response to learning are constrained by developmental changes in the 
brain. In other words, it should be practically impossible to train a child to perform at adult levels 
because they have not experienced the maturational changes in the brain necessary to support that 
performance. This would suggest that certain kinds of neural changes in response to learning will 
be relatively unique to older individuals. These two alternative accounts are not mutually 
exclusive, since training studies in younger individuals clearly demonstrate that there is some 
capacity to improve cognitive performance and shift brain function even in the maturing brain  
(Jolles & Crone, 2012). However, the first explanation of how learning and development interact 
would predict that this capacity to train should be quite extensive, whereas the second explanation 
would predict that biological maturation imposes stricter limitations on the ability to train young 
individual to “adult” levels of performance. It is important to note, however, that these limitations 
may not be maladaptive, but rather serve some other developmental function where “immature” 
brain states or behavioral performance are important for flexible learning and adaptation (e.g., 
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Johnson & Wilbrecht, 2011; Jolles & Crone, 2012; Crone & Steinbeis, 2017; McCormick & 
Telzer, 2017a). 

 A major challenge in modeling experience and development simultaneously is that in real 
data, they are often confounded (Bell, 1953; Jolles & Crone, 2012; Telzer et al., 2018) in 
developmental models. In longitudinal studies which use a cohort-sequential (or panel) design, 
where individuals are repeatedly assessed at the same ages, older participants are also more-
experienced participants (both in life and in the specific measures of interest). In neuroimaging 
contexts, these experience effects can confound developmental effects in a number of ways, 
including reducing anxiety about the scanner environment, changing baseline conditions (the “task 
B” problem), or reduce errors on tasks through familiarity rather than change in underlying ability 
(Jolles & Crone, 2012; Telzer et al., 2018). Fortunately, we can leverage an alternative, the 
accelerated longitudinal design, to address these challenges. In accelerated longitudinal studies, 
individuals vary in the age of first assessment and are followed longitudinally thereafter. By 
adopting this design, we can de-couple experience from age (or other measure of developmental 
stage) sufficiently to successfully model the accumulation of experience and developmental 
maturation simultaneously (McCormick, preprint). 

The current study tests the two competing hypotheses of how experience and development 
interact to drive neural plasticity during learning. Participants across a wide age range (8-29 years) 
participated in a three-wave, accelerated longitudinal neuroimaging study during which they 
completed a feedback learning task. By leveraging the accelerated longitudinal design and a novel 
extension of mixed-effects models (McCormick, preprint), we differentiate between three 
temporal levels of neural plasticity: 1) short-term changes within a scan session (within-individual) 
across blocks of feedback learning; 2) long-term changes within individuals, across measurement 
occasions (i.e., waves); and 3) the mixed (i.e., within- and between-individual) effect of changes 
associated with age.  By considering these three levels in the same model, we can partition effects 
at each level. (1)  Within-session changes reflect how brain and behavior adapt during learning the 
task structure, (2) between-session changes  reflect changes due to experience after repeated 
exposure to the task and testing environments, (3) while age reflects the developmental effect. 
Importantly, including effects at the second level allows us to de-confound age and experience, 
giving a more reliable estimate of the developmental effect. Because learning is an integrative 
process, involving the interactions between many brain regions (Bassett et al., 2011; Gerraty et al., 
2014; Bassett et al., 2015; McCormick & Telzer, 2017a; Gerraty et al., 2018; McCormick, Gates, 
& Telzer, 2019), we test this developmental model in the context of whole-brain neural networks. 
Specifically, we model the interaction of experience and development effects on network 
modularity. Modularity is a measure of the degree of network segregation into distinct functional 
units (Bullmore & Bassett, 2011). Higher levels of modularity in brain networks predicts increased 
learning (Bassett et al., 2011; Ellefsen et al., 2015) and working memory (Braun et al., 2015) 
performance in adults.  

Our analytic approach to addressing these questions involved several steps. First, we fit 
mixed-effects models with only linear and quadratic effects of age on behavioral performance and 
network modularity during learning separately (Peters et al., 2016; Peters & Crone, 2017) for 
comparison to more complex models. We then included predictors of within-  and between-session 
change as main effects to consider the unique effects of experience and development, before fitting 
a model that included interaction terms between our predictors. This third model allowed us to 
probe how the effects of experience change across development in a continuous fashion. Finally, 
we estimated a brain-as-predictor model where we probed how brain states (e.g., high versus low 
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modularity) differentially predicted learning performance across levels of experience and 
development. This final model tests a core difference between the two explanations  of 
developmental improvement in learning performance. In the development-as-practice view, 
network modularity should predict learning performance consistently  regardless of when in the 
developmental trajectory (i.e., there is no moderation by age). This is contrasted by the interaction 
view of development and experience, where we would expect that modularity would predict 
performance differentially depending on age. 
 

Methods 
Sample  
 A total of 299 participants (ages 8-29 years) participated in a 3-wave, accelerated 
longitudinal MRI study. Participants were scanned every 2 years, spanning a 5-year period (Figure 
1). At wave 1, 28 participants were excluded for a number of factors including not completing the 
MRI session (N=4), excessive motion during the scan session (>3 mm) (N=22), ADD diagnosis 
disclosure (N=1), and reported medicine use (N=1), resulting in a final sample of 271 participants 
at the initial data collection. At wave 2 (2 years later), 254 participants were scanned (33 could not 
be scanned due to braces; 11 declined to return). Of the scanned participants, an additional 21 were 
excluded (12 for motion; 2 for preprocessing errors; 5 for T2 artifacts; 1 for medicine use; 1 for 
ADD diagnosis), leaving a final sample of 233 participants. During the final wave (2 years later), 
243 participants were scanned (11 could not be scanned due to braces; 45 declined to return). Of 
these, 11 were excluded (3 did not complete MRI session; 4 for motion; 2 for processing errors; 1 
for medicine use; 1 for ADD diagnosis), for a total final sample of 232 participants. Across the 
dataset, 183 participants had data at all three waves, 78 participants had data at two waves, 31 
participants had data at only one wave, and 7 were excluded at all three waves. A total of 736 scans 
were included for final data analyses. 
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Figure 1. Structure of repeated measures within the accelerated longitudinal design. Participants are ordered 
in ascending order based on their age at wave 1. Sex is denoted by separate colors. 

 
Feedback Learning Task 
 Participants completed a feedback learning task during an fMRI session (Peters et al., 2014; 
Peters et al., 2016). On each trial, participants saw a screen with three empty boxes and one (out 
of a possible set of three) stimulus underneath (Figure 2). Participants were told that each stimulus 
within a given set had a corresponding correct location among the empty boxes and that their goal 
on the task was to appropriately sort each stimulus into its location. For each stimulus-location 
choice, participants either received positive (a “+” sign) or negative (a “-” sign) feedback based on 
their choice. Positive feedback indicated correct stimulus placement, while negative feedback 
indicated incorrect placement. Each stimulus within a set associated with a unique, 
deterministically correct location. Stimuli within a set were presented in pseudorandom order, 
constrained such that no stimulus within a set was present more than twice in a row. After a 
maximum of 12 trials, or after all three stimuli within a set were correctly placed twice (indicating 
that all locations were successfully learned), stimulus sets were swapped out for a new set with 
three new stimuli. Each trial consisted of the following: 1) a 500-ms fixation cross, 2) stimulus 
presentation for 2500 ms while participants made location decisions, and 3) feedback presentation 
for 1000 ms. Trials were separated by intervals jittered based on OptSeq (Dale, 1999), with 
durations that varied between 0 and 6 s. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2020. ; https://doi.org/10.1101/2020.10.23.353094doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.353094
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 
Figure 2. During the Feedback Learning task, participants learned the correct placement of each stimuli (e.g., 
the elephant) through feedback. Participants received either positive or negative feedback on each trial. 
 
Behavioral Analyses 
 Task Metrics of Behavior. Our primary metric of task performance was the learning rate 
participants displayed in forming correct stimulus-location associations. To calculate learning rate, 
we distinguished between two phases of task performance: the learning and the application phase 
(Peters et al., 2014; Peters et al., 2016). The learning phase was defined as trials where the correct 
location for a given stimulus was still unknown, and participants needed to rely on trial-and-error 
or hypothesis testing to correctly place the stimulus. Trials in the learning phase could result in 
either positive (indicating a future stay strategy) or negative (prompting a future shift strategy) 
feedback. In contrast, the application phase was defined as trials where the correct location for the 
presented stimulus is already known (as established by an earlier learning trial) and participants 
correctly place that stimulus again. Trials where previous feedback was incorrectly applied (or not 
remembered) and stimuli that had previously been placed correctly but were then placed 
incorrectly were excluded from these analyses. Learning rate was calculated as the proportion of 
trials in the learning phase where feedback was correctly applied in the following trial involving 
the same stimulus (either as repeated placement following positive feedback or as altered 
placement following negative feedback). 

Linear Mixed-Effects Model. To test our developmental/experience interaction model, 
we fit a linear mixed-effects model to participants’ learning rate data. We followed a model-
building procedure based on previous work in this sample (Peters et al., 2016; Peters & Crone, 
2017). We also fit a random effects ANOVA model with a random intercept which served as a 
comparison for subsequent models. For descriptive purposes at the random effects level, we fit a 
three level model where blocks were nested within wave and then within person, however for 
comparison with future models, we also fit a two level model where wave and age were included 
at level 1. To compare across levels of change, we constructed a model using the lme4 software 
package through R (version 1.1-21; Bates et al., 2015), where stimulus blocks (N=1-max 15) and 
wave (N=1-3) were nested within individual, and age was included as a time-varying covariate. 
Because wave (i.e., repeated exposure to the task) was a predictor of interest, we did not nest with 
respect to wave since that would result in a variable that acts as both a nesting factor and linear 
effect of interest. We included interactions between wave, age, and blocks. To capture more 
complex changes in behavior between blocks of the task, we utilized piece-wise regression at level 
1 (Flora, 2008; Li et al., 2009), including predictors which model the linear effects across the first 
and second half of the task separately. This model resulted in the following equation: 
 
Reduced Form: 
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While previous work has discouraged using wave as a predictor in longitudinal models (instead 
using precise age; see Mehta & West, 2000), here we draw a meaningful distinction between wave 
and age. We would expect changes in behavior after each subsequent exposure the task 
environment (Telzer, et al., 2018), which due to the sampling method in accelerated longitudinal 
designs is disassociated with age to some degree because a large age range is represented at each 
wave. 
 
fMRI Data Acquisition and Processing 
 
 MRI data acquisition. Scans across all three waves were acquired using the same Philips 
3T MRI scanner, utilizing identical scan settings. The Feedback Learning Task included T2*-
weighted echoplanar images (EPI; slice thickness=2.75mm; 38 slices; sequential acquisition; 
TR=2.2sec; TE=30ms; FOV=220 x 220 x 114.68mm). Additionally, structural images were 
acquired, including a high-resolution 3D T1-FFE anatomical scan (TR=9.76ms; TE=4.59ms; 140 
slices; voxel size=0.875 x 0.875 x 1.2mm; FOV=224 x 177 x 168mm; flip angle=8). Prior to 
undergoing the scan procedure, participants were introduced to the scanner environment (e.g., 
space and noises) through a mock scan session. 
 fMRI data preprocessing and analysis. Preprocessing and analyses utilized a suite of 
tools from FSL FMRIBs Software Library (FSL v6.0; https://fsl.fmrib.ox.ac.uk/fsl/), Steps taken 
during preprocessing included skull stripping of all images using BET; and slice-to-slice motion 
correction of EPI images using MCFLIRT; co-registeration in a two-step sequence to the high-
resolution T2-weighted and T1-FFE anatomical images using FLIRT in order to warp them into 
the standard stereotactic space defined by the Montreal Neurological Institute (MNI) and the 
International Consortium for Brain Mapping; and the application of a 128s high-pass temporal 
filter to remove low frequency drift within the time-series.  

Nuisance Regressors. Prior to modeling the fMRI data further, we took several steps to 
reduce the influence of motion. Motion, as measured by framewise displacement (Power et al., 
2012), was minimal across the sample (mean across participants = 0.12 mm; max = 0.77 mm; 
average percentage of volumes with > 0.3 mm motion = 4.95%). We also controlled for 8 nuisance 
regressors in the GLM and time-series analyses: 6 motion parameters generated during 
realignment and the average signal from both the white matter and cerebrospinal fluid masks. 
Previous work (see Ciric et al., 2017) has shown that these strategies reduce the influence of motion 
on functional connectivity analyses. 

 
Graph Construction. We then utilized a graph theoretical approach to investigate how 

networks in the brain changed across levels of experience and development. Using a subset of the 
BigBrain parcellation scheme (Sietzman et al., 2020), a whole-brain atlas comprised of 300, 5-mm 
sphere parcels from cortical and subcortical regions, we extracted functional timeseries data for 
each trial (15 in total) in order to model changes in network structure across time during the task. 
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We chose to examine network features between regions with relevance to task performance. This 
resulted in 147 regions including those in the cingulo-opercular (14), default mode (55), fronto-
parietal (27), salience (14), ventral (9) and dorsal (14) attention, hippocampal (6), and reward (8) 
sub-networks. Selection of these networks were guided by those regions engaged in the feedback 
learning task in previous research (Peters et al., 2016; Peters & Crone, 2016) or classically engaged 
during learning and decision-making (Daw & Shohamy, 2008; Sadaghiani & D’Esposito, 2014; 
McCormick & Telzer, 2018a; McCormick et al., 2019). This subset was chosen to balance 
including enough regions of interest with the challenges of computing whole-brain networks on 
relatively short timeseries. 

To extract, we constructed a task regressor made from the onset and duration of each block 
of stimuli convolved with an HRF function.  These regressors were multiplied with the entire 
timeseries extracted from ROIs in order to give a set of time-series files for each individual at each 
wave. Correlation matrices were constructed by computing the zero-lag cross-correlation between 
each ROI. Graph metrics were calculated across a range of costs (5-20% in 5% increments; Cohen 
& D’Esposito, 2016). We utilized the standard community assignment for distinguishing within- 
versus between-network edges (Sietzman et al., 2020). 
  
 Graph Metric. For our measure of brain development, we calculated network modularity, 
or the degree to which communities within the whole-brain network are segregated. Modularity is 
computed as the relative number of edges between nodes of the same community compared to the 
number of total edges within the whole-brain graph. We calculated modularity (Q*) using positive 
and negative weighted edges as: 
 

𝑄∗ =	
1

2𝑊.?@𝑤!". − 𝑒!".C𝛿@𝑚! , 𝑚"C −
1

2𝑊. + 2𝑊/?@𝑤!"/ − 𝑒!"/C𝛿@𝑚! , 𝑚"C
!"!"

 

 
where w+ is the number of positively weighted edges and w- is the number of negatively weighted 
edges. The 𝑒!" term represents the expected number of edges between two nodes i and j, and the 
𝛿@𝑚! , 𝑚"C term is 1 if the nodes i and j are in the same module and 0 if they are not in the same 
module. Notice that negatively weighted edges are given less influence than positively weighted 
edges in computing modularity (Rubinov & Sporns, 2011).  
 
Developmental Model 
 We then utilized the same multi-level modeling approach used for the behavior to model 
change in brain networks across blocks, waves, and age: 
 
𝑀𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦!" = 𝛾## + 𝛾$#𝐹𝑖𝑟𝑠𝑡	𝐻𝑎𝑙𝑓!" + 𝛾%#𝑆𝑒𝑐𝑜𝑛𝑑	𝐻𝑎𝑙𝑓!" + 𝛾&#𝑊𝑎𝑣𝑒!" + 𝛾'#𝐴𝑔𝑒!"

+ 𝛾(#𝐴𝑔𝑒"% + 𝛾)#𝐹𝑖𝑟𝑠𝑡	𝐻𝑎𝑙𝑓!" ∗ 𝑊𝑎𝑣𝑒!" + 𝛾*#𝑆𝑒𝑐𝑜𝑛𝑑	𝐻𝑎𝑙𝑓!" ∗ 𝑊𝑎𝑣𝑒!"
+ 𝛾+#𝐹𝑖𝑟𝑠𝑡	𝐻𝑎𝑙𝑓!" ∗ 𝐴𝑔𝑒!" + 𝛾,#𝑆𝑒𝑐𝑜𝑛𝑑	𝐻𝑎𝑙𝑓!" ∗ 𝐴𝑔𝑒!" + 𝛾$##𝐹𝑖𝑟𝑠𝑡	𝐻𝑎𝑙𝑓!"
∗ 𝐴𝑔𝑒!"% + 𝛾$$#𝑆𝑒𝑐𝑜𝑛𝑑	𝐻𝑎𝑙𝑓!" ∗ 𝐴𝑔𝑒!"% + 𝛾$%#𝑊𝑎𝑣𝑒!" ∗ 𝐴𝑔𝑒!" + 𝛾$&#𝑊𝑎𝑣𝑒!"
∗ 𝐴𝑔𝑒!"% + 𝑢#" + 𝑟!" 

 
Probing Interactions. 

To better understand potential interaction effects involving age in the models of behavior 
and brain, we probed the effects at four distinct ages (Figure 3). Ages were chosen to be evenly 
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spaced (approximately standard deviation distances within the sample) and roughly correspond to 
different developmental periods including early, middle, and late adolescences, as well as young 
adulthood (e.g., Shulman et al., 2016). Interaction effects in the model are continuous across the 
age range and therefore leverage information across the sample. However, due to lower coverage 
of observations at later ages, the simple slope estimates when probing the interaction at these levels 
have correspondingly larger standard errors. 

 

 
Figure 3. Probing Interactions with Age. Four distinct ages were chosen to probe interactions with age, 
including during early adolescence (12, [~ -1SD]; red), middle adolescence (16, [~ mean age], green), late 
adolescence (20, [+1SD]; blue), and young adulthood (25, [~ +2SD], purple). Bar height represents the 
proportion of observations at that level. Rug plot hashes (below x-axis) represent individual observations. 

 
Results 

Descriptives and Age-only Growth Models 
 Before formally fitting models to the data, we assessed descriptives of both learning rate 
and network modularity as a function of wave and age (taking the mean of within-session data). 
Connected data points represent the same individual across time and waves are labeled with 
different colors (Figure 4A & B). As reported earlier (Peters & Crone, 2017), learning rate was 
high overall with late adolescents performing near ceiling, and either leveling off or declining for 
older participants. Although not constrained in the same way as learning performance at upper 
values, neural network modularity appears to increase at earlier ages and declining at later ages 
(see Supplemental for formal regions of significance analysis for all models). As our first model 
building step, we fit a relatively simple model by including linear and quadratic effects of age to 
both learning rate and network modularity. Predicted values of each measure were obtained from 
the mixed-effects model (Figure 4C & D; see Table 1), confirming these trends. However, this 
simple model neither captures within-session change, nor does it disaggregate within-person 
changes due to experience (i.e., across waves) and between-person changes due to maturation 
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(i.e., across age). We next formally tested these effects using the developmental model specified 
above. 
 

 
Figure 4. Learning (A) and Network Modularity (B) Across Age and Wave. Means of within-session data were 
plotted against age to visualize potential time-related trends. Wave number was indicated by color, and data 
from the same individual were connected by a solid line. If individuals only contributed data at one timepoint, 
data was indicated with a lone point. Linear mixed-effects models that only consider the mixed effect of age 
suggest quadratic effects peaking in late adolescence for learning performance (C), and for network modularity 
(D). These models fail to consider effects of experience (i.e., wave) and within-session effects. 
 
Behavioral Improvements in Learning Performance 
 We began by fitting an unconditional random effects ANOVA model (i.e., a random 
intercept at each level) to determine the distribution of variance across the three levels of the model 
(level 1 = within-session; level 2 = waves; level 3 = individual). Results indicated that the majority 
of variance in learning rate was between trials within the same scan session (68.7%), an additional 
19.3% of the variance was between scan sessions within the same individual (i.e., change across 
waves), and the remaining 11.9% variance was accounted for by between-individual differences 
in overall learning performance (see Table 2 for full details). However, to establish a baseline for 
future models, we also fit a two level random effects ANOVA model where level 1 and 2 are 
collapsed (see Table 2). 
 Separating Effects of Age and Wave. Next, we fit a mixed effects model with fixed 
predictors of learning rate at each level to assess the separable effects of age and wave on learning 
rate. Importantly, wave and age were sufficiently decoupled in this model (r = .397, variance 
inflation factor = 1.19, SE inflation = 1.08 times), and all predictors were centered. In this model 
neither effect of the within-session predictors were significant. This suggests that there was no 
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total systematic change in learning rate within a scan session net the effects of wave and age, nor 
was there a significant within-person effect of wave. In other words, neither within- or between-
session experience related to increased performance when accounting for the age-related change. 
However, individuals showed significant linear (b = .250, SE = .031, p < .001) and quadratic (b = 
-.136, SE = .021, p < .001) effects of age on learning rate. All results are reported as standardized 
effects (Table 3). A likelihood ratio test suggests that this model offers an improvement over the 
unconditional model (𝜒0!11%  = 168.71, df = 5, p < .001). 
 Learning Rate Improvements Show Interactions Across Levels of Time. Finally, we 
tested the interactive model of learning and development for participants’ learning rates. To do so, 
we added two-way cross-level interaction terms to the previous model. Three-way interactions 
were explored but were not found to be significant and so the model with two-way interactions 
was retained. All predictors were centered to create interaction terms which were uncorrelated with 
the main effects and to facilitate the interpretation of main effects in the presence of interaction 
terms. There was a significant positive interaction of wave and the quadratic effect of age on 
learning rate (b = .083, SE = .021, p < .001) such that at each later waves, the quadratic decreases 
lessen. To probe this interaction, we plotted mean within-session level increases in learning rate 
across age for each wave (Figure 5). Results suggest that without repeated exposure to the task 
(i.e., practice) there are predicted decreases in learning performance at younger ages (red 
trajectory), but that practice helps compensate and cause performance to level off instead (green 
and blue trajectories). The quadratic effect where wave is coded as zero (i.e., wave 2) reflects the 
effects seen in the age-only model and is consistent with prior research (Peters et al., 2016; Peters 
& Crone, 2017), however, by including interactions with experience, we show how that total effect 
is influenced by practice (see Table 4 for full details). A likelihood ratio test suggests that this 
model offers an improvement over the main-effects only model (𝜒0!11%  = 38.03, df = 8, p < .001). 
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Figure 5. Increased Experience Impacts Learning Trajectories. Compared with first exposure (red), 
accumulating experience (green and blue) tended to predict better learning performance at later ages, 
compensating for expected declines in performance during young adulthood. 
 
Changes in Network Modularity 
 Similar to the behavioral analysis, we first fit an unconditional random effects ANOVA 
model to participants’ neural network modularity data. The majority of variance in network 
modularity was between trials within the same scan session (51.4%), relatively less (15.6%) of the 
variance was between scan sessions within the same individual (i.e., change across waves), with 
the remainder (33.0%) accounted for by between-individual differences in network modularity 
(Table 2). 
 Separating Effects of Age and Wave. Next, we fit a main-effects only model with 
predictors including task block, wave, and age. There were linear (b = .285, SE = .0.39, p < .001) 
and quadratic (b = -.136, SE = .021, p < .001) effects of age,  such that network modularity tended 
to increase early in adolescence and level off and decrease across late adolescence and young 
adulthood. Additionally, modularity increased across blocks within waves across both halves of 
the task (first half : b = .088, SE = .013, p < .001; second half: b = .121, SE = .013, p < .001). There 
was no independent effect of wave on network modularity. This suggests that while modularity 
tends to increase within-session across the task and with older individuals, there is no independent 
effect of repeated exposure to the same task environment (Table 3). As expected, this model 
offered improvements over the random effects ANOVA model (𝜒0!11%  = 486.3, df = 5, p < .001). 

Network Modularity Shows Interactions Across Levels of Time. We next fit the 
interactive model of development to the network modularity data. Similar to the model with 
learning performance, there was a significant interaction of wave and the quadratic effect of age 
on network modularity (b =.057, SE = .018, p = .001; Table 4). When probed (Figure 6A), there 
was a similar compensatory pattern to the one seen in learning performance, such that experience 
(green and blue) predicted positive shifts in modularity at later ages compared with the first 
exposure to the task (red). Interestingly, these differences appear to only emerge during the 
transition from adolescence to young adulthood, whereas increased experience does not impact 
modularity at younger ages. Furthermore, there was a significant positive interaction of age and 
changes in the first half of the task (b = .068, SE = .019, p < .001), such that older individuals 
showed more rapid gains in modularity across the first half of the task (Figure 6B). This model 
offered continued improvements over the main effects only model (𝜒0!11%  = 34.18, df = 8, p < .001). 
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Figure 6. Experience and Age Impact Brain Network Organization. A) Accumulating experience (green and 
blue) predicts increased network modularity compared with first exposure (red), however these differences only 
emerge during the transition from adolescence to young adulthood. B) Increased age predicts greater positive 
gains in network modularity across blocks in the first half of the task. 
 

Predicting Learning with Network Modularity. Finally, we tested whether network 
modularity predicts learning performance above and beyond the effects of time. To do so, we 
entered network modularity and interaction terms between modularity and the time predictors into 
the model. In addition to similar effects of the time predictors, this model revealed a significant 
positive interaction between network modularity and age (b = .062, SE = .023, p = .007; Table 5). 
Probing this interaction (Figure 7), we plotted the model-implied trajectory of learning rate across 
age for individuals who showed relatively low (-1 SD), mean, and relatively high (+1 SD) network 
modularity. This showed that individuals who evinced relatively high network modularity (blue 
trajectory) tended to show higher learning rates, but only after the transition from adolescence to 
young adulthood (see region of significance analysis in Supplement for details). A likelihood ratio 
test suggests that including the brain as a predictor increased model fit (𝜒0!11%  = 20.10, df = 8, p = 
.010). 
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Figure 7. Differential Impacts of Network Modularity on Learning Rate By Age. At earlier ages, increased 
modularity did not predict increased learning, but this relationship emerges following adolescence. 
 

Discussion 
 

The contributions of experience versus development can be difficult to tease apart, 
especially within a longitudinal sample (Jolles & Crone, 2012; Telzer et al., 2018) because age 
and experience are confounded. To test an interaction model of experience and development, we 
utilized a novel longitudinal approach to separate out variability in learning performance and brain 
network modularity along different timescales: 1) within-session across blocks of learning, 2) 
within-person, across-waves, and 3) across age. Briefly, we found that learning performance tends 
to improve throughout adolescence and level off into adulthood. In contrast, network modularity 
appears to peak around middle adolescence and then shows declines across young adulthood. 
However, both of these effects are moderated by the amount of experience individuals have 
accumulated, with more experience relating to higher performance and network modularity during 
learning. When considering the brain-behavior relationships, relatively higher modularity predicts 
better learning performance but only at older ages, suggesting that the importance of individual 
differences around developmental trends for determining behavioral outcomes may depend on 
timing in development. We discuss each of these findings in greater detail below.  

 
Multi-Level Changes in Learning Rate and Brain Networks 

Even without probing cross-level interactions, a major advantage of the models employed 
here is the separation of variance in the outcome across levels of time. In the current study, we 
found that behavioral improvements in learning occur across age, but do not change systematically 
across waves or blocks within the task. In contrast, network modularity showed systematic within-
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session increases as well as positive age effects, while showing no systematic changes across 
waves. While these total effects should be interpreted with caution given the presence of higher-
order interaction effects, they nevertheless highlight an advantage of the growth model employed 
here (McCormick, preprint). Controlling for the effects of repeated exposure to the task 
environment allow us to be more confident that the effects of age are due to maturational forces 
rather than comfort or familiarity with the task or scanner environment (Bell, 1953; Jolles & Crone, 
2012). Even if these effects are not significant, as is the case here, these models allow us to check 
our assumptions about the processes underlying longitudinal change. 
 
Cross-Level Interactions between Growth at Different Scales 
 More interestingly, there were significant cross-level interactions between time predictors 
in the models for both behavior and brain trajectories. For both outcomes of interest, results 
supported the idea of an interactive model of development, where the impacts of experience change 
across age. For learning rate, the model recapitulated previous findings in this task (Peters & 
Crone, 2017) showing that learning rate reaches peak levels around late adolescence, and is 
consistent with other findings showing improvements in learning across adolescence (van 
Duijvenvoorde et al., 2008; Peters et al., 2016; McCormick & Telzer, 2017a). This highlights that 
the model with growth at multiple levels accommodates the same inferences made with the age-
only models. In this way, adopting the current approach offers advantages without limiting the 
inferences made about developmental trajectories. Indeed, the interaction of wave and the 
quadratic effect of age on learning performance highlights that changes in behavior are driven by 
complex interplays between development and experience. Specifically, probing the interaction 
shows that increased experience compensates for the main effect of age, boosting behavioral 
performance gains further into to young adulthood. Extensive experience (blue trajectory in Figure 
5) blunts these declines and stabilizes performance at the peak achieved during middle to late 
adolescence. However, this improvement is not universal across the developmental period 
considered, as mid-adolescent performance even at first wave appeared to be heightened. This 
might suggest that during adolescence, learning is universally improved, and then individual 
differences become more relevant as individuals transition out of this period (see Pattwell et al., 
2011 for a similar idea in the area of contextual fear during adolescence). None of the models 
tested showed within-session effects on learning performance, although we may have been under-
powered to detect such effects given the restraints of the task (i.e., there was a maximum of 12 
trials per block regardless of learning). Overall these results are a powerful validation of the model, 
converging with previous findings on the same data while simultaneously allowing for the addition 
of more complex time-dependent relationships. 
 Findings with the brain showed a distinct pattern of effects from growth in learning 
performance. Previous work in this area has shown developmental changes during learning in 
regional activation of the fronto-parietal (Peters et al., 2016) and striatal regions (Peters & Crone, 
2017; McCormick & Telzer, 2017a), as well as seed-based connectivity with the orbitofrontal 
cortex (McCormick & Telzer, 2017a). In the current study, we instead examine changes in brain 
network organization during learning. Learning over short periods of time has been shown to alter 
neural network organization (Bassett et al., 2011; Telesford et al., 2017; Gerraty et al., 2018), but 
these processes have not been compared with long-term changes due to maturation previously. In 
the current study, we show changes in network modularity both at the short-term within-session 
and long-term developmental level. In the short term, playing repeated blocks within-session is 
associated with heightened modularity between brain networks involved in learning, and this effect 
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across the first half of the task increases with age. This suggests that older individuals are able to 
segregate (i.e., high within-network and low between-network connectivity) the relevant networks 
of regions to a greater extent than younger participants. The quadratic total effect of age suggests 
that rather than a linear increase in modularity across experience and maturation, network 
modularity instead decreases at later ages (Figure 6A), with late adolescents and young adults 
showing decreasingly modular networks compared with middle-adolescents (also consistent with 
the age-only model (Figure 4D). This pattern of network connectivity evolves similarly across 
development to striatal activation during learning versus application (Peters & Crone, 2017). 
However, the interaction of this age effect with wave shows an analogous effect as seen in learning 
performance, where experience appears to blunt expected decreases in network modularity in 
young adulthood. While this compensatory effect does not counteract the overall decreases as seen 
in the behavioral results, it does serve to shift network organization toward a more adolescent-
typical phenotype.  
 Regardless of the effects of experience (i.e., wave), there appear to be more substantial 
decreases in modularity compared with behavioral performance. In the context of learning and 
development, this pattern of long-term change in neural networks might have two potential 
explanations. First, it might be that brain networks show the greatest capacity for modularity 
during adolescence, and this capacity supports the heightened flexible learning (Johnson & 
Wilbrecht, 2011; Casey, 2015) and feedback sensitivity (Peters et al., 2016; van Duijvenvoorde et 
al., 2014; McCormick & Telzer, 2017a; b; 2018b) that characterize this developmental period 
regardless of practice or exposure effects. Alternatively, these changes might reflect differences in 
how the brain performs similar actions across development. For instance, high modularity might 
be necessary for adolescents to achieve high performance, while adults might not require this to 
the same degree. For instance, stabilizing learning performance with experience is still associated 
with overall (albeit blunted) decreases in modularity during young adulthood. This might also be 
consistent with an expansion-normalization theory of development and learning (Wenger et al., 
2017) where brains show initial changes in structure and function (e.g., increased synaptic 
formation, increased activation) that then return to baseline without compromising behavioral 
performance. These hypotheses are not mutually exclusive, and the effects probed here might 
suggest both that adolescent brains support improved performance regardless of other influences 
(e.g., experience) and that returns to network phenotypes seen in younger adolescents does not 
lead to a complete collapse of behavioral performance. 
 
Changing Brain-Behavior Relationships 

While characterizing trajectories of brain and behavior separately is informative, we also 
examined whether individual differences in network organization might predict learning 
performance above and beyond developmental (Peters & Crone, 2017) and experiential effects, as 
well as whether that relationship changed across time. Consistent with the interaction view of 
development and experience, significant interactions between network modularity and time 
predictors in the model revealed a significant moderation of brain-behavior relationships across 
age. This means that in early adolescence, there is no effect of increased modularity on learning 
performance, but that increased modularity predicts enhanced learning rates for older individuals. 
These findings are consistent with previous work in young adults showing positive associations 
between network modularity and successful learning (Bassett et al., 2011; Ellefsen et al., 2015) 
and higher-order cognitive processing generally (Kitzbichler et al., 2011; Braun et al., 2015). 
However, these positive associations at later ages are particularly interesting in the context of the 
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developmental trends detected, where older individuals on average show decreased modularity 
across waves. Despite normative decreases in network modularity during late adolescence and 
young adulthood, individuals with higher modularity show greater learning performance. This 
might lend support to the first explanation of the interaction effect of age and wave – that 
adolescent-typical neural phenotypes offer advantages in performance (e.g., Johnson & Wilbrecht, 
2011; Jones et al., 2014; van Duijvenvoorde et al., 2016). If young adults simply did not need 
highly modular networks to perform what is a relatively easy task for them (i.e., the expansion-
renormalization hypothesis), then we would expect that the relationship between modularity and 
learning performance would decrease. However, the positive interaction effect (Figure 7) suggests 
that older individuals show an even greater dependence on high modularity for successful learning 
performance compared with younger participants. This pattern of results presents a compelling 
case for adolescent-specific advantages in learning. For older individuals, retaining “immature,” 
but apparently more-optimal, network configurations helps boost behavioral performance. 
 
Conclusions 
 In summary, we took a novel modeling approach to disaggregate change in learning and 
neural networks across different timescales. While we focus on learning here, these results 
highlight the potential flexibility of mixed-effects models for probing complex developmental 
trajectories in other domains. We found nonlinear patterns of development for both behavior and 
brain, which were moderated by experience. Specifically, greater experience with the task 
supported increased learning and network modularity relative to relatively naïve subjects, 
highlighting that these effects can bias age-related effects unless explicitly included in longitudinal 
models. Future research using accelerated longitudinal designs (or see McCormick, preprint for 
alternatives) should take care to model practice/exposure-related effects to remove this confound. 
Finally, we showed changing brain-behavior relationships across adolescence, where higher 
network modularity predicts increased learning performance only following the transition into 
young-adulthood. These results present compelling support for an interactive view of experience 
and development, where changes in the brain impact behavior in context-specific fashion based on 
developmental goals (Crone & Dahl, 2012; Romer et al., 2017).  
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Table 1. Model Output from Age-Only Models. 

  Learning Rate Network Modularity 

Predictors Estimates SE P-Value df Estimates SE P-Value df 

Intercept 0.937 0.004 <0.001 359.604 0.994 0.011 <0.001 361.688 

Age std 0.277 0.023 <0.001 1003.133 0.275 0.023 <0.001 1992.711 

Age2 std -0.140 0.021 <0.001 1924.892 -0.209 0.020 <0.001 3523.698 

Random Effects 
σ2 0.010 0.055 
τ00 0.002 ID 0.030 ID 
ICC 0.18 0.35 
N 297 ID 297 ID 

Observations 4799 4799 
Marginal R2 / 
Conditional R2 

0.065 / 0.236 0.075 / 0.402 

Note: All effects rounded to the third decimal place for display purposes. std = standardized effects 
reported. σ2 = level 1 random effect. τ00 = higher level random effect (effect specified by subscript). 
ICC = Intraclass correlation. N = number of units at each level. 
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Table 2. Model Output from Random Effects ANOVA Models. 

 3-Level Model Learning Rate Network Modularity 

Predictors Estimates SE P-Value df Estimates SE P-Value df 

Intercept 0.927 0.003 <0.001 256.681 0.949 0.012 <0.001 284.150 

Random Effects 
σ2 0.009 0.048 
τ00 0.002 ID:Wave 0.014 ID:Wave  

0.002 ID 0.030 ID 
ICC 0.31 0.49 
N 297 ID 297 ID 
 

3 Wave 3 Wave 

Observations 4799 4799 
Marginal R2 / 
Conditional R2 

0.000 / 0.313 0.000 / 0.486 

 2-Level Model Learning Rate Network Modularity 

Predictors Estimates SE P-Value df Estimates SE P-Value df 

Intercept 0.925 0.003 <0.001 271.214 0.946 0.012 <0.001 289.668 

Random Effects 
σ2 0.010 0.056 
τ00 0.003 ID 0.037 ID 
ICC 0.22 0.40 
N 297 ID 297 ID 

Observations 4799 4799 
Marginal R2 / 
Conditional R2 

0.000 / 0.218 0.000 / 0.398 

Note: All effects rounded to the third decimal place for display purposes. σ2 = level 1 random 
effect. τ00 = higher level random effect (effect specified by subscript). ICC = Intraclass correlation. 
N = number of units at each level. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2020. ; https://doi.org/10.1101/2020.10.23.353094doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.353094
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 
Table 3. Model Output from Main Effects-Only Models. 

  Learning Rate Network Modularity 

Predictors Estimates SE P-Value df Estimates SE P-Value df 

Intercept 0.927 0.004 <0.001 717.508 0.987 0.013 <0.001 520.937 

First Half std 0.025 0.016 0.113 4473.435 0.088 0.013 <0.001 4491.297 

Second Half std 0.022 0.016 0.151 4473.468 0.121 0.013 <0.001 4491.319 

Wave std 0.023 0.018 0.198 1205.547 -0.004 0.019 0.845 694.861 

Age std 0.250 0.31 <0.001 299.628 0.285 0.039 <0.001 311.080 

Age2 std -0.136 0.021 <0.001 1941.031 -0.209 0.020 <0.001 3747.423 

Random Effects 
σ2 0.010 0.051 
τ00 0.002 ID 0.030 ID 
ICC 0.18 0.37 
N 297 ID 297 ID 

Observations 4799 4799 
Marginal R2 / 
Conditional R2 

0.060 / 0.232 0.112 / 0.441 

Note: All effects rounded to the third decimal place for display purposes. std = standardized effects 
reported. σ2 = level 1 random effect. τ00 = higher level random effect (effect specified by subscript). 
ICC = Intraclass correlation. N = number of units at each level. 
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Table 4. Model Output from Interactions Models. 

  Learning Rate Network Modularity 

Predictors Estimates SE P-Value df Estimates SE P-Value df 

Intercept 0.935 0.005 <0.001 768.901 0.997 0.014 <0.001 513.739 

First Half std -0.007 0.020 0.751 4473.838 0.094 0.017 <0.001 4495.715 

Second Half std 0.021 0.020 0.297 4473.787 0.115 0.017 <0.001 4495.776 

Wave std 0.011 0.031 0.722 3143.488 -0.044 0.029 0.131 1734.974 

Age std 0.160 0.044 <0.001 650.191 0.327 0.049 <0.001 471.938 

Age2 std -0.080 0.042 0.053 615.163 -0.261 0.047 <0.001 513.285 

First Half * Wave std -0.016 0.022 0.469 4484.108 -0.036 0.019 0.058 4508.580 

Second Half * Wave std -0.044 0.022 0.048 4484.488 -0.022 0.019 0.244 4508.591 

First Half * Age std -0.049 0.022 0.027 4466.136 0.068 0.019 <0.001 4482.736 

Second Half * Age std 0.025 0.022 0.252 4466.143 -0.004 0.019 0.818 4482.736 

Wave * Age std -0.038 0.024 0.111 870.145 0.002 0.026 0.947 648.001 

First Half * Age2 std 0.047 0.024 0.048 4464.637 -0.027 0.020 0.182 4481.364 

Second Half * Age2 std -0.025 0.024 0.292 4464.630 -0.002 0.020 0.906 4481.360 

Wave * Age2 std 0.083 0.021 <0.001 4746.733 0.057 0.018 0.001 4674.686 

Random Effects 
σ2 0.010 0.051 
τ00 0.002 ID 0.030 ID 

ICC 0.19 0.37 
N 297 ID 297 ID 

Observations 4799 4799 
Marginal R2 / 
Conditional R2 

0.066 / 0.239 0.126 / 0.449 

 
Note: All effects rounded to the third decimal place for display purposes. std = standardized effects 
reported. σ2 = level 1 random effect. τ00 = higher level random effect (effect specified by subscript). 
ICC = Intraclass correlation. N = number of units at each level. 
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Table 5. Model Output from Brain as Predictor of Learning Performance Model. 

  Learning Rate 

Predictors Estimates SE P-Value df 

Intercept 0.935 0.005 <0.001 794.679 

First Half -0.003 0.021 0.886 4476.805 

Second Half 0.006 0.021 0.775 4482.941 

Wave -0.056 0.067 0.401 4670.922 

Age 0.174 0.045 <0.001 718.911 

Age^2 -0.086 0.043 0.046 679.282 

First Half * Wave -0.018 0.022 0.415 4481.722 

Second Half * Wave -0.040 0.022 0.072 4485.072 

First Half * Age -0.054 0.023 0.018 4472.145 

Second Half * Age 0.005 0.023 0.822 4502.070 

Wave * Age -0.034 0.025 0.172 987.428 

First Half * Age^2 0.044 0.025 0.073 4469.835 

Second Half * Age^2 -0.013 0.025 0.604 4483.426 

Wave * Age^2 0.076 0.022 0.001 4754.347 

Modularity -0.014 0.029 0.627 4764.879 

Modularity * First Half 0.006 0.021 0.786 4532.995 

Modularity * Second Half 0.044 0.021 0.044 4545.020 

Modularity * Wave 0.061 0.061 0.317 4774.206 

Modularity * Age 0.062 0.023 0.007 4222.697 

Modularity * Age^2 -0.004 0.025 0.888 4389.408 

Modularity * Wave * Age 0.035 0.021 0.093 4776.952 

Modularity * Wave * Age^2 -0.043 0.021 0.041 4724.872 

Random Effects 
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σ2 0.010 
τ00 ID 0.002 
ICC 0.19 
N ID 297 

Observations 4799 
Marginal R2 / Conditional R2 0.071 / 0.243 

 
Note: All effects rounded to the third decimal place for display purposes. std = standardized effects 
reported. σ2 = level 1 random effect. τ00 = higher level random effect (effect specified by subscript). 
ICC = Intraclass correlation. N = number of units at each level. 
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