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Abstract 

Cancer progression is driven by both somatic copy number aberrations (CNAs) and 

chromatin remodeling, yet little is known about the interplay between these two classes 

of events in shaping the clonal diversity of cancers. We present Alleloscope, a method 

for allele-specific copy number estimation that can be applied to single cell DNA and 

ATAC sequencing data, either separately or in combination. This approach allows for 

integrative multi-omic analysis of allele-specific copy number and chromatin accessibility 

on the same cell. On scDNA-seq data from gastric, colorectal, and breast cancer samples, 

with extensive validation using matched linked-read sequencing, Alleloscope finds 

pervasive occurrence of highly complex, multi-allelic copy number aberrations, where 

cells that carry varying allelic configurations adding to the same total copy number co-

evolve within a tumor. The contributions of such allele-specific events to intratumor 

heterogeneity have been under-reported and under-studied due to the lack of methods 

for their detection. On scATAC-seq from two basal cell carcinoma samples and a gastric 

cancer cell line, Alleloscope detects multi-allelic copy number events and copy neutral 

loss-of-heterozygosity, enabling the dissection of the contributions of chromosomal 

instability and chromatin remodeling in tumor evolution.  
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Introduction 

Cancer is a disease caused by genetic alterations and epigenetic modifications 

which, in combination, shape the dysregulated transcriptional programming of tumor 

cells1, 2. These somatic genomic events lead to a diverse cellular population from which 

clones with advantageous alterations proliferate and eventually metastasize3. The 

comprehensive study of cancer requires the integrative profiling of genetic and epigenetic 

changes at the resolution of single cells. We combined the analysis of two such genomic 

dimensions – DNA copy number and chromatin accessibility – through massively parallel 

single cell sequencing assays. 

First, consider copy number aberrations (CNAs), through which we have derived much of 

our current understanding of the relationship between genome instability and tumor 

evolution4. Total copy number profiling, which estimates the sum of the copy numbers of 

the two homologous chromosomes, is inadequate to characterize some types of cancer 

genomic aberrations. Such events include the pervasively occurring copy-neutral loss of 

heterozygosity (LOH)5-8, intriguing “mirrored events”9, 10 where a given tumor may have 

cancer cells carrying amplification of one haplotype are intermingled with cancer cells 

carrying amplification of the other haplotype, and the even more complex alterations that 

are only detectable through allele-specific analysis11. While the importance of allele-

specific copy number has been emphasized in bulk DNA sequencing analysis5-8, 11, most 

single-cell CNV analysis considers only total copy number due to low per-cell coverage12-

19. Recently, Zaccaria et al. developed CHISEL10, a method for single-cell allele-specific 

copy number analysis, but requires externally phased haplotypes based on large 
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reference cohorts. Despite these advances, there remain many missing details about the 

genomic landscape of allelic imbalances when considering single cells. 

Epigenetic modifications are also an important genomic feature of cancer. Analysis of 

chromatin structure is feasible with a variety of methods including transposase-accessible 

chromatin sequencing (ATAC-seq). This approach is applied either with conventional 

bulk-based or single-cell sequencing. Subsequently, analysis of chromatin structure has 

shown that epigenetic remodeling modulates the plasticity of cells in cancer20-24, leads to 

stem-like properties25-27 and generates therapeutic resistance28-31. Since copy number 

alterations involve large gains and losses of available chromatin, we expect the chromatin 

accessibility of a region to be influenced by the changes in underlying copy number. 

Current scATAC-seq studies estimate total copy number profiles by smoothing the read 

coverage and normalizing the signals against a control cell population, yet this 

appropriate control is often difficult to identify 23, 32. Currently, there is no method for 

reliable total or allele-specific copy number profiling in scATAC-seq data, and thus, how 

to disentangle the effects of CNA and chromatin remodeling in shaping the epigenetic 

landscape remains a challenge.  

Addressing these challenges, we present Alleloscope, a method for allele-specific copy 

number estimation and multiomic profiling in single cells. Alleloscope does not rely on 

external phasing information, and can be applied to scDNA-seq data or to scATAC-seq 

data with sample-matched bulk DNA sequencing data. We first apply Alleloscope on 

scDNAseq data from four gastric cancer samples, four colorectal cancer samples, and a 

breast cancer sample10, 12, 33. For three of the gastrointestinal cancer samples, results are 

extensively validated by 10x linked-read sequencing which provides accurate phasing 
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information34-36. In these datasets, Alleloscope accurately identifies LOH and mirrored-

subclonal amplification events, and finds pervasive occurrence of highly complex, multi-

allelic loci, where cells that carry varying allelic configurations adding to the same total 

copy number co-evolve within a tumor. The ubiquity of such events in all three cancer 

types analyzed reveal that they may be an important overlooked source of intratumor 

genetic heterogeneity.  

Having characterized the complexity of allele-specific CNA events at single cell resolution, 

we turn to scATAC-seq data from two basal cell carcinoma samples with paired bulk 

whole exome sequencing data23 and a complex polyclonal gastric cancer cell line that we 

analyzed by scDNA-seq. In these samples, we evaluate the accuracy of Alleloscope in 

genotyping and clone assignment and demonstrate its application to the integrative 

analysis of CNA and chromatin accessibility.  

Results 

Overview of Alleloscope allele-specific copy number estimation  

First, we briefly overview Alleloscope’s method for allele-specific copy number estimation 

(Figure 1). Clone assignment and integration with peak signals in scATAC-seq data will 

be described later. Alleloscope relies on two types of data features: coverage, derived 

from all reads that map to a given region, and allelic imbalance, derived from allele-

informative reads that cover heterozygous loci in the region. We start with some essential 

definitions. For a given single nucleotide polymorphism (SNP) site, we refer to its mean 

coverage across cells as bulk coverage and its mean variant allele frequency (VAF = ratio 

of alternative allele read count to total read count) across cells as its bulk VAF. Between 
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the two parental haplotypes, we define the term “major haplotype” as the haplotype with 

higher mean count across cells. Note that a haplotype may be the “major haplotype” of a 

sample, but be the haplotype with lesser copy number within some cells. For each 

individual cell 𝑖, in any given CNA region, we define two key parameters: (1) the major 

haplotype proportion (𝜃!), defined as the count of the major haplotype divided by the total 

copy number for the region, and (2) total copy fold change (𝜌!), defined as the ratio of the 

total copy number of the region in the given cell relative to that in normal cells.  

The genotyping algorithm starts by segmenting the genome into regions of homogeneous 

allele-specific copy number using both the bulk coverage and bulk VAF profiles (Fig.1 

Step 2). This can be achieved by multiple existing algorithms, which may be combined to 

increase detection sensitivity, see Methods for details. In our analyses of scATAC-seq 

data, the segmentation relied on the matched scDNA-seq data or the whole-exome 

sequencing data, which ensures that the putative CNA regions considered for genotyping 

are not confounded by the broad chromatin remodeling that occur in cancer.  

Now consider each putative CNA region. An expectation-maximization (EM) based 

algorithm is used to iteratively phase each SNP and estimate the major haplotype 

proportion (𝜃!) for each cell (Fig. 1, step 3). For each SNP 𝑗, let 𝐼" ∈ {0,1} be the indicator 

of whether the reference allele of SNP j is a component of the major haplotype. An initial 

estimate 𝐼."
($) is first derived from the bulk VAF profile. Then, in iteration 𝑡, Alleloscope 

computes 𝜃0!
(&) by pooling counts across sites within the region, weighted by the current 

phasing 𝐼."
(&), then updates the estimate of 𝐼" based on 𝜃0!

(&) by pooling counts across cells. 

The estimates of 𝜃! and 𝐼" usually converge within a few iterations as described in the 
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Methods. With paired scDNA-seq and scATAC-seq data derived from the same sample, 

𝐼" values are estimated from scDNA-seq data which can be used to compute 𝜃! for each 

cell in the scATAC-seq data. This step enables integration of the two data types.  

The estimated major haplotype proportions (𝜃0! ’s), along with coverage that is preliminarily 

normalized by total cell read count (𝜌1!), are then used to identify a set of normal cells and 

diploid regions (Fig. 1, Step 4). This information is used to estimate a relative coverage 

change ( 𝜌2! ) for each cell within each CNA region. If cell 𝑖 ’s true allele-specific copy 

numbers are homogeneous within the given region, then its true value of (𝜃! , 𝜌!) should 

belong to a set of canonical points displayed in Step 5 of Figure 1. Thus, the estimated 

values (𝜌2! , 𝜃0!) are clustered across cells and associated with one of the canonical values 

to yield the cell-level haplotype profiles for the CNV region. The cell-specific haplotype 

profiles across different sequencing platforms serve as the base for subsequent multi-

omics analysis in scATAC-seq data (Fig. 4b). 
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Fig. 1: Overview of allele-specific copy number estimation of single cells with Alleloscope. 1. The 
algorithm operates on raw read count matrices for reference allele (Ref) and alternative allele (Alt) 
computed from single cell DNA or ATAC sequencing. 2. First, we obtain a segmentation of the genome 
based on sample-matched whole genome or whole exome sequencing data using FALCON5. If scDNA-
seq is available, cells can be pooled to derive a pseudo-bulk. 3. For each region derived from the 
segmentation, simultaneously phase SNPs (𝐼"! ) and estimate cell major haplotype proportion (𝜃$" ) by 
expectation maximization (EM) algorithm. Since we are focusing on only one region, the region indicator 
is suppressed in our notation here. In the E-step, information is pooled across cells to estimate the 
phasing of each SNP. In the M-step, information is pooled across all SNPs in the region are pooled to 
estimate the major haplotype proportion 𝜃$" for each cell. The toy example shows a scenario with two 
cells for a region containing 5 SNPs, with cell 2 carrying an amplification of the major haplotype (in pink). 
For each cell and each SNP, alleles that are observed in a sequenced read are bolded in black (we 
assume that only one read is observed, reflecting the sparsity of the data). The true phase (𝐼!) of the 
SNPs and the true major haplotype proportion (𝜃$") are shown. 4. For region 𝑟 let {𝜃$"#} be its estimated 
major haplotype proportions across cells 𝑖. Pool data across regions to identify candidate normal cells 
and candidate normal regions for computing a normalized coverage 𝜌*"#  for region 𝑟  in cell 𝑖 . 5. 
Alleloscope assigns integer allele-specific copy numbers to each cell for each region based on the (𝜌*"#, 
𝜃$"#) pairs. 
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Whole genome haplotypes validate Alleloscope in scDNA-seq allele-specific copy 

number estimation 

First, we assessed the phasing and genotyping accuracy of Alleloscope in scDNA-seq 

data using matched linked-read whole-genome sequencing data on three gastrointestinal 

tumor samples: P5931, P6335 and P6198. Linked-read sequencing, in which one derives 

reads from individual high molecular weight DNA molecules, provides variants that can 

be phased into extended haplotypes covering Mb34-36. As a result, one obtains accurate, 

Mb-scale haplotype information from cancer genome. To evaluate the accuracy of 

phasing, we compared the haplotypes estimated by Alleloscope to the haplotypes 

obtained from linked-read WGS. Specifically, we used the WGS haplotype to evaluate 

the allele-specific copy number estimation for each cell and to assess the impact of 

phasing errors on genotyping accuracy (Fig. 2a).  

Figure 2b shows the results for the gastric cancer sample from P5931, whose genome-

wide copy number profile indicates clear CNA events on four chromosomes—chr7, chr8, 

chr20, and chr21. For each event, the scatter plots of 3𝜃0! , 𝜌2!4 estimated by Alleloscope 

and colored by haplotype profiles, are shown in Fig. 2c. Note that the 3𝜃0! , 𝜌2!4 clusters fall 

almost directly on top of the expected canonical values (e.g. (1/2, 1) for diploid, (2/3, 1.5) 

for 1 copy gain of major haplotype), also shown in the plots. Interestingly, chromosomes 

7, 8, and 21 each show subclonal clusters have differing allelic ratios but the same total 

copy number, which would not be detectable for this sample without allele-specific 

estimation for the same region. We denote the major haplotype of a region by “M”, and 

the minor haplotype by “m”. The chromosome 7 amplification exhibits two tumor 
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subclones with mirrored-subclonal CNAs (MMm and Mmm), each subclone amplifying a 

different haplotype. Such a mirrored-subclonal CNA configuration is also observed for the 

deletion on chromosome 21 (M- and m-). The chromosome 8 amplification exhibits as 

four tumor subclones with different haplotype profiles— MMm, Mmm, MMmm, and 

MMMm.  

We compared the phasing estimated by Alleloscope (𝐼." ) against the whole genome 

haplotypes. The phasing accuracy is 98% for the deleted region (chr21), ~90% for the 

two clonal amplifications (on chr8 and chr20), and 79% for the subclonal chr7 

amplification (shown in the titles of the scatter plots of Fig. 2c). Moreover, we evaluated 

the phasing accuracy for some of the somatic alterations. Figure 2d shows scatterplots 

of 𝜌2! against major haplotype proportion computed using haplotypes derived from linked-

read sequencing (𝜃5!), with the same coloring as Figure 2c. Comparing the scatterplots in 

Figure 2d to their counterparts in Figure 2c reveals that Alleloscope’s estimated cell 

haplotype profiles are highly concordant with those derived with the cancer haplotypes 

from linked-read WGS. Specifically, the concordance is ~100% across all four events (the 

concordance for each event is labeled in the scatter plots of Figure 2d). This shows that 

the genotyping algorithm in Alleloscope is robust to errors in phasing (e.g. for chr7). 

Similar analysis performed for P6335 is given in Supplementary Fig. 1. 
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Fig. 2: Validation of the Alleloscope results on the P5931 gastric cancer patient sample and 
linked-reads sequencing data. (a) Illustration of the validation scheme using linked-reads sequencing 
data. Phasing accuracy and genotyping accuracy are used to access performance of the method. (b) 
Hierarchical clustering of cells in the P5931t sample based on allele-specific copy numbers given by 
Alleloscope, showing normal cells and 4 main clones, as well as a number of small clones marked by 
highly confident low-frequency mutations. M: Major haplotype, m: minor haplotype. (c) (𝜌*#" , 𝜃$#") 
estimated by Alleloscope for four regions, colored by the inferred haplotype profile. Note that clusters fall 
on canonical points corresponding to discrete allele-specific copy number configurations. Phasing 
accuracy for each region is shown in the plot title. In the color legend, M and m represent the “Major 
haplotype” and “minor haplotype” respectively. (d) Similar to (c), with 𝜃$" estimated using known SNP 
phases from matched linked-reads sequencing data, colored by the haplotype profiles assigned in (c) 
using Alleloscope without the given phasing information. Genotyping accuracy is labeled in the plots. 
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Since copy neutral LOH events, common in cancer genomes, can only be identified 

through allele-specific copy number analysis. We examined the accuracy of Alleloscope 

specifically for copy-neutral LOH events with a colorectal adenocarcinoma from P6198. 

This tumor sample had a conventional WGS profile revealing several copy-neutral LOH 

regions that were not evident when considering the copy number heatmap in cellranger 

(Fig. 3a). Chromosome 5 presents an illustrative example: The bulk VAF clearly 

separates this chromosome into two main regions, a normal region followed by a copy-

neutral LOH (Fig. 3b). Concordantly, Alleloscope reveals a cluster centered at (𝜌, 𝜃) =

(1,1) corresponding to copy-neutral LOH only for the region on the right (Fig. 3b), which 

cleanly separates the tumor cells from normal cells. Comparing this tumor’s haplotype 

profiles derived using the haplotypes from linked-read WGS showed that the accuracy of 

Alleloscope for copy-neutral LOH events is nearly 100% (Supplementary Fig2). 
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Fig. 3: Across multiple cancer types, Alleloscope detects loss-of-heterozygosity events and 
multi-allelic copy number aberrations, delineating complex subclonal structure which are 
invisible to total copy number analysis. (a) The Cell Ranger hierarchical clustering result for P6198t 
with copy-neutral regions labeled (total 512 cells). (b) Top: FALCON segmentation of P6198 chr5 into 
two regions with different allele-specific copy number profiles. Bottom: Detailed haplotype profiles of the 
two regions from Alleloscope, showing that the first region is diploid across cells and the second region 
has a loss-of-heterozygosity for a subpopulation of cells. The a and b following the chromosome number 
denote two ordered segments. 
(c) Single cell allele-specific estimates (𝜌*, 𝜃$), colored by assigned haplotype profiles, for select regions 
in the samples P6198t (metastasized colorectal cancer sample), SNU601 (gastric cancer cell line), 
P6335 (colorectal cancer sample), and BC10X (breast cancer cell line). In the color legend, M and m 
represent the “Major haplotype” and “minor haplotype” respectively. The lower-case letters following the 
chromosome number in the titles denote the ordered genomic segments. 
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Alleloscope finds pervasive occurrence of polyclonal CNA regions differentiated 

by haplotype ratios 

We used Alleloscope to analyze an additional set of cancers including three colon cancer, 

two gastric cancer, a gastric cancer cell line, and a breast cancer with detailed 

segmentation plots and heatmaps for genome-wide allele-specific copy number profiles 

in the supplementary figures 3-9. Across most of the samples, we observed a high 

prevalence of complex subclonal CNAs indicated by multiple clusters of different 

haplotype structures within a given genomic region with prototypical examples from 

P6198, SNU601, P6335 and BC10X shown in Figure 3c. In some regions, such as 

chromosome 9 of SNU601, 3q of SNU601, 2q and 16p of BC210x, we see as many as 

seven subclonal clusters for a single event. In many cases we note multiple clusters 

corresponding to the same total copy number but varying in allelic dosage. Minor 

subclones carrying deletion of one haplotype can be easily masked by dominant 

subclones carrying amplifications of the other haplotype in a conventional sequencing 

analysis without the benefit of single cell resolution or an analysis that considers only 

copy number without allelic information. Overall, the high subclonal diversity in these 

genomic regions prone to chromosomal instability reveal an aspect of intratumor 

heterogeneity that was previously undetectable. 

Recurrent chromosomal instability events affecting both haplotypes and producing 

gradients in haplotype dosage, is a common theme across all samples analyzed. 

Consider, for example, the region on chromosome 9 of P6198, which reveals 7 

subpopulations of cells: besides the normal cell cluster and the dominant tumor cell 

cluster with the haplotype profile MMm, there is a small cluster of cells with copy neutral 
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LOH, two small subclones at four chromosome copies and two more at five chromosome 

copies. This produces major haplotype ratios of {'
(
, )
*
, (
)
, +
*
, 1} in different cells, possibly 

conferring different fitness values. Another example of such complexity is chromosome 

3q of SNU 601 and chromosome 2q of BC10x, which share a similar pattern: two 

mirrored-subclonal CNAs (MMm, mmM) at total copy number of 3, as well as mirrored-

subclonal CNAs (MMMm, MMmm, mMMM) at total copy number of 4, producing a 

gradient of haplotype ratios {'
+
, '
)
, '
(
, (
)
, )
+
}. Interrogating the evolutionary route by which 

such diversity was achieved, Alleloscope reveals that a whole genome doubling event is 

highly likely to have taken place early in the development of BC10x and P6198, but not 

in the development of SNU601 (see Supplementary Fig. 3&5). Thus, the subclones at 2q 

in BC10x and 3q in SNU601 must have evolved through different evolutionary routes: In 

BC10x, the early whole-genome doubling produces the cluster MMmm, from which the 

other clusters of different haplotype profiles were most likely derived through successive 

loss and gene conversion events. On the contrary, the clusters on 3q of SNU601 were 

most likely a result of successive amplification events starting from the normal haplotype 

profile Mm. The fact that different evolutionary routes, in two different cancer types (breast 

and gastric) evolved to have such similar allelic-specific copy number patterns imply that 

such haplotype dosage gradients may be serve as an important substrate for selection in 

tumor evolution.  

Another recurring theme is the co-occurrence of LOH of one parental haplotype and 

amplification of the other haplotype for the same event, producing co-evolving subclones 

that carry multiple copies of the remaining haplotype. Figure 3c shows such examples for 

chromosome 17p of P6198 and chromosome 11p, 11q of P6335. For 17p of P6198, a 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.23.349407doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.349407
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

gene conversion leading to copy-neutral LOH is most likely the early event, followed by 

separate loss and gain events that lead to the clusters M- and MMM. 

Sometimes, extreme instability of a chromosome region leads to clones with LOH 

coexisting with clones with amplification of the lost haplotype. For example, this is what 

occurred for SNU601’s chr18a (Figure 3c). Such clones may be missed in a conventional 

bulk WGS analysis or even with single cell analysis which does not take into account 

allelic information. The co-existence of such subclones suggests that the selective fitness 

of a tumor cell may rely not only the loss of tumor suppressors on the deleted haplotype, 

but also on the dosage of the remaining haplotype which may contain genes conducive 

to survival. Using the procedure in Figure 2a, we validated our findings of these multiallelic 

subclones in P6198 and P6335 by comparing to the paired linked-reads sequencing data. 

Phasing accuracy is high for all LOH and amplification event types that create an allelic 

imbalance (Supplementary Fig. 2). 

Juxtaposition single cell copy number and chromatin remodeling events in cancers 

Next, we applied Alleloscope to the multi-omic analysis of scATAC-seq data from two 

basal cell carcinoma with matched WES data37. Using matched whole-exome sequencing 

data, the genome of each sample was first segmented into regions of homogeneous bulk 

copy number (Fig. 4a, middle panel shows the segmentation for SU008). Alleloscope was 

then applied to the scATAC-seq data to derive allele-specific copy number estimates of 

each cell in each region. Scatterplots of (𝜌2, 𝜃0) for five example CNA regions and 1 control 

region (chr12) from SU008 are shown in Fig. 4a. For this sample, peak profiles 

characterizing chromatin accessibility separated the cells confidently into three main 
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clusters: 308 tumor cells, 259 fibroblasts and 218 endothelial cells. Since normal cells are 

not expected to carry broad copy number events, we compared the (𝜌2, 𝜃0) values of the 

tumor cells against those of the fibroblast and epithelial cells to assess our genotyping 

accuracy. Density contours for each cell type are shown in the (𝜌2, 𝜃0)- scatterplots (Fig. 

4a). The (𝜌2, 𝜃0) values clearly separate the tumor cells from the normal cells for each CNV 

region, with the tumor cell cluster positioned at canonical points, indicating that these 

statistics used by Alleloscope can accurately distinguish amplifications and loss-of-

heterozygosity events in scATAC-seq data. In particular, Alleloscope differentiated the 

cells that carry copy neutral LOH events through shifts in major haplotype proportion. 

Note that normal cells, which are not expected to carry broad chromosome-scale CNVs, 

exhibit chromosome-level deviations in total coverage due to broad chromatin remodeling 

as exemplified by the chr6b region. Furthermore, many regions with no CNA signal in 

bulk WES data also exhibit shifts in aggregate coverage in ATAC data, but with no 

significant difference in their 𝜃0!  distribution. Thus, relying solely on shifts in coverage, 

without complementary shifts in major haplotype proportion, would lead to false positive 

copy number detections for scATAC-seq data. 

By assigning allele-specific CNA profiles to single cells in scATAC-seq data, Alleloscope 

allows the integrative analysis of chromosomal instability and chromatin remodeling as 

follows (Figure 4b): The scATAC-seq data, paired with bulk or single-cell DNA sequencing 

data, allows us to detect subclones In parallel, a peak-by-cell matrix can be computed 

following standard pipelines. Then, the subclone memberships or CNA profiles can be 

visualized on the low-dimensional embedding of the peak matrix, and the subclones can 

be further compared in terms of peak or transcription factor motif enrichment. Precise 
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haplotype profiles for each subclone then allows us to identify significantly 

enriched/depleted peaks after accounting for copy number differences, thus delineating 

events that are uniquely attributable to chromatin remodeling. 

Hierarchical clustering using major haplotype proportion 𝜃0 identifies the tumor cells from 

the normal cells for both SU006 (Supplementary Fig. 10) and SU008, and clearly 

delineates a subclone in SU008 marked by a copy-neutral LOH event on chr4a (Fig. 4c). 

Focusing on SU008, we call the cell lineage that carries the chr4a LOH event clone-2, 

and the other lineage clone-1. In parallel, clustering by peaks cleanly separates the tumor 

cells from the epithelial cells and fibroblasts (Fig. 4d: left), and further, demarcates two 

distinct clusters in the tumor cells (peaks-1 and peaks-2) (Fig. 4d: middle). What is the 

relationship between the peaks-1 and peaks-2 clusters obtained from peak signals to the 

two clones delineated by chr4a LOH? Coloring by chr4a major haplotype proportion (𝜃0) 

on the peaks-derived UMAP shows that the LOH in this region is carried by almost all of 

the cells in peaks-2 but only a subset of the cells in peaks-1 (Fig. 4d: middle). This can 

also be clearly seen in the density of 𝜃0 (Fig. 4d: right): While 𝜃0 is heavily concentrated 

near 1 for peaks-2, it is bimodal for peaks-1. Since clone-1 and clone-2 are differentiated 

by a copy-neutral event, this separation by peaks into two clusters is not driven by copy 

number differences but by chromatin remodeling. The pattern of overlap between the 

LOH-derived clones and the peaks-derived clusters indicate that, barring convergent 

evolution, most of the chromatin remodeling that led to the divergence of the peaks-2 

cells must have occurred in the clone-2 lineage, after the chr4a LOH (Fig. 4e). Thus, 

Alleloscope analysis of this scATAC-seq data set allowed us to overlay two 
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subpopulations defined by peak signals with two subpopulations defined by a subclonal 

copy-neutral LOH, and infer their temporal order.  
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Fig. 4: Alleloscope multiomic analysis of scATAC-seq data of a basal cell carcinoma sample 
(SU00823). (a) Genotype profiles for six example regions for cells in scATAC-seq data. The regions are 
taken from segmentation of matched whole exome sequencing (WES) data. Each dot represents a cell-
specific (𝜌*", 𝜃$") pair. Cells are colored by annotation derived from peak signals23, Tumor: tumor cells, 
Fibro: fibroblasts, Endo: Endothelial cells]. Density contours are computed for each cell type (tumor, 
fibroblasts, endothelial) separately and shown by color on the plot. The lower-case letters following the 
chromosome number in the titles denote the ordered genomic segments. (b) Pipeline for multi-omics 
analysis integrating allele-specific copy number estimates and chromatin accessibility peak signals on 
ATAC-seq data. (c) Hierarchical clustering of cells by major haplotype proportion (𝜃$ ) allows the 
separation of tumor cells from normal cells, as well as the differentiation of a subclone within the tumor 
cells. The marker region on chr4a separating the two tumor subclones is highlighted. (d) Integrated 
visualization of chr4a major haplotype proportion (𝜃$"	 ) and genome-wide peak profile. Left: UMAP 
projection of the 788 cells in the dataset by their genome-wide peak profile, colored by 𝜃$". The cell type 
annotation (endothelial, fibroblasts, and tumor cells) is labeled in the plot. Middle: UMAP projection of 
only the 308 tumor cells by their genome-wide peak profile shows two well-separated clusters: peaks1 
and peaks2. Right: Density of 𝜃$"  values for the peaks1 and peaks2 subpopulations. (e) Intratumor 
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heterogeneity of SU008 is shaped by a subclonal LOH of chr4a followed by subsequent genome-wide 
chromatin remodeling leading to three subpopulations: Clone 1 which does not carry the chr4a LOH 
(peaks cluster 1), Clone 2 carrying the chr4a LOH (peaks cluster 1), and remodeled clone 2 (peaks 
cluster 2). 

 

Integrative analysis of clonal evolution and altered chromatin accessibility for a 

complex polyclonal gastric cancer cell line 

The gastric cancer cell line SNU601 exhibits complex subclonal structure, as evidenced 

by multiple multiallelic CNA regions (chr3e and chr18a are shown in Figure 3c). In addition 

to scDNA-seq, we also performed scATAC-seq on this sample to profile the chromatin 

accessibility of 3,515 cells at mean coverage of 73,845 fragments per cell. This allows us 

to compare the allele-specific copy number profiles obtained by scATAC-seq with those 

given by scDNA-seq and integrate the two data types in a multi-omic characterization of 

this complex tumor.  

First, we segmented the genome and estimated the allele-specific copy number profiles 

of single cells at each segment for both the scATAC-seq and scDNA-seq data, following 

the procedure in Figure 1 with some modifications due to the lack of normal cells to use 

as control for this sample. Figure 5a shows the relative total coverage, pooled across cells 

from scDNA-seq. Figure 5b shows (𝜌2, 𝜃0)-scatterplots for five example CNA regions in 

scDNA-seq and scATAC-seq. Compared to the scATAC-seq data, the scDNA-seq data 

has about 8-fold higher total read coverage and 7-fold higher heterozygous site coverage 

per cell. Thus, while subclones corresponding to distinct haplotype profiles are cleanly 

separated in the scDNA-seq data, they are much more diffuse in the scATAC-seq data. 

Yet, cluster positions in scATAC-seq roughly match those in scDNA-seq. As expected, 
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the (𝜌2, 𝜃0)-scatterplots reveal the high level of chromosomal instability in this sample, with 

each region exhibiting multiple clusters of different haplotype structures that indicate the 

existence of subclones carrying mirrored events and, for some regions, the variation of 

haplotype dosage over a gradient across cells. 

Figure 5c shows the hierarchical clustering of cells from scDNA-seq based on their allele-

specific copy number profiles, revealing the subclonal structure and the co-segregating 

CNA events that mark each subclone. For each cell in each region, Alleloscope also 

produces a confidence score for its assignment to different haplotype profiles 

(Supplementary Fig. 11). Based on visual examination of the confidence scores at the 

marker regions, we identified 6 subclones for further investigation (Clones 1-6 labeled at 

the right of the heatmap). The allele-specific copy number profiles allow us to manually 

reconstruct the probable evolutionary tree relating these 6 clones under the following 

three rules:  

(1) Parsimony: The tree with the least number of copy number events is preferred. 

(2) Monotonicity: For a multi-allelic region with escalating amplifications (e.g. Mm, MMm, 

MMMm), the haplotype structures were produced in a monotonic order (e.g. Mmà 

MMmà MMMm) unless a genome doubling event occurred. 

(3) Irreversibility of LOH: Once a cell completely loses an allele (i.e. copy number of that 

allele becomes 0), it can no longer gain it back.  

The evolutionary tree, thus derived, is shown in Figure 6b. The mirrored-subclonal 

amplifications on chr3q, the deletion on chr4p, and the multiallelic amplification on chr20q 
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allowed us to infer the early separation of clones 3-6 from clones 1-2. Subclones 3-6 are 

confidently delineated by further amplifications on chr3q, chr20q, chr11, chr13, and chr17. 

Note that high chromosomal instability led to concurrent gains of 1q and 7p in both the 

Clone 1-2 and Clone 3-6 lineages. We also observed a large number of low-frequency 

but high-confidence CNA events indicating that ongoing chromosomal instability in this 

population is spawning new sporadic subclones that have not had the chance to expand. 

We now turn to scATAC-seq data, focusing on the 10 marker regions which, together, 

distinguish Clones 1-6: chr1b, 3b-d, 4b, 7a, 11b, 13b, and 20b-c. The (𝜌2, 𝜃0)  values 

computed by Alleloscope allows us to directly assign allele-specific copy number profiles 

to each cell for each region, as well as subclone labels to each cell, with posterior 

confidence score. The subclone assignment utilizes a Bayesian mixture model that pools 

information across the 10 marker regions. Despite the low accuracy in per-region 

genotyping, when information is pooled across the 10 marker regions, 81.6% of the 2,753 

cells after filtering can be assigned to a subclone with >95% posterior confidence 

(Supplementary Fig. 12, the number of ATAC cells confidently assigned to each clone 

are shown in Figure 6a.). These subclone assignments for each cell, and cell-level 

haplotype profiles for each region, can now be integrated with peak-level signals. 
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Fig. 5: Alleloscope analysis of scDNA-seq and scATAC-seq data reveals complex subclonal 
heterogeneity in the SNU601 gastric cancer cell line. (a) Genome segmentation using HMM on the 
pooled total coverage profile computed from scDNA-seq data. 
(b) Single cell allele-specific copy number profiles (𝜃$, 𝜌*) for five regions in scDNA-seq and scATAC-seq 
data. Cells are colored by haplotype profiles according to legend in Figure 5c.  
(c) Tumor subclones revealed by hierarchical clustering of allele-specific copy number profiles from the 
scDNA-seq data. Genotypes of the five regions shown in Figure 5b, for three example cells, are shown in 
the left. The haplotype structures for the 5 regions in Figure 5b of three cells randomly chosen from Clone 
1, 2, and 3, are shown to the left of the heatmap. In the color legend, M and m represent the “Major 
haplotype” and “minor haplotype” respectively. The six clones selected for downstream analysis in scATAC-
seq data are labeled in the plot. 
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Following the scheme in Figure 4b, we computed the Uniform Manifold Approximation 

and Projection (UMAP) coordinates for the scATAC-seq cells based on their peak profiles, 

which gives a two-dimensional visualization of the geometry of the chromatin accessibility 

landscape of this sample (Fig. 6a). UMAP scatterplots colored by clone assignment show 

that the 6 clones exhibit marked differences in their chromatin accessibility profiles (Fig. 

6a): While Clone 1 and Clone 2 are concentrated at the top half of the UMAP, Clones 3-

5 are positioned almost exclusively at the bottom half. Clone 6, which exhibits more 

variance, is also significantly enriched at the bottom half of the UMAP. Among Clones 3-

5, Clone 3 has a distinct chromatin accessibility profile that is mostly concentrated at the 

bottom tip, Clone 4 is positioned higher, while Clone 5 contains cells that are similar to 

both clones 3 and 4. We expect some of these peak-level differences to be driven by 

CNAs.  

To delineate the peaks that differ between clones, and to distinguish peak differences 

that are not accountable by CNAs, we identified differential accessibility peaks (DAPs) 

across each split of the tree (Fig. 6b) by performing pairwise Chi-square tests for peak 

enrichment between the cell populations on the two branches. The DAPs are categorized 

into two groups —1. DAPs lying in CNA regions for which the direction of change aligns 

with the direction of change of DNA coverage, and 2. DAPs not in CNA regions and DAPs 

in CNA regions that don’t align in directionality of change with DNA coverage. The number 

of DAPs in both groups are shown along each branch (Fig. 6b). For the smaller subclones 

(Clone 3,4,5), low coverage limits the detection power and thus limits the DAP counts in 

both categories. Yet, juxtaposing DAP and CNA events along the tumor phylogeny yields 

insights: Along most lineages, a significant proportion of DAPs are attributable to CNAs 
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(p-values shown along each branch), and CNA events drive a substantial 36.3% of all of 

the DAPs identified. This argues for the importance of CNAs as a mechanism underlying 

subclonal differences in chromatin accessibility in this tumor.  

Nevertheless, along some branches we find a large number of DAPs not attributable to 

broad CNAs, and thus must be due to other mechanisms. Two example DAPs of this 

latter category are shown as insets in Figure 6b, with full list given in Supplementary Table 

1. The first example is a peak at the transcription start site (TSS) of the REC8 gene, which 

is located on chr14 where no apparent CNAs were observed across the six major 

subclones. The TSS of REC8 is open in clones 3-6 but closed in clones 1-2 (p-

value<0.0001). REC8 is a gene encoding a meiosis-specific cohesion component that is 

normally suppressed in mitotic proliferation, and its role in cancer has recently gained 

increasing attention and controversy: While Yu et al.38 found the expression of this gene 

to suppress tumorigenicity in a gastric cancer cell line, McFarlane et al.39 postulated that 

it may be broadly activated in some cancers where it generates LOH by reductional 

segregation. The opening of the TSS of REC8, stably maintained in Clones 3-6, suggests 

that meiotic processes may underlie the increased chromosomal instability of this 

multiclonal lineage. The second example is a peak at the TSS of the WWOX gene, located 

on chr16, which is significantly depleted in Clone 3 (p-value<0.0001). Although chr16 has 

LOH across all tumor cells, there are no detectable subclonal differences, and thus we 

don’t expect the decrease in accessibility at WWOX for subclone 3 to be due to a large 

copy number event. Since WWOX is a well-known tumor suppressor whose down-

regulation is associated with more advanced tumors40, 41, its decrease in accessibility 

suggests a more aggressive phenotype for Clone 3. Overall, these two examples show 
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how Alleloscope can be used to dissect the roles of CNA and chromatin-level changes in 

the identification of gene targets for follow-up study. 
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Fig. 6: Integrative analysis of allele-specific copy number and chromatin accessibility for SNU601 
ATAC sequencing data. (a) UMAP projection of genome-wide scATAC-seq peak profile on 2,753 cells. 
The same group of cells were clustered into one of the six subclones based on their allele-specific copy 
number profiles across the 10 selected regions. Cells in different subclones are labeled with different colors, 
using the same color scheme as that for the subclone labels in Fig. 4c. The number of cells colored in each 
UMAP is shown at the bottom-right corners. 
(b) A highly probable lineage history of SNU601, with copy number alternations (CNAs) and differential 
accessibility peaks (DAPs) marked along each branch. P-values of the tests for association between DAPs 
and CNAs are shown along each branch. For two example DAP genes, pooled peak signals for each 
subclone are shown as inset plots.  
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Discussion 

Despite the recent advances in the application of single cell sequencing to cancer, we are 

still far from understanding the diversity of genomes that are undergoing selection at the 

single cell level. Notably, little is yet known about the intratumor diversity of allelic 

configurations within CNV regions, and to what extent the diversity of cells in chromatin 

accessibility can be attributed to diversity in allele-specific copy number. We presented 

Alleloscope, a new method for allele-specific copy number estimation that can be applied 

to single cell DNA and ATAC sequencing data (separately or in combination). First, on 

scDNA-seq data of 9 samples from 3 different tumor types, with phasing validation by 

linked-read sequencing on three samples, Alleloscope revealed an unprecedented level 

of allelic heterogeneity within hypermutable CNA regions. In these regions, subclones 

reside on a gradient of allelic ratios that is unobservable in total copy number analysis. In 

simple cases, these hypermutable regions contain mirrored subclones, as previously 

identified9,10, but are often much more complex. We observed multiple instances of 

recurrent CNA events, some verified by linked read sequencing, where the same region 

is mutated multiple times during the evolution of the tumor, arriving at the same haplotype 

profile in distinct clones. In accordance with the findings in Watkins et al.42, we found 

using Alleloscope that chromosomal instability drives the formation of subclones not only 

in primary tumors but also after metastasis.  

Having established the allelic complexity of CNAs at single cell resolution, we next applied 

Alleloscope to scATAC-seq data, thus enabling the combined study of clonal evolution 

and chromatin accessibility. First, we considered the analysis of a public data set 

consisting of two basal cell carcinoma samples, for which matched bulk whole-exome 
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sequencing data was used for initial genome segmentation upon which single cell CNA 

genotyping was then conducted in the scATAC-seq data. Here we showed that 

Alleloscope can detect amplifications, deletions, and copy-neutral LOH events accurately 

in scATAC-seq data, and was able to find a subclone delineated by a copy-neutral LOH 

event. Juxtaposing this subclone assignment with peak signals allowed us to detect a 

wave of genome-wide chromatin remodeling in the lineage carrying the LOH. Next, we 

applied Alleloscope to a complex polyclonal gastric cancer cell line with matched scDNA-

seq data. We found, by overlaying peak signals with subclones delineated by allele-

specific copy number estimates, that much of the intratumor heterogeneity in chromatin 

accessibility can be attributed to CNAs. Focusing on subclone-enriched peaks outside of 

CNA regions allowed the prioritization of genes for downstream follow-up.  

Alleloscope can potentially be applied to the integration of single cell data of other 

modalities, for example scATAC-seq and scRNA-seq data, to investigate the relationships 

between clonal evolution, chromatin remodeling, and transcriptome. To facilitate 

experimental design for single cell omics sequencing protocols, we investigated the 

performance of Alleloscope under different scenarios (number of cells, total per cell 

coverage, and total coverage at heterozygous SNP sites), see Supplementary Methods. 

As expected, accuracy is a function of all three quantities (Supplementary Fig. 13). 

Coverage at heterozygous SNP sites is especially important for scRNA-seq and scATAC-

seq data, for which shifts in total coverage is an unreliable proxy for underlying DNA copy 

number. For scATAC-seq, the lower heterozygosity within peak regions led to lower 

number of reads mapping to heterozygous loci as compared to scDNA-seq, and this 

resulted in noisier subclone detection. Most of the current scRNA-seq technologies only 
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sequence either the 3’ or 5’ end of the mRNA transcripts, which limits the number of 

heterozygous SNP sites covered by reads. The latest developments in single cell long 

read sequencing43-45 and single cell multimodal sequencing46 herald new analysis 

opportunities with this method.  

Methods 

ScDNA-seq Data Sets and Pre-processing 

Table 1 summaries the nine 10x scDNA-seq samples analyzed in this study: 

The Cell Ranger DNA pipeline (https://support.10xgenomics.com/single-cell-

dna/software/) automates sample demultiplexing, read alignment, CNA calling and 

visualization. We first applied the tool to process the sequencing data (beta version: 

6002.16.0) using the GRCh38 reference genome. The output bam files from the tool 

contain all information for later analysis. If the tumor samples had a matched normal 

sample, the GATK HaplotypeCaller was used to reliably call heterozygous SNPs on the 

matched normal samples. Otherwise, SNPs were retrieved on the tumor sample 

themselves. Next, we applied VarTrix, a software tool for extracting single cell variant 

information from the 10x barcoded bam files (https://github.com/10XGenomics/vartrix), to 

Sample Cancer 
type 

Source Paired
normal 

Linked
-reads 

Coverage 
per cell 

Cell 
number 

 

P5846 Gastric Primary tissue Yes No 454,806 510 33 
P5847 Gastric Primary tissue Yes No 422,134 715 33 
P5915 Colorectal Liver meta Yes No 126,2629 233 33 
P5931 Gastric Primary tissue Yes Yes 730,932 796 12 
P6198 Colorectal Liver meta Yes Yes 532,343 2,271 33 
P6335 Colorectal Omentum meta No Yes 564,058 953 33 
P6461 Colorectal Liver meta Yes No 483,524 1,242 33 
SNU601 Gastric Ascites meta No No 565,648 1,531 12 
BC10x Breast Primary tissue No No 781,506 1,916 10 
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efficiently generate two SNP-by-cell matrices for both reference alleles and alternative 

alleles of the SNPs called in the previous step.  

To include high-quality SNPs in the later analysis, we filtered out the SNPs with <5 reads 

for P5846 and P5847, <10 reads for P5915 and P5931, <15 reads for P6335 and P6461, 

<20 reads for P6198 and SNU601, and <40 for BC10X samples based on the number of 

SNP detected for each sample. Additionally, SNPs located in the regions of repetitive 

sequences such as centromeres and telomeres were excluded. To exclude cells that 

might undergo apoptosis or cell cycles, the cells labeled noisy from the metadata output 

by the Cell Ranger tool were excluded.  

Single-cell ATAC Data sets, Sequencing and Preprocessing 

Table 2 summaries the scATAC-seq samples analyzed in this study: 

 

The scATAC-seq dataset for the SNU601 sample was generated in this study. About 

400,000 cells were washed with RPMI media and centrifuged (400g for 5 min at 4°C) 

twice. The supernatant was removed and chilled PBS + 0.04% BSA solution was added. 

The resuspended pellet was added to a 2ml microcentrifuge tube and centrifuged (400g 

for 5min at 4°C). After removing the supernatant without disrupting the pellet, 100 µL of 

chilled Lysis Buffer (10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl2, 1% BSA, 0.1% 

Sample Cancer 
type 

Source Matched 
DNA 

Coverage 
per cell 

Cell 
number 

Ref 

SU006 Basal cell 
carcinoma 

Primary tissue Yes 41,368 2771 23 

SU008 Basal cell 
carcinoma 

Primary tissue Yes 36,057 788 23 

SNU601 Gastric Ascites meta Yes 73,845 3614  - 
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Nonidet P40 Substitute, 0.1% Tween-20 and 0.01% digitonin) was added and carefully 

mixed 10 times. The tube was incubated on ice for 7 min. After incubation, 1 mL of chilled 

Wash Buffer (10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl2, 1% BSA and 0.1% 

Tween-20) was added and mixed 5 times followed by centrifugation of nuclei (500g for 5 

min at 4°C). After removing the supernatant carefully, nuclei were resuspended in chilled 

Nuclei Buffer (10X Genomics), filtered by Flowmi Cell Strainer (40uM) and counted using 

a Countess II FL Automated Cell Counter. Then the nuclei were immediately used to 

generate scATAC-seq library.  

ScATAC-seq library was generated using the Chromium Single Cell ATAC Library & Gel 

Bead Kit (10X Genomics) following the manufacturer’s protocol. We targeted 3000 nuclei 

with 12 PCR cycles for sample index PCR. Library was checked by 2% E-gel 

(Thermofisher Scientific) and quantified using Qubit (Thermofisher Scientific). 

Sequencing was performed on Illumina NextSeq500 using NextSeq 500/550 High Output 

Kit v2.5 (Illumina).  

Raw sequencing reads of the SNU601 scATAC-seq sample was de-multiplexed with the 

10x Genomics Cell Ranger ATAC Software (v.1.2.0; https://support.10xgenomics.com/single-

cell-atac/software/pipelines/latest/algorithms/overview) and aligned to the human GRCh38 

reference genome. The aligned scATAC-seq data of the two pre-treatment basal cell 

carcinoma samples (SU006 and SU008) were downloaded from the Gene Expression 

Omnibus under accession GSE12978523. To obtain all potential SNPs for the SU006 and 

SU008 samples, GATK Mutect2 was used to call all single-nucleotide variants (SNVs) on 

the deduplicated bam files by the Picard toolkits of both the t-cell dataset and the tumor 

dataset from the same tumor. All SNVs from the paired tumor-normal datasets were 
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combined and the read counts of these SNPs were quantified for each cell in the tumor 

scATAC-seq dataset. The pre-filtered cell barcodes for the two public scATAC-seq 

datasets were retrieved from the previous study23. For the SNU601 scATAC-seq data, we 

instead quantified the read counts of the two alleles of the SNPs more reliably called from 

the paired normal scDNA-seq data. Like scDNA-seq, we applied VarTrix to generate two 

SNP-by-cell matrices for both reference alleles and alternative alleles of all the SNVs for 

all the scATAC-seq datasets. To obtain a SNP set including only SNVs that are more 

possible to be germline SNPs, we further filtered out the SNVs <20 reads for the SU008 

sample and <30 reads for the SU006 sample. SNPs with extreme VAF values <0.1 or 

>0.9 were also excluded for both samples. Since we used the phasing information from 

the paired scDNA-seq data to assist the estimation of the haplotype structures for the 

SNU601 scATAC-seq data, we instead filtered out the cells <5 reads and the SNPs <5 

reads to improve quality of the downstream analysis.  

Linked-reads sequencing and data processing 

The three samples with the linked-reads sequencing data were acquired as surgical 

resections following informed consent under an approved institutional review board 

protocol from Stanford University. Samples were subjected to mechanical and enzymatic 

dissociation as previously described, followed by cryopreservation of dissociated cells 

(DOI: 10.1101/2020.09.01.273672, 10.1158/1078-0432.CCR-19-3231) 

Cryofrozen cells were rapidly thawed in a bead bath at 37 ºC. Cell counts were obtained 

on a BioRad TC20 cell counter (Biorad, Hercules, CA) using 1:1 trypan blue dilution. 

Between 1.5-2.5 million total cells were washed twice in PBS. Centrifugation was carried 
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out at 400g for 5 minutes. PBS was removed and cell pellets were frozen at -80 ºC. DNA 

extraction was carried out on cell pellets following thawing using either MagAttract HMW 

DNA Kit (P5931) or AllPrep DNA/RNA Mini Kit (Qiagen Inc., Germantown, MD, USA) as 

per manufacturer’s protocol. Quantification was carried out using Qubit (Thermofisher 

Scientific).  

Sequencing libraries were prepared from DNA using Chromium Genome Reagent Kit (v2 

Chemistry) (10X Genomics, Pleasanton, CA, USA) as per manufacturer’s instructions. 

Sequencing was performed using Illumina HiSeq or NovaSeq sequencers using 150x150 

bp paired end sequencing and i7 index read of 8 bp. Long Ranger (10X Genomics) 

version 2.2.0 was used to perform read alignment to GRCh38, calling and phasing of 

SNPs, indels and structural variants.  

Segmentation 

The first step of Alleloscope is to segment the genome into regions with different CNA 

profiles. The appropriate segmentation algorithm depends on what samples are available. 

First, matched bulk DNA sequencing data (WGS/WES) or pseudo-bulk data from 

scDNAseq data can be segmented using FACLON5, a segmentation method that jointly 

models the bulk coverage and bulk VAF profiles, if a matched normal sample is 

available.To accommodate segments from rare subclones, methods that integrate shared 

cellular breakpoints in CNA detection for scDNA-seq data such as SCOPE47 can improve 

sensitivity. Since FALCON requires a matched normal sample or a sufficiently large set 

of normal cells, if these are not available then Alleloscope instead relies on a HMM-based 

segmentation method. The HMM method, which operates on the binned counts of pooled 
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cells, assumes a Markov transition matrix on four hidden states representing deletion, 

copy-neutral state, single-copy amplification and double-copy amplification: 

7

1 − 3𝑡 𝑡 𝑡 𝑡
𝑡 1 − 3𝑡 𝑡 𝑡
𝑡 𝑡 1 − 3𝑡 𝑡
𝑡 𝑡 𝑡 1 − 3𝑡

:, where 𝑡 = 1 × 10,- as default. Emission probabilities 

follow a normal distribution with means equal to {1.8, 1.2, 1, 0.5} and standard deviations 

equals to 0.2. All the scDNA-seq samples were segmented using the HMM algorithm. 

With the paired sample, the P6198 tumor sample was segmented using FALCON on the 

1,399,650 SNPs >30 reads across 2,271 cells with all the default parameters. 

Whole-exome sequencing (WES) data processing 

The WES data of the two paired tumor-normal samples (SU006 and SU008) were 

obtained from the Sequence Read Archive under accession PRJNA533341. Raw fastq 

files were aligned to the GRCh37 reference genome using bwa-mem48 with duplicate 

reads removed using the Picard toolkits49. The copy number calls of paired normal-tumor 

samples were obtained using Varscan 250. To perform allele-specific copy number 

analysis on the WES using FALCON, GATK HaplotypeCaller49 was used to call SNPs on 

both tumor and normal samples. Then FALCON was used to segment each chromosome 

based on the read counts of the reference alleles and alternative alleles of the SNPs 

overlapped between the paired tumor-normal samples.  

SNP Phasing and Single-cell Allele Profile Estimation 

For each region after segmentation, an expectation-maximization (EM)- based method is 

used to iteratively phase each SNP and estimate cell-specific allele-specific copy number 
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states for all scDNA-seq and scATAC-seq data sets. Recall that by “major haplotype” we 

refer to the haplotype with higher aggregate copy number in the sample. Let 𝐼" indicate 

whether the reference allele of SNP j is located on the major haplotype and 𝜃! denote 

major haplotype proportion of cell i. The EM model iterates the expectation step and the 

maximization step. The complete log likelihood of the model is  

𝑙(𝜃) ==𝑙𝑜𝑔𝑃(𝐴!" , 𝐵!"|𝜃)
.

"/'

 

	= ={E𝐴!"𝑙𝑜𝑔𝜃 + 𝐵!" log(1 − 𝜃)J𝐼" + E𝐵!"𝑙𝑜𝑔𝜃 + 𝐴!" log(1 − 𝜃)J(1 − 𝐼")}
.

"/'

 

where 𝐴!" and 𝐵!" are the observed read counts for the reference and alternative alleles 

of cell i on SNP j. In the E-step, we first calculate the expected value of the posterior 

probability of the hidden variable 𝐼" to construct a lower bound for optimization 

𝐸01(&)E𝐼"L𝐴!" , 𝐵!" 	J = 𝐼."
(&) =

∏ 𝜃0!
(&)2()N1 − 𝜃0!

(&)O
3()

!

∏ 𝜃0!
(&)2()N1 − 𝜃0!

(&)O
3()

! +∏ N1 − 𝜃0!
(&)O

2()
𝜃0!
(&)3()

!

 

where 𝜃0!
(&) is the parameter from the tth iteration. In the M-step, 𝜃0! is updated by solving 

𝜃0!
(&4') = 𝑎𝑟𝑔𝑚𝑎𝑥0(𝐸T𝑙(𝜃)U𝐴!" , 𝐵!" , 𝜃0!

(&)V 

=
∑ [𝐴!"𝐼."

(&) + 𝐵!"(1 − 𝐼."
(&))]"

∑ [𝐴!"𝐼."
(&) + 𝐵!"(1 − 𝐼."

(&))]" +∑ [𝐴!"(1 − 𝐼."
(&)) + 𝐵!"𝐼."

(&)]"
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Where 𝜃0!
(&)  and 𝜃0!

(&4')  are from two successive iterations of EM. The two steps are 

iterated until converge. To speed up the EM process, we limited the maximum number of 

SNPs in a region to be 30,000 in our analysis. For the SNU601 scATAC-seq dataset, 

since the phase were estimated in the paired scDNA-seq dataset with higher depth, we 

directly applied the estimated 𝐼." ’s from scDNA-seq data to estimate the 𝜃0! ’s of the cells in 

the scATAC-seq data. To improve the estimation results, cells with <20 read counts 

covering the identified SNPs were excluded for each region. 

Selecting normal cells and normal regions for single-cell Coverage Normalization 

Let 𝑟  represent a region in the genome after segmentation. To compute the relative 

coverage change for each cell in region 𝑟 (𝜌2!5), normal cells and diploid regions identified 

within the sample are required for normalization. After major haplotype proportions for 

each cell in each region 𝜃0!5 ’s are inferred from the EM-based algorithm, the estimates are 

used to identify normal cells and diploid regions under a hierarchical clustering of all cells. 

To identify normal cells, the dendrogram tree is first cut into k largest groups (we used 

𝑘 = 5 which worked well across samples). The cluster with normal cells is identified by 

selecting the cth cluster with the minimum distance calculated by 

=\
∑ 𝜃0!501(∈7*

𝑛8
− 0.5\

(9

5/'

	 

where 𝑆8 represents 𝜃0! values of the cells in the cth cluster, and 𝑛8 is total cell number in 

the cth cluster. All cells in the cth cluster are considered as candidate normal cells.  
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Putative diploid regions are next identified in each cluster. Similar to normal cell 

identification, Alleloscope computes the first measurement (𝑑85) as the sum 𝜃0! distance 

of the cells in the cth cluster for each region r 

𝑑85 = = L𝜃0!5 − 0.5L
(

01(∈7*

 

Since amplified regions with both haplotypes equally amplified can also have small sum 

𝜃0! distance, adjusted raw coverages are also considered in diploid region selection. The 

adjusted raw coverage of cell i in region r (𝜌1!9) is computed by  

𝜌1!5 =
𝑁!5
𝑁!

×
𝐿5
𝐿𝐿, 

where 𝑁!5 is the total read counts in region r of cell i and 𝑁! is the total read counts of cell 

i across the regions. 𝐿5 is length of the region r and 𝐿𝐿 is total length of the genome. For 

region r, cells with 𝜌1!5 values larger than the 99th percentile are assigned the 𝜌1!5 values 

equal to the 99th percentile across the cells. The second measurement (𝑚85) used to 

select diploid regions in the cth cluster is the mean 𝜌1!5 for each region r  

𝑚85 =
∑ 𝜌1!5:;(∈7*

𝑛8
 

where 𝑆8 here represents 𝜌1! values of the cells in the cth cluster. To identify diploid regions, 

𝑑85  and 𝑚85  are both ranked from the smallest to the largest for each cluster c. 

Alleloscope shows a list of potential diploid regions for each cluster by raking the sums 

of 	𝑑85  ranks and 𝑚85  ranks. Excluding the cth cluster identified as the normal group, 
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Alleloscope proposed a list for the candidate diploid regions across the clusters by 

selecting the majority region.  

Since coverage on scATAC-seq data is confounded by the epigenetic signals, 

chromosome 22 for SU008 and chromosome 18 for SU006 were directly selected as 

normal regions based on the WES data. Individual cells were classified into normal and 

tumor cells based on the epigenetic signals on the scATAC-seq data. For the SNU601 

scATAC-seq dataset, chromosome 10 was selected as the normal region based on the 

paired scDNA-seq data.  

Cell-level Genotyping 

The cell-level allele-specific copy number profiles are defined by both relative coverage 

change (𝜌2!5) and major haplotype proportion (𝜃0!5) of region r and cell i. After the normal 

cells and normal control region are identified, cell-specific relative coverage change in 

region r is calculated as 

𝜌2!5 =
𝑁!5
𝑁!$

/	𝑚𝑒𝑑𝑖𝑎𝑛(
𝑁$5
𝑁$$

)	 

where 𝑁!5 is total read counts in region r and 𝑁!$ is total read counts in a reference region 

of cell i. 𝑁$5 is a vector denoting total read counts in region r of all identified normal cells 

and 𝑁$$  is a vector denoting total read counts in the same reference region r of all 

identified normal cells. Since SNU601 is a tumor cell line with no normal cells in the 

dataset, 𝑁$5 and 𝑁$$ were calculated from the cells in the matched normal P6198 sample 

as a substitute for the scDNA-seq data. For SNU601 scATAC-seq data, we aligned the 
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distribution of the 𝜌2!5 values in paired scDNA-seq data to the distribution of the <(+
<(

 values 

for each region to get the normalized 𝜌2!5 in the scATAC-seq data. The normalized 𝜌2!5 

values for the scATAC-seq data were computed by 

𝜌2!5=&=8 =
𝑁!5
𝑁!$

/	𝑚𝑒𝑑𝑖𝑎𝑛(
𝑁!5
𝑁!$

) × 	𝑚𝑒𝑑𝑖𝑎𝑛(𝜌2!5>.=)	 

Next, cells with extreme 𝜌2!5 values larger than the 99th percentile and smaller than the 

first percentile across the cells are considered outliers and excluded for each region. With 

the (𝜌2!5 , 𝜃0!5) pairs, cells in the scDNA-seq data can be classified into the haplotype profiles 

(g) with the expected (𝜌?, 𝜃?) values based on minimum distance. Although signals in the 

scATAC-seq data are much noisier, the haplotype structures identified in the paired 

scDNA-seq data can help to guide the genotyping for each region. In region r, the 

posterior probability of cell i carrying a haplotype profile observed in region r in the paired 

scDNA-seq data was 

𝑃3𝐺𝑇!5 = 𝑔5L𝜌2!5 , 𝜃0!54 =
𝑃3𝜌2!5 , 𝜃0!5L𝐺𝑇!5 = 𝑔54𝜋?+

∑ 𝑃3𝜌2!5 , 𝜃0!5L𝐺𝑇!5 = 𝑔@4𝜋?+,?+@
, 

where 𝑔5 denotes the haplotypes profiles observed in region r in the paired scDNA-seq 

data and 𝜋?+ denotes the prior probability that a randomly sampled cell carrying the 𝑔5 

haplotype profile. A uniform prior can be used for 𝜋?+  in the absence of external 

information. In the formula, 

𝑃3𝜌2!5 , 𝜃0!5L𝐺𝑇!5 = 𝑔54 = 	𝑃3𝜌2!5L𝜇 = 𝜌?; 	𝜎: = 0.254 × 𝑃 l𝜃0!5m𝜇 = 𝜃?; 𝜎 = n01(+A',	01(+C
.(+

o, 
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where 𝑛!5 is the number of total read counts in region r for cell i. The haplotype profile of 

cell i in region r was estimated by maximizing the above posterior probability. The 

haplotype profiles of each region are visualized using different colors in the two-

dimensional scatter plots for both scDNA-seq and scATAC-seq data with the confidence 

scores calculated using the distance of the points to the canonical centers and the 

standard deviations.  

Validations using paired linked-reads sequencing data 

We validated our algorithm using paired linked-reads sequencing data with two strategies 

in one gastric cancer patient sample and two colorectal cancer patient samples. First, the 

phasing accuracy was assessed by comparing the estimated SNP phases on the scDNA-

seq data and the known phases of the same SNPs from the linked-reads sequencing data 

in individual regions. In the linked-reads sequencing data, SNPs within the same phase 

sets are phased with respect to one another, while those between different SNP sets are 

not. Therefore, we compared the phases of the SNPs overlapping between our estimated 

SNP set and the phase set with the largest numbers of SNPs in the linked-reads 

sequencing data for each region. The reference alleles of the overlapping SNPs with 𝐼." 

>0.5 are estimated to be on the major haplotype. Otherwise, the reference alleles of the 

overlapping SNPs with 𝐼." <0.5 are estimated to be on the minor haplotype. The SNPs with 

𝐼."=0.5 are excluded. By comparing estimated phases and known phases from the linked-

reads sequencing data of the overlapping SNPs, the phasing accuracy was computed for 

each region.  
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Secondly, we evaluated the genotyping accuracy by comparing the estimated haplotype 

profiles of each cell and the haplotype profiles inferred from the linked-reads sequencing 

data in individual regions. In the linked-reads sequencing data, the phase set with the 

largest numbers of SNPs was selected. The known phases of the overlapping SNPs 

between the phase set and the estimated SNPs were used to infer 𝜃! for each cell. Cell-

level haplotype profiles using 𝜃! ’s from linked-reads sequencing data were considered as 

gold standard. By comparing the estimated haplotype profiles from 𝜃0! and the haplotype 

profiles from 𝜃!, genotyping accuracy was computed for each region. If the number of 

overlapping SNPs for an amplified region is smaller than 5000, the phase sets were 

combined from the largest to the smallest to reduce variance of 𝜃! ’s inferred from linked-

reads sequencing data. The estimated SNP phases (𝐼." ) were used as templates to 

combine separate phase sets. 

Cell Lineage Reconstruction 

To investigate the tumor subclonal structure for scDNA-seq data, cell-specific haplotype 

profiles from Alleloscope across the genome were used to reconstruct cell lineage trees. 

The “Gower’s distance” is calculated using “cluster” R package on the nominal haplotype 

profiles between cells. Then hierarchical clustering is performed on the distance using the 

“ward.D2” method. Since variance of 𝜃0! ’s are higher when fewer SNPs are located in a 

segment, we included the segments with more than 2,000 SNPs identified. The clustering 

result is visualized using the ‘pheatmap’ R package with the five largest clusters 

separated by marginal lines. Each segment was plotted with based on its length 
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proportional to 5,000,000 bins. The heights of the clustering tree were log-transformed 

for easier visualization.  

The tumor subclonal structures were also investigated in the scATAC-seq data. Instead 

of using the haplotype profiles defined by the (𝜌2!5 , 𝜃0!5) pairs, the cells from the two public 

basal cell carcinoma were clustered using 𝜃0!5 values, which are orthogonal to the peak 

signals based on total coverage, across the segments with more than 500 SNPs. Then 

hierarchical clustering is performed on the Euclidean distance using the “ward.D2” 

method and visualized using ‘pheatmap’ R package with the three largest clusters 

separated by marginal lines. The heights of the clustering tree were log-transformed for 

easier visualization.  

Since the subclones for the SNU601 sample were identified first from the scDNA-seq data, 

for this cell we adopted a supervised strategy to assign each cell into different subclones. 

First, we identified 10 marker regions-- chr1b, 3b-d, 4b, 7a, 11b, 13b, and 20b-c that help 

to differentiate the cells into the six major subclones based on the subclone specific copy 

number profiles from the scDNA-seq data. Combining the haplotype profiles across the 

ten regions for each cell enables assignment of the cells into one of the six subclones 

with higher confidence. The posterior probability of cell i coming from clone k was  

𝑃3𝐶𝑙𝑜𝑛𝑒! = 𝑘L	𝜌2! , 𝜃0!4 =
𝑃3𝜌2! , 𝜃0!L𝐶𝑙𝑜𝑛𝑒! = 𝑘4𝜋D

∑ 𝑃3𝜌2! , 𝜃0!L𝐶𝑙𝑜𝑛𝑒! = 𝑘@4𝜋D,D@
, 

where 𝑘 ∈ {1~6} for the six clones and 𝜋D is the prior probability that a randomly sampled 

cell coming from the 𝑘&E clone, which can be estimated from the paired scDNA-seq data 
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or set to uniform (in our analysis setting to uniform gives very similar results). In the 

formula,  

𝑃3	𝜌2! , 𝜃0!L𝐶𝑙𝑜𝑛𝑒! = 𝑘4 =s𝑃(𝜃0!F , 	𝜌2!F|𝐶𝑙𝑜𝑛𝑒! = 𝑘)
F

=s𝜙l
𝜃0!F − 𝜃DF

u𝑛!F𝜃DF(1 − 𝜃DF)
o𝜙 l

𝜌2!F − 𝜌DF
𝜎:

o
F

, 

where 𝑥  is the index for the ten marker regions, 𝜃0!F  and 𝜌2!F  are the estimated major 

haplotype proportion and relative coverage for cell i in the scATAC-seq data, 𝜃DF and 𝜌DF 

are the “known values” for specific haplotype profiles for clone k derived from the paired 

scDNA-seq data, and 𝑛!F is the number of total read counts in the 𝑥&E marker region for 

cell i. Each cell was assigned into one of the six subclones by maximizing the above 

posterior probability with the confidence score being the posterior probability of the 

assigned clone.  

ScATAC-seq data analysis 

To investigate the relationships between allele-specific CNAsand chromatin accessibility, 

for each cell in scATAC-seq data we processed the peak signals in addition to the allele-

specific CNAs. For the two public basal cell carcinoma samples, the peak by cell matrices 

was obtained from GSE129785. We subset the fragment counts for each peak in the cells 

from the SU008 sample, regressed out cell total coverage for each peak by linear 

regression, and projected the cells onto the UMAP plot using genome-wide peak signals51. 

The cell type identify for each cluster was retrieved from the labels in the previous study23. 

To further explore intratumor heterogeneity, we selected the cells labeled as tumor cells, 
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regressed out cell total coverage, and projected the tumor cells onto the UMAP plot like 

previously described. Then the DNA level information and epigenetic signals for each cell 

can be visualize and analyzed together. 

For the SNU601 scATAC-seq dataset, scATAC-pro52 was used to call peaks and 

generate the peak by cell matrix from the bam file and fragment file output by the Cell 

Ranger software. We first filtered out the cells that have proportions of fragments on the 

detected peaks <0.4 and or total peaks outside of the range 15,000~100,000, and filtered 

out the peaks observed in less than 0.1 of cells. Next, we regressed out cell total coverage 

for each peak by linear regression, and projected the cells onto the UMAP plot using 

genome-wide peak signals. Then the clonal assignment based on the DNA information 

and the peak signals can be integrated at the single-cell level.  

Based on the lineage structure from the paired scDNA-seq data, the cells can also be 

placed in the lineage tree based on their clonal assignment. Under the lineage structure, 

pairwise comparison using Chi-squared test was performed on the proportion of the to 

identify differential accessible peaks (DAPs) for each branch. A peak was considered a 

DAP if the FDR adjusted p-values<0.05. Since copy number alternations are confounding 

factors that also affect the peak signals, the DAPs were further divided into two groups— 

1. “CNA” group if the DAPs are in the CNA regions and both signals are positive correlated; 

2. “Other” group if the DAPs are not categorized in the first group. A set of DAPs were 

considered to be enriched in the CNA regions if the p-values<0.05 under the 

hypergeometric test. This type of analysis enables investigation of the relationships 

between the two signals. Each DAP was further mapped to the genes that are potentially 

regulated based on the ± 2,000 bp distance on the genome. To further visualize the 
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difference of the peak signals among the six clones, the peak signals were pooled across 

the cells and normalized by the total cell number in each subclone.  

Data availability 

All the linked-reads sequencing data and the scATAC-seq dataset are available under 

accession ###. There are no restrictions on data availability or use. The patient scDNA-

seq data were obtained from dbGAP under accession phs001818.v3.p133 (all except 

5931 scDNA) and phs00171112 (5931 scDNA). The cell line scDNA-seq dataset was from 

the Sequence Read Archive (SRA) under accession PRJNA498809. The public scATAC-

seq data and whole exome sequencing data were obtained from the SRA under 

accession PRJNA53277423 and PRJNA53334137. 

Code availability 

Alleloscope is available on GitHub at https://github.com/seasoncloud/Alleloscope. 
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