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Abstract

Motivation: MicroRNAs (miRNAs) are small non-coding RNAs that have a
key role in the regulation of gene expression. The importance of miRNAs is widely
acknowledged by the community nowadays, and the precise prediction of novel
candidates with computational methods is still very needed. This could be done
by searching homologous with sequence alignment tools, but this will be restricted
only to sequences very similar to the known miRNA precursors (pre-miRNAs).
Furthermore, other important properties of pre-miRNAs, such as the secondary
structure, are not taken into account by these methods. Many machine learning
approaches were proposed in the last years to fill this gap, but these methods were
tested in very controlled conditions, which are not fulfilled, for example, when
predicting in newly sequenced genomes, where no miRNAs are known. If these
methods are used under real conditions, the precision achieved is far from the one
published.
Results: This work provides a novel approach for dealing with the computational
prediction of pre-miRNAs: a convolutional deep residual neural network. The pro-
posed model has been tested on several complete genomes of animals and plants,
achieving a precision up to 5 times higher than other approaches at the same recall
rates. Also, a novel validation methodology is used to ensure that the performance
reported can be achieved when using the method on new unknown species.
Availability: To provide fast an easy access to mirDNN, a web demo is avail-
able in http://sinc.unl.edu.ar/web-demo/mirdnn/. It can process fasta files with
multiple sequences to calculate the prediction scores, and can generate the nu-
cleotide importance plots. The full source code of this project is available at
http://sourceforge.net/projects/sourcesinc/files/mirdnn.
Contact: cyones@sinc.unl.edu.ar
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1 Introduction
MicroRNAs (miRNAs) have a crucial role in post-transcriptional gene regulation, cell
growth and other physiological processes. Thus, the discovery of novel miRNAs can be
considered one of the most essential problems in computational biology today (Demirci
et al., 2017). Since their discovery, miRNAs have reshaped the knowledge on gene reg-
ulation. They can determine the genetic expression of cells and influence the state of
the tissues (Bartel, 2004). Therefore, finding new miRNAs and inferring their func-
tions are necessary tasks for understanding their roles in gene regulation. Furthermore,
given their importance in promoting or inhibiting certain diseases and infections, the
prediction of new miRNAs is of high interest today (Chen et al., 2019; Bugnon et al.,
2019; Huan and et al., 2015; Takahashi and et al., 2015). For example, in biomark-
ers developing and targeted drug delivery (Cheng and et al., 2015; Lai et al., 2011).
However, when evaluating a large number of candidates in a full genome context, ex-
perimental methods are unfeasible and computational methods play an important role
for their prediction.

One simple way of finding miRNAs in a genome could be using a local alignment
search tool, such as BLAST, for finding regions of similarity between sequences. Hav-
ing known and publicly available miRNAs of other species, similar sequences can be
found by direct comparison, that is, similarity-based homology. However, it is known
that RNA sequences can be considered context free languages, which means that di-
rect similarity search like this can be very limited (Searls, 2002). For example, it is
known that miRNAs precursors (pre-miRNAs) in animals usually have a stable stem-
loop structure. A sequence could be relatively similar to a known pre-miRNA, but a
small number of mutations could lead to a very different and unstable secondary struc-
ture. Another problem is that not all nucleotides are equally important in a pre-miRNA.
For example, it is known that the stem region of the sequence is usually highly con-
served in comparison to the loop region. A sequence alignment tool would give the
same importance to mutations independently of the position on the sequence.

The limitations present in the methods based on alignment leads to the emergence
of many machine learning (ML) approaches. The objective of these methods is to learn
other intrinsic properties that defines a miRNA besides the raw sequence. But this task
has many complex and challenging aspects. In spite of the pre-miRNAs having a typ-
ical stem-loop structure with few internal loops, a very large number of hairpin-like
structures can be found in a genome. Moreover, the number of known pre-miRNAs,
in order to be used as reference or positive class, is quite limited. For example, in
the case of human genome, there are 1982 miRNAs deposited in miRBase (Kozomara
et al., 2018) v22 (release oct 2018), while more than 48 millions of sequences with
hairpin-like structure could be extracted from the complete genome. This constitutes
a very large class imbalance problem (in the order of 1:24,000). This high imbalance
is very difficult to handle by any ML model (Bugnon et al., 2019). In spite of the fact
that there is a myriad of methods for pre-miRNA classification published (Li et al.,
2010; Gomes and et al., 2013; Shukla et al., 2017; Stegmayer et al., 2018; Chen et al.,
2019), a study has clearly shown that the prediction of pre-miRNAs is yet far-away
from being satisfactory solved because existing methods have a very high rate of false
positives (Demirci et al., 2017). That is, they provide an excessively long list of candi-
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dates to novel pre-miRNAs, that cannot be validated with wet-experiments. Moreover,
in many of the published methods, the performance measures were obtained in very
controlled conditions. For example, many methods were validated through cross vali-
dation over the miRNAs of one species, that is, using a high percentage of the miRNAs
of the species under study as training example. This is not possible when studying a
new sequenced genome, since in many cases there is not any confirmed pre-miRNA.
Furthermore, some methods were tested on artificially balanced datasets, which leads
to a overestimation of the precision.

Another very important aspect when looking for candidates in a full genome is
the feature extraction required for training a classical ML classifier. A large number
of features have been proposed for pre-miRNAs mainly based on the structure of the
sequences, but they have the serious disadvantage of being dependant on feature engi-
neering, that is, a process highly dependent on manual intervention (Ivani de ON Lopes
and Alexander Schliep and Andre de Carvalho, 2014; Yones et al., 2015; Raad et al.,
2019). The emergence of deep learning (DL) models has led to substantial improve-
ments in the field of automatic information extraction and representation, precisely
avoiding the feature engineering step (LeCun et al., 2015). Deep models can automat-
ically extract relevant features by themselves, differently to the traditional procedure
of hand-made definition of the features to extract, which is extremely time consuming
and requires the involvement of domain experts. Deep learning is inspired by the repre-
sentation of biological neural networks and it can be considered today among the best
paradigms of ML for classification (Bengio et al., 2013). It has already been employed
for small-RNA feature extraction (Zheng et al., 2019), identification and classification
(Amin et al., 2019), showing promising results for genomics analysis. In fact, DL mod-
els have had recent success in several sequence classification studies (Zeng et al., 2016;
Bugnon et al., 2019) because empirical analyses have shown that deep models can ex-
tract motifs from a set of homologous sequences, which are essential for distinguishing
among different types of sequences, such as for example miRNA families (Seo et al.,
2018; Tang and Sun, 2019). In Eraslan et al. (2019) authors analyze gaps and chal-
lenges for DL in genomics, mentioning the need for more DL-based tools capable of
handling the real genome-wide scenario.

In this work we propose mirDNN, a novel pre-miRNA prediction algorithm based
on deep learning. It has been designed for finding candidate sequences from genome-
wide data. The model is a convolutional deep residual neural network (He et al., 2016)
that can automatically learn suitable features from the raw data, without a manual fea-
ture engineering. It is capable of constructing a model that can successfully learn the
intrinsic structural characteristics of precursors of miRNAs within a sequence. The
proposal has been tested with several genomes of animals and plants, and compared
with state-of-the-art algorithms.

2 Deep learning model for microRNA prediction
MirDNN takes as input RNA sequences, their corresponding predicted secondary struc-
ture and the minimum free energy (MFE) when folding (Lorenz et al., 2016). The in-
put sequence and its secondary structure is represented as a one-hot-encoding tensor
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Figure 1: Schematic representation of mirDNN end-to-end architecture. In the matrix,
a green cell represents a 1, a red cell represents a -1, and a white cell represents a 0.

of shape 4 × L (see Figure 1), where L is the maximum sequence length considered.
It has 4 rows for the 4 possible nucleotides (A,C,G,U) in each position. Each column
represents a nucleotide in the sequence. The tensor size is fixed and completed with
zero-padding for sequences of variable length. This tensor can have, in each column,
a 1 and three 0s, according to the nucleotide value to represent at each position. For
example, if the first nucleotide of the sequence is Adenine, the first element of the col-
umn is 1 at the first row and the rest of the column is 0; if the nucleotide is Cytosine,
the second element of the column is a 1 and the rest is 0. The secondary structure of
the sequence is represented as a tensor of shape 1 × L, where the i-th element is 1
if the i-th nucleotide of the sequence is left-paired (a left parentheses in the RNAfold
format), -1 if it is right-paired and 0 otherwise. The distinction between left and right
paired nucleotides help to identify bulges and loops in the sequence. These two tensors
are concatenated over the first dimension to form a tensor of shape 5× L, which is the
input tensor to the convolutional neural network (CNN).

The first layer of the network is a one-dimensional convolution of length F with
W filters. This layer generates a sequence of length L and W features, which is the
width of the network in all the next layers. Then, several stages composed of identity
blocks (He et al., 2016) and pooling layers are stacked. The identity blocks allow the
model to auto-define the number of convolutional layers needed during training, which
avoids optimization of the number of hidden layers. When there are many identity
blocks available, the model is capable of automatically selecting how many of them
are necessary while non-necessary blocks are just skipped. Each block is composed of
two activation functions, two batch normalization layers, and two convolutions that can
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be seen in the detail (left part) of Figure 1. All these operations are done over the input
tensor and the result is summed up to the input of the next identity block. This helps
to back-propagate the error during training, allowing the addition of more convolution
layers without difficulting the training of the model. After B identity blocks, a pooling
layer is used to reduce the length L of the sequence by a factor of 2. After M of
these stages, a tensor of shape W × L/2M is obtained. This tensor is converted in a
one-dimensional vector, and then it passes through activation and batch normalization
layers. Then, the input sequence stability, DG, is appended in order to form a tensor
of WL/2M + 1 elements. It is calculated as DG = −MFE/`, where ` is the original
sequence length (not L, which is the zero-padded one). After that, this tensor feeds a
fully connected network that generates the corresponding output score for prediction
of the input sequence.

For training the mirDNN model, two strategies were tested to tackle the imbalance
present in genome-wide data. The first one was positive class oversampling, that is,
each batch is built with a proportion of positive examples that is higher than the real
proportion present in the dataset. To achieve this, the positive examples are sampled
with replacement. The second strategy tested was focal loss (FL), proposed by Lin
et al. (2017). When the negative examples (the majority class) are classified, they
generate an error to be back-propagated through the model. Due to the high imbalance,
the sum of these contributions is much larger than the contribution of the (few) positive
examples, and the model is heavily biased towards the negative class. Thus, it does not
learn the positive class correctly. In order to solve this, a FL function is defined as

FL(pt) = −(1− pt)
γ log pt, (1)

where pt is the predicted probability (output score) for the sequence under analysis,
and the parameter γ can be used to increase or reduce the weight given to the examples
correctly classified. This way, if the majority samples are correctly classified (with
a small label error), the error back-propagated is much smaller than with traditional
binary cross entropy loss (BCE). Therefore, in an imbalance escenario the model errors
for the minority (in this case, the positive) class get more importance and drive the
learning of the network.

3 Materials and experimental setup

3.1 Data
Genome-wide data from 4 species was used in this work: Arabidopsis thaliana, Caenorhab-
ditis elegans, Anopheles gambiae, and a much more larger dataset with the sequences
of the Homo sapiens genome. First, HextractoR1 was used to extract all the stem-loop
sequences from each genome with standard settings, with window size of 320 nt for
plants and 160 nt for animals. The positive examples were taken from mirBase v22.
Only the animal sequences were used on test with animal genomes and only the plant
sequences were used on the test with A. thaliana.

1https://cran.r-project.org/web/packages/HextractoR
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Figure 2: The leave-one-species-out scheme for training and testing the mirDNN
model.

Train Test
Species Negative Positive Negative Positive

Arabidopsis thaliana 1,289,582 7,855 67,714 326
Caenorhabditis elegans 1,652,486 22,795 86,907 253
Anopheles gambiae 4,062,470 22,918 213,529 130
Homo sapiens 45,796,170 21,131 2,394,897 1,917

Table 1: Number of sequences in train and test partitions of each genome, using the
leave-species-out validation schema.

3.2 Experimental setup
In order to have an experimental setup that emulates a real situation in genome-wide,
for example the case of the genome of a recently sequenced species, all the pre-
miRNAs of each genome were excluded from the corresponding training sets. This
is a very challenging test condition, a much harder problem to solve than usually pub-
lished experimental setups. Thus, training and testing follow a leave-one-species-out
scheme, presented in Figure 2. For training mirDNN with a full-genome, the positive
set has the pre-miRNAs of the rest of the species of the kingdom, without the specific
pre-miRNAs of the genome under analysis. The negative-class training set has the
95% of the stem-loop sequences extracted with HextractoR, within the genome under
analysis. It is important to point out that the negative training set might probably have
pre-miRNAs, but these are left because in a real case escenario false positives cannot
be filtered out from the training set. For testing, the specific known pre-miRNAs of the
species under analysis are used, together with the remaining 5% of stem-loops of the
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genome. In this last testing partition, the known pre-miRNAs (false negatives) are fil-
tered in order to accurately measure the performance of the methods. The total number
of sequences of each train and test partition is reported in Table 1.

To select the optimal hyper-parameters for mirDNN, a grid search was performed
using the data of three full genomes: A. thaliana, C. elegans and A. gambiae. The train-
ing sequences of each genome were splitted in a 90%-10% training-validation scheme
to measure the performance of each hyper-parameter set. The hyper-parameters tuned
were: the number of filters W (16, 32, 64), the number of identity blocks B on each
stacked stage (1,3,5), the filter length F (3, 5), and the loss function (BCE or FL).
Also, two imbalance conditions were tested during training: i) oversampling the mi-
nority class; ii) using the training data with the natural imbalance.

In Figure 3, the effect of different parameters over the AUCPR is shown. First,
Figure 3 a) shows the effect of different alternatives during the training process. From
the figure, it can be concluded that oversampling the positive class generates a signi-
ficative fall in the AUCPR. Training the model with the natural class imbalance of the
dataset leads to the best results. With respect to the loss function, using FL achieves
the best results in all cases. Secondly, in Figure 3 b) the AUCPR of different architec-
tures using FL and without oversampling is shown. Here, the differences are not very
conclusive: there are several good pairs of parameters. In C. elegans and A. thaliana
the best results were achieved with B = 3 and W = 64, while in A. gambiae this
configuration reached the second best AUCPR. Therefore, these values will be used
in the final model. Finally, in Figure 3 c) the effect of filter size W on AUCPR (left
axis) in the three datasets using FL and without oversampling is shown. As it can be
seen, larger filters do not help improving the results, and since filters of length 5 are
computationally intensive, filters of length 3 were chosen.

The mirDNN model has been compared against the following methods: i) BLAST
alignments against complete pre-miRNAs and using the e-value reported for each se-
quence as a prediction score (BLAST version 2.6 was used with default parameters); ii)
DeepMir (Tang and Sun, 2019) a CNN networks for miRNA family prediction, which
obtained one of the best performances in a very recent review of genome-wide meth-
ods (Bugnon et al., 2020); iii) miRNAss (Yones et al., 2017), a semi-supervised ML
prediction method specifically designed for taking advantage of unlabeled sequences
even when there are just very few positive examples; iv) a classical Random Forest
(RF) as representative of supervised model for pre-miRNAs prediction (Gudy et al.,
2013), which was among the best supervised models according to (Stegmayer et al.,
2018); and v) a Gradient Boosting Machine (GBM), which is currently one of the best
methods based on ensemble learning (Ke et al., 2017).

The full source code to reproduce the experiments is available at http://sourceforge.net/projects/sourcesinc/files/mirdnn.
Furthermore, to provide fast an easy access to mirDNN, a web demo (Stegmayer et al.,
2016) is available at http://sinc.unl.edu.ar/web-demo/mirdnn/.
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3.3 Performance measures
The prediction quality of the model was assessed using the classical classification mea-
sures of precision (P ) and recall (R), defined as

P =
TP

TP + FP
R =

TP

TP + FN
(2)

where TP , FP and FN are true positive, false positive and false negative predictions,
respectively. This measures were used to generate precision recall curves (PRC), which
is a well-known performance indicator. It has been shown (Saito et al., 2015) that this
measure is preferred over the classical receiver operating characteristic (ROC) curve
to assess binary classifiers with highly imbalanced data. When there is a large class
imbalance in a dataset, a classifier can reach a good performance in terms of specificity,
but can perform poorly in providing good quality candidates, with a large amount of
false positives. A PRC can provide a better assessment of performance because it also
evaluates the fraction of true positives among the total positive predictions. The area
under the precision-recall curve (AUCPR), which is a single numeric summary of the
information, will also be reported.

4 Results and discussion

4.1 Comparison with state-of-the-art methods
Figure 4 shows the PRC plots corresponding to mirDNN and the other methods for A.
thaliana, C. elegans, A. gambiae and H. Sapiens full genomes. In these plots, precision
is shown in the y-axis and recall in the x-axis. The curves are generated varying the
threshold applied to the output score, to separate the positive from the negative samples
and calculating the precision and recall for each possible threshold.

With the A. thaliana full genome, mirDNN provides a precision of 0.93 and, at
the same time, a recall of 0.70. BLAST reaches a precision of 1.00 up to a recall
of approximately 0.50, where it abruptly decreases performance. DeepMir presents
a similar behaviour but with a lower performance. The feature-based ML methods
obtained the worst results: RF has an almost linearly decreasing behavior with a much
worse performance than mirDNN and BLAST; miRNAss and GBM barely reach a
precision of 0.40 for low recall rates, therefore they are not competitive. For a recall of
0.70, mirDNN has a precision nearly 5 times higher than the second method, BLAST.

In C. elegans the best performing methods are mirDNN and BLAST, while Deep-
Mir, RF, GBM and miRNAss have very low performances. BLAST obtains a very
good precision, but only for the positive identical sequences, up to a recall of 0.40,
approximately. Above that value, the precision falls. MirDNN has the same precision
for the identical sequences, but also maintains a good precision for recalls up to 0.80.

In the case of A. gambiae, BLAST again has shown high precision for sequences
that are extremely similar to the positives class samples (known pre-miRNAs). How-
ever, for a recall of about 0.60, precision rapidly decreases to a very low value (under
0.15) value. DeepMir again presents a similar behavior, but with a much lower perfor-
mance. Meanwhile, mirDNN can maintain a precision of 0.67 for a recall of 0.60. That
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is, with BLAST there are 152 TP and 769 FP, while mirDNN provides a list of 152 TPs
with only 75 FPs.

In order to see the scalability of mirDNN with a larger dataset, it was tested on
Homo sapiens full genome. Here, mirDNN was compared with BLAST and DeepMir,
because the other methods were highly outperformed in the other three genomes. As it
can be seen, DeepMir achieve a good precision but only for recall below 0.20. BLAST
achieves better results, with good precision for recall smaller than 0.45, which could
be the approximate size of the set of pre-miRNAs that have very similar sequences in
other species. But for recalls higher than 0.45 the precision abruptly falls to very small
values. Differently, mirDNN maintains a relatively good precision for recalls up to
0.60. This means that, for example, with a precision of 0.50, mirDNN founds 1,016
true pre-miRNAs while BLAST founds only 863. These results emphasizes the fact
that the proposed method is really useful for discovering new pre-miRNAs, while the
best competitor only allows finding sequences very similar to those already known.

Finally, a summary of results with all genomes is presented in Figure 5, compara-
tively showing the AUCPR for all the methods methods. It can be clearly seen here that
mirDNN has the best results in all genomes, no matter the species. This highlights the
capability of the deep model for analyzing the complete sequence, exploiting both se-
quential and structural information, and without the need of hand-crafted features. The
second best was BLAST, which has shown better performance than the other classical
ML methods. This can be explained due to the fact that many pre-miRNAs are highly
conserved in many species. This gives BLAST very good precision for these con-
served sequences, and also explains why the precision for BLAST abruptly falls when
trying to predict pre-miRNAs that are not very conserved across species. In the case of
DeepMir, in spite of being a CNN that learns features directly from the sequence, its
performance is much lower than the achieved by mirDNN. This difference could be due
to several reasons. First, the lower number of layers and a simpler architecture, without
identity blocks, such as those of mirDNN. These blocks allow the model to auto-define
the number of convolutional layers needed during training, avoiding optimization of
this critical hyperparameter. Second, the lack of a strategy to tackle the class imbal-
ance during training in comparison to the positive class oversampling and focal loss of
mirDNN, which allows obtaining a better performance in a real genome-wide scenario.
The other ML methods, in spite of using features calculated over the full sequence and
considering the secondary structure, fall behind the other methods in terms of perfor-
mance. This could be mainly attributed to the fact that automatically learned features
are more flexible and discriminant than hand crafted features. The convolutions are
able to learn most of the discriminative patterns found in the sequence/structure for
each species, while the hand crafted features are fixed for all of them.

4.2 Class activation maps
An interesting insight regarding the deep learning model would be to know which
characteristics of the pre-miRNAs were learnt. This could provide useful details on
which patterns are important in a sequence to produce a miRNA, using the information
learnt from a big database of known pre-miRNAs (for example, the complete animal
pre-miRNAs deposited in mirBase v22). Given the number of parameters of the model
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(321,315), it would be difficult to obtain interpretations of the predictions directly from
those. While the first layers learn patterns related to the prediction tasks, these patterns
are then heavily processed by the deepest layers of the model. Therefore, it is important
to study the inner behaviour of the model, as a whole.

To achieve this, the importance of each nucleotide in the prediction task was mea-
sured. First, the whole input sequence was evaluated with the trained mirDNN model,
and the prediction output was used as reference score for the sequence. Then, all nu-
cleotides were masked one by one, that is, the corresponding column was converted to
a all-zeros vector, and each masked version of the sequence was evaluated again with
mirDNN. Thus, the decrease in the score for the sequence was used as a measure of
each nucleotide importance. Since the mature miRNA is encoded in a 21nt sequence,
generally found next to the terminal loop, it could be expected that convolutional layers
pay particular attention to this section of a sequence.

Figure 6 presents the importance that mirDNN assigns to each nucleotide in six
sample sequences of known pre-miRNAs. The vertical axis shows the importance lev-
els of each nucleotide, while the horizontal axis shows the nucleotides of the sequence.
In addition, the area of the sequence where the corresponding mature miRNA is located
has been highlighted. As it can be seen, in the region where the mature is located, the
importance values are higher. Figure 6.a) shows how mirDNN gives more importance
to the location of the mature in the 5p region. It can be seen in Figure 6.b) how the
network assigns more importance to the nucleotides that are in the exact 3p region that
is known to encode the mature. In particular here, the nucleotides that encode the seed
within the mature are those that present the highest level of importance. A similar im-
portance to the mature region can ben seen in Figures 6.c) and 6.d) for another species.
In Figure 6.e) and 6.f) are presented two examples of pre-miRNAs that have two ma-
ture regions each. In these examples it is clearly shown that both mature regions 3p
and 5pm are recognized and given high importance by mirDNN. To access the statis-
tical significance of these result, the distributions of nucleotide importances among all
sequences were compared, through a t-test with the distribution of those nucleotides
that do not lay in the mature region. The difference has shown to be statistically sig-
nificative with a p-value of 8.3E-13, which shows that this trend is present in all the
pre-miRNAs used for tests. The nucleotide importance plots are provided for all test
sequences in the Supplementary Material.

5 Conclusions
This work provided a novel approach based in convolutional deep residual networks
for dealing dealing with the computational prediction of pre-miRNAs. The compara-
tive results obtained show that this novel approach can achieve a better performance
than other machine learning and sequence alignment methods in several genomes. It
has been shown that this deep learning model is capable of using both the sequential
information and the structure of the sequences, which has significantly improve the
predictions in comparison to feature engineering based methods. Also in this work,
a validation methodology closer to a real prediction task has been used to test the
model, achieving very high precision. Additionaly, a method to generate nucleotide
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importance values was presented, which can be used to get insights about the newly
discovered pre-miRNA candidates. In summary, it can be stated that the inference of
pre-miRNAs with mirDNN is fast and scalable, making it suitable to process whole
genomes.
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Figure 3: Effect of different hyper-parameters sets in the AUCPR on the 3 genomes:
a) effect of focal loss and oversampling; b) different combinations of filters W and
number of identity blocks B, using FL without oversampling for training; c) effect of
increasing the size of the filters.
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a) b)

c) d)

Figure 4: PRC plots for mirDNN on different genomes. a) A. thaliana, b) C. elegans,
c) A. gambiae, d) H. Sapiens
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A. thaliana C. elegans A. gambiae H. sapiens

Figure 5: Comparative AUCPR of mirDNN on the four test genomes.

a) b)

c) d)

e) f)

Figure 6: Nucleotide importance of six known pre-miRNA sequences. a) aga-mir-7, b)
aga-mir-13b, c) ath-mir156h, d) ath-mir399d, e) cel-mir-42, f) cel-mir-51.
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