

1

Efficient storage and analysis of quantitative genomics data with the
Dense Depth Data Dump (D4) format and d4tools.
Hao Hou1,2, Brent Pedersen1,2, Aaron Quinlan1,2,3

1. Department of Human Genetics, University of Utah, Salt Lake City, UT
2. Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT
3. Department of Biomedical Informatics, University of Utah, Salt Lake City, UT

Abstract
Modern DNA sequencing is used as a readout for diverse assays, with the count of aligned
sequences, or "read depth", serving as the quantitative signal for many underlying cellular
phenomena. Despite wide use and thousands of datasets, existing formats used for the
storage and analysis of read depths are limited with respect to both file size and analysis
speed. For example, it is faster to recalculate sequencing depth from an alignment file than it
is to analyze the text output from that calculation. We sought to improve on existing formats
such as BigWig and compressed BED files by creating the Dense Depth Data Dump (D4)
format and tool suite. The D4 format is adaptive in that it profiles a random sample of aligned
sequence depth from the input BAM or CRAM file to determine an optimal encoding that often
affords reductions in file size, while also enabling fast data access. We show that D4 uses less
storage for both RNA-Seq and whole-genome sequencing and offers 3 to 440- fold speed
improvements over existing formats for random access, aggregation and summarization. This
performance enables scalable downstream analyses that would be otherwise difficult. The D4
tool suite (d4tools) is freely available under an MIT license at: https://github.com/38/d4-format.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.23.352567doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.23.352567
http://creativecommons.org/licenses/by-nc/4.0/

2

Introduction
Aligned DNA or cDNA sequence depth is one of the most important quantitative metrics used
for variant detection1, differential gene expression2,3, and for critical evaluations of data quality
control4. Despite the wide use of quantitative genomics datasets, the underlying algorithms,
data structures, and software implementations for handling genomics quantitative data have
limitations. The BigWig format5, a workhorse in genomics, requires considerable memory
during its creation and is complex enough to limit broad development of, or improvements to,
the format. At the other end of the spectrum is the widely-used, BEDGRAPH format which,
owing to the fact that it is text-based, is simple to understand, yet both slow to parse and
consumes substantial disk space.

To improve upon the limitations of existing formats, we have developed the Dense
Depth Data Dump (D4) format and software suite. The D4 format is motivated by the
observation that depth values often have low variability and are therefore highly compressible.
Here, we detail how we use this low entropy to efficiently encode quantitative genomics data
in the D4 file format. We then demonstrate the D4 format's combined file size and analysis
speed efficiency with respect to the bgzipped BEDGRAPH, BigWig5, and HDF56 formats. The
D4 format and associated tools support fast random access, aggregation, summarization, and
extensibility to future applications. These capabilities facilitate a new scale of genomic
analyses that would be otherwise far slower.

Methods
The D4 format. Devising a disk- and computation-efficient file format to store quantitative data
that can take on an infinite or very large range of finite values is a difficult task. Thankfully, the
sequencing depths observed in modern genomics assays often have little variance, thus
yielding a limited range of discrete values. For example, consider a human whole genome
sequence (WGS) assay yielding the typical target of 30-fold average read depth. In a typical
WGS dataset, more than 99% of the observed depths fall between 0 and 63 (Figure 1A).
Therefore, it is possible to encode >99% of the data using only 6 bits per base, since 26 equals
64. Similarly, more than 50% of genomic positions have a sequence depth of 0 in typical RNA-
seq experiments, since a small portion of the coding genome is assayed. On the other hand,
RNA-seq yields a much broader range of non-zero depths than WGS, reflecting the highly-
variable degree of isoform expression from gene to gene. Nonetheless, the range of observed
values is both finite and redundant (Figure 1B).

0

50

100

150

10%

20%

30%

40%

50%

60%

70%

80%

90%

0

200

400

600

800

1000

1200

M
ill

io
ns

 o
f b

as
es

C
um

ulative percentage

8 16 32 64 128

10%

20%

30%

40%

50%

60%

70%

80%

90%

C
um

ulative percentage

8 16 32 64 128

M
ill

io
ns

 o
f b

as
es

if k=6, >99% of observed depths
can fit in k bits, as 26 = 64

Depth Depth

A BWGS RNA-seq

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.23.352567doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.23.352567
http://creativecommons.org/licenses/by-nc/4.0/

3

Figure 1. Depth distribution for WGS and RNA-seq datasets. The global depth histogram (gray) and
cumulative percentage of bases (red) for whole-genome (A) and RNA-Seq (B) data. For typical WGS
datasets, more than 99% of observed depth values are <63, indicating that the majority of data can be
encoded in 6 bits. The variance in observed depths is much greater for RNA-seq data and other
quantitative assays; however, the range of values is finite and amenable to encoding. The WGS dataset
is sample HG002 from the Genome in a Bottle Project, and the RNA-seq dataset is sample
ENCFF976QSN from the ENCODE project7.

The D4 format utilizes an encoding scheme that takes advantage of the finite range of depth
values observed in most genomics assays to enable storage efficiency (Figure 2). D4 uses a
dense array as a primary table having one entry per base in a given chromosome with each
base consuming k bits (Figure 2A, where k=6). The index i into this dense array provides a
lookup for the chromosomal position i. That lookup is then used as a key into a k-bits code
table mapping 2k k-bit codes to the 2k distinct real values (Figure 2B). We note that the Code
Table could be used to encode other values besides sequencing depths (e.g. labels, p-values,
etc.), but the number of distinct codes in the Code Table is governed by the choice of k. Any
value less than 2k-1 in the code table encodes the actual depth for position i. However, if the
encoded value is exactly 2k-1, then either the value is encoded by the code 2k-1, or its precise
value is stored in the sparse secondary table (Figure 2C). Therefore, when a code 2k-1 is
seen, the sparse secondary table must be queried. If this query of the secondary table does
not return an entry for that position, one can conclude that the actual value is the value
encoded by the code 2k-1. Otherwise the actual value is returned from the secondary query.
In effect, if a value cannot be encoded to a k-bit code by the code table, the code 2k-1 is
emitted to the primary table as a placeholder, and the actual value is stored in the sparse
secondary table instead.

For a typical 30X WGS, this secondary table query happens less than 1% of the time and
therefore the sparse secondary table often contains less than 1% of the data. This efficiency
saves disk space as the primary table uses k bits per base, and the secondary table usually
contains a small percentage of the data but uses 80 bits to store the combination of the
chromosomal range and the observed depth at that range of positions. In this way, we estimate
that chromosome 1 of the human genome, which contains 249 million bases, will consume
212 megabytes for a D4 encoding of WGS data, as 249 million * 6 bits + 1% * 249 million *
80 bits < 181 megabytes. In contrast, if we were to store each depth as an unsigned 32-bit
integer, 996 megabytes would be required for the same data. Therefore, we can achieve a
5.2X lossless encoding ratio with the D4 encoding strategy with k equal to 6. Usually for WGS
datasets, the secondary table encodes only a small portion of the values, but for RNA-seq
datasets the optimal k is 0, which means we have a zero-sized primary table and all the data
is completely stored in the secondary table (discussed further below). In order to further reduce
file size, D4 allows an optional compression for the secondary table. When this is enabled, all
the secondary table records are compressed in blocks which usually reduces the secondary
table size by more than 50% for RNA-seq datasets.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.23.352567doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.23.352567
http://creativecommons.org/licenses/by-nc/4.0/

4

Figure 2. The D4 format encoding strategy. A. The D4 Dense Primary Table. The D4 format uses
a dense array as a Primary Table that contains one entry per base in each chromosome. Each array
entry consumes k bits, and the values stored in each entry range from 0 to 2k - 1. In this hypothetical
example, k is 6. B. The k-bits Code Table. After a D4 file is created and when one wants to learn the
depth of coverage at a particular genome position, one looks at the code stored at the position in the
primary table. If the value of the code is less than 2k - 1, then one can look up the actual value (e.g.,
sequencing depth) in the k-bits Code Table. For example, the code for position 1,000,000 is "011011",
which is less than 26 - 1 (63). Therefore, the code table is used to look up the encoding for “011011",
which, in this case, is 27. C. The Sparse Secondary Table. There is more work to be done in cases
where the code stored in the Primary Table is exactly equal to 2k - 1. This scenario indicates that either
the value for that position is encoded in the last possible entry of the code table, or that the value
exceeds the range of distinct values that can be encoded by the choice of k. To distinguish the two
scenarios, one must first lookup the genome coordinate in the sparse Secondary Table. If, as in the
case of coordinate 1,000,010, an entry does not exist in the Secondary Table (denoted by the red "stop
sign"), then we can infer that the actual value can be determined by looking up the code in the Code
Table. If, however, an entry does exist, as in the cases of coordinate 1,000,010 (depth = 64, which
exceeds the range of 0 to 2k-1) and 1,000,020 (depth = 100), then the value for that coordinate is stored
directly in the Secondary Table.

Adaptive Encoding. The toy example in Figure 2 assumes k is known ahead of time.
However, for each dataset, there is an unknown, optimal k which maximizes the efficiency of
the read depth encoding. This optimal k depends on the range and variance of depths
observed in the dataset. The d4tools software samples the depth distribution to quickly
determine the optimal k for a given dataset. The essential trade-off is that a smaller k
necessarily means that each entry in the primary array will use fewer bits (Figure 3). However,
with a smaller k, a greater percentage of the observed depths will fall outside of the range
supported by the code table given the choice of k (e.g., depths 0 through 63 are supported by
k=6). Likewise, a larger k means that each base in the primary array will consume more bits,
but that fewer values are needed in the sparse secondary table, which consumes 80 bits per
entry. As mentioned, in the case of most 30X WGS datasets the optimal choice of k is 6
(Figure 3A). However, the optimal choice of k for most RNA-seq datasets is 0. This is because

011011
011100
011100
011011

111111

k-bits Code Table

0

1000000

000000

000000length-1
...

Dense, k-bits
Primary Table

011011
011100

111111

27
28

63

...

...

000000 0

Depth index Value

...

...

111111

1000001
1000002
1000003

1000010

1000020

10
00

00
0

Coordinate

Depth 27

10
00

00
1

28

...

10
00

01
0

63

10
00

02
0

100

Coordinate Depth
0

2k-1

Coordinate Depth
990100 82

10
00

01
1

64

1111111000011 ...
1000011 64
1000020 100

1900018 77
...

...

Sparse,
Secondary Table

Code = 2k-1

Code = 2k-1
Code = 2k-1

A B

C

Code < 2k-1

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.23.352567doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.23.352567
http://creativecommons.org/licenses/by-nc/4.0/

5

the range of depths observed in RNA-seq data is wide enough that it’s not possible to choose
a narrow range (small k) that encompasses the majority of the observed depths (Figure 3B).
When k becomes too large, each entry in the chromosome-length primary table will consume
enough bits to offset any gain from the larger range.

Figure 3. Optimizing the choice of k given the trade-off between the size of the primary and
secondary tables. Panels A and B demonstrate, for example WGS and RNA-seq datasets,
respectively, the trade-off between the size of the primary and secondary tables k is varied. The optimal
choice of k, which minimizes the total size of the resulting D4 file, is the point at which the black line
has its lowest value. Each entry in the primary table will consume more bits as k increases, but the
secondary table size will decrease. D4 finds the optimal k by randomly sampling the depth distribution
from the input file. Note that for RNA-Seq (panel B), it is often optimal to have k of zero, indicating that
only the sparse secondary table is used.
Enabling parallelism, modularity, and extensibility in the D4 format. The implementation
of the D4 format uses a general data container that allows multiple, variable-length data
streams to be appended to the container file in parallel (Supplementary Methods). In
particular, when a D4 file is being created, genome coordinates are split into small chunks.
Each thread is responsible for several chunks of data, encoding and writing the data to the
growing D4 file in parallel. The container file data structure is based on an unrolled list8 with
adaptive chunk sizes. When a D4 file is created, it uses the unroll list to allow data chunks to
be added to the growing D4 file without blocking the other threads. When reading a D4 file,
the unrolled list can be mapped to the main memory using the "mmap" system call and
manipulated with the CPU's SIMD instruction set. D4 files are able to be extended without
breaking any existing file format by adding more streams to the container file, for example, a
precomputed depth statistic.

An efficient algorithm for computing depth of coverage. In order to fully take advantage
of the encoding efficiency of the D4 format, we developed a new algorithm to efficiently profile
the depth of coverage in input BAM files. We developed this algorithm because existing
methods such as samtools9 "pileup" consume memory in proportion to the maximum depth in
a region. This approach is also slow in genomic regions exhibiting very high depth. The
memory use for mosdepth10, our previously published method for reporting per-base

0

1

2

3

4

5

6

7

8

9

10

8 16 32 64 128

S
iz

e
in

 G
ig

ab
yt

es

Max depth value in depth dictionary given k

0

1

2

3

4

5

6

7

8

9

10

S
iz

e
in

 G
ig

ab
yt

es

8 16 32 64 128
Max depth value in depth dictionary given k

Sec. Table Size
Prim. Table size
Total size

k=6
[0..64)

k=7
[0..128)

k=5
[0..32)

k=4
[0..16)

k=6
[0..64)

k=7
[0..128)

k=5
[0..32)

k=4
[0..16)

A B

Optimal k=6 Optimal k=0

WGS RNA-seq

Sec. Table Size
Prim. Table size
Total size

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.23.352567doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.23.352567
http://creativecommons.org/licenses/by-nc/4.0/

6

sequencing depth, is governed by the length of the longest chromosome, but, as implemented,
it is not parallelized. In contrast, D4 introduces a new algorithm that limits the memory
dependency on depth and also facilitates parallelization of the coverage calculation. This
algorithm uses a binary heap that fills with incoming alignments as it reports depth. The
average time complexity of this algorithm is linear with respect to the number of alignments
(see Supplementary Methods for algorithm details and lower bound analysis). Because there
is little memory allocation, this algorithm can be parallelized by performing concurrent region
queries in different threads. The algorithm uses the start and end of alignments such that it
does not count, for example, soft-clipped regions, but it will also not drop the depth for internal
CIGAR events such as deletions. As a result, the d4tools "create" command is able to encode
new D4 files from input BAM or CRAM files in far less time than creating depth profiles with
BigWig or other formats, especially when leveraging multiple threads.

The d4tools software. The d4tools software suite is written in the Rust programming
language to facilitate safe concurrency and performance. Our implementation takes
advantage of Rust's trait system, which allows zero-cost abstraction and the borrow checker
to ensure correctness of the memory management. More importantly, Rust provides a strong
multithreading safety guarantee which allows us to implement D4 in a highly parallelized
fashion. We expose a C-API and provide a separate Python API so that researchers can easily
utilize the library. Example commands for common operations to create and analyze D4 files
are provided in Table 1.

Table 1. Example d4tools commands
Command Description
d4tools create input.bam output.d4 Create a d4 file by profiling depth-data

from an alignment file
d4tools create input.bigwig output.d4 Create a d4 file by profiling depth-data

from a BigWig file
d4tools create -g input.genome input.bedgraph
output.d4

Create a d4 file by profiling depth-data
from a BedGraph file

d4tools view output.d4 chr1:1-100000 Extract data for a given region to text-
based BED format

d4tools stat -s mean -r regions.bed output.d4 Calculate the mean coverage for each
region given in a BED file

d4tools plot output.d4 chr1:1000-2000 Draw an image of coverage data for the
given region.

Results
Single-Sample Evaluation
In order to compare D4 to existing solutions, we calculated aligned sequence depth profiles
for the WGS and RNA-seq samples in Figure 1 using the D4, BGZF-compressed BedGraph,
BigWig, and HDF5 formats. In addition to comparing the file sizes for each approach, we
evaluated the time required to create a depth profile from each aligned BAM file into the
relevant file format, the time required to summarize the results in a full sequential scan of the
entire file, and finally, the average time used to query the depth for a set of random genomic
intervals (Figure 4). All operations by D4 yield an increase in performance as the number of
threads increases, although this performance increase begins to saturate for random access

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.23.352567doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.23.352567
http://creativecommons.org/licenses/by-nc/4.0/

7

around 8 cores (Supplementary Figure 1). For both WGS and RNA-seq datasets, D4 yielded
a 10X faster file creation time, and, with the exception of the highly-compressed HDF5 format,
yielded the smallest file size. The high compression rate of the HDF5 format comes at the cost
of much less efficient analysis times. Sequential access to the depth at every genomic position
was 3.6 times faster than BigWig, 3.8 times faster than HDF5 with a single thread and 31.5
and 32.4 times faster with 64 threads. Again using 1 and 64 threads, accessing 10,000 random
genomic intervals is between 21.3 and 72.8 times faster than BigWig, between 130 and 446
times faster than block-GZIPed BEDGRAPH and between 18 and 64 times faster than HDF5.
D4 also supports optional secondary table compression. For WGS datasets, the secondary
compression usually doesn't result in a noticeable performance and size difference, but for
RNA-seq datasets, enabling the secondary table compression reduces the file size at the cost
of slower computation. Comparing a D4 file with the deflated and inflated secondary table, the
D4 file is 54% smaller while the sequential access performance of a deflated D4 file is 4 times
slower with single thread and 44% slower with 64 threads. Similarly, the random-access
performance is slower by 17 times and 2 times. In practice, D4 files with deflated secondary
tables can be used as a compact archive format for cold data and those with inflated secondary
tables can be used as hot data format that allows high performance data analysis.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.23.352567doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.23.352567
http://creativecommons.org/licenses/by-nc/4.0/

8

Figure 4. Performance of D4 compared to other formats. The file size (A), total wall time for creation
(B), sequential access (C) and random access (D) are reported for the WGS and RNA-Seq datasets
presented in Figure 1. The "sequential access" experiment iterates over each depth observed in the
output file. Ten thousand random intervals of length 10,000 were used to assess the "Random Access"
time. Each time reflects the average of 5 trials with the min and max removed. All D4 files shown use a
compressed secondary table. Thrd: abbreviation for threads.

Evaluation on large cohort
In order to illustrate the types of analyses facilitated by the speed and efficiency offered in D4
format and tools, we performed an evaluation of depth on both the 2,504 samples from 1000
Genomes high-coverage whole-genome samples (Michael Zody, personal communication),
and on 426 RNA-seq BAM files from the ENCODE project. We restricted our comparison to
the BigWig format given its wide use in the genomics community, and the fact that its combined
file size and performance are closest to that of D4. For WGS datasets, D4 files are consistently
less than half the size of BigWig files and D4 file size is largely consistent across a wide range
of input CRAM file sizes (Figure 5A). As the mean depth of WGS datasets from the 1000
Genomes project increases, we observe a transition from 5 to 6 in the optimal choice of k,

0 1 2 3 4 5

HDF5
BigWig

BEDG

D4

File size (Gigabytes)

WGS RNA-seq

0 1 2 3 4 5
HDF5

BigWig

BEDG

D4

File size (Gigabytes)

0 50 100 150 200
HDF5

BigWig
BEDG

D4 (64 thrd.)
D4 (1 thrd.)

File creation time (sec)

A

B

N/A
0 500 1000 1500 2000

HDF5
BigWig
BEDG

D4 (64 thrd.)
D4 (1 thrd.)

File creation time (sec)

N/A

0 10 20 30 40 50

HDF5
BigWig
BEDG

D4 (64 thrd.)
D4 (1 thrd.)

C

0 50 100 150 200 250 300

HDF5
BigWig
BEDG

D4 (64 thrd.)
D4 (1 thrd.)

Sequential access time (sec.) Sequential access time (sec.)

1.28 sec

11.07 sec

57.83 sec

0.26 sec

3.04 sec

3.13 sec

0 5 10 15 20 25
HDF5

BigWig
BEDG

D4 (64 thrd.)
D4 (1 thrd.)

D

0 10 20 30 40 50 60
HDF5

BigWig
BEDG

D4 (64 thrd.)
D4 (1 thrd.)

Random access time (sec.) Random access time (sec.)

0.12 sec

0.41 sec
0.21

2.08

5.02 sec8.73 sec

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.23.352567doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.23.352567
http://creativecommons.org/licenses/by-nc/4.0/

9

since the variance increases with the mean (Figure 5A, inset). This results in a small increase
in D4 file size, yet we observed a large jump in BigWig file size for WGS datasets with a mean
depth near 60 or higher. Furthermore, we note that the male 1000 Genomes datasets had
slightly larger D4 files than females owing to the fact that one X chromosome yields more
positions with aligned sequencing depths that lie outside of the range encoded by k. Finally,
while D4 files are much smaller than BigWig for WGS datasets, D4 and BigWig file sizes are
much more similar for RNA-seq datasets (Figure 5B).

As an example of the type of practical analyses improved by use of D4, we identify large
regions in the WGS and RNA-seq datasets where samples had high coverage depths, as
these often reflect atypically high depth regions that result in incorrect variant calls11, and
genes with high expression levels, respectively (Figure 5C,D). We implemented this using the
D4 API in Rust, and the relevant code can be found in the D4 Github repository. We report the
time to create each D4 file and the time to calculate the high-coverage regions. On average,
D4 required only 3% of the time required by BigWig to conduct these analyses for the WGS
datasets, and 18% of the time required by BigWig for the RNA-seq datasets.

Figure 5. A. Mean depth of the original alignment file (x-axis) compared to the size of the resulting D4
and BigWig files (y-axis). Note the small range of D4 file sizes. The inset figure depicts how the optimal
choice of k changes as mean depth increases. Furthermore, male samples have slightly higher D4 file

0

0.5

1

BigWig D4

CRAM mean depth

0

5

10

15

20

0

20

40

60

80

W
G

S
 a

na
ly

si
s

w
al

l t
im

e
(s

ec
on

ds
)

BigWig D4

R
N

A
-s

eq
 a

na
ly

si
s

w
al

l t
im

e
(s

ec
on

ds
)

BigWig D4

D
4

fil
e

si
ze

 c
on

ve
rte

d
fro

m
 W

G
S

 (G
b)

0.0

2.5

5.0

7.5

10.0

30 40 50 60 70

D4 choice of k
k=5
k=6

A

B C D

2.0

2.2

2.4

2.6

30 40 50 60 70
CRAM mean depth

Female

Male

BigWig
D4

D
4

fil
e

si
ze

 c
on

ve
rte

d
fro

m
 R

N
A

-s
eq

 (G
b)

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.23.352567doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.23.352567
http://creativecommons.org/licenses/by-nc/4.0/

10

sizes than female (see main text). B. Size distribution of the D4 and BigWig files converted from RNA-
seq BAM files. C. Per-sample distribution of wall time required to identify regions of each genome
greater than or equal to 1,000 base pairs where each position has a depth of coverage greater than
120. 98.8% of D4 samples completed in under 2 seconds of wall time each. D. Per-sample distribution
of wall time required to identify regions of each genome greater than or equal to 1,000 base pairs where
each position has a depth of coverage greater than 10,000.

Discussion
We have introduced the D4 format and set of tools and shown the speed, scalability, and utility.
Our results illustrate D4's unique combination of minimal file size and computational efficiency
in addition to highlighting the potential of D4 for rapid analysis of large-scale datasets. In
particular, unlike existing formats, the adaptive encoding strategy in D4 allows the format to
adjust to the properties of diverse genomics datasets having varied data densities such as
whole-genome sequencing, RNA-seq, ChIP-seq, and ATAC-seq.

Looking forward, we emphasize that the flexible architecture of the D4 format will allow it to
adapt to other applications such as representing signals from single-cell RNA sequencing
datasets where multiple layers of information (e.g., cell ID, barcode, etc.) are required.

Furthermore, the D4 format's efficiency can also facilitate rapid data visualization for genome
browsers, as well as rapid statistical analyses and dataset similarity metrics that leverage
additional indices or precomputed metrics stored in the D4 format. For example, we have
already incorporated D4 output into our popular depth-profiling tool, mosdepth10. This change
resulted in a nearly 3-fold reduction in run time, since much of the original run time was spent
on writing output in compressed BEDGRAPH format. In addition, the D4 output from mosdepth
is more amenable to custom downstream analyses.

Given its speed, flexibility, and the associated Rust and Python programming interfaces, we
anticipate that the D4 format will enable large-scale genomic analyses that remain challenging
or intractable with existing formats.

Code availability
D4utils: https://github.com/38/d4-format
D4 Rust API: https://docs.rs/d4
D4 Python API: https://github.com/38/pyd4

Acknowledgements
We acknowledge helpful comments from members of the Quinlan laboratory, as well as
funding from the National Institutes of Health https://docs.rs/d4-framefile(NIH) grants
HG006693, HG009141 and GM124355 awarded to A.R.Q.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.23.352567doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.23.352567
http://creativecommons.org/licenses/by-nc/4.0/

11

References
1. Sasani, T. A. et al. Large, three-generation human families reveal post-zygotic

mosaicism and variability in germline mutation accumulation. Elife 8, (2019).

2. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for

differential expression analysis of digital gene expression data. Bioinformatics 26, 139–

140 (2010).

3. Anders, S. & Huber, W. Differential expression analysis for sequence count data.

Genome Biol. 11, R106 (2010).

4. Pedersen, B. S., Collins, R. L., Talkowski, M. E. & Quinlan, A. R. Indexcov: fast

coverage quality control for whole-genome sequencing. Gigascience 6, 1–6 (2017).

5. Kent, W. J., Zweig, A. S., Barber, G., Hinrichs, A. S. & Karolchik, D. BigWig and BigBed:

enabling browsing of large distributed datasets. Bioinformatics 26, 2204–2207 (2010).

6. Koranne, S. Hierarchical Data Format 5 : HDF5. Handbook of Open Source Tools 191–

200 (2011) doi:10.1007/978-1-4419-7719-9_10.

7. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the

human genome. Nature 489, 57–74 (2012).

8. Shao, Z., Reppy, J. H. & Appel, A. W. Unrolling lists. SIGPLAN Lisp Pointers VII, 185–

195 (1994).

9. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25,

2078–2079 (2009).

10. Pedersen, B. S. & Quinlan, A. R. Mosdepth: quick coverage calculation for genomes

and exomes. Bioinformatics 34, 867–868 (2018).

11. Li, H. Toward better understanding of artifacts in variant calling from high-coverage

samples. Bioinformatics 30, 2843–2851 (2014).

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.23.352567doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.23.352567
http://creativecommons.org/licenses/by-nc/4.0/

12

SUPPLEMENTARY FIGURES

Supp Figure 1

SUPPLEMENTARY METHODS

Depth profiling algorithm

current = next_read();
read_heap = new_heap();
for pos in 0..chrom_size {
 if current != EMPTY && pos > current.start_pos {
 read_heap.insert(current.end_pos);
 current = next_read();
 }
 while read_heap[0] < pos {
 read_heap.pop();
 }
 report(read_heap.size);
}

For each iteration, the binary heap operation takes O(log(D)) running time where D is the
current read depth, thus, we can prove that:

,

where N is the genome size and Dmax is the maximum depth. Now we prove a tighter bound
for it.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.23.352567doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.23.352567
http://creativecommons.org/licenses/by-nc/4.0/

13

For the theoretical lower bound, we should at least enumerate all the reads in the alignment
file. Because we need to both scan the alignment file and report the per-base values even in
the worst case. So that

where S is the total number of reads in the alignment file. The accurate running time of our
algorithm is

where dpos is the depth at position pos. Applying the inequality of arithmetic and geometric
means, we can easily show that

Which means our depth profiling algorithms is no worse than the theoretical upper bound, so
that

So that we proved that

It's possible to (1) simplify the alignment in the read_heap to a single end position and (2)
collapse all the alignment ends at the same location. By doing so, the upper bound of
memory efficiency is

where L is the maximum of the read length.

So that this algorithm is optimal in terms of time complexity while space complexity is better
than the counter array approach. Thus, this algorithm allows the BAM file to be processed
with multiple processors at the same time with limited memory usage.

D4 file format details.

Overview: Unlike normal file formats, D4 doesn't have a stable file layout. The D4 file is built
on top of the container format called framefile. All the data including primary table, secondary
table and metadata is stored as an entity of the framefile.

There are 3 different types of object in a framefile: variant length data stream, fixed-sized blob
and sub-framefile. In the D4 implementation, the primary table is implemented as a fixed-sized
blob and the secondary table is implemented as a sub-framefile that contains multiple data
streams of sorted-by-position out-of-range sparse values.

Unlike the traditional file IO API, our D4 implementation doesn't use read/write semantics to
perform the IO. When a D4 file is open, the D4 file can be split into small chunks (e.g.
1,000,000,000 bps per chunk), each chunk can be handled by different threads at the same
time. For random access cases, the irrelevant chunks are dropped once the file has been split.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.23.352567doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.23.352567
http://creativecommons.org/licenses/by-nc/4.0/

14

Splitting the Primary Table: For both read and write, the primary table is directly mmap-ed
to the address space of the program and it's directly split into slices.

Splitting the Secondary Table: For writing a D4 file, each thread will create an independent
stream under the secondary sub-framefile and each of the streams is called a partition of the
secondary table. When a D4 file is being read, all the frames will be indexed into memory first
and then splitted into small pieces according to the primary table partition.

D4 File Format Overview. The D4 format is defined as a file header and the root container

Offset (in bytes) Name Type Value

0 File Magic Number [u8;4] "\xdd\xddd4"

4 Format Version [u8;4] [0,0,0,0]

8 Frame File Root Directory Primary Size = 512

Frame File Data

Frame File Structure

Streams A Stream is a variant-length series of bytes. In framefile container format, a stream
is defined as a linked list of frames:

<Primary Frame> → <Frame 1> → <Frame 2> → …. → <Frame N>
The first frame is called the primary frame.

Stream Frame Represents a single part of the stream, the format is defined as the following
table, the offset is relative to the start of the frame. (Physical Layout)

Offset (in bytes) Name Type Note

0..4 next_frame u32_le Relative Offset in Bytes (For the last frame,
must be 0)

4..8 next_size u32_le Data Chunk size of next frame in bytes

8..8+size Data Chunk

Directory Dictionary is a special form of stream, data payload is a list of directory entries and
list is terminated with a byte 0. (Logic Layout)

Entry 1

Entry 2

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.23.352567doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.23.352567
http://creativecommons.org/licenses/by-nc/4.0/

15

...

Entry N

'\0'

Directory Entry (Logic Layout)

Offset (bytes) Name Type Note

0 valid_flag u8 Must be 1

1 entry_type u8 0 = Stream
1 = Sub-framefile
2 = Fix-size blob

2..10 primary_fram
e

u64_le Absolute offset to the primary frame for this
entity

10..18 primary_size u64_le Size of the primary frame12

18..? name null
terminated
string

Name of the entity (UTF8 encoding)

1. For Sub-directory, this is defined as size of everything under the sub dir
2. For blob, it defined as blob size

Blob Any binary data with known size

D4 Logical Representation Overview D4 file is defined on the top of the container format.
The d4utils provides a tool to inspect the logic structure of a D4 file with "d4utils framedump"

+ D4 File Root
+ Metadata: ".metadata"
+ Primary Table: ".ptab"
+ Secondary Table: ".stab"

+ Metadata: ".metadata"
+ Part 1: "1"
+ ….
+ Part N: "N"

+ (More entry can be added to the root)

Name Path Type Description

Metadata .metadata Stream Json encoded global metadata, e.g.

{
 "chrom_list": [

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.23.352567doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.23.352567
http://creativecommons.org/licenses/by-nc/4.0/

16

 {
 "name:"chr1",
 "size": 10000000
 }
],
 "dictionary": {
 "simple_range": {
 "low": 0,
 "high": 64,
 }
 }
}

Primary
Table

.ptab Blob K-bit Array that encodes the in-dictionary values

Secondary
Table
Metadata

.stab/.meta
data

Stream Json encoded secondary table metadata, e.g.
{
 "format":"SimpleKV",
 "record_format":"range",
 "partitions":[
 ["1",0,10000000],
 ["1",10000000,20000000],
 ["1",20000000,30000000]
],
 "compression":"NoCompression"
}

Secondary
Table
Partitions

.stab/<part-
id>

Stream A list of records

Secondary Table Record In the metadata, the field record_format indicates how the out-of-
range value is represented, currently we should use "range" which indicates we use
intervals. The logical layout is following

Offset (bytes) Name Type Note

0..4 left_pos u32_le

4..6 size_enc u16_le length - 1

6..10 value i32_le

For an inflated secondary table, it's simply a stream of intervals.
Otherwise a deflated secondary table, each frame contains a metadata block

Offset (bytes) Name Type Note

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.23.352567doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.23.352567
http://creativecommons.org/licenses/by-nc/4.0/

17

0..4 first_left_pos u32_le

4..? Deflated records

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.23.352567doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.23.352567
http://creativecommons.org/licenses/by-nc/4.0/

