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Abstract 

Based on the transcriptome analysis of 555 sarcomas, we identified a group of tightly 

clustered leiomyosarcomas (LMS) due to their gene expression homogeneity. We named 

them “hLMS” and the other LMS “oLMS”. We derived a transcriptional signature able to 

identify each group and used it to classify patients from two independent cohorts. In all 

cohorts, hLMS were preferentially carried by women, located in the internal trunk, highly 

differentiated, and similarly altered at the genomic level. Based on integrative bioinformatic 

analysis, we show that hLMS originate from vascular smooth muscle cells presenting both 

contractile and synthetic characteristics, while oLMS could derive from fibroblasts. We found 

strong MYOCD expression to be an hLMS-specific driver and show that the MYOCD/SRF 

axis is essential only for hLMS survival. Identification of hLMS could become standard 

clinical practice, leading to the development of specific effective treatments with 

MYOCD/SRF inhibitors. 

 

Statement of significance 

Leiomyosarcomas (LMS) are currently treated as a single entity. However, we have now 

identified a transcriptionally, genomically and clinically homogeneous subgroup of LMS. 

Their oncogenesis is driven by the acquisition of high differentiation through MYOCD over-

expression. This confers them sensitivity to MYOCD/SRF inhibitors, which could thus 

become a potential therapeutic target.  

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 24, 2020. ; https://doi.org/10.1101/2020.10.23.352336doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.352336


Introduction 

Leiomyosarcoma (LMS) is a rare mesenchymal malignancy presenting smooth muscle 

differentiation and accounting for 11% of adult soft tissue sarcomas (STS) (1). LMS arises in 

various anatomical sites but mostly the uterus, the retroperitoneum and the limbs. LMS is one 

of the most aggressive STS subtypes as up to 50% of patients relapse (2) with a median 

survival of 12 months. However, the main treatment involves wide surgical resection for 

localized LMS or anthracycline-based chemotherapies for metastatic tumors, since neither 

targeted therapy (3) nor immunotherapy (4) have demonstrated any major therapeutic effects 

until now.  

LMS oncogenesis is organized around a highly rearranged genome with a high number of 

chromosomal rearrangements leading to many copy number variations (CNV) and break-

points, which are associated with poor outcome (5). However, no specific recurrent 

pathogenic event has been detected so far. 

Stratifying patients on gene-expression profiling based on the unique prognostic and 

therapeutic characteristics of the tumors has been shown to improve patient outcome, thanks 

to the development of adapted therapies in several cancer types such as breast (6) and colon 

(7) cancer.  

Subgroups of LMS have been identified by using different transcriptomic sequencing 

methods and sample collections (8–16). One subgroup was consistently highlighted with a 

homogeneous transcriptomic profile, expression of smooth muscle cell (SMC) differentiation 

markers, a higher differentiation and localized in the retroperitoneum. Nonetheless, no 

standardized methodology has yet emerged and the discrepancies between the reported 

subtypes hamper understanding of the specific biology or oncogenesis of these tumors that is 

essential for improving clinical care. 
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In an elegant study, Watson and colleagues reported that sarcomas with a strong chimeric 

driver oncogene have a homogenous and specific transcriptomic program (17). Therefore, we 

hypothesized that such a mechanism could be identified in LMS showing this characteristic.  

Accordingly, we conducted a systematic transcriptome-wide investigation comparing LMS 

(with exclusion of uterine LMS which are quite well recognizable (18)) to hundreds of other 

sarcomas. This highlighted two groups of LMS differing in their transcriptional homogeneity. 

We developed a transcriptional signature to robustly classify LMS into two groups with 

consistent clinical associations and gene expression in three independent cohorts. By 

combining “omics” data at the genome, transcriptome and micro RNA levels, we were able to 

establish two distinct patterns of oncogenesis that differentiate LMS into at least two 

pathologies originating from different cell types. One of the subgroups predicted by the 

signature presents a therapeutic vulnerability, which could pave the way for a new treatment 

option. 

 

Results 

Identification of a group of 42 LMS behaving as simple genetic sarcomas  

To detect LMS molecular subtypes within sarcoma samples, we combined micro-array 

datasets obtained on Affymetrix (387 complex genetic sarcomas including 98 LMS) and 

Agilent platforms (60 GIST, 58 synovial sarcomas, 50 LPS and 87 complex genetic 

sarcomas) (Supplementary Figure S1A, total = 555 samples). Using the strategy described 

in the methods and illustrated in Supplementary Figure S1C, we selected 9066 genes (out of 

17854 genes common to both platforms) showing enough consistency to enable merging and 

normalization of all datasets. We assumed that selecting modules of co-expressed genes that 

potentially group genes with similar functions would lead to more meaningful patient 

clustering. We detected 15 co-expression modules (out of 54) carrying at least 5 genes from 
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455 highly correlated genes. Thirteen modules were significantly associated with biological 

functions and cellular components (e.g. immune system activation, cell cycle, skeletal muscle 

or smooth muscle-related, adipogenesis, extracellular matrix, apical plasma membrane, 

genomic positional bias, Supplementary Table S1A, Figure S1D). We used these 54 

modules in a non-supervised approach to cluster the 555 samples and observed a subgroup of 

LMS clustering together, while the other LMS were mixed with other pleomorphic sarcomas. 

This LMS subgroup appeared to behave like sarcomas with a recurrent alteration, i.e. with a 

fairly homogenous transcriptomic program driven by a strong oncogene (17), as observed 

with GIST, myxoid liposarcomas and synovial sarcomas (Figure 1A). We thus hypothesized 

that this LMS subgroup (41 patients over the 98 LMSs) could be driven by a strong oncogenic 

program reflected by this specific gene expression profile.  

To select genes that best characterized these LMS, we compared them with the remaining 57 

LMS which were mixed with the other sarcomas. As the 98 LMS were all analyzed on the 

Affymetrix chip, we used the 22635 genes present in the chip. We identified 1672 

differentially expressed genes (Supplementary Table S2A) that we used to re-cluster the 

samples. Almost all samples were classified similarly (95/98) regarding the analysis 

performed above on the 555 samples. We obtained 42 homogeneous LMS (hLMS) and 56 

other LMS (oLMS) (Figure 1B).  

 

hLMS are intra-abdominal, low-grade and metastatic LMS with homogeneous 

transcriptional behavior  

After having confirmed that gene expression profiles within hLMS were significantly more 

homogeneous than within the other group (Wilcoxon’s test; P = 2.9 x 10-13), we tested clinical 

feature enrichments (Table 1). hLMS were mostly located in the abdominal cavity (P = 8.5 x 

10-9), developed in females (P = 0.003), were well differentiated (P = 3.9 x 10-9) and 
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consequently were more frequently grade 1 or 2 (low grades, P = 5.5 x 10-4). Interestingly, 

despite this differentiation and grading, they had a poorer prognosis than oLMS (P = 0.0054, 

Figure 1C).  

 

hLMS are characterized by both contractile and synthetic smooth muscle cell phenotypes  

 
Functional enrichment analysis of differentially expressed (DE) hLMS/oLMS genes (Figure 

1D and detailed in Supplementary Tables S1B and C) revealed biological differences 

between the two groups. The transcriptional program in hLMS is strongly associated with 

smooth muscle cell and cell cycle activity, as evidenced by the enrichment of E2F and RB1 

targets, CINSARC signature, DNA replication, metabolism and mitochondrial activity in up-

regulated genes. In line with these results, activating marks (H3K4me1, H3K27Ac and 

H3K9Ac) from ChiP-seq experiments in smooth muscles (stomach, rectum, colon, aorta) as 

well as ChiP-seq peaks for SRF and MEF2A were enriched in over-expressed hLMS genes 

(Supplementary Table S1D, Figure 1E). On the other hand, oLMS were associated with 

ER-Golgi related terms, epithelial-mesenchymal transition and the TGFβ signaling pathway, 

while enriched histone marks in over-expressed oLMS genes were found to be comparable to 

those in fibroblasts, epithelial and derived mesenchymal stem cells. These genes are under the 

regulation of transcription factors (TF) like MYC, ETS1 or ELK1. Therefore, we hypothesize 

that hLMS and oLMS originate from distinct cell types.  

To investigate the potential origin of hLMS, we analyzed the 100 most expressed hLMS 

genes in 7414 samples from 30 different normal tissues (TCGA GTEX dataset). Using a t-

SNE approach, we observed that these genes allowed normal samples to be grouped mainly 

according to their tissue of origin (Supplementary Figure S2A). Visceral smooth muscle 

tissues were mixed and separated from blood vessels to which the hLMS were the closest. 

hLMS and oLMS were well separated and oLMS showed a wider distribution between lung, 
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adipose and breast tissues. These results support our hypothesis that the two LMS groups 

have a different origin and suggest that hLMS could originate from vascular smooth muscle 

cells.  

We annotated these 100 genes (Supplementary Figure S2B) using GSAn (19) 

(Supplementary Table S1E) and found that 50 of them are part of the extracellular exosome, 

which are molecules (mRNA or proteins) exported to the extracellular space. This highlights 

the role of the extracellular matrix (ECM) and of cell-to-cell communication in hLMS 

pathology. Cell differentiation and migration were represented by 32 and 24 genes, 

respectively, which suggests the co-existence of both contractile (MYH11, CNN1, MYL9, 

LMOD1) and synthetic (FN1, TNC, COL1A1/2, MSN, MFAP4) phenotypes in hLMS and in 

blood vessels. 

To complete our analysis of the genomic differences between hLMS and oLMS, we used 

multi-omics to analyze two additional LMS cohorts. 

 

Gene signature identifies hLMS in two independent cohorts 

 
To classify LMS from the ICGC (59 patients) and TCGA (75 patients) (20) cohorts, we 

computed the distance to hLMS and oLMS centroids based on the expression of the 1672 DE 

genes from the Affymetrix cohort. When the cohorts were merged, 102 cases were strongly 

enough correlated with one centroid (Figure 1F), classifying 73 as hLMS and 29 as oLMS. 

Computation of clinical enrichment showed hLMS to be mainly intra-abdominal (P = 1.5 x 

10-7), well differentiated (P = 1.8 x 10-5), carried by women (P = 0.007) and with 

homogeneous transcriptional profiles (P < 2.2 x 10-16) (Table 1), consistent with information 

from the training cohort. However, we observed no difference in metastasis-free survival 

between the two groups. 
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miRNAs adopt specific behavior in hLMS 

  We analyzed 475 expressed mature miRNAs from the 39 patients in the ICGC cohort 

(28 hLMS and 11 oLMS) and 453 in the 60 TCGA patients (43 hLMS and 17 oLMS). PCA 

analysis performed with all expressed miRNAs strongly differentiated hLMS and oLMS 

along the first principal component, which explains 37% (ICGC) and 50.2% of the variance 

(TCGA) (Figure 2A). The high correlation (R2 = 0.69, Figure 2A) between hLMS/oLMS 

log-fold changes from both cohorts indicates that each group identified independently in each 

cohort is consistent and represents two groups of similar diseases. The results of DE analyses 

of both cohorts are presented in Supplementary Table S2B. 

We used the TCGA pan cancer (PANCAN) dataset to validate our hypothesis that the two 

groups have a different cellular origin. To this end, we used the 41 significantly differentially 

expressed miRNAs (35 under-expressed and 6 over-expressed in hLMS) to classify all the 

cancer samples (Figure 2B). All hLMS clustered together among 467 samples mainly from 

prostate adenocarcinomas (65%), digestive track tumors (stomach, colon, esophagus, rectum: 

altogether 14%), LMS (13 gynecological, 8 unclassified: together with hLMS, 13.7%). The 

most discriminative miRNAs of the cluster containing hLMS were 4 of the 6 over-expressed 

miRNAs in hLMS (MIR143-3p, MIR145-3/5p and MIR1). These miRNAs are involved in 

feedforward (MIR143/145) (21) and negative feedback (MIR1) (22) loops during smooth 

muscle differentiation. These results corroborated our hypothesis of a smooth muscle origin 

of hLMS, unlike oLMS which were spread across several clusters.  

Interestingly, all 87 mature miRNAs located in the DLK1-DIO3 imprinted genomic region on 

chromosome 14 (14q32) were repressed in hLMS. Indeed, 25 miRNAs are among the 35 

significantly down-regulated in hLMS (highlighted in Figure 2C), 20 other show negative 

log-fold changes (Supplementary Figure S3A) with very low expression in hLMS 

(Supplementary Figure S3B), and 42 were not detected in any LMS groups in at least one of 
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the cohorts. To evaluate the specificity of this global repression, we compared the expression 

profiles of the 72 miRNAs (among the 87 DLK1-DIO3) present in the PANCAN dataset. 

Most hLMS (37/42) clustered within a group of 563 patients, representing 6% of all samples, 

preferentially with kidney (37%), thyroid (23%), eye (11%) carcinomas and sarcomas (5.5%, 

13 gynecological LMS, 1 unclassified LMS, 2 oLMS, 7 UPS, 6 myxofibrosarcomas, 3 

dedifferentiated liposarcomas) (Supplementary Figure 3C), and none of the visceral smooth 

muscle-related cancers (stomach, colon, rectum, etc.). These results suggest an uncommon 

repression that might be due to a specific mode of oncogenesis rather than to a vSMC origin. 

To evaluate the putative impact of dysregulated miRNAs on hLMS biology, we analyzed their 

post-transcriptional regulatory network by integrating mRNA and miRNA expression data. 

We found 14620 significant miRNA-mRNA interactions predicted in both ICGC and TCGA 

cohorts (negative Pearson’s correlation coefficient (PCC), adjusted P<0.01), of which 210 

were present in at least one database (Supplementary Table S2C). We annotated the 158 

corresponding target genes (35 down- and 123 up-regulated in hLMS) with GSAn (19). 

Twenty-one terms with high specificity were mapped and none of them was specific to DIO3-

DLK1 miRNA cluster, up- or down-regulated target genes, except “response to glucose” 

which was represented only by up-regulated genes (Figure 2D, detailed in Supplementary 

Table S1F). Dysregulated genes are implicated in major pathways, such as cell migration 

("plasma membrane-bound cell projection assembly”, “extracellular matrix disassembly”), 

cell contraction ("regulation of heart contraction”, “cation channel activity”, “calcium ion 

transport”), cell cycle and transcriptional regulation. Of note, significant interactions 

involving the most deregulated miRNAs were previously reported to have an impact on SMC 

phenotypes. Indeed, MIR28, which was over-expressed in hLMS, was found either to promote 

proliferation targeting NME1 (average PCC: -0.61) or to inhibit it by targeting CCND1 

(average PCC: -0.48) in colon cancer (23). MIR455, MIR199a and MIR503/MIR424, which 
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were under-expressed in hLMS, suppress proliferation and migration in pulmonary arterial or 

bladder SMC targeting FGF7 (24) (average PCC: -0.7), DDR1 (25) (average PCC: -0.7) and 

FGF2, respectively (average PCC: -0.63/-0.68) (26).  

The transcriptional profile of miRNAs and its predicted regulatory network revealed the 

putative vascular smooth muscle origin and showed a strong relationship with both vSMC 

contractile and synthetic phenotypes. The question therefore arose whether these two types of 

LMS also have a distinct mode of oncogenesis. 

 

hLMS show recurrent and specific genomic instability 

LMS are characterized by their highly rearranged genome (15). Copy number alterations in 

hLMS appeared more homogeneous than in oLMS both in the merged cohort (Figure 3) and 

between the cohorts, which indicates highly correlated penetrance profiles (Supplementary 

Figure S4A). Recurrent alterations were significantly enriched in hLMS, especially 

amplification of chromosome 17p12-p11.2 and loss of chr10q, chr13q14, chr17p13 (Figure 

3). The chr17p12-p11.2 amplified region was not only significantly enriched in hLMS with 

31% of hLMS showing an amplification versus 7-8% of oLMS, but was also the most 

frequently amplified region in hLMS (Figure 4A, Supplementary Table S3A). Among the 

genes carried by this region, MYOCD was the most frequently amplified (36% of hLMS), and 

was the most over-expressed gene in this region in hLMS compared to oLMS (P < 10-7 all 

cohorts considered, Figures 4A, 4B, Supplementary Table S3B). MYOCD expression was 

very high in 84% of hLMS (97/115, detailed per cohort in Supplementary Figure S4B), 

whereas it was not expressed or at a very low level in oLMS, even in those with a gain or an 

amplification (Figure S4C, Supplementary Table S3B, Figure 4B). 

Interestingly, the well-known tumor suppressors RB1, PTEN and TP53 belong to three of the 

eight most significantly enriched lost regions in hLMS: chr13q14 (88% versus 72%), 
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chr10q23 (87% versus 66%) and chr17p13 (69% versus 13%) respectively (all cohorts 

considered) (Figure 3, Supplementary Table S3B). When we used the whole genome 

characterization of the ICGC to further investigate these genetic variations, we found that 

oLMS tended to be more rearranged (P < 0.05, Supplementary Figure S4D) than hLMS but 

that the mutational burden was similar between them (P = 0.5, Supplementary Figure S4D). 

While no COSMIC mutational signature could be associated with the LMS groups, we found 

a patient-specific predicted contribution of signatures mainly related to defective DNA repair, 

except for LMS23, which had a disproportionate mutational burden (120 mutations/Mb versus 

less than 1 mutation/Mb for the other) and a mutational profile similar to ultraviolet light 

exposure, which is coherent with its location on the scalp. (Supplementary Figure S4E). 

Very few genes were identified as recurrently mutated (SNV). However, by combining the 

different alterations, i.e. mutations, structural variants (SV) and losses, we found very 

frequently altered genes across all ICGC-LMS: TP53 altered in 100% of cases, RB1 in 97.4%, 

PTEN in 82%, ATRX in 28.2% and DMD in 25.6%. (Table 2, Supplementary Tables S4). 

We found no significant difference in RB1 and TP53 global alteration frequencies between 

the two LMS groups. However, TP53 presented significantly different alteration patterns. 

Indeed, oLMS preferentially lost TP53 completely (9/11, 82%) whereas 64.3% of hLMS 

(18/28) exhibited different alterations on each allele with losses, missense and frameshift 

mutations (Fisher’s exact test, P = 0.01, Figure 4C). The same trend was observed for RB1, 

without reaching significance (Figure 4C, Supplementary Table S4A).  

PTEN was almost exclusively altered by complete gene deletion, regardless of the LMS type 

(Table 2, Supplementary Table S4A). However, although 82% of cases in both groups were 

altered, its protein expression loss was significantly associated with hLMS (Figure 4E). 

ATRX mutations are described in detail in another paper from our team, in which we reported 

their characterization in the whole ICGC cohort (including the 39 LMS studied here). We 
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showed that ATRX alteration and ATRX protein expression loss are associated with uterine 

LMS and the oLMS type (Darmusey et al., 2020). Accordingly, ATRX nuclear localization 

was significantly enriched in hLMS (Supplementary Table S4A, Figure 4E). 

DMD tended to be more frequently altered in oLMS than in hLMS (45.4% and 17.8%, 

respectively). Most DMD alterations involved SV, which mainly affects the DMD long 

isoforms (Table 2, Supplementary Table S4A and S4C). Regardless of DMD genomic 

status, Dp427m, its muscle specific transcript isoform, was significantly less expressed in 

oLMS (P = 1.2 x 10-9), as was Dp40 (P = 1.9 x 10-4). On the other hand, the expression of 

Dp71, a ubiquitous isoform, was similar in both LMS types (P = 0.63) (Supplementary 

Table S4A, Figure 4D). Results were confirmed at the protein level, with a significant 

association of global DMD expression loss and particularly of Dp427 in the oLMS type 

(Figure 4E).  

Therefore, despite having similar alteration frequencies of the two major suppressor genes 

TP53 and RB1, the mechanistic differences and specific expression enrichments of the two 

LMS types suggest that their oncogenic processes are different. The main features 

underpinning this distinction are the amplification and strong expression of MYOCD and the 

loss of PTEN protein in hLMS. Indeed, these specific features of hLMS are related to 

SRF/MYOCD, the main drivers of smooth muscle cell differentiation, given that PTEN also 

interacts with SRF (27). We tested the hypothesis that the SRF/MYOCD axis could be a 

driver of hLMS oncogenesis by investigating the therapeutic inhibition of this pathway.  

 

hLMS can be targeted specifically with an SRF/MYOCD inhibitor 

We studied the impact on cell viability of inhibitors specifically targeting the SRF/MYOCD 

pathway. CCG-1423, an inhibitor of the SRF/MRTF interaction (28), and CCG-100602, an 

inhibitor of the SRF/MYOCD interaction (29), were tested on 3 LMS (OC80: hLMS with a 
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MYOCD amplification, OC48: oLMS with a MYOCD gain and OC88: oLMS ) and 2 UPS 

(OC98 and OC110) cell lines (Figure 5A).  

After 72h of treatment with increasing concentrations of each CCG, cell viability assay 

showed that all cell lines were sensitive to both inhibitors (IC50 ranging from 2.56±1.36 

µg/mL to 21.41±3.95 µg/mL) (Figures 5 B and C). Regardless of their subgroup, LMS were 

slightly more sensitive to CCG-1423 than UPS, with OC88 reaching significance and being 

more affected than OC110 (Figure 5B). Interestingly, responses to CCG-100602, which is 

specific to the SRF/MYOCD interaction, exhibited three kinds of behavior: OC80 (hLMS; 

IC50 = 2.85±1.15 µg/mL) was the most sensitive, OC88 (oLMS; IC50 = 6.70±0.95 µg/mL) 

had an intermediate response, and OC48 (oLMS; IC50 = 19.44±3.88 µg/mL) and the two 

UPSs (IC50 = 15.32±3.42 and 19.69±0.67 µg/mL) were the least receptive (Figure 5C). 

Overall, all cell lines had a lower IC50 with the SRF/MYOCD inhibitor than with the 

SRF/MRTF inhibitor. However, the higher responsiveness of hLMS compared to others when 

SRF/MYOCD was inhibited indicates that the oncogenic dependency to the SRF/MYOCD 

axis is stronger in hLMS. 

 
Discussion 

 
We have identified two groups of LMS with specific transcriptional and genomic alteration 

profiles, particular clinical features, and specific modes of oncogenesis and cellular origin. 

Several authors have already identified two or three subtypes of LMS consistently with one 

group harboring strong smooth muscle differentiation and a homogeneous transcriptomic 

profile that are similar to hLMS (8–16). However, our study differs from the others. First, we 

analyzed primary tumors and excluded uterine LMS, unlike most of the other authors 

(9,11,12,14). Second, we report reproducible clinical descriptions of hLMS and oLMS. hLMS 

are highly differentiated, preferentially carried by females, low-grade and with an intra-
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abdominal location, while oLMS are poorly differentiated, high-grade and located in the 

extremities. In addition, outcome was poorer in hLMS in the Affymetrix cohort but not in the 

other cohorts. There are two non-exclusive possible explanations for this: i) group sizes in the 

ICGC and TCGA studies were not balanced with an under-representation of oLMS cases, in 

contrast with the Affymetrix cohort; ii) retroperitoneal LMS are known to have a longer 

survival than other STS in general (some over 10 years) and to develop late metastases (30), 

so the follow-up could be too short, leading to an underestimation of the rate of metastasis in 

hLMS. Furthermore, we conducted an original integrative analysis of mRNA, miRNA, copy 

numbers, mutations and breakpoints, so we were able to better characterize each LMS group 

and make new biological findings about these tumors.  

Our data show that the over-expression of smooth muscle-related genes in hLMS (compared 

to oLMS) (e.g. MYH11, TAGLN, ACTA2 etc) is probably triggered by MYOCD, as previously 

demonstrated by Pérot et al. (10). MYOCD was found to be over-expressed in more than 84% 

of hLMS following genetic amplification in 36% of cases. To enhance SM differentiation, 

MYOCD needs to co-operate with an ubiquitous transcription factor (TF), SRF (31), which 

regulates the expression of targeted genes by binding to an element known as the CArG-box 

which is located upstream of smooth muscle (SM) contractile genes (32,33). Accordingly, we 

found a high enrichment in predicted SRF binding sites (in silico and ChIP-seq) in over-

expressed hLMS gene promoters. Moreover, Dp427, a DMD isoform, which is under the 

control of MYOCD (34), is nearly always expressed at the membrane in hLMS regardless of 

DMD genomic status, unlike in oLMS in which it is no longer expressed. As the longest 

DMD isoform loss at the membrane is highly recurrent in other myogenic diseases (35), its 

presence in the membrane might be needed in hLMS. Further investigations in hLMS are now 

necessary to better understand its role. Given the presence of smooth muscle active histone 

marks in over-expressed hLMS genes and their closer similarity to normal blood vessels than 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 24, 2020. ; https://doi.org/10.1101/2020.10.23.352336doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.352336


to viscera smooth muscles, we hypothesize that hLMS have a vascular SMC (vSMC) origin 

rather than arising from an acquired phenotype that triggers metastatic development (10).  

The cellular origin of oLMS appears to be quite different. oLMS showed many regulatory and 

functional features (active histone marks, many TF binding sites predicted from a cell line 

showing an epithelial morphology and EMT-related terms) associated with fibroblasts, 

adipocytes, mesenchymal stem cells (MSC) and epithelial cells, and were spread among 

normal lung, adipose and breast tissues. Therefore, they could derive i) from the de-

differentiation of cells from their location; ii) directly from circulating or local MSC; iii) from 

fusion between circulating or local MSC with a cell from the tumor site (36). Whatever their 

origin, this would explain the hyper-activation of the unfolded protein response observed in 

oLMS, which might allow the cells to adapt to the external (undifferentiated phenotype in a 

specialized environment) or internal (managing extra material after fusion) micro-

environment (37). The heterogeneity observed among patients with oLMS and the difficulty 

to define a unique oncogenesis might be due to their heterogeneous cellular origin. 

A novel finding was that hLMS are not only contractile and differentiated but are also 

proliferative, with migratory features revealing the co-existence of contractile and synthetic 

phenotypes. These characteristics are probably inherited from the specificity of vSMC, which 

have highly plastic phenotypes and can cover a wide spectrum of phenotypes from synthetic 

to contractile (38). Indeed, among the most expressed hLMS genes, we found markers of both 

phenotypes also highly expressed in blood vessel samples that could represent the natural 

mixture of vSMC, spanning the phenotypic continuum in these samples. The synthetic 

phenotype is sustained by the propensity of hLMS to proliferate via strong enhancement of 

the cell cycle, as suggested by the significant over-expression of E2F1, the enrichment of up-

regulated hLMS genes in E2F/RB1 targets, E2F7 binding sites and cell cycle functional 

related terms specific to hLMS. This is contradictory with the suggestion of Hemming et al. 
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(14), who considered that all LMS possess this feature. It is probably due to the low number 

of “other” LMS that they had in their different cohorts when comparing LMS with other STS, 

then highlighting what they considered to be their “conventional” characteristics. This hyper-

activation arises in a context where alteration of the tumor suppressors TP53, RB1 and PTEN, 

is altered equally in hLMS and oLMS but acquired through different preferential mechanisms, 

as shown by the genetic analysis, may boost proliferation and cell survival in a non-specific 

manner. Moreover, the PTEN protein is specifically totally absent in hLMS. Recently, it was 

demonstrated that PTEN is involved in SMC differentiation through direct interaction with 

SRF (27). In fact, the SRF-regulating abilities of SMC are dual: they control the expression of 

both smooth muscle (SM) contractile genes, depending on MYOCD, and growth-related 

immediate early genes (IEG) (32), depending on ELK1. Horita and colleagues showed that in 

the nucleus, PTEN is directly linked to SRF and helps it to link only to SM gene CArG-Boxes 

(27), and that PTEN is translocated into the cytoplasm upon forced SMC switch toward 

proliferation, which in turns increases IEG gene expression. Therefore, the total absence of 

PTEN in hLMS may allow SRF to be linked with both SM genes and IEG CArG-Boxes, so 

SRF may express SMC contractile and proliferative genes. However, the large amount of 

MYOCD may compete with the other SRF interactors and lead to the observation of a 

significantly lower expression of targets of the ETS-family factors in hLMS than in oLMS. 

Nevertheless, it should be remembered that by comparing two tumor types, the activity of 

ETS-related transcription in hLMS may be under-estimated.  

The interplay between the two phenotypes may require a fine-tuned regulation which could be 

partly ensured by miRNAs, as suggested by miRNA profiling analysis. Interestingly, the 

SRF/MYOCD complex targets all over-expressed miRNAs in hLMS, either directly upon 

binding to the CArG-boxes present in their promoters (22,39) or indirectly by targeting their 

host gene, as in MIR28 and LPP. miRNAs deregulation in hLMS could, at the same time, 
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strengthen the contractile phenotype through a feed-forward loop (MIR143/MIR145 (39) over-

expression) and inhibition of proliferation (MIR28-5p over-expression as in colon cancer 

(23)), while maintaining the synthetic phenotype by impairing contractility (MIR1 

overexpression (22)), promoting migration (over-expression of MIR28-3p as in colorectal 

cancer (23), and of its host gene, LPP, as in differentiated LMS (10)) and increasing 

proliferation (MIR455, MIR199a and MIR503/MIR424 under-expression as in pulmonary 

artery SMC (24,25) and in bladder SMC (26)). We also observed a global repression of the 

DLK1-DIO3 miRNAs cluster, which is highly specific to hLMS and papillary thyroid 

carcinomas. Its predicted target genes are involved in vasculature development and cell 

migration in both diseases (40), so it is probably involved in this dual phenotype. However, 

this cluster involves around 50 miRNAs with different functions in different cellular contexts 

(41), so understanding how this repression actually impacts hLMS biology will require further 

investigations.  

Altogether, our findings suggest that hLMS originate from vSMC that do not achieve terminal 

differentiation, retain a remarkable degree of plasticity, probably grow in a maintained 

differentiated state (38,42) and take advantage of the enhanced contractile apparatus to 

migrate (10). Our data show that many antagonists of vSMC differentiation are present in 

hLMS and that their contractile abilities appear to be essential for the oncogenesis of hLMS. 

In turn, this suggests that over-expression of MYOCD is positively selected and that it could 

be the event that triggers tumorigenesis.  

Loss of PTEN might be a favorable event for hLMS growth, and targeting the 

Pi3k/AKT/mTOR pathway in LMS (mostly probable hLMS), which is physiologically 

inhibited by PTEN, was thought  to be promising (43). Subsequently, however, it was 

demonstrated to induce resistance (44). Thus, targeting downstream of this pathway with an 

SRF/MYOCD inhibitor could overcome this resistance. We thus conducted functional 
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inhibition assays with SRF inhibitors which showed greater efficiency on hLMS than on 

oLMS or UPS. Moreover, the specific inhibitor of the MYOCD/SRF interaction, which is 

specific to SMC, showed greater efficiency than the MRTF/SRF inhibitor, which is more 

specific to skeletal muscle.  

In conclusion, effective treatments for hLMS and oLMS are more likely to be developed if 

these two entities can be properly differentiated. In this regard, the SRF/MYOCD axis is a 

promising target in hLMS. We now need to probe the action of an SRF/MYOCD inhibitor in 

hLMS to pave the way for the efficient targeted treatment of LMS.  

 Material & Methods 

Tumor samples and histological classification 

Two hundred seventy-eight out of the 387 complex genetics sarcomas (5,45), the 60 GIST 

(46), and the 58 synovial sarcomas (47) are part of cohorts previously described 

(Supplementary Table S5A). 

Fifty-nine leiomyosarcomas are part of the ICGC program (International Cancer Genome 

Consortium), for which constitutional DNA and tumor DNA/RNA were available.  

All cases were systematically reviewed by expert pathologists from the French Sarcoma 

Group according to the World Health Organization recommendations (48).  

LMS clinico-pathological data and patient information are summarized in Supplementary 

Tables S6. 

Access to data 

Genomic and expression arrays will be publicly available on Gene Expression Omnibus 

(GEO) under accession (GSE159847, GSE159848, GSE159849 from the 2021-10-29 and 

accessible before upon request. 

ICGC Whole-Genome sequencing and RNA sequencing data for the 59 LMS are available at 

https://dcc.icgc.org/projects/LMS-FR.  
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Database accession number for data relative to samples previously published are presented in 

Supplementary Tables S5. 

The code is under verification in OCEANCODE (provisional DOI:10.24433/CO.0299110.v1) 

TCGA data  

Clinical, gene expression and copy number data from 75 leiomyosarcomas were obtained 

from UCSC cancer genome browser (https://genome-cancer.ucsc.edu/) (49) and xenaBrowser 

(50). We used RNA-seq gene-level transcription estimates, as in log2(x+1) transformed 

RSEM normalized count from SARC project (version 2015-02-24) and GTEX+TCGA 

combined data (version 2016-04-12), mature miRNA strand expression (version 2017-09-08) 

and GISTIC2 thresholded gene-level copy number variation (CNV, version 2017-09-08). For 

PANCAN miRNA-seq data, we used the batch corrected (version 2016-12-29).  

Normalization of Affymetrix and Agilent micro-arrays and gene selection 

We used 87 samples analyzed on Agilent and Affymetrix platforms (Supplementary Table 

S5A). We selected the genes with Pearson’s correlation coefficient (PCC) with itself between 

chips over 0.8 or better than with any other genes in both experiments. We then normalized  

gene expression first in separate experiments and then on a merged dataset by applying 

quantile normalization (preprocessCore R package (51)). We harmonized the expression 

between the platforms by gene expression median centering in each experiment and then 

adding the mean of the experiment medians. Details are presented in supplementary Methods. 

Gene module clustering  

To define groups of co-expressed genes, we computed pairwise Pearson’s correlation 

coefficient (PCC) of gene expression with variance > 2 across patients. We built a graph of 

co-expression with correlated genes (PCC > 0.7) and search for communities using 

edge.betweenness.community from igraph R package (52).  
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Patient classification and clinical associations 

We computed centroids (7) for hLMS and oLMS using the 1672 differentially expressed 

genes detected in the Affymetrix cohort. Distance to centroids was computed as 1 - 

Spearman’s correlation coefficient for each patient from all three cohorts. Patient 

classification was performed using the mclust R package (53). We selected the Gaussian 

mixture distribution estimation that best fitted the hLMS centroid distance distribution 

(maximization of Bayesian Information Criterion). 

Clinical enrichment significance was performed using Fisher’s exact test for categorical data 

comparing one category to the others and Wilcoxon’s test for continuous data.  

Survival analysis was performed using the survival R package (54) by fitting a simple Kaplan 

Meier model and we set the significance at log-rank test p-value < 0.01. Survival curves were 

plotted with survminer (55).  

Sample clustering and PCA analysis 

In all cases concerning unsupervised clustering, samples were clustered using PCA and 

HCPC functions from the FactorMiner R package (56) and were visualized using the 

pheamap R package (57). PCA analysis on ICGC and TCGA miRNA transcriptome were 

computed using the prcomp R function and visualized using the ggbiplot R package (58). We 

used the R package Rtsne (59) to visualize GTEX data with parameters dims=2 

perplexity=100 and max_iter=1000. 

Differential expression analysis 

mRNA and miRNA differential expression analyses were performed with classical methods 

as detailed in Supplementary Methods. 

miRNA-mRNA interaction analysis 

miRNA data acquisition and pre-treatments are detailed in Supplementary Methods. The 

MiRComb R package (60) was used to integrate miRNA, mRNA expression data and 
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experimentally validated miRNA-mRNA interactions from miRecords v4 (61) and 

miRTarBase v7.0 (62). We retrieved 6262 known interactions which represent interactions 

between 30 DE pre-miRNAs and 3850 genes. Pre-miRNAs expression was estimated by 

averaging signals from derived mature miRNA. We kept interactions for which mRNA and 

miRNA had a hLMS/oLMS absolute log Fold Change (logFC) > 1, a limma p-value < 0.01, a 

significant Pearson’s anti-correlation (adjusted p-value < 0.01) and were described in at least 

one of the two databases.  

Functional enrichment and mapping 

Modules of co-expressed genes were analyzed using the enricher function from the 

ClusterProfiler R package (63) with the Molecular Signatures Database version v6 

(MSigDB)(64). Significance threshold of hypergeometric test FDR adjusted p-value: < 0.05. 

Differentially expressed genes were analyzed using command line version of GSEA software 

(version 3.0)(64) and MSigDB v6. We submitted the gene list ranked by hLMS/oLMS t-

scores to the xtools.gsea.GseaPreranked function with default parameters. Significance 

threshold on permutation test FDR-adjusted p-value: 0.05. For the sake of clarity, only terms 

with adjusted p-values < 0.01 are reported. Enrichments for regulatory elements in groups of 

over- and under- expressed genes were performed on the iCistarget webserver 

(https://gbiomed.kuleuven.be/apps/lcb/i-cisTarget/)(65). Significance threshold of normalized 

enrichment score (NES) > 3 by default. Annotations related to position weight matrix 

predictions from the same transcription factors were regrouped. 

We used the GSAn webserver (https://gsan.labri.fr/)(19) with default parameters to 

exhaustively annotate genes with the most precise Gene Ontology term.  

CNV analysis 

Acquisition of copy number data for 84 Affymetrix cohort patients (Supplementary Table 

S5B) and 39 ICGC cohort patients is detailed in Supplementary methods. 
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Alteration recurrence was estimated by computing the frequency of each event (homozygous, 

heterozygous deletion, gain of one copy and amplification, i.e. gain of four copies or more), 

i.e. the number of a given event divided by the total number of patients (missing data being 

discarded). To evaluate alteration enrichment in each LMS group, losses were grouped in 

homo- and heterozygous deletions and gains, gains and amplifications (Fisher’s exact test p-

value < 0.01). We computed enrichment for each type of event in the 291 cytobands by 

comparing, the number of significantly altered genes defined above for each band (Fisher’s 

exact test corrected with Holm’s method < 0.01). If more than one type of event was enriched, 

the most significant was kept. 

Mutation analysis 

Somatic variants were detected from 59 whole genome-sequenced ICGC tumor/normal paired 

frozen samples (HiSeq2000 Technology, Illumina Inc., San Diego, CA, USA). Read cleaning, 

mapping (Human Genome version hg19) and detection of variants are detailed in 

Supplementary Methods.  

We analyzed somatic mutations patterns using the MutationalPatterns R package (66). We 

first generated a 96 tri-nucleotide mutation count matrix per patient which we compared to the 

30 COSMIC signatures v3.1 (67). We kept signatures with cosine similarity > 0.75 and 

computed the optimal contribution that best explained the observed mutational profiles in 

patients. 

Tumor mutation burden was computed using the total number of somatic variants divided by 

the total length of human genome version hg19 (22 autosomal and 2 sexual chromosomes).  

Alterations verification strategy 

For the ICGC cohort, ATRX, TP53, RB1, PTEN and DMD sequences for each case obtained 

by whole genome sequencing were entirely screened using the Integrative Genomics Viewer 

(IGV_2.6.3 (68)) to search for alterations possibly missed by the detection algorithms used. 
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All SV were verified on gDNA by PCR and Sanger sequencing. MS/NS mutations not found 

in either WGseq or RNAseq and all FS were verified at both DNA and RNA levels by PCR 

and RT-PCR, respectively, followed by Sanger sequencing. For samples with enough material 

left, fusion transcripts detected by RNA-seq were verified by RT-PCR and Sanger 

sequencing.  

Inhibitors 

To assess inhibition of interaction between SRF and MRTF or MYOCD upon cell viability, 

we performed an MTT assay using either CCG-1423 (10010350) or CCG-100206 (10787) 

(Bertin Bioreagent, Montigny le Bretonneux, France) on LMS and UPS cells.  

Additional information about sample selection, DNA and RNA extraction, expression and 

genomic arrays, PCR and RT-PCR, sequencing, FISH, immunohistochemistry, 

immunofluorescence, cell culture, cytotoxicity assay and analyses can be found in the 

Supplementary Material and Methods section. 

 

Acknowledgements: 

The authors would like to thank the Centre Nacional d'Anàlisi Genòmica (CNAG, Barcelona, 

Spain) for WG and RNA sequencing services and the Genomics Unit at the Centro de 

Regulación Genómica (CRG, Barcelona, Spain) for assistance with the smallRNAseq 

services. The results shown here are partly based upon data generated by the TCGA Research 

Network: https://www.cancer.gov/tcga. We are grateful to the French Sarcoma Group for 

tumor banks and associated clinical annotations and to Jean-Baptiste Courrèges. The 

following French cancer centers also participated in this study: Centre Paul Papin (Angers), 

Centre Oscar Lambert (Lille), Institut Paoli Calmettes (Marseille).  Bioinformatics analyses 

were performed on the Core Cluster of the Institut Français de Bioinformatique (IFB) (ANR-

11-INBS-0013). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 24, 2020. ; https://doi.org/10.1101/2020.10.23.352336doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.352336


 

 

 

 

 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 24, 2020. ; https://doi.org/10.1101/2020.10.23.352336doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.352336


Figures and Tables 
 

 

 
Affymetrix 

 
ICGC + TCGA 

Feature Test hLMS oLMS p-value   hLMS oLMS p-value 

Differentiation (%) Well (vs Poor) 88 24 3.87x10-9 (+)   84 41 1.83x10-5 (+) 

Grade (%) Low (vs High) 58 24 6.51x10-4 (+)   
      

Sex (%) F (vs M) 76 48 0.003 (+)   68 41 0.007 (+) 

Location (%) 
Internal trunk 

(vs other) 
60 7 8.48x10-9 (+)   82 27 1.53x10-7 (+) 

Mitotic counts 
(median) 

Ranks 17 24.5 0.009 (-)   11 35 0.0006 (-) 

Gene expression 
variance (median) 

Ranks 0.7 1 2.90x10-13 (-) 

  ICGC 

  0.25 0.36 < 2.2x10-16 (-) 

  TCGA 

  0.45 0.9 < 2.2x10-16 (-) 

 
Table 1: Clinical enrichment and gene expression homogeneity in 42 hLMS vs 56 oLMS 
from Affymetrix cohort and 73 hLMS vs 29 oLMS in combined ICGC (28 vs 11) and TCGA 
(45 vs 18). (%) indicates that numbers in hLMS and oLMS columns are percentages of 
patients annotated with first feature (Well: well differentiated, Low: grade 1 + 2, F: female, 
Internal trunk). M: Male, other: Extremities, Trunk wall, limbs. The p-value was computed 
using Fisher’s Exact test. Otherwise the median is reported, and the p-value was obtained with 
Wilcoxon’s test. (+) next to p-values indicates a significant enrichment in hLMS while (-) 
indicates a significant enrichment in oLMS. 
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Group Alterations TP53 RB1 PTEN ATRX DMD 

hLMS 
mutation 

60.7 (17) 21.4 (6) 0 (0) 7.1 (2) 3.6 (2) 

oLMS 18.2 (2) 9 (1) 0 (0) 27.3 (3) 9 (1) 

all 48.7 (19) 17.9 (7) 0 (0) 12.8 (5) 5.1 (3) 

hLMS 
SV 

25 (7) 35.7 (10) 3.6 (1) 7.1 (2) 14.3 (4) 

oLMS 36.4 (4) 36.4 (4) 0 (0) 0(0) 36.4 (4) 

all 28.2 (11) 35.9 (14) 2.6 (1) 5.1 (2) 20.5 (8) 

hLMS 
loss 

89.3 (25) 92.9 (26) 82.1 (23) 7.1 (2) 3.6 (1) 

oLMS 90.9 (10) 81.8 (9) 81.8 (9) 18.1 (2) 0 (0) 

all 89.7 (35) 89.7 (35) 82 (32) 10.2 (4) 2.6 (1) 

hLMS 
total 

100 (28) 100 (28) 82.1 (23) 21.4 (6) 17.8 (5) 

oLMS 100 (11) 90.9 (10) 81.8 (9) 45.5 (5) 45.5 (5) 

all 100 (39) 97.4 (38) 82 (32) 28.2 (11) 25.6 (10) 

 

Table 2: Summary of genetic alterations in 39 ICGC patients for TP53, RB1, PTEN, ATRX 

and DMD. Alterations are categorized as follows: mutation: missense, nonsense, frameshift, 

non-FS, splicing, SV: structural variant, loss: loss of at least one allele, total: number of 

patients carrying at least one alteration. Numbers indicate percentage of patients harboring the 

alteration; the actual number are reported between brackets.  
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Figure 1: Transcriptional analysis and patient classification  

A-B. Heatmap showing clustering of 555 sarcoma patients and 455 genes (A) and 98 LMS 

patients and 1672 differentially expressed genes between hLMS and oLMS (B). Patients were 

clustered using HCPC method and genes are grouped by co-expression modules. 

Color scheme. Histotype: green forest: leiomyosarcomas, red: GIST, pink: undifferentiated 

sarcomas, orange: myxoid liposarcomas, blue: dedifferentiated sarcomas, grey: synovial 

sarcomas, turquoise: other sarcomas. Location: yellow: extremities, green: internal trunk, 

black: trunk wall. Sex: green: female, blue: male. Grade and differentiation: yellow: 1, green: 

2, black: 3. Mitotic count: blue to red: from low to high: A – 0 to 120, B - 0 to 60. Cluster: 

green: hLMS, blue: oLMS. 

C. Kaplan-Meier metastasis-free survival analysis in hLMS and oLMS. 
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D. GSEA analysis on z-scores obtained from hLMS / oLMS gene expression comparison. 

Each dot is an enriched term (FDR < 0.01); size corresponds to number of genes involved; x-

axis contains mean z-score of all genes annotated in given term and y-axis corresponds to 

GSEA NES score. Related terms colored the same way.  

E. i-Cistarget analysis of 843 under- and 800 over-expressed genes in hLMS relative to 

oLMS. The x-axis represents NES score obtained for over-expressed genes from 0 toward 

right and for under-expressed genes from 0 to left. The left and right parts are independent; 

the enriched features were clustered on the y-axis according to the cell type or tissue they 

were analyzed from. Histone modifications are only active marks of transcription (H3K4me1, 

H3K4me3, H3K27ac and H3K9ac). Detailed legends for E-F are available in Supplementary 

Table S1. 

F. Top panel: distance distribution to centroids (x-axis) computed from transcriptional 

signature for ICGC and TCGA patients (bars on x-axis). Colors correspond to cluster 

assignation: patients with a distance lower than 0.6 to one of the centroids were assigned to 

corresponding centroid (green: hLMS, dark blue: oLMS), while patients with intermediate 

value were not classified (light grey). 

Middle and bottom panels: PCA analysis using transcriptional signature genes in ICGC and 

TCGA cohorts. Each point is a patient, green: hLMS, dark blue: oLMS and light grey: not 

classified. X-axis and y-axis represent respectively principal components 1 and 2 and their 

associated representation of variance. 
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Figure 2: Analysis of miRNAs expression  

A. Left panel: PCA obtained from expression of 484 mature miRNAs in 39 ICGC patients 

(top) and of 475 mature miRNAs in 60 TCGA patients (bottom). Colors correspond to hLMS 

(green, ICGC: 28 patients, TCGA: 43 patients) and oLMS (blue, ICGC: 11 patients, TCGA: 

17 patients). First two principal components are shown with percentage of variance they 

capture. Right panel: Scatterplot showing correlation between hLMS/oLMS LogFC in ICGC 

(y-axis) with TCGA (x-axis). Each dot represents a mature miRNA (347 expressed in both 

cohorts) and red color indicates 71 significant mature DE miRNAs in both cohorts. Line 

represents linear regression with interval confidence in shaded grey.  
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B. HCPC clustering on the 41 mature miRNAs differentially expressed in LMS subtypes 

across the 9564 PANCAN samples. Heatmap showing median-centered miRNA expression 

(low: blue to high: red). Column annotation represents histotype of samples for which colors 

are specified at bottom of figure. Composition in histotype of clusters is detailed in bar plot 

below heatmap. The y-axis corresponds to the proportion. 

C. Heatmap showing differentially expressed miRNAs (rows) in ICGC (top, 55 miRNAs) and 

TCGA (bottom, 243 miRNAs). Column annotation corresponds to hLMS (green) and oLMS 

(blue). Expression values are median-centered (low: blue to high: red). Black rectangles 

highlight mature miRNAs from DIO3-DLK1 miRNA cluster (ICGC: 26, TCGA: 63, 25 in 

common). 

D. Functional terms mapped to 158 miRNA targeted genes. The x-axis indicates number of 

down-regulated (toward left in blue) and up-regulated (toward right in dark red if targeted 

with only miRNAs from DIO3-DLK1 cluster, medium red if targeted by both miRNAs from 

DIO3-DLK1 cluster and other miRNAs and light red if targeted by other miRNAs) genes 

annotated with the term (y-axis). 
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Figure 3. Copy number analysis of 7479 genes in LMS merged cohort (84 Affymetrix 

(CGH), 39 ICGC (WGS) and 62 TCGA (CGH) patients).  

A. Heatmap showing copy number of genes (columns) in each patient (rows). Patients 

grouped according to LMS type (hLMS: green, oLMS: blue). Annotations above heatmap 

show chromosomes from 1 to 22 alternating grey and black and arms (p: green, q: blue). 

Annotation below shows significantly enriched events in hLMS. Color scheme is same for 

copy number and enrichment: homozygous deletion: dark blue, heterozygous deletion: light 

blue, normal: white, light red: gain of one copy, dark red: gain of 4 or more copies.  

B. Penetrance plot. Percentage (y-axis) of gain (red) and loss (blue) events are represented in 

hLMS (top panel) and oLMS (bottom panel). Each position on x-axis is a gene that 

corresponds to genes in A.  
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Figure 4: Zoom on genes of interest 

A. Zoom on chr17p13-11/q11 genomic region (x-axis) penetrance profile containing 

MYOCD. Left y-axis indicates percentage of loss (light blue), deletion (dark blue), gain (light 

red) and amplification (dark red); right y-axis shows hLMS/oLMS median t-scores (from the 

three cohorts). Each gene represented by bar (penetrance) and dot (t-score). 

B and D. Violin plots showing MYOCD gene expression and DMD isoform expression (RNA 

level) in hLMS and oLMS in the three cohorts respectively. **** indicates a t-test p-value 

<10-7, *** p-value < 10-3.  
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C. Distribution of TP53 and RB1 allele status in hLMS and oLMS. Dot sizes correlate with 

percentage of patients in LMS group harboring defined status. Cases with biallelic 

inactivation of TP53 are compared between groups (2L+2MS: only one mechanism altering 

both alleles versus MS/FS+MS/L+FS/L: two different mechanisms altering each allele): red 

oval indicates Fisher test p-value < 0.01. L: loss, MS: missense, FS: false sense, MUT: MS or 

FS, WT: wild-type, if 2 is specified, both alleles are concerned.  

E. Cellular distribution of DMD, PTEN and ATRX proteins in hLMS and oLMS. For DMD, 

localization of its Dp427 isoform is also presented. A: absent, N: nuclear, M: membranous, C: 

cytoplasmic. Dot sizes correlate with percentage of patients in LMS group harboring defined 

localization. Red circle indicates Fisher test p-value < 0.01 (bold) and < 0.05 (thin). 

 

 

 

Figure 5: SRF/MYOCD inhibitor can specifically target hLMS 

A. Distance to centroids determining h/oLMS status on 1672 genes of 3 LMS cell lines.  
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B. Cytotoxicity curves of CCG-1423, inhibitor of SRF/MRTF axis, on 3 LMS and 2 UPS cell 

lines, using MTT assay after 72h of treatment at increasing concentrations (from 1.5 to 

100µg/mL). First graph represents one of three experimentations used to determine IC50 with 

GraphPad. Second graph shows IC50 (mean ± s.d.; N = 3 independent assays).  

C. Cytotoxicity curves of CCG-100206, inhibitor of SRF/MYOCD axis, on same cell lines, 

using MTT assay after 72h of treatment at same increasing concentrations. First graph 

represents one of three experimentations used to determine IC50 with GraphPad. Second 

graph shows IC50 (mean ± s.d.; N = 3 independent assay).  

*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, p-value was calculated with unpaired t-test for B and C. 
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