
Fast and exact single and double

mutation-response scanning of proteins

Julian Echave∗

Instituto de Ciencias F́ısicas, Escuela de Ciencia y Tecnoloǵıa, Universidad Nacional de
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Abstract

Studying the effect of perturbations on protein structure is a basic approach in

protein research. Important problems, such as predicting pathological mutations and

understanding patterns structural evolution, have been addressed by computational

simulations based on modelling mutations as forces and predicting deformations using

the Linear Response Approximation. In single mutation-response scanning simulations,

a sensitivity matrix is obtained by averaging deformations over point mutations. In

double mutation-response scanning simulations, a compensation matrix is obtained by

minimizing deformations over pairs of mutations. These very useful simulation-based

methods may be too slow to deal with large supra-molecular complexes, such as a ri-

bosome or a virus capsid, or large number of proteins, such as the human proteome,

which limits their applicability. To address this issue, I derived analytical closed formu-

las to calculate the sensitivity and compensation matrices directly, without simulations.

Here, I present these derivations and show that the resulting analytical methods are

much faster than their simulation counterparts, and that where the simulation methods

are approximate, the analytical methods are exact by design.
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Introduction

Protein structure is considered to be fundamentally related to function. For this reason,

insight into protein function can be gained by studying the structural deformations due to

perturbations, such as those resulting from ligand binding or point mutations. This is at the

basis of general experimental and theoretical approaches to study proteins. An experimental

example is the powerful and increasingly popular Deep Mutational Scanning, which allows

studying the effects of large numbers of mutations.1,2 Theoretically, the effect of small per-

turbations on protein structure has been studied using various approaches based on the Lin-

ear Response Approximation.3–7 Conformational deformations due to protein-ligand binding

have been modelled using external forces applied locally to the superficial residues known or

presumed to be involved in binding.4,7 This has proved useful for a number of applications

such as predicting ligand-induced deformations,4,7,8 predicting ligand-binding sites related

to known or desired deformations,9,10 and studying allosteric communication.11–13 Similar

perturbation approaches focused on the structural response to mutations have been used for

analysing pathological mutations14,15 and understanding patterns of protein evolution6,14,16,17

The previous simulation-based approaches may become too computationally costly to

deal with very large systems, such as supra-molecular complexes, like a ribosome or a virus

capsid. Also, scanning large sets of proteins, such as the whole human proteome to detect

potential pathological mutations, may become impractical. The purpose of the present work

to alleviate this problem by developing faster methods.

I focus on mutation-response scanning, considering two cases, single-mutation and double-

mutation scanning. In simulation-based mutation-response scanning (sMRS), protein sites

are scanned over, for each site many random mutations (modelled as forces) are introduced,

the resulting deformations are calculated, and deformations are averaged over to obtain a

sensitivity matrix S. In simulation-based double mutation-response scanning (sDMRS), pairs

of sites are scanned over, random mutations are introduced at each sites of each pair, the

resulting deformations are calculated, and the minimum deformations are used to calculate a
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compensation matrix D. As alternatives to these methods, I derive two analytical methods,

aMRS and aDMRS, that allow, respectively, the calculation of S and D using closed-formed

analytical formulas, without performing simulations. In the following sections, I describe the

simulation methods, derive the analytical alternatives, and compare the speed and accuracy

of simulation and analytical methods on a set of proteins of varying lengths.

Methods

In the following sections, I derive the formalism of Mutation Response Scanning (MRS) and

Double Mutation Response Scanning (DMRS). Key for these calculations, are the covariance

matrix and the linear response approximation, explained next.

Covariance matrix

At finite temperature the protein fluctuates, sampling an ensemble of conformations. Let a

specific backbone conformation be specified by the position vector r = (x1, y1, z1, . . . xN , yN , zN)T ,

where (xi, yi, zi) are the Cartesian coordinates of site’s i alpha carbon, N is the number of

sites, and super-index T denotes matrix or vector transposition. The native ensemble can

be characterized by the native structure, r0 = 〈r〉, and by the covariance matrix :

C ≡ 〈(r− r0)(r− r0)T 〉 (1)

where 〈· · · 〉 is the average over conformations.

A protein’s conformational ensemble is determined by its energy landscape. For simplic-

ity, in this work I use the Anisotropic Network Model (ANM).18 This model represents the

protein as a network of amino acids connected by harmonic springs. Specifically, each residue

is represented by single node placed at its Cα, and pairs of nodes that are within a cut-off
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distance R0 are connected with springs of force-constant k. The ANM energy function is:

V (r) =
1

2

∑
ij

k(‖rj − ri‖ − ‖r0j − r0i ‖)2 (2)

where rx is the position vector of node x, r0x its equilibrium position, k is the spring force

constant, and the sum runs over all contacts ij. Regarding the model parameters, here I use

a typical R0 = 12.5Å and k = 1.

Using (2), it is easy to obtain the covariance matrix. First, a second-order Taylor expan-

sion of (2) leads to:

V (r) ≈ 1

2
(r− r0)TK(r− r0) (3)

where K = (d2V/dr2)r=r0 is the Hessian matrix. Then, assuming a Boltzmann distribution of

conformations ρ(r) = e−V (r)/kBT with V (r) given by (3), it follows that:

C = kBTK−1 (4)

where kB is Boltzmann’s constant, T the absolute temperature, and K−1 the Hessian’s

pseudo-inverse. (K is not invertible because has 6 zero eigenvalues corresponding to rotations

and translations.) Given a protein of known native structure r0, and parameters R0 and k,

K is calculated differentiating (2), then C is obtained using (4).

Linear Response Approximation

The covariance matrix determines the conformational shift that results from applying a

force to one or more protein atoms. An arbitrary force can be represented by a vector f with

one component for each of the coordinates that represent the protein’s conformation. For

small f , the structural response can be calculated using the Linear Response Approximation

(LRA):4,6

∆r0 =
C

kBT
f (5)
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Equation (5) allows the prediction of the effect of any given force f with the sole knowledge

of C.

Mutation-Response Scanning

The aim of Mutation-Response Scanning (MRS) is to analyse how protein structure responds

to point mutations. In the methods that I consider here, given a protein, mutations are

modelled using forces, the resulting structural responses are calculated using the Linear

Response Approximation, and these responses are averaged over mutations to calculate a

sensitivity matrix S that quantifies the mutation-response patterns.

Mutations as forces

Point mutations can be modelled by forcing the contacts of the mutated site.6 Let j be the

site to mutate, C(j) be the set of contacts of j, and jl the contact between sites j and l.

Then, a mutation is modelled by applying a force

f(j) =
∑

jl∈C(j)

f(jl) (6)

where the sum runs over contacts of j and f(jl) is the force applied to contact jl. Let f(jl)

be a scalar and ejl a unit vector directed from j to l. Then, f(jl) consists of a force f(jl)ejl

applied to l, plus a reaction force −f(jl)ejl applied to j, and no force applied to other sites.

A random mutation of site j is modelled by picking independent random numbers f(jl)

and building f(jl) and f(j) (Eq. 6). Following previous work,6,16,17 I use

f(jl) ∼ N(0, σ2) (7)

Thus, the contact forces are picked from independent identical normal distributions. (σ2 will

affect the average size of the forces, which will have a mere scaling effect on mutation-response
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matrices.)

Sensitivity matrix, S

What is the effect on a site i of mutating a site j? Let us consider a random mutation at

site j, represented by a force f(j). Then, from (5), the structural deformation due to this

mutation is given by:

∆r0(j) =
C

kBT
f(j) (8)

∆r(j) can be written:

∆r0(j) =


∆r01(j)

...

∆r0N(j)

 (9)

where ∆ri(j) is the 3×1 column vector that contains the change in Cartesian coordinates of

site i due to mutation the given mutation f(j) applied to site j. The magnitude of the effect

of the mutation on site’s i structure may be quantified by the Euclidean norm ‖∆ri(j)‖2.

The sensitivity matrix S is the matrix with elements

Sij ≡ 〈‖∆r0i (j)‖2〉 (10)

where i is the response site, j is the mutated site, and 〈· · · 〉 stands for averaging over random

mutations of site j. Sij represents the structural response of site i averaged over mutations

at site j.

Simulation-based Mutation-Response Scanning

The sensitivity matrix S can be obtained using the simulation-based Mutation-Response

Scanning method, sMRS. This numerical method proceeds as follows. For each site j, M
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random forces are generated following (6) and (7), the corresponding structural responses

are calculated using (8), and averaged over mutations to calculate Sij, according to (10).

Analytical Mutation-Response Scanning

The key to the sMRS procedure is not the simulation itself, but the calculation of the sensitiv-

ity matrix S. In this section, I derive an alternative method: analytical Mutation-Response

Scanning, aMRS.

Within the current model, mutating a site amounts to introducing independent forces to

its contacts. Therefore, I first consider the deformation due to forcing a single contact. Let

f(jl) be a force applied along contact jl, composed by a force f(jl)ejl applied to l and a

reaction force −f(jl)ejl applied to j. Replacing f(jl) into (5) and using (9), we find

∆r0i (jl) = (Cil −Cij) ejlf(jl) (11)

where ∆r0i (jl) is the structural shift of site i due to the force applied to contact jl and Cxy

is the 3 × 3 block of C corresponding to the covariance between sites x and y. Now, from

(6), (8), and (9) we find

∆r0i (j) =
∑

jl∈C(j)

∆r0i (jl) (12)

where ∆r0i (j) is the shift of i due to mutating site j and the sum runs over all contacts of j.

Replacing (11) into (12), we find:

∆r0i (j) =
∑

jl∈C(j)

(Cil −Cij) ejlf(jl) (13)
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Replacing this equation into the definition of Sij, we get:

Sij ≡〈‖∆r0i (j)‖2〉

=
∑

jl∈C(j)

∑
jk∈C(j)

∆ri(jk)T∆ri(jl)

=
∑

jk∈C(j)

∑
jl∈C(j)

〈f(jk)f(jl)〉eTjk(Cik −Cij)
T (Cil −Cij)ejl

(14)

where 〈· · · 〉 stands for averaging over mutations at j. Since f(jl) ∼ N(0, σ2) are identically

distributed independent random variables, (see Mutations as forces), it follows that

〈f(jk)f(jl)〉 = σ2δjk,jl (15)

where δxy is the Kronecker delta, which is 1 for x = y and 0 otherwise. Replacing (15) into

(14), we get:

Sij = σ2
∑

jl∈C(j)

eTjl(Cil −Cij)
T (Cil −Cij)ejl (16)

This equation allows the calculation of the sensitivity matrix without performing simulations.

Given a protein, its structure r0 is used to calculate the unit vectors ekl for all contacts, then

these vectors and the protein’s covariance matrix C are used to calculate the sensitivity

matrix elements using (16). This procedure constitutes the analytical mutation-response

scanning method aMRS.

Double Mutation-Response Scanning

The aim of Double Mutation-Response Scanning (DMRS) is to analyse how protein structure

responds to pairs of point mutations. Just as for the MRS methods described above, the

DMRS methods that I consider here model mutations using forces and calculate structural

responses using the Linear Response Approximation. These responses are used to calculate a

compensation matrix D that quantifies the degree of structural compensation between pairs
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of mutations.

Compensation matrix

To start, I define the compensation matrix that DMRS aims to calculate. Let ∆r0(iµ) be

the structural response to a mutation µ at site i, and ∆r0(jν) be the structural response to

a mutation ν at j. The deformation due to introducing both mutations is given by:

∆r0(iµ, jν) = ∆r0(iµ) + ∆r0(jµ) (17)

and the magnitude of this deformation is given by:

‖∆r0(iµ, jν)‖2 = ‖∆r0(iµ)‖2 + ‖∆r0(jν)‖2 + 2∆r0(iµ)T∆r0(jν) (18)

The first two terms are positive, but the third term may be positive or negative; when is

negative, the mutations will compensate each other.

Given a first mutation iµ, the maximum compensation due to a second mutation at j

is obtained when ∆r0(iµ)T∆r0(jν) is minimum; the degree of compensation is, therefore,

min
ν

∆r0(iµ)T∆r0(jν). For mutations modelled as forces, this is equal to minus the maximum,

because if a force maximizes the dot-product, the opposite force, which is as likely, minimizes

it. Therefore, to keeps things positive, it is convenient to define the compensating power of

j by max
ν

[∆r0(iµ)T∆r0(jν)]2.

To finish, I define a compensation matrix, D, with elements Dij is given by:

Dij ≡ 〈max
ν

[
∆r0(iµ)T∆r0(jν)

]2〉 12µ (19)

where 〈· · · 〉µ is the average over µ. Dij is a positive number that quantifies the degree to

mutating j can compensate the structural effect of mutating i.
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Simulation-based Double Mutation-Response Scanning

To obtain the compensation matrix, double-mutation simulations may be used. The method

sDMRS (Simulation-Based Mutation-Response Scanning) proceeds as follows. First, for each

site k, M forces f(kµ) are generated as described in Mutations as forces. Then, for each

pair of sites (i, j), ∆r0(iµ) and ∆r0(jν) are obtained for all pairs of mutations (iµ, jν) using

(5). Finally, compensation matrix elements Dij are calculated using (19).

The previous sDMRS procedure demands adding another constraint to the forces. The

value of ∆r0(iµ)T∆r0(jν) is proportional to the lengths of force vectors f(iµ) and f(jµ).

Defined as described in Mutations as forces, the lengths of these vectors may become

arbitrarily large, making the maximum in (19) infinite. To fix this, I apply the additional

constraint:

‖f(x)‖2 = σ2CN(x) (20)

where σ2 is the parameter used to define contact forces (see Eq.7) and CN(x) is the number

of contacts of site x. This specification ensures that it is not possible to have infinite forces.

Analytical DMRS

In this section, I derive the analytical Double Mutation-Response Scanning, aDMRS, method,

an alternative way of calculating the compensation matrix without performing simulations.

Consider two mutations, at sites i and j, represented by forces f(i) and f(j), respectively.

From (6) and (8), we find:

∆r0(i) =
∑

ik∈C(i)(Ck −Ci)eikf(ik)

∆r0(j) =
∑

jl∈C(j)(Cl −Cj)ejlf(jl)
(21)

where ∆r0(x) is the protein’s deformation due to mutating site x, Cx is the 3N × 3 block of

C with the 3 columns corresponding to site x, and f(xy) is the scalar force of contact xy.
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Using this equation, we find:

∆r0(i)T∆r0(j) =
∑

ik∈C(i)

∑
jl∈C(j)

f(ik)f(jl)eTik(Ck −Ci)
T (Cl −Cj)ejl (22)

This equation can be written in matrix form:

∆r0(i)T∆r0(j) = f(i)TAijf(j) (23)

where f(i) is a column vector whose elements are the CN(i) contact forces f(ik), f(j) is the

column vector with CN(j) elements f(jl), and Aij is a matrix of size CN(i) × CN(j) with

elements:

Aik,jl ≡ eTik(Ck −Ci)
T (Cl −Cj)ejl (24)

The maximum of
[
∆r0(i)T∆r0(j)

]2
, subject to the constraint ‖f(j)‖2 = σ2CN(j) (Eq.

20). Using (23), it can be shown that:

max
[
∆r0(i)T∆r0(j)

]2
= CN(j)f(i)TAijA

T
ijf(i) (25)

To finish, replacing (25) into (19), and using (15), we finally get:

Dij = σ2
√

CN(j) Tr AijAT
ij (26)

where Tr is the trace operator. This equation allows the calculation of the compensation

matrix without performing simulations.

The method analytical Double Response Scanning, aDMRS proceeds as follows. Given a

protein, its structure r0 is used to calculate the unit vectors ekl for all contacts; then, these

vectors and the protein’s covariance matrix C are used to calculate the matrices Aij using

(24); finally, (26) is used to calculate Dij.
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Results

To assess the analytical methods proposed in this work to their simulation-based counter-

parts, I applied all methods to the proteins of Table 1. The structure files for the calculations

were obtained from the Protein Data Base for d2l8ma and d2acya, and from the Homstrad

database for the other proteins.19

Table 1: Protein data set

domain family class N
d1lcka1 SH3 domain All beta 54
d1ntxa Snake venom toxins Small 60
d1fxla2 Canonical RNA-binding domain Alfa & beta 82
d1bxva Plastocianine/Azurin-like All beta 91
d2acya Acyl-phosphatase-like Alpha & beta 98
d1jiaa Vertebrate Phospholipase A2 All alpha 122
d1hmta Fatty acid binding protein-like All beta 131
d1a4fb Globines All alpha 146
d1mcta Eukaryotic proteases All beta 223
d2l8ma Cytochrome P450 All alpha 405

Columns show, in order, protein domain id, family, and structural class according to the SCOP
classification,20 and protein length N .

Mutation-Response Scanning

In this section, the sMRS and aMRS methods are compared. Given a protein, an sMRS simu-

lation consists in subjecting each of the protein sites j to M mutations, modelled as forces,

calculating the resulting structural deformation of each other site i, and averaging these

deformations over mutations to obtain a mutation-response matrix S (Eq. 10). aMRS, in con-

trast, calculates the mutational-response matrix without the need of simulating mutations,

using the closed analytical expression Eq. 16. To assess these methods, I compare their

computational speed and accuracy.
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aMRS is much faster than sMRS

The computational speed of sMRS and aMRS is compared in Figure 1. An sMRS calculation

using a typical number ofM = 200 mutations per site is much slower than an aMRS calculation

(Figure 1A). The computational cost, as measured by CPU time, scales with protein length

as N1.5 for both sMRS and aMRS. As a result, tsMRS increases linearly with taMRS with a

slope that is the speedup of aMRS vs. sMRS; For the M = 200 case, tsDMRS ≈ 126 × taDMRS

(Figure 1B). Since sDMRS depends on M while aDMRS does not, the speedup depends on M .

This dependence is linear: tsMRS/taMRS ∝M (Figure 1C). Summarizing, the analytical method

provides a speedup of the order of the number of mutations per site, which is typically in

the hundreds; aMRS is much faster than sMRS.

sMRS is very accurate, aMRS is exact

Regarding accuracy, in Figure 2, I compare simulated and analytical sensitivity matrices for

the example case of Phospholipase A2 (SCOP id d1jiaa). By construction, the mutation-

response matrix S calculated by aMRS is exact (Eq. 16). In contrast, sMRS is approximate

and its accuracy will depend on the number of simulated mutations per site (M). Typi-

cally, M of O(102) are used in mutation-response simulations (for some reason, M = 250

is quite common11,21). For 1djiaa, sMRS with M = 200 and aMRS lead to similar sensitivity

matrices (Figure 2A and Figure 2B) and sMRS converges rapidly towards the exact aMRS

matrix as M increases (Figure 2C). Thus, for Phospholipase A2, sMRS with a moderate

number of mutations of O(10)-O(202) produces accurate estimates of the exact aMRS matrix.

Similar results are found for the other proteins of Table 1 (grey lines of Figure 2C, and

supplementary info.pdf).

Averaging the sensitivity matrix over rows or columns we obtain one-dimensional site-

dependent profiles. Column j of S is the profile of responses of sites i to mutating j, and,

therefore, it measures the influence of j over other sites. Therefore, averaging over i, we

obtain the mean influence profile with elements Sj ≡ 1/N
∑N

i Sij. On the other hand, a row
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Figure 1: The analytical mutation-response method (aMRS) is much faster than
the simulation method (sMRS). The simulation method calculates the sensitivity matrix
averaging the structural response over random mutations applied to each of the protein
sites (Eq. 10); the analytical method calculates the sensitivity matrix using a closed formula
(Eq. 16). (A) CPU time vs. protein size the for sMRS with 200 mutations per site (simulation)
and for aMRS (analytical). Both times scale with N1.5. (B) The CPU time of the simulation
method increases linearly with the CPU time of the analytical method, with a speedup of
126: tsMRS = 126 × taMRS. (C) The speedup increases linearly with the number of mutations
per site. Calculations performed on the proteins of Table 1 using the methods implemented
in R, with base LAPACK and the optimized AtlasBLAS libraries for matrix operations, on
an early-2018 MacBook Pro notebook (processor i7-8850H).
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Figure 2: Comparison between sMRS and aMRS sensitivity matrices. Results shown
for Phospholipase A2 (d1jiaa). The sensitivity matrix elements Sij measure the structural
shift of site i averaged over mutations at site j. In sMRS, an approximate matrix is estimated
by averaging over simulated mutations (Eq. 10); in aMRS, the exact matrix is obtained using
an analytical closed formula (Eq. 16). (A) sMRS response matrix obtained by averaging over
200 mutations (simulation) compared with the exact aMRS matrix (analytical). (B) sMRS vs.
aMRS matrix elements; points lie close to the y = x diagonal. (C) As M increases, sMRS
converges rapidly towards high correlations with the exact aMRS results; the d1jiaa case is
shown with black lines and points, and the other 9 proteins studied are shown using grey
lines. Matrices are normalized so that their average is 1. Logarithmic scale is used in A and
B and R is the Pearson correlation coefficient between the log-transformed sMRS and aMRS

matrices.
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i of S is the profile of responses of i to mutations at sites j, which measures the sensitivity

if i. Accordingly, averaging over j we obtain the mean sensitivity profile with elements

Si ≡ 1/N
∑N

j Sij. In general, S is not symmetric and, therefore, sensitivity and influence

profiles are different.

To further assess accuracy, Figure 3 compares sMRS and aMRS profiles for Phospholipase

A2 (d1jiaa). Comparing influence profiles, we see that sMRS with M = 200 gives accurate

estimates of the exact aMRS profiles (Figure 3A and Figure 3B) and that sMRS converges

rapidly towards the exact aMRS influence profiles as M increases (Figure 2C). Similarly,

sensitivity profiles are also very accurately estimated by sMRS with M = 200 (Figures 3D and

3E) and sMRS converges rapidly towards the exact aMRS profiles as M increases (Figure 2F).

Note that sMRS influence profiles are less accurate than sMRS sensitivity profiles (compare

Figure 3B with Figure 3E and Figure 3C with Figure 3F). However,with a typical number

of M = O(102) mutations, both profiles are very well converged. Thus, sMRS with M of

O(102) provides accurate estimates of the exact aMRS sensitivity and influence profiles for

Phospholipase A2. Similar results are found for the other proteins of the Table 1 (argy lines

of Figure 2C, and supplementary info.pdf).

Double mutation-response scanning

This section compares the two double mutation-response scanning methods, sDMRS and

aDMRS. These methods are alternative ways of calculating a compensation matrix D with

elements Dij that measure the compensation between structural deformations due to a first

mutation mutation at i and a second mutation at j (Eq.19). The simulation method sDMRS

obtains this matrix numerically by maximizing the compensation over pairs of mutations at

each pair of sites. The analytical method aDMRS calculates the compensation values using a

closed formula (Eq. 26).
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Figure 3: Comparison of sMRS and aMRS marginal profiles. Results shown for Phospho-
lipase A2 (d1jiaa). The influence profile is the average of the sensitivity matrix over rows;
element Sj measures the influence of mutations at site j to deform the protein. The sensi-
tivity profile is the average of the response matrix over columns; element Si measures the
average sensitivity of site i. The simulation-based and analytical methods, sMRS and aMRS,
are described in the caption of Figure 2. (A) Comparison of sMRS and aMRS influence profiles;
(B) scatter plot of the approximate sMRS vs. exact aMRS Sj values of (A); (C) convergence
of the sMRS Sj profiles towards the exact aMRS profile. (D) Comparison of sMRS and aMRS

sensitivity profiles; (E) scatter plot of the approximate sMRS vs. exact aMRS Si values of
(D); (F) convergence of the sMRS Si profiles towards the exact aMRS profile. In (C) and (F),
the d1jiaa case is shown with black lines and points, and the other 9 proteins studied are
shown using grey lines. Profiles calculated using the normalized matrix (matrix average is 1).
Profile elements are shown in logarithmic scale and R is the Pearson correlation coefficient
between the log-transformed sMRS and aMRS profiles.
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aDMRS is much faster than sDMRS

The computational speed of sDMRS and aDMRS is compared in Figure 4. sDMRS with M = 200

mutations per site is much slower than aDMRS ( Figure 4A). The computational cost, as

measured by CPU time, scales with protein length as N3 for both sDMRS and aDMRS. As a

result, tsDMRS increases linearly with taDMRS with a slope that is the speedup of aDMRS vs. sDMRS.

For the 200-mutations-per-site case, tsDMRS ≈ 137×taDMRS (Figure 4B). Since the computational

cost of sDMRS increases with M while the cost of aDMRS does not, the speedup depends on

M . This dependence is non-linear (Figure 4C); as M increases, the cost of generating the

mutations increases linearly with M , while performing the average and maximization needed

to calculate the compensation matrix scales as M2. In summary, for large M the analytical

method provides a speedup of O(M2), making aMRS much faster than sMRS.

sDMRS is moderately accurate, aDMRS is exact

Regarding accuracy, in Figure 5, I compare simulated and analytical response matrices for

the example case of Phospholipase A2 (SCOP id d1jiaa). By construction, aDMRS is exact,

while sDMRS is approximate. The accuracy of sDMRS will depend on the number of mutations

per site (M) over which compensation is maximized. The compensation matrices obtained

with sDMRS with M = 200 looks similar to the exact aDMRS matrix. (Figure 5A). A scatter

plot sDMRS vs. aDMRS matrix elements shows good correlation, but a visible scattering of

points around the linear fit (Figure 5C). The similarity can be measured by the correlation

coefficient, which which in this case is R = 0.92. The accuracy of sDMRS improves very slowly

as M increases (Figure 5C). Thus, for Phospholipase A2, sDMRS with O(102) mutations

per site produces a compensation matrix that is in moderately good agreement with the

exact aDMRS matrix. Results are similar for other proteins (see grey lines of Figure 5C and

supplementary info.pdf).

Using the compensation matrix we can obtain compensation profiles. Averaging D over

rows, we obtain a Dj profile that measures the average compensation power of sites j.
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Figure 4: The analytical double mutation-response scanning method (aDMRS) is
much faster than the simulation method (aDMRS). sDMRS calculates a compensation
matrix by maximizing the structural compensation over numerically generated random mu-
tations, modelled as forces applied to pairs of sites (Eq. 19); the analytical method calculates
this matrix using a closed formula (Eq. 26). (A) CPU time vs. protein size the for sDMRS

with 200 mutations per site (simulation) and for aDMRS (analytical). Both times scale with
N3. (B) The CPU time of the simulation method increases linearly with the CPU time of
the analytical method, with a speedup of 137: tsMRS = 137× taMRS. (C) The speedup increases
non-linearly with the number of mutations per site, tending towards O(M2) for large M .
Calculations performed on the proteins of Table 1 using the methods implemented in R,
with base LAPACK and the optimized AtlasBLAS libraries for matrix operations, on an
early-2018 MacBook Pro notebook (processor i7-8850H).
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Figure 5: Comparison of sDMRS and aDMRS compensation matrices. Results shown
for Phospholipase A2 (d1jiaa). The compensation matrix elements Dij measure the maxi-
mum compensation of the structural deformation due to a mutation at site i afforded by a
second mutation at j. In sDMRS, Dij are obtained by maximizing structural compensation
over simulated pairs of mutations (Eq. 19); in aDMRS, the exact Dij are obtained using an
analytical closed formula (Eq. 26). (A) sDMRS compensation matrix, obtained by maximizing
over 200 mutations per site (simulation) compared with the aDMRS matrix (analytical). (B)
sDMRS vs. aDMRS matrix elements. (C) Convergence of the sDMRS matrix towards the exact
aDMRS matrix with increasing number of mutations per site. In (C) the d1jiaa case is shown
with black lines and points, and the other 9 proteins studied are shown using grey lines.
sMRS converges very slowly towards the exact aDMRS results. Dij are normalized so that
their average is 1, logarithmic scales are used in (A) and (B), and R is Pearson’s correlation
coefficient between log-transformed sMRS and aMRS matrix elements.
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Averaging over columns we obtain a Di profile that measures how likely to be compensated

are mutations at i.

Figure 6 compares sMRS and aMRS profiles for Phospholipase A2 (d1jiaa). Profiles ob-

tained using sMRS with M = 200 are similar to aDMRS profiles (Figure 6A and Figure 6D).

The similarity is not very high, however: points are quite scattered around the linear fit in

sDMRS vs. aDMRS plots (Figure 6B and Figure 6E). Convergence of sDMRS towards aDMRS is

very slow (Figure 6C and Figure 6F). The case of d1jiaa is not the worst. For other proteins,

the correlation between sDMRS and aDMRS profiles varies between 0.58 and 0.98 (see grey lines

of Figure 6C and Figure 6F, and supplementary info.pdf). In summary, sDMRS with M of

O(102) provides compensation profiles that are in poor to good agreement with exact aDMRS

profiles, depending on the protein.

Discussion

In the previous sections I have presented and assessed two mutation-response scanning meth-

ods, aMRS and aDMRS, which are analytical alternatives to the simulation methods sMRS and

sDMRS, respectively. These methods have two advantages over the simulation methods: speed

and accuracy.

First: the analytical methods are much faster than the simulation methods. For a typical

case of M = 200 mutations per site, aMRS is 126× faster than sMRS and aDMRS is 137× faster

than sDMRS. While the computational cost of sMRS is relatively modest and increases rather

slowly in proportion to N1.5M , sDMRS is much more computationally expensive and cost

rises steeply in proportion to N3M2. The speedup of analytical methods is of O(M) for

single-mutation scans and O(M2) for double-mutation scans. Therefore, in both cases the

speedup is important, but it may be most useful for double-mutation scans of large proteins.

For instance, for the 405-sites-long Cytochrome P450, calculating S is takes 3 CPU minutes

using simulations vs. 1.5 seconds of the analytical method. Calculating D, on the other
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Figure 6: Comparison of sDMRS and aDMRS marginal profiles. Results shown for Phos-
pholipase A2 (d1jiaa). Two marginal profiles are considered. The Dj profile is the average
of the compensation matrix over rows; element Dj measures the ability of j to compensate
mutations at other sites. The Di profile is the average of the compensation matrix over
columns; element Di measures the the degree to which a mutation at i can be compensated
by mutations elsewhere. The simulation-based and analytical methods, sDMRS and aDMRS,
are described in the caption of Figure 5. (A) Comparison of sDMRS and aDMRS Dj profiles; (B)
scatter plot of the approximate sDMRS vs. exact aDMRS Dj values of (A); (C) convergence of
the sDMRS Dj profiles towards the exact aDMRS profile. (D) Comparison of sDMRS and aDMRS

Di profiles; (E) scatter plot of the approximate sDMRS vs. exact aDMRS Di values of (D);
(F) convergence of the sDMRS Di profiles towards the exact aDMRS profile. In (C) and (F),
the d1jiaa case is shown with black lines and points, and the other 9 proteins studied are
shown using grey lines. Profiles were calculated with normalized matrices (matrix average
is 1), they are in logarithmic scale, and R is the Pearson correlation coefficient between the
log-transformed sDMRS and aDMRS profiles.

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.23.352955doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.352955
http://creativecommons.org/licenses/by-nc-nd/4.0/


hand, takes 3.6 hours using simulations vs. 1 minute using the analytical method (Table S1

and Table S2).

Second: while the simulation methods are approximate, the analytical methods are exact.

aMRS allows the exact calculation of the sensitivity matrix S (Eq. 16) and aDMRS the exact

calculation of the compensation matrix D (Eq. 26). In contrast, the accuracy of simulation

methods depends on the number of mutations per site M . With a typical M = O(102), sMRS

provides very accurate approximations to S and its marginal profiles (Table S1). On the

other hand, sDMRS converges very slowly, so that even with M = O(102) sDMRS compensa-

tion matrices and profiles are poorly converged (Table S2). The reason why sDMRS converges

more slowly than sMRS is that it is more difficult to find extreme values (calculation of the

compensation matrix involves maximization over pairs of mutations) than averages (sensi-

tivity matrix elements are averages over mutations). Therefore, from the point of view of

accuracy, the analytical option is better both for single-point and double-point scans, but it

is most important for the latter.

In conclusion, the analytical methods presented here should be the methods of choice

to calculate mutation-response matrices and compensation matrices, because they are much

faster and exact. The speedup afforded by these methods, would be especially useful to

analyse otherwise intractable large proteins, protein complexes, and large protein databases.

These methods should be useful for a wide range of potential applications, such as predicting

evolutionary divergence of protein structures,16,17 detecting and interpreting pathological

mutations,14,21,22 and detecting compensating mutations and rescue sites.15

To finish, I mention two possible lines of further development. A first line is to derive

analytical expressions for the deformations due to external forces applied to single sites, as

in Perturbation-Response Scanning (PRS)7,11 and the Double Force Scanning (DFS).15 This

will be useful for applications related to ligand-binding induced deformations.9,11 Beyond

deformations, a second line of development is to derive analytical alternatives to simulation-

based methods that calculate effects of mutations on protein motions.23,23–26 This would be
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important for studies of the role of protein dynamics in function and evolution.26–31
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