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Abstract 

Despite decades of costly research, we still cannot accurately predict individual differences in 

cognition from task-based fMRI. Moreover, aiming for methods with higher prediction is not 

sufficient. To understand brain-cognition relationships, we need to explain how these methods draw 

brain information to make the prediction. Here we applied an explainable machine-learning (ML) 

framework to predict cognition from task-based fMRI during the n-back working-memory task, using 

data from the Adolescent Brain Cognitive Development (n=3,989). We compared nine predictive 

algorithms in their ability to predict 12 cognitive abilities. We found better out-of-sample prediction 

from ML algorithms over the mass-univariate and OLS multiple regression. Among ML algorithms, 

Elastic Net, a linear and additive algorithm, performed either similar to or better than non-linear and 

interactive algorithms. We explained how these algorithms drew information, using SHapley Additive 

explanation, eNetXplorer, Accumulated Local Effects and Friedman’s H-statistic. These explainers 

demonstrated benefits of ML over the OLS multiple regression. For example, ML provided some 

consistency in variable importance with a previous study (Sripada et al. 2020) and consistency with 

the mass-univariate approach in the directionality of brain-cognition relationships at different regions. 

Accordingly, our explainable-ML framework predicted cognition from task-based fMRI with boosted 

prediction and explainability over standard methodologies. 

Keywords: Adolescent Brain Cognitive Development, explainers, predictive modelling, task-based 

fMRI, working memory 
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Introduction 

Task-based functional magnetic resonance imaging (fMRI) has been a prominent tool for 

neuroscientists since the early 90s (Kwong et al. 1992). One goal of task-based fMRI is to derive 

brain-based predictive measures of individual differences in cognitive abilities (Gabrieli et al. 2015; 

Dubois and Adolphs 2016). Yet, the goal of obtaining a robust, predictable brain-cognition 

relationship from task-based fMRI remains largely unattained (Elliott et al. 2020). Moreover, 

obtaining a method with a higher predictive ability may not be sufficient if we cannot explain how 

such a method draws information from different brain regions to make a prediction. Using an 

explainable machine-learning framework (Molnar 2019; Belle and Papantonis 2021), we aim at 1) 

choosing algorithms that extract information across brain regions to predict individual differences in 

cognition from task-based fMRI data with higher predictive ability and 2) explaining how these 

algorithms draw information to make the prediction. Ultimately, this explainable, predictive model 

can potentially be used in future studies that collect task-based fMRI to predict individual differences 

in cognitive abilities, especially if the model is built from well-powered data. This is similar to the use 

of polygenic scores in genetics studies (Torkamani et al. 2018). 

Conventionally, to learn about which brain regions are associated with individual differences, 

neuroscientists use the mass-univariate approach (Friston 2007). Here, researchers first test many 

univariate associations between 1) fMRI BOLD at each brain region that varies as a function of task 

conditions (e.g., high vs. low working memory load) and 2) an individual-difference variable of 

interest (e.g., cognitive abilities). They then apply multiple comparison corrections, such as 

Benjamini-Hochberg’s false discovery rate (FDR) (Benjamini et al. 2001) or Bonferroni, to control 

for false conclusions based on multiple testing (Friston 2007).  Accordingly, the mass univariate 

analyses allow for easy interpretation of the brain-cognition association at each brain region. 

However, this simplicity may come at a price. Recent findings have challenged the ability of the mass 

univariate approach in predicting individual differences (Kragel et al. 2021; Marek et al. 2022). For 

instance, in the context of resting-state fMRI and structural MRI, Marek and colleagues (2022), 

showed that mass univariate analyses had a much poorer ability in predicting individual differences in 

cognition, compared to multivariate analyses, or the techniques involving drawing information across 
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different brain regions simultaneously in one model. Additionally, having separate tests for different 

brain regions in a mass-univariate fashion rests on the assumption that these regions are statistically 

independent of each other, which seems unrealistic given what is known about brain function. This 

focus on ‘marginal importance’ (i.e., the contribution from each brain region at a time, ignoring other 

regions), as opposed to ‘partial importance’(i.e., the contribution from multiple regions in the same 

model), further constrains our ability to achieve a holistic understanding of the relationship between 

the brain and individual differences (Chen et al. 2019; Debeer and Strobl 2020).  

Multivariate analyses have been suggested as a potential solution to improve prediction and 

avoid the use of multiple comparison corrections (Chen et al. 2019; Kragel et al. 2020). The ordinary 

least squares (OLS) multiple regression is arguably the most widespread method for predicting a 

response variable from multiple explanatory variables simultaneously. For task-based fMRI, this 

means simultaneously having all brain regions as explanatory variables to predict a response variable 

of individual differences. In gist, the OLS multiple regression fits a plane to the data that minimizes 

the squared distance between itself and the data points (James et al. 2013; Kuhn and Johnson 2013). 

With uncorrelated explanatory variables, the OLS multiple regression has the benefit of being readily 

interpretable - each explanatory variable’s slope represents an additive effect on the response variable 

(Kuhn and Johnson 2013).  

However, in a situation where strongly correlated explanatory variables are present, known as 

multicollinearity, the OLS multiple regression may misrepresent the nature of the relationship 

between brain activity and individual differences. For instance, with high multicollinearity, the OLS 

multiple regression can give very unstable estimates of coefficients and extremely high estimates of 

model uncertainty (reflected in large standard errors) (Graham 2003; Alin 2010; Monti 2011; P. 

Vatcheva and Lee 2016). Moreover, the direction of an explanatory variable’s coefficient may also 

depend on its relationship with other explanatory variables thus leading to sign flips (Courville and 

Thompson 2001; Beckstead 2012; Ray-Mukherjee et al. 2014). For example, when an explanatory 

variable has a strong, positive correlation with other explanatory variables and by itself has a weak, 

positive correlation with the response variable, the OLS multiple regression can unintentionally show 

a negative weight for this explanatory variable. Accordingly, it is crucial to examine this 
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‘suppression’ by comparing the directionality of the relationship estimated from the OLS multiple 

regression with those from the mass-univariate analyses (Conger 1974; Ray-Mukherjee et al. 2014).  

To improve out-of-sample prediction and to, a certain extent, mitigate multicollinearity, many 

researchers have exchanged the classical OLS multiple regression for machine-learning (ML) 

algorithms (Dormann et al. 2013). Yet, it is still unclear how much improvement in prediction ML 

algorithms may lead to. Machine-learning algorithms include, but are not limited to, algorithms based 

on penalised regression (Kuhn and Johnson 2013), tree-based regression (Breiman et al. 2017) and 

Support Vector Machine (SVM) (Cortes and Vapnik 1995), such as Elastic Net (Zou and Hastie 

2005), Random Forest (Breiman 2001), XGBoost (Chen and Guestrin 2016), and Support Vector 

Machine (SVM) with different kernels (Cortes and Vapnik 1995; Drucker et al. 1996). These 

algorithms usually require hyperparameters that can be estimated through a cross-validation (James et 

al. 2013). The algorithms differ in how the relationships between explanatory and response variables 

as well as among explanatory variables are modelled. Some algorithms, such as Random Forest, 

XGBoost and SVM with certain kernels (e.g., polynomial and Radial Basis Function, RBF) (Cortes 

and Vapnik 1995; Drucker et al. 1996) allow for non-linearity in the relationship between explanatory 

and response variables as well as interaction among different explanatory variables. Elastic Net, on 

the other hand, extends directly from the linear OLS multiple regression, but with an added ability to 

regularise the contribution of explanatory variables (James et al. 2013; Kuhn and Johnson 2013). 

Accordingly, Elastic Net is linear (i.e., assuming the relationship between explanatory and response 

variables to be linear) and additive (i.e., not automatically modelling interactions among explanatory 

variables). It is still unclear whether non-linear and interactive algorithms improve the predictive 

ability of task-based fMRI over linear and additive algorithms as well as over the OLS multiple 

regression and mass-univariate analyses. Therefore, it is important to compare the predictive 

performance across algorithms. 

A major drawback of machine-learning algorithms used in the task-based fMRI (Kragel et al. 

2020) is the difficulty to explain how each algorithm draws information from different brain regions 

in making predictions. Fortunately, recent developments in the explainable machine-learning 

framework have provided techniques that can improve explainability for many algorithms (Molnar 
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2019). Here we focused on four aspects of explainability. The first aspect is variable importance, or 

the relative contribution from each brain region when an algorithm makes a prediction. Linear and 

additive algorithms, such as Elastic Net and the OLS multiple regression, usually make a prediction 

based on a weighted sum of features. Accordingly, an explanatory variable with a higher coefficient 

magnitude has a higher weight in prediction, and thus the coefficient magnitude can readily be used 

as a measure of variable importance. For non-linear and interactive algorithms, such as Random 

Forest, XGBoost and SVM with polynomial and RBF kernels, the prediction is not made based on a 

weighted sum of features, and thus we need an additional ‘explainer’ to compute variable importance. 

SHapley Additive exPlanation (SHAP) (Lundberg and Lee 2017) is a newly developed algorithm-

agnostic technique for variable importance. SHAP is designed to explain the contribution of each 

explanatory variable via Shapley values (Roth 1988). Based on Cooperative Game Theory, a Shapley 

value quantifies a fair distribution of compensation to each player based on his/her contribution in all 

possible coalitions where each coalition includes a different subset of players. When applying 

Shapley values to machine learning, researchers treat each explanatory variable as a player in a game, 

a predicted value as compensation and subsets of explanatory variables as coalitions. Shapley values 

reflect the weighted differences in a predicted value when each explanatory variable is included vs. 

not included in all possible subsets of explanatory variables. SHAP offers a computationally efficient 

approach for estimating Shapley values (Lundberg and Lee 2017). Using these measures of variable 

importance, one is able to demonstrate the similarity in contribution from each brain region based on 

different algorithms. Importantly, we would also be able to examine the consistency in variable 

importance across studies with similar fMRI tasks and individual difference variables. 

The second aspect of explainability is variable selection (Heinze et al. 2018). There are 

existing statistical methods that could assist us further in selecting explanatory variables based on 

their variable importance and uncertainty around the variable importance, at least for some 

algorithms. For instance, for mass univariate analyses and the OLS multiple regression, a 

conventional p-value associated with each coefficient is often used for variable selection. For Elastic 

Net, a permutation-based approach called eNetXplorer (Candia and Tsang 2019) has recently been 

proposed. The central idea behind eNetXplorer is to fit two different sets of Elastic Net models, each 
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set consisting of many realizations of n-fold cross-validated models. In the first set, Elastic Net 

models are fitted to predict the true response variable (target models), whereas in the second set, the 

models are fitted to predict a randomly permuted response variable (null models). For example, if the 

observations are participants in a study, then the target models will try to predict one participant’s 

response from the same participant’s set of explanatory variables (e.g., brain regions), whereas the 

null models will try to predict one participant’s response from another participant’s explanatory 

variable. Both the null and the target models are tuned and assessed via repeated cross-validation. 

Given that there is no relationship between the shuffled response and the predictors in the null 

models, any non-null predictive accuracy and coefficient estimates in the null models have to be 

spurious. Comparisons of the magnitude of the coefficient estimates in target models to null models, 

as well as of the frequency of feature selection in target models to null models, allow for near-exact 

inference for each individual explanatory variable (via the permutation tests) (Winkler et al. 2014; 

Helwig 2019). While eNetXplorer use cases were originally demonstrated for cellular and molecular 

“omics” data, this approach is widely applicable to many other scenarios aimed at uncovering 

predictors in a multi-variable setting. Indeed, there is a considerable overlap in the challenges faced in 

the analysis of omics and fMRI data (Antonelli et al. 2019), and as such, eNetXplorer may prove a 

valuable tool in the latter as well. With eNetXplorer, we can compare and contrast variable selection 

between the OLS multiple regression and Elastic Net with regards to Elastic Net hyperparameters, the 

uncertainty of the coefficients, coefficient magnitude after regularisation, and multicollinearity. 

In addition to demonstrating relative contribution from different brain regions, the third 

aspect of explainability is to understand the extent to which predictive values from each algorithm 

change as a function of fMRI activity at these regions--in terms of the pattern (i.e., linearity vs. non-

linearity) and directionality (i.e., positive vs. negative) of the relationship with the response variable. 

It is straightforward to examine the pattern and directionality of the univariate relationship for mass-

univariate analyses. For instance, a “univariate effects” plot (Fox and Weisberg 2018) can show a 

linear fitted line between fMRI activity at each different region and their associated predicted values 

of the response variable. For multivariate algorithms, we need to consider the collinearity among 

explanatory variables that could distort the pattern and directionality of the influences from each 
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explanatory variable (Molnar 2019). Accumulated Local Effects (ALE), a newly developed 

algorithm-agnostic explainer, is designed to help visualise how each explanatory variable in each 

algorithm impacts a predictive value on average (Apley and Zhu 2020). Importantly, ALE is 

specifically designed to handle data with moderate collinearity. With univariate effects and ALE 

plots, we could examine the similarity in pattern and directionality across algorithms. This can 

potentially reveal “suppression,” allowing us to check whether multivariate algorithms provide a 

similar directionality to the univariate algorithm.  

The fourth aspect is to demonstrate the extent to which the variation of the prediction from 

these algorithms depends on the interaction of the explanatory variables. Some algorithms, including 

Random Forest, XGBoost and SVM with RBF and polynomial kernels, allow for interactions among 

explanatory variables. Friedman’s H-statistic (Friedman and Popescu 2008) is a metric of the 

interaction strength between each brain region and all other brain regions in predicting individual 

differences.  In the case that interactive algorithms have higher predictive performance than additive 

algorithms, Friedman’s H-statistic can reveal interaction from certain brain regions that may account 

for the boost in prediction.  

Our study used a large task-based fMRI dataset in children from the Adolescent Brain 

Cognitive Development (ABCD) study (Casey et al. 2018). We treated task-based fMRI activity 

during the working-memory ‘n-back’ task (Barch et al. 2013; Casey et al. 2018) as our explanatory 

variables. fMRI activity during the n-back task has been shown to correlate well with the performance 

of cognitive tasks in children and adults (Rosenberg et al. 2020; Sripada et al. 2020). For our response 

variables, we used individual differences in behavioural performance from 11 cognitive tasks and the 

g-factor, or the latent variable that captured the shared variance of behavioural performance across 

different cognitive tasks. Using the explainable machine-learning framework (Molnar 2019), we first 

identified algorithms that could achieve good accuracy in predicting individual differences from task-

based fMRI data. Here we compared widely used nine algorithms: the mass univariate with the FDR 

and Bonferroni corrections, OLS multiple regression, Elastic Net, Random Forest, XGBoost and 

SVM with linear, polynomial and RBF kernels. We especially aimed to compare the predictive ability 

of linear and additive multivariate algorithms, including the OLS multiple regression and Elastic Net, 
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against mass-univariate analyses and non-linear and interactive multivariate algorithms. We then 

applied various explainers (such as SHAP, eNetXplorer, ALE and Friedman’s H-statistic) to explain 

the extent to which these algorithms drew information from each brain region in making a prediction 

in four aspects: variable importance, variable selection, pattern and directionality and interaction. We 

focused on explaining the models predicting the g-factor, so that we could 1) examine if our 

framework can capture individual differences in cognitive abilities in general (i.e., not confined to 

specific cognitive tasks) and 2) compare variable importance in our study with that of a previous 

study (Sripada et al. 2020).  

Materials and Methods 

Data 

We used the data from the ABCD Study Curated Annual Release 2.01 (Yang and Jernigan 

2019). Our participants were 9-10-year-old children scanned with 3T MRI systems at 21 sites across 

the United States, recruited as reported previously (Garavan et al. 2018). Following exclusion (see 

below), there were 3,989 children (1,968 females). The ethical oversight of this study is detailed 

elsewhere (Charness 2018). The ABCD Study provided detailed data acquisition procedures and 

fMRI image processing that are also outlined in previous publications (Casey et al. 2018; Hagler et al. 

2019).  

Explanatory Variables 

The ABCD study applied Freesurfer to parcellate the brain based on Destrieux (Destrieux et 

al. 2010) and ASEG (Fischl et al. 2002) atlases. The parcellation resulted in data showing fMRI 

activity at 167 grey-matter (148 cortical surface and 19 subcortical volumetric) regions. We used 

fMRI activity at these 167 regions during the n-back task (Barch et al. 2013; Casey et al. 2018) as our 

explanatory variables. In this n-back task, children saw pictures featuring houses and faces with 

different emotions. Depending on the trial blocks, children needed to report whether the picture 

matched either: (a) a picture shown 2 trials earlier (2-back condition), or (b) a picture shown at the 

beginning of the block (0-back condition). We used fMRI measures derived from the [2-back vs 0-

back] linear contrast (i.e., high vs. low working memory load), averaged across two runs.   

Response Variables 
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We tested the ability of fMRI during the n-back task to predict individual differences in 

cognitive abilities across all variables available in the dataset. First is the behavioural performance 

collected from the n-back task during the fMRI scan. Specifically, we used the accuracy of the 2-back 

condition as it is correlated well with the behavioural performance of other cognitive tasks collected 

outside of the scanner (Rosenberg et al. 2020). Nonetheless, predicting behavioural performance 

collected from the same fMRI task may have captured idiosyncratic variance that is specific to the 

task and session, not necessarily capturing individual differences in cognitive abilities per se. Thus, 

we also used behavioural performance from 10 cognitive tasks (Luciana et al. 2018; Thompson et al. 

2019) collected outside of the fMRI session, as additional response variables.  

Children completed the 10 ‘out-of-scanner’ cognitive tasks on an iPad during a 70-min in-

person visit. A detailed description of these out-of-scanner cognitive tasks was provided elsewhere 

(Luciana et al. 2018). First, the Flanker task measured inhibitory control (Eriksen and Eriksen 1974). 

Second, the Card Sort task measured the cognitive flexibility (Zelazo et al. 2013). Third, the Pattern 

Comparison Processing task measured the processing speed (Carlozzi et al. 2013). Fourth, the Picture 

Vocabulary task measured language and vocabulary comprehension (Gershon et al. 2014). Fifth, the 

Oral Reading Recognition task measured language decoding and reading (Bleck et al. 2013). Sixth, 

the Picture Sequence Memory task measured the episodic memory (Bauer et al. 2013). Seventh, the 

Rey-Auditory Verbal Learning task measured auditory learning, recall and recognition (Daniel and 

Wahlstrom 2014). Eight, the List Sorting Working Memory task measured the working-memory 

(Bleck et al. 2013). Ninth, the Little Man task measured visuospatial processing via mental rotation 

(Acker and Acker 1982). Tenth, the Matrix Reasoning task measured visuospatial problem solving 

and inductive reasoning (Daniel and Wahlstrom 2014). 

Lastly, in addition to these 11 response variables, we also derived a general factor of 

cognitive abilities, called the g-factor, from out-of-scanner cognitive tasks. Similar to previous work 

on fMRI and individual differences in cognitive abilities in adults and children (Dubois et al. 2018; 

Ang et al. 2020; Sripada et al. 2020), we applied a bifactor model of the g-factor using confirmatory 

factor analysis (CFA). Here we treated the g-factor as the general latent variable underlying 

performance across out-of-scanner cognitive tasks that is orthogonal to the three specific factors: 
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language reasoning (capturing the Picture Vocabulary, Oral Reading Recognition, List Sorting 

Working Memory and Matrix Reasoning tasks), cognitive flexibility (capturing the Flanker, Card Sort 

and Pattern Comparison Processing tasks) and memory recall (capturing the Picture Sequence 

Memory and Rey Auditory Verbal Learning tasks). We applied robust maximum likelihood 

estimation (MLR) with robust (Huber-White) standard errors and scaled test statistics. To 

demonstrate model fit, we used scaled and robust comparative fit index (CFI), Tucker-Lewis Index 

(TLI), root mean squared error of approximation (RMSEA) with 90% CI of the g-factor. To 

implement the CFA, we used lavaan (Rosseel 2012) (version=.6-9) and semPlot (Epskamp 2015). 

Exclusion criteria 

We followed the exclusion criteria recommended by the ABCD study (Jernigan 2019). We 

excluded data with structure MRI T1 images that were flagged as needing clinical referrals, having 

incidental findings (e.g., hydrocephalus and herniation) or not passing quality controls (including 

IQC_T1_OK_SER and FSQC_QC fields). Second, we excluded data with fMRI T2* images that did 

not pass quality controls or had excessive movement (dof > 200). Third, we excluded data flagged 

with unacceptable behavioural performance during the n-back task. Fourth, we removed all data from 

a Philips scanner due to a post-processing error in Release 2.01. Lastly, we identified outliers of the 

contrast estimates for each of the 167 regions using the 3 IQR rule and applied listwise deletion to 

remove observations with outliers in any region.  

Modelling pipeline 

We first split the data into training (75%) and test (25%) sets. For machine-learning-based 

algorithms that needed hyperparameter tuning (see below), we implemented a grid search via 10-fold 

cross-validation within the training set. Here each algorithm created model candidates with a different 

combination of hyperparameters, and we considered the candidate model with the lowest root mean 

square error (RMSE) as the best model for each algorithm. To prevent data leakage, we fitted the 

CFA model of the g-factor to the observations in the training set and later applied this fitted model to 

the test set. Similarly, we separately applied the 3 IQR rule and data standardisation on the training 

and test sets.  
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To evaluate predictive performance, we used the test set and examined the similarity between 

predicted and observed (i.e., real) values of each response variable. To reveal different aspects of the 

model’s predictive ability, we used multiple out-of-sample prediction metrics (Poldrack et al. 2020).  

The first metric is Pearson’s correlation, which was defined as  

!"#(%,	%( )
*!*!"

, (1)  

where cov is the covariance, σ is the standard deviation, y is the observed value and ŷ is the predicted 

value. Pearson’s correlation ranges from -1 to 1. The high positive Pearson’s correlation reflects high 

predictive accuracy, regardless of scale. Negative Pearson’s correlation reflects poor predictive 

information in the model.  

Second, we used traditional r square defined using the sum-of-squared formulation: 

1 −
∑ (𝑦+( − 𝑦)	),-
∑ (𝑦- −	𝑦)	),-

, (2) 

where y̅ is the mean of the observed value. Traditional r square is often interpreted as variance 

explained, with the value closer to 1 reflecting high predictive accuracy. Like Pearson’s correlation, 

traditional r square can be negative in case of no predictive information in the model.  

Third, we defined the mean absolute error (MAE) as 

.
/
∑ |𝑦- − 𝑦+(|/
-0. , (3)  

MAE measures how far the predicted value is from the observed value in absolute terms. Unlike 

Pearson’s correlation and traditional r square, MAE does not scale the data, rendering it more 

sensitive to scaling. Lower MAE reflects high predictive accuracy. 

Forth, we defined the root mean square error (RMSE) as  

..
/
∑ (𝑦- − 𝑦+(),/
-0. , (4) 

Similar to MAE, RMSE measures how far the predicted value is from the observed value but uses the 

square root of the average of squared differences, as opposed to the absolute differences. Lower 

RMSE reflects high predictive accuracy. 

To demonstrate the distribution of the predictive performance across algorithms, we 

bootstrapped these out-of-sample prediction metrics on the test set 5000 times, resulting in bootstrap 
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distributions of each prediction metric for each algorithm. To compare predictive performance, we 

also created bootstrap distributions of the differences in the predictive performance between each pair 

of algorithms. If the 95% confidence interval of the bootstrap distribution of the differences did not 

include zero, we concluded that the two algorithms were significantly different from each other. We 

used ‘tidymodels’ (www.tidymodels.org) for this pipeline. 

Modelling algorithms 

We tested the predictive performance of nine algorithms. The first algorithm was the mass 

univariate analyses with the false discovery rate (FDR) correction. Here we used the simple linear 

regression with each of 167 regions as the only explanatory variable in each model, resulting in 167 

different models in the form of: 

𝑦- =	 (𝛽1 + 𝛽.𝑥.) + 𝜖- , (5)  

where x is the explanatory variable, b is the coefficient, and 𝜖 is the error term. b is estimated based 

on the minimization of the sum of squared errors following: 

β6 = 	 argmin2 =>(𝑦- −	𝑥-3𝛽),
/

-0.

? , (6) 

Where n is the number of observations (i.e., participants) in the training set. The FDR (Benjamini and 

Hochberg 1995) corrects for multiple comparisons following: 

𝑝!4-5 =	
46/7

/_9":;<=
𝛼_𝑙𝑒𝑣𝑒𝑙, (7)  

where 𝑝!4-5 indicates a criterion in which p-value needs to be below, rank is the rank of p-values of 

one model compared with other models whereas the smallest p-value leads to rank = 1, n_models is 

the number of models, which equals 167 brain regions in our case, and a_level is the overall type-I 

error rate, set at .05. We then used the test set to examine the prediction of the models that passed the 

FDR correction in the training set at 𝑝!4-5. 

The second algorithm was the mass univariate analyses with the Bonferroni correction. The 

Bonferroni correction is usually considered more conservative than the FDR correction (Moran 

2003). We used the same simple regression with the first algorithm, except that here we applied the 

Bonferroni correction instead of the FDR correction. The Bonferroni correction defines 𝑝!4-5 as  
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𝑝!4-5 =	
>_<;#;<
/_9":;<=

, (8).  

Note, only the first two algorithms were univariate algorithms, using separate models for each 

explanatory variable. Other algorithms were multivariate algorithms that included all brain regions as 

explanatory variables in one model. Accordingly, when creating bootstrap distributions of each 

prediction metric for univariate algorithms in the test set, we included multiple predicted values per 

testing participant based on the number of brain regions that survived each multiple comparison 

correction in the training set. By contrast, bootstrap distributions of each prediction metric for 

multivariate algorithms in the test set were based on one predictive value per testing participant for 

each algorithm.  

The third algorithm was the ordinary least-square (OLS) multiple regression. Here, similar to 

the mass univariate analyses, the OLS multiple regression uses the same minimization of the sum of 

squared errors as the first two algorithms. However, the OLS multiple regression used all brain 

regions as explanatory variables in one linear regression model in the form of 

𝑦- =	 (𝛽1 + 𝛽.𝑥. +⋯	+	𝛽.?@𝑥.?@) + 𝜖- , (9).  

Note, all other algorithms below beyond the first three were machine-learning based that required 

hyper-parameter tuning via cross-validation.  

The fourth algorithm was Elastic Net (Zou and Hastie 2005). Here, apart from minimizing the 

sum of squared errors done in the previous three algorithms (see equation #6), Elastic Net 

simultaneously minimises the weighted sum of the explanatory variables’ coefficients (Zou and 

Hastie 2005; James et al. 2013; Kuhn and Johnson 2013). As a result, Elastic Net shrinks the 

contribution of some explanatory variables closer towards zero (or set it to zero exactly). The degree 

of penalty to the sum of the explanatory variable’s coefficients is determined by a ‘penalty’ 

hyperparameter denoted by l. The greater the penalty, the stronger shirking the explanatory variable’s 

coefficient is, and the more regularised the model becomes. In addition to the ‘penalty’ 

hyperparameter, Elastic Net also includes a ‘mixture’ hyperparameter denoted by a, which 

determines the degree to which the sum of either the squared (known as ‘Ridge’) or absolute (known 

as ‘LASSO’) coefficients is penalized. The estimates from Elastic Net are defined by  
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β6 = a𝑟𝑔𝑚𝑖𝑛2 O>(𝑦- −	𝑥-3𝛽), + 	𝜆
/

-0.

Q𝛼>|
A

B0.

𝛽B| + (1 − 	𝛼)>𝛽B,
A

B0.

RS , (10) 

where p is the number of parameters. In our hyperparameter-turning grid, we used 200 levels of 

penalty from 10^-10 to 10, equally spaced on the logarithmic-10 scale and 11 levels of the mixture 

from 0 to 1 on the linear scale.  

The fifth algorithm is Random Forest (Breiman 2001). Random Forest creates several 

regression trees by bootstrapping observations and including a random subset of explainable variables 

at each split of tree building. To make a prediction, Random Forest applies ‘bagging,’ or aggregating 

predicted values across bootstrapped trees. Unlike the above algorithms, Random Forest allows for 1) 

non-linearity (i.e.,  the relationship between explanatory and response variables does not constrain to 

be linear) and 2) interaction (i.e., different explanatory variables can interact with each other). Here 

we used 500 trees and tuned two hyperparameters: ‘mtry’ and ‘min_n’. ‘mtry’ is the number of 

explainable variables that are randomly sampled at each split. Here we used the integers between 1 to 

167 (i.e., the maximum number of brain regions) in our grid. ‘min_n’ is the minimum number of 

observations to allow for a split of a node. In other words, min_n puts a limit on how trees grow. We 

used the integers between 2 to 2000 for min_n in our grid.  

The sixth algorithm is XGBoost (Chen and Guestrin 2016). XGBoost is another regression-

tree based algorithm. Like Random Forest, XGBoost also allows for non-linearity and interaction. 

Unlike ‘bagging’ used in Random Forest that builds multiple independent trees, ‘boosting’ used in 

XGBoost creates sequential trees where a current tree adapts from previous trees. Accordingly, 

XGBoost has ‘learning rate’ as a hyperparameter, denoted by η, to control for the speed of the 

adaptation. Here we sampled ‘learning rate’ from exponentiation with a base of 10 and 3,000 

exponents ranging linearly from -10 to -1. XGBoost’s trees are also different from regular regression 

trees in many aspects. They, for instance, require a ‘loss reduction’ hyperparameter, denoted by γ, to 

control for the conservativeness in tree pruning. We sampled  ‘loss reduction’ from exponentiation 

with a base of 10 and 3,000 exponents ranging linearly from -10 to 1.5. We also tuned ‘tree_dept’, or 

the maximum splits possible using integers from 1 to 15. Additionally, we tuned ‘sample_size’ or the 
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proportion of observations exposed to the fitting routine, using 3,000 numbers ranging from .1 to .99 

on the linear scale. Similar to Random Forest, here we used 500 trees and tuned ‘mtry’ from 1 to 167 

and ‘min_n’ from 2 to 1000. To cope with many hyperparameters, we used a Latin hypercube grid 

with a size of 3,000.  

The seventh to ninth algorithms are Support Vector Machine (SVM) for regression, also 

known as Support Vector Regression, with three different kernels: linear, polynomial and Radial 

Basis Function (RBF) (Cortes and Vapnik 1995; Drucker et al. 1996). SVM includes a ‘margin of 

tolerance’ hyperparameter, denoted by e. The ‘margin of tolerance’ signifies an area around a 

hyperplane where no penalty is given to errors following: 

𝑚𝑖𝑛 =
1
2
‖𝛽‖, + 𝐶>(𝜉- 	+ 	𝜉-∗)

/

-0.

? 

with constraints:  

𝑦- −	𝑥-D𝛽 − 𝛽1 ≤ 𝜀 +	𝜉- 

𝑥-D𝛽 + 𝛽1−	𝑦- ≤ 𝜀 +	𝜉-∗ 

𝜉- , 𝜉-∗ ≥ 0, (11)  

where x are non-zero slack variables that are allowed to be above (𝜉-) and below (𝜉-∗) the margin of 

tolerance, and C is a ‘cost’ hyperparameter. A higher ‘cost’ indicates higher tolerance to data points 

outside of the ‘margin of tolerance’. Here we sampled the ‘margin of tolerance’ using 30 numbers 

from 0 to .2 on the linear scale. As for the ‘cost’, we sampled it from exponentiation with a base of 10 

and 15 exponents ranging linearly from -3 to 1.5. To allow for non-linearity and interaction, 

researchers can apply kernel tricks to transform the data into a higher-dimensional space. 

Accordingly, in addition to using a linear kernel, we also applied polynomial and RBF kernels. For 

the polynomial kernel, we needed to tune two additional hyperparameters: ‘degree’ and ‘scale factor’. 

We sampled ‘degree’ from the numbers 1, 2 and 3 and ‘scale factor’ from exponentiation with a base 

of 10 and 10 exponents, ranging linearly from -10 to -1. As for the RBF kernel, we sampled another 

hyperparameter ‘RBF sigma’ from exponentiation with a base of 10 and 10 exponents, ranging 

linearly from -10 to 0. 
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Explaining the algorithms 

We applied different methods to help explain how each algorithm drew information from 167 

brain regions when making predictions (Molnar 2019). We focused our analyses on the g-factor, so 

that we can compare our modelling explanation with prior findings with a similar exploratory and 

response variable in adults (Sripada et al. 2020). 

Variable importance: Coefficients and SHapley Additive explanation (SHAP) 

Variable importance refers to the relative contribution of each explanatory variable (i.e., brain 

region) in making a prediction. To better understand the similarity in contribution from each brain 

region based on different algorithms, we calculated Spearman’s correlation between variable 

importance of different algorithms. For the mass univariate analyses, the OLS multiple regression and 

Elastic Net, we used the coefficient magnitude as a measure for variable importance. Note for the 

mass univariate analyses, we did not apply any multiple-comparison correction when examining 

Spearman’s correlations in variable importance with other algorithms, so that the number of 

explanatory variables stayed the same across algorithms. For Random Forest, XGBoost and SVM, we 

applied SHapley Additive exPlanation (SHAP) (Lundberg and Lee 2017), to compute variable 

importance. We implemented SHAP using the fastshap package 

(https://bgreenwell.github.io/fastshap/). 

In addition to examining the similarity in variable importance across algorithms, we also 

tested how variable importance found in the current study was in line with prior findings (Sripada et 

al. 2020). Sripada and colleagues (2020) have recently used young adult data from the Human 

Connectome Project (HCP) dataset and examined the multivariate relationship between task-fMRI 

from the similar n-back task and the g-factor. They used an algorithm based on the Principal 

Component Regression (PCR) and regressed the g-factor on the first 75 principal components (PCs). 

To explain the regions that were related to the g-factor, they projected all PCs back to the brain space, 

weighted by the magnitude of the regression. Fortunately, Sripada and colleagues (2020) uploaded 

this weighted, PCR brain map on https://balsa.wustl.edu/study/v0D7.  

We downloaded and parcellated Sripada and colleagues’ (2020) brain map using Destrieux’s 

for cortical surface and ASEG for subcortical regions. We then examined Spearman’s correlations 
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between our variable importance from different algorithms and Sripada and colleagues’ (2020) 

weighted, PCR brain map. Given the differences in the age of ABCD vs. HCP participants and the 

superiority of cortical surface in brain registration across ages (Ghosh et al. 2010), we separately 

computed Spearman’s correlations on the cortical surface alone and on the whole brain (including 

both cortical surface and subcortical volume).  

Variable selection for variable importance: Conventional p-value and eNetXplorer 

Here, we only focused on variable selection methods designed for algorithms based upon the 

general linear model, including mass univariate analyses, the OLS multiple regression and Elastic 

Net. We examined the variable selection of these algorithms using the training set. With the mass 

univariate analyses, we determined brain regions that were significantly associated with the g-factor 

using FDR and/or Bonferroni corrections (a-level = .05). With the OLS multiple regression, we 

defined significant regions as those with a p-value < .05 coefficient.  

With Elastic Net, we selected the best mixture hyperparameters from the previously run grid 

search and applied eNetXplorer (Candia and Tsang 2019) to fit two sets of many Elastic Net models. 

In one set, the models were fitted to predict the true response variable (the g-factor; target models), 

while in the other set the models were fitted to predict the same response variable randomly permuted 

(null permuted models). We split the data into 10 folds 100 times (100 runs; eNetXplorer default), 

and then in each run, the target models were repeatedly trained on 9 folds and tested on the leftover 

fold. Additionally, for each cross-validation run of the target models, there were 25 permutations of 

the null permuted models (eNetXplorer default). We defined the explanatory variables’ (brain 

regions) coefficient for each run, b r , as the average of non-zero model coefficients across all folds in 

a given run. Across runs, we used an average of a model coefficient weighted by the frequency of 

obtaining a non-zero model coefficient per run. See the detailed implementation of eNetXplorer 

(Candia and Tsang 2019). Formally, we defined an empirical p-value as: 

𝑝#6< 	= 	
1

1	 + 	𝑛𝑟 ∗ 𝑛𝑝
O1 + > > 𝛩	]^𝛽/E<<

4,A;4^ 	− ^𝛽564F;54 ^_
/A

A;4	0	.

/4

4	0	.

S , (12) 
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where pval is an empirical p-value, r is a run index, nr is the number of runs, per is a permutation 

index, np is the number of permutations, Θ is the right-continuous Heaviside step function and |b| is 

the magnitude of an explanatory variable’s coefficient. That is, eNetXplorer uses the proportion of 

runs in which the null models performed better than the target models to establish statistical 

significance for each explanatory variable’s coefficient. We implemented eNetXplorer using the 

eNetXplorer package version 1.1.2 (https://github.com/cran/eNetXplorer). 

To demonstrate the differences in variable selection of the OLS multiple regression and 

eNetXplorer, we created plots to visualise coefficient magnitude and uncertainty estimates as a 

function of hyperparameters of Elastic Net and multicollinearity. For uncertainty estimates, we used 

standard error (SE) of the coefficients for the OLS multiple regression and standard deviation (SD) of 

the permuted null coefficients from eNetXplorer for Elastic Net. As for hyperparameters of Elastic 

Net, we created three plots with different solutions: full Elastic Net (i.e., tuning both the ‘mixture’ (a) 

and ‘penalty’ (l) hyperparameters), Ridge (i.e., fixing the mixture at 0 and tuning the penalty) and 

LASSO (i.e., fixing the mixture at 1 and turning the penalty). Lastly, we quantified multicollinearity 

of the brain regions using Variance Inflation Factors (VIF) calculated from the model fit of the 

unregularized model (i.e., the OLS multiple regression).  

Prediction pattern and directionality: Univariate Effects and Accumulated Local Effects 

Here we demonstrated the pattern (i.e., linearity vs. non-linearity) and directionality (i.e., 

positive vs. negative) of the relationship between task-based fMRI activity at different brain regions 

and the g-factor based on different algorithms. For mass-univariate analyses, we plotted a ‘univariate 

effect’, a fitted line between fMRI activity at each different region and their associated predicted 

values of the g-factor, using the effects package (Fox and Weisberg 2018). For multivariate 

algorithms, we plotted Accumulated Local Effects (ALE) (Apley and Zhu 2020). ALE is defined as 

follows:  

𝑓aB,GHI(𝑥) = 		 𝑓baB,GHI(𝑥) −	
1
𝑛
>𝑓baB,GHI c𝑥	B

(-)d
/

-0.

 

where  
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𝑓baB,GHI(𝑥) 	= 	 >
1

𝑛B(𝑘)

7#(J)

70.

> f𝑓 c𝑧7,B , 𝑥\B
(-)d − 	𝑓 c𝑧7L.,B , 𝑥\B

(-)d	h
-:J#

(%)∈O#(7)

, (13) 

First, ALE creates a grid, z, that splits the values of an explanatory variable, j, into small windows. 

The difference between predicted values of xj at the two edges of each window is the ‘effect’. The 

summation of the effects across data points within the same window, k, is the ‘local effect’. The 

accumulation of local effects from the first window to the last window then constitutes ‘accumulated 

local effects, ALE’. Finally, the value of ALE is mean centred, such that the main effect of the 

explanatory variable at a certain value is compared to the average prediction (Molnar 2019). 

Accordingly, with ALE, we could plot a line to show how a brain region impacted the prediction of 

each algorithm on average. We computed ALE with a grid size of 20 using the FeatureEffect 

command from the iml package (https://christophm.github.io/iml/).  

With univariate effects and ALE, we examined the similarity in the pattern and directionality 

across algorithms. We picked the top 30 regions with the highest variable importance across 

algorithms. More specifically, we were interested to see which multivariate algorithms provided the 

pattern and directionality similar to those of univariate algorithms.  

 Interaction: Friedman’s H Statistic 

Some algorithms, including Random Forest, XGBoost and SVM with RBF and polynomial 

kernels, allow for interactions among explanatory variables. Here, we used Friedman’s H-statistic 

(Friedman and Popescu 2008) to reveal interaction strength from different brain regions. Friedman’s 

H-statistic relies on a partial dependent (PD) function (Friedman 2001):  

𝑃𝐷J'(𝑥=) = 	
1
𝑛
>𝑓a(𝑥=, 𝑥!

(-))
/

-0.

, (14) 

where 𝑥=	is the explanatory variable of interest, and 𝑥!
(-) are actual values for all other explanatory 

variables. Accordingly, PD indicates the average marginal effect for a given value of the explanatory 

variable 𝑥= (Molnar 2019). Friedman’s H-statistic, in turn, is estimated from 

𝐻B, 	= 	>f𝑓a]𝑥(-)_ −	𝑃𝐷B c𝑥B
(-)d − 𝑃𝐷LB(𝑥LB

(-))	h
,
/>𝑓a,(𝑥(-))

/

-0.

/

-0.

, (15) 
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where H is Friedman’s H-statistic. Here 𝑓a]𝑥(-)_ is the prediction function with all explanatory 

variables included. 𝑃𝐷B c𝑥B
(-)d and 𝑃𝐷LB(𝑥LB

(-))	are PD for an explanatory variable j, and for those 

without the explanatory variable j, respectively. In the case of no interaction, 𝑓a]𝑥(-)_ is the same with 

the sum of 𝑃𝐷B c𝑥B
(-)d and 𝑃𝐷LB(𝑥LB

(-)), which results in Friedman’s H-statistic of 0. Friedman’s H-

statistic of 1 means that the variation of the prediction is only due to interaction. Accordingly, a 

higher Friedman’s H-statistic indicates a higher interaction strength from a certain explanatory 

variable. We computed Friedman’s H-statistic using the Interaction$new() command from the iml 

package (https://christophm.github.io/iml/) and plotted 20 brain regions with the highest Friedman’s 

H-statistic from each algorithm. 

Please see our Github page for our scripts and detailed outputs: 

https://narunpat.github.io/TaskFMRIEnetABCD/ExplainableMachineLearningForTaskBasedfMRI.ht

ml 

Results 

The g-factor 

Figure 1 shows the confirmatory Factor Analysis (CFA) of the g-factor.  The bifactor model 

of the g-factor shows a good fit: scaled, robust CFI=.992, TLI=.983 and RMSE= .028 (90%CI=.021-

.035).  
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Figure 1. Confirmatory Factor Analysis (CFA) of the bifactor model of the g-factor. The number in 
each line reflects the magnitude of standardized parameter estimates. The dotted lines indicate 
marker variables that were fixed to 1.  Pic Vocab = Picture Vocabulary; Reading Recog = Oral 
Reading Recognition; Pattern Speed = Pattern Comparison Processing task. 
Predictive performance 

Figure 2 shows the bootstrap distributions of predictive performance across algorithms and 

response variables. Overall, the mass univariate analyses, either with the FDR or Bonferroni 

correction, consistently performed worse than multivariate algorithms across response variables and 

prediction matrices. To statistically compare the predictive ability of linear and additive multivariate 

algorithms against non-linear and interactive multivariate algorithms along with mass-univariate 

analyses, we created the bootstrap distributions of the differences in predictive performance by 

subtracting the performance of the OLS multiple regression (Figure 3, Supplementary Figure 1) and 

Elastic Net (Figure 4, Supplementary Figure 2) from other algorithms. Note to highlight the 

differences between linear and additive vs. non-linear and interactive multivariate algorithms, we 

created Supplementary Figures 1 and 2  the comparisons without mass univariate analyses. These 

comparisons revealed problems with the OLS multiple regression. For most response variables, the 

predictive performance of the OLS multiple regression was significantly worse than most of the 

machine-learning algorithms. Moreover, when the response variables were not-well predicted (e.g., 

sequential memory, Flanker, auditory-verbal and pattern speed), the predictive performance of the 

OLS multiple regression was even worse than that of mass univariate analyses. By contrast, across the 

response variables, the performance of Elastic Net was either on par with or better than other 

algorithms. Lastly, fMRI during the n-back task predicted the g-factor well, compared to other out-of-

scanner cognitive tasks, especially with multivariate algorithms.  
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Figure 2. Bootstrap distributions of predictive performance across algorithms and response 
variables. The thicker lines reflect 65% bootstrap confidence intervals and the thinner lines reflect 
95% confidence intervals. MAE = the mean absolute error; RMSE = root mean square error. 
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Figure 3. Bootstrap distributions of the differences in predictive performance between the OLS 
multiple regression and other algorithms. For Pearson’s correlation and traditional r square, values 
lower than zero indicates lower performance than the OLS multiple regression. For mean absolute 
error and root mean square error, values higher than zero indicates lower performance than the OLS 
multiple regression. The thicker lines reflect 65% bootstrap confidence intervals and the thinner lines 
reflect 95% confidence intervals. MAE = mean absolute error; RMSE = root mean square error. 
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Figure 4. Bootstrap distributions of the differences in predictive performance between Elastic Net 
and other algorithms. For Pearson’s correlation and traditional r square, values lower than zero 
indicates lower performance than Elastic Net. For mean absolute error and root mean square error, 
values higher than zero indicates lower performance than Elastic Net. The thicker lines reflect 65% 
bootstrap confidence intervals and the thinner lines reflect 95% confidence intervals. MAE = mean 
absolute error; RMSE = root mean square error. 
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Explaining the algorithms 

Variable importance: Coefficients and SHAP 

Figure 5 shows the variable importance of models predicting the g-factor across all 

algorithms. Figure 6 shows Spearman’s correlations in variable importance among the algorithms. 

The variable importance of different algorithms appear to be significantly related (i.e., ρ with p-value 

< .05), but in varying degrees. For instance, the variable importance of Elastic Net was more similar 

to that of SVM of different kernels (ρ ~ .7) than that of mass-univariate algorithm (ρ ~.2). On the 

other hand, the variable importance of mass-univariate algorithms seemed more closely related to that 

of Random Forest and XGBoost (ρ ~.5-.6) than other algorithms. Accordingly, this shows that 

different algorithms drew information from areas across the brain differently. 

As for the similarity with Sripada and colleagues’ (2020) findings, we found significant 

Spearman’s correlations (p-value <.05) across all but one algorithm, the OLS multiple regression. 

These significant correlations were small in magnitude (ρ ~.2-.3 on the cortical surface and ρ ~.2 on 

the whole brain). Still, the OLS multiple regression seemed to be the only algorithm that yielded 

inconsistent results with Sripada and colleagues’ (2020) findings. 
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Figure 5. Variable importance of models predicting the g-factor across all algorithms. Variable 
importance for Sripada et al., (2019) is based on a weighted, principal component regression. 
Variable importance for Mass Univariate Analyses, OLS multiple regression and Elastic Net is the 
coefficient values while variable importance for SVM, Random Forest, XGBoost is the absolute value 
of SHAP. We plotted variable importance on the brain using ggseg (Mowinckel and Vidal-Piñeiro 
2019). 
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Figure 6. Spearman’s correlations in variable importance between algorithms. We calculated 
variable importance for models predicting the g-factor. Variable importance for Sripada et al., 
(2019) is based on a weighted, principal component regression. Variable importance for Mass 
Univariate Analyses, OLS multiple regression and Elastic Net is the coefficient magnitude (i.e., the 
absolute value of the coefficients). Variable importance for SVM, Random Forest, XGBoost is the 
absolute value of SHAP. 
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Variable selection for variable importance: Conventional p-value and eNetXplorer 

Figure 5 plots variable selection for the variable importance of models predicting the g-factor 

on the brain. These plots include mass univariate analyses with FDR and Bonferroni corrections, the 

OLS multiple regression, and Elastic Net with eNetXplorer. Figures 7 plots variable selection for the 

OLS multiple regression and Elastic Net to highlight the differences between the OLS multiple 

regression and eNetXplorer in coefficient magnitude and uncertainty estimates as a function of 

hyperparameters of Elastic Net and multicollinearity. The OLS multiple regression selected 23 

regions while eNetXplorer selected 27, 32 and 21 regions for full Elastic Net, Ridge and LASSO, 

respectively (Figure 7, 8). Of these selected regions, only 14 regions were the same regions among 

the OLS multiple regression, full Elastic Net, Ridge and LASSO, and 20 regions were the same 

among Elastic Net, Ridge and LASSO. Compared to Elastic Net (penalty at .13) and LASSO (penalty 

at .01), Ridge led to the highest penalty at .36, resulting in the smallest coefficient magnitude. As for 

uncertainty estimated, we found that, for the OLS multiple regression, the coefficient SE linearly 

increased as a function of the VIF. In contrast, for eNetXplorer, the changes in the permuted null 

coefficient SD as a function of the VIF were less pronounced.  
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Figure 7. Variable selection for the variable importance of the OLS multiple regression (A) and 
Elastic Net (via eNetXplorer) (B) predicting the g-factor. We only plotted regions with p<.05.  
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Figure 8. Uncertainty estimates of explanatory variables (brain regions) as a function of Variance 
Inflation Factor (VIF) for the OLS multiple regression, Elastic Net, Ridge and LASSO predicting the 
g-factor. We calculated the VIF based on the OLS multiple regression. For the OLS multiple 
regression, confidence intervals are the coefficients plus/minus 2 multiplied by coefficient’s standard 
error (SE). For the Elastic Net, Ridge and LASSO, confidence intervals are the permuted null 
coefficients plus/minus 2 multiplied by the permuted null standard deviation (SD).  
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Prediction pattern and directionality: Univariate Effects and Accumulated Local Effects 

Figure 9 plots univariate effects and Accumulated Local Effects (ALE) of models predicting 

the g-factor across all algorithms. They show the prediction pattern and directionality of the 

relationship between predictive values of the g-factor based on different algorithms and fMRI activity 

at each brain region. Across brain regions, most of the multivariate algorithms, apart from the OLS 

multiple regression, had a similar pattern and direction a) with each other and b) with the univariate 

effects. ALE of the OLS multiple regression deviated from that of other multivariate algorithms in 

many regions. Moreover, ALE of the OLS multiple regression demonstrated a relationship in an 

opposite direction to univariate effects in several regions, such as the left intra-transverse parietal 

sulcus, left middle frontal gyrus, left and right middle frontal sulcus, right supplementary precentral 

sulcus, left angular gyrus, right post ramus of the lateral sulcus and right superior parietal gyrus. 
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Figure 9. Univariate effects and Accumulated Local Effects (ALE) of models predicting the g-factor 
across all algorithms. These plots show the prediction pattern and directionality of the relationship 
between predictive values of the g-factor from different algorithms and fMRI activity at each brain 
region. We plotted the top 30 brain regions with the highest variable importance across algorithms. 
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Interaction: Friedman’s H Statistic 

Figure 10 show interaction plots based on Friedman’s H-statistic. They show the interaction strength 

between each brain region and all other brain regions for four interactive algorithms predicting the g-

factor, including Random Forest, XGBoost and SVM with RBF and polynomial kernels. The 

interaction strength between brain regions for XGBoost and SVM with polynomial and RBF kernels 

accounted for less than 6% of variance explained per region. Random forest, on the other hand, had 

two explanatory variables that accounted for 15% and 20% of variance explained per region. 
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Figure 10. Interaction plots based on Friedman’s H-statistic. H-statistic here indicates the 
interaction strength between each brain region and all other brain regions for different algorithms 
predicting the g-factor. Higher values indicate higher strength of the interaction from a particular 
brain region. Here we plotted the top 20 brain regions with the highest Friedman’s H-statistic at 
each algorithm. 
 

Discussion 

We applied the explainable machine-learning framework (Molnar 2019; Belle and Papantonis 

2021) to predict children’s cognition from task-based fMRI during the n-back task, using the ABCD 

dataset (Casey et al. 2018). We first compared the performance of nine algorithms in their ability to 

predict individual differences in cognitive abilities across 12 response variables and found better 

predictive performance from machine learning algorithms, compared to the conventional mass-

univariate analyses and the OLS multiple regression. Despite being a linear and additive algorithm, 

Elastic Net came up among the top-performing algorithm. We then implemented various explainers to 

explain how these algorithms drew information from task-based fMRI to predict the g-factor. With 

these explainers, we found 1) some similarity in variable importance across algorithms and studies, 2) 

differences in variable selection between the OLS multiple regression and Elastic Net, 3) similar 

directionality in the relationship with the g-factor between machine-learning and mass-univariate 

algorithms, and 4) interaction from certain brain regions as captured by interactive algorithms. These 

explainers also showed potential problems of the OLS multiple regression, including having lower 

consistency in variable importance with a prior study (Sripada et al. 2020) and having a relationship 

with the g-factor in the opposite direction with the mass-univariate algorithms at many regions, 

suggesting the presence of suppression (Ray-Mukherjee et al. 2014). 

For predictive performance, the conventional mass-univariate algorithms, either with the 

FDR or the more-conservative Bonferroni correction, showed worse performance than most 

multivariate algorithms across most response variables of individual differences in cognitive abilities. 

Our findings using task-based fMRI are consistent with recent work that compared the performance 

between mass-univariate and multivariate algorithms (via SVM with the RBF kernel) to predict 

individual differences in cognition from resting-state fMRI and structural MRI (Marek et al. 2022). 

Accordingly, across different MRI modalities, using multivariate algorithms appear to be a more 
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promising approach than the mass-univariate algorithms to ensure reproducibility of the brain-

cognition relationship and to use MRI as a predictive tool for individual differences.   

Nonetheless, simply including all brain regions as explanatory variables in an OLS multiple 

regression model may not be ideal for prediction. The OLS multiple regression had poorer predictive 

performance than machine-learning algorithms for most response variables. More importantly, its 

predictive performance for response variables that were hard to predict across algorithms (e.g., 

sequential memory, Flanker, auditory-verbal and pattern speed) was very poor, indicated by negative 

traditional r square and lowest RMSE, even when compared to the mass-univariate algorithms. By 

contrast, adding regularisation to the OLS multiple regression algorithm in the form of Elastic Net 

(Zou and Hastie 2005) appeared to boost predictive performance across response variables. In fact, 

the performance of Elastic Net, despite being a less complex machine-learning algorithm given its 

constraints on linearity and additivity, was on par with, and in many cases better than, many non-

linear and interactive algorithms, including Random Forest, XGBoost and SVM of different kernels. 

This finding is consistent with work on resting-state fMRI, showing that a penalized regression-based 

algorithm, such as Elastic Net, performed just as well as other algorithms (Dadi et al. 2019). Given 

that Elastic Net is readily interpretable, it can be considered a parsimonious choice for future task-

based fMRI studies. 

We observed variability in the level of predictive performance among the 12 response 

variables of individual differences in cognitive abilities, especially with multivariate algorithms. It is 

not surprising to see the highest predictive performance from the behavioural performance during the 

n-back fMRI task. Given that the fMRI and behavioural data were collected at the same time, our 

predictive models may capture idiosyncratic variation due to the task and session itself (e.g., arousal, 

attention and other processes). As for out-of-scanner tasks, our predictive models performed better for 

some cognitive tasks (e.g., picture vocabulary, reading recognition and matrix reasoning) than others 

(e.g., sequential memory, Flanker, auditory-verbal and pattern speed). More importantly, capturing 

the shared variance of behavioural performance across different tasks using the latent variable, the g-

factor, led to higher predictive performance than any individual task. This suggests that our 
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framework can be used to build predictive models for individual differences in cognitive abilities in 

general, and is not confined to specific tasks or processes.  

Our implementation of various explainers allowed us to better understand how each 

algorithm made a prediction of the g-factor. First, variable importance enabled us to move beyond 

simply estimating the contribution from each separate brain region (i.e., marginal importance), 

commonly done in mass-univariate analyses. Instead, with variable importance, we could investigate 

the contribution from multiple regions in the same model (i.e., partial importance) (Chen et al. 2019; 

Debeer and Strobl 2020). Here, we found different degrees of similarity in variable importance across 

algorithms. On the one hand, the variable importance of mass-univariate algorithms, which are the 

dominant approach for explaining the brain-cognition associations in the neuroimaging community 

(Friston 2007), were more closely related to tree-based algorithms, Random Forest and XGBoost, 

than other algorithms. On the other hand, the top two algorithms that predicted the g-factor well in the 

current study, Elastic Net and SVM with the RBF kernel, had variable importance that was correlated 

well with each other (ρ > .7). This suggests that the brain information similarly drawn by Elastic Net 

and SVM with the RBF kernel in our study allowed us to capture individual differences in the g-

factor relatively well.  

More importantly, we also tested the similarity in variable importance found in the current 

study with Sripada and colleagues’ (2020). Variable importance from all algorithms, except for the 

OLS multiple regression, was significantly correlated with that of Sripada and colleagues (2020). 

While significant, these correlations were small in magnitude, perhaps due to many different 

characteristics between Sripada and colleagues’s  (2020) and our study. For instance, Sripada and 

colleagues (2020) built a predictive model from adults’ data (as opposed to children’s data), applied 

principle component regression on non-parcellated regions (as opposed to different univariate and 

multivariate algorithms on parcellated regions) and used a slightly different variation of the n-back 

task (Barch et al. 2013; Casey et al. 2018) and of the response variables for individual differences in 

cognitive abilities. Additionally, we also saw more similarity in variable importance with Sripada and 

colleagues (2020) on the cortical surface, compared to the whole brain. This might be due to the 

superiority of cortical surface in brain registration across ages, compared to the subcortical volumetric 
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regions used in the whole brain (Ghosh et al. 2010). Altogether, this suggests some degree of 

consistency in variable importance across studies for most of the algorithms examined here, apart 

from the OLS regression.  

We showed variable selection for different algorithms: mass univariate analyses with FDR 

and Bonferroni corrections, the OLS multiple regression, and Elastic Net with eNetXplorer (Candia 

and Tsang 2019). Being able to explain and select brain regions that exhibited an above-chance-level 

contribution to the prediction of Elastic Net via eNetXplorer was of great importance, given that 

Elastic Net had high predictive performance in the current study. Variable selection for the OLS 

multiple regression and eNetXplorer relies on two factors: coefficient magnitudes and uncertainty 

estimates. Accordingly, we created Figure 8 to investigate coefficient magnitudes and uncertainty 

estimates at different levels of the mixture hyperparameter, including tuned (Elastic Net) or fixed at 

either 0 (Ridge) or 1 (LASSO), and multicollinearity. For coefficient magnitudes, we saw lower 

coefficient magnitude from an algorithm with higher regularisation: ranking from Ridge, (penalty (l) 

= .36), Elastic Net (penalty = .13), LASSO (penalty = .01) to the OLS multiple regression, which 

could be viewed as having penalty at 0. As for uncertainty estimates, we saw two behaviours of 

eNetXplorer. First, in our data, the permutation used in eNetXplorer showed more consistency in 

uncertainty estimates across the different levels of multicollinearity (as reflected by VIF), as 

compared to the OLS multiple regression. Second, a higher regularisation, indicated by the penalty, 

led to not only a smaller coefficient magnitude of the target model, but also a smaller standard 

deviation (SD) of the permuted null model, which is the uncertainty estimate for eNetXplorer. This is 

because eNetXplorer used the same hyperparameters for both the target and permuted null models, 

which were based on the hyperparameters associated with the best predictive performance for the 

target model during cross-validation. eNetXplorer then tested which of the brain regions contributed 

to the prediction of regularised regression higher than chance by comparing regularised coefficients 

of the target models against regularised coefficients of the permuted null models. Thus, a higher 

reduction in coefficient magnitude based on the penalty hyperparameter does not necessarily mean a 

smaller number of regions selected. To illustrate this, in our case, Ridge led to the highest penalty, 

which resulted in the smallest coefficient magnitude, but had the highest number of regions selected. 
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Altogether, as a result of Elastic Net hyperparameters and multicollinearity, some of the regions with 

high VIF had high SE and were not selected by the OLS multiple regression, but were selected by 

eNetXplorer. In contrast, some of the regions that were selected by the OLS multiple regression had 

smaller relative magnitude and were not selected by eNetXplorer. Thus, eNetXplorer allowed us to 

explain and select variables that contributed to the prediction given the combination of Elastic Net 

hyperparameters estimated (Candia and Tsang 2019). 

Next, to reveal the pattern and directionality of the relationship between task-based fMRI 

activity and the g-factor based on different algorithms at different brain regions, we used univariate 

effects and Accumulated Local Effects (ALE). For the pattern, ALE revealed the expected pattern 

from each algorithm. For instance, ALE showed a linear pattern from linear algorithms, such as the 

OLS multiple regression and Elastic Net. Similarly, ALE also showed a non-linear pattern from non-

linear algorithms, such as Random Forest and XGBoost. As for the directionality, we saw 

inconsistency in the directionality between ALE from the OLS multiple regression and univariate 

effects from mass-univariate analyses. For example, there were many brain regions that were shown 

to have a positive relationship according to univariate effects, but have a negative relationship 

according to ALE from the OLS multiple regression. Some of these regions included the left 

intra/transverse parietal sulcus, left middle frontal gyrus, left and right middle frontal sulcus, right 

supplementary precentral sulcus, left angular gyrus and right superior parietal gyrus. Accordingly, 

adding multiple brain regions into an OLS multiple-regression model appeared to change the 

directionality of the relationship each of the regions had when considered by itself. This may indicate 

the “suppression” effect whereby the directionality of an explanatory variable depends on its 

relationship with other explanatory variables (Courville and Thompson 2001; Beckstead 2012; Ray-

Mukherjee et al. 2014). Fortunately, all of the machine-learning algorithms we tested did not show 

this inconsistency. Indeed, regularising the coefficients in the OLS multiple regression as 

implemented by Elastic Net appeared to keep the directionality of the relationship in line with that of 

mass-univariate analyses.  

Finally, using Friedman’s H-statistic (Friedman and Popescu 2008), we also demonstrated the 

interactions among brain regions that were captured by each of the four interactive algorithms: 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 27, 2022. ; https://doi.org/10.1101/2020.10.21.348367doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.21.348367
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

39 

Random Forest, XGBoost and SVM with polynomial and RBF kernels. The interaction strength 

between brain regions for XGBoost and SVM with polynomial and RBF kernels was quite weak, 

accounting for less than 6% of variance explained per region. Random forest, on the other hand, had 

two brain regions, the right superior frontal sulcus and right intraparietal sulcus, that accounted for 

15% and 20% of variance explained per region. Nonetheless, these four algorithms that allowed for 

interactions generally did not perform well over non-interactive Elastic Net in terms of predictive 

performance for the g-factor. This means that not accounting for interactions may be parsimonious 

enough for the current data. 

Given the emergence of large-scale, task-based fMRI studies (Van Horn and Toga 2014), one 

potential use of the explainable machine-learning framework (Molnar 2019; Belle and Papantonis 

2021) is to build explainable, predictive models for future studies. This is similar to polygenic scores 

in genomics (Torkamani et al. 2018) where geneticists use large discovery datasets to build models 

that reflect the influences of SNPs across the genome on certain phenotypes of interest in the form of 

polygenic scores. Polygenic scores improve the replicability of genetics studies, compared to the 

classical “candidate-gene” approach (Bogdan et al. 2018). Polygenic scores are explainable based on 

the influences of each SNP associated with phenotypes in the discovery dataset (Torkamani et al. 

2018). Here we suggest that neuroimagers can take a similar approach to build a predictive model 

based on task-based fMRI from large-scale studies. In fact, our predictive performance for the g-

factor from just one fMRI n-back task (r square ~ .2) was considerably higher than that from a 

polygenic score (r square < .1) (Allegrini et al. 2019). This encourages the potential use of task-based 

fMRI for individual differences in cognition.  

To build predictive models for individual differences in cognition from task-based fMRI, 

there are existing toolboxes, particularly designed for neuroimaging, such as PRoNTO (Schrouff et al. 

2013), pyMVPA (Hanke et al. 2009), and Neurominer (Hanke et al. 2009). Here, we took a more 

general machine-learning approach using the tidymodels (Kuhn et al. 2020) and other R packages. 

Given the availability of a number of algorithms in tidymodels and the versatility of the R language, 

our approach is more flexible and readily scalable. Moreover, unlike the neuroimaging toolboxes, 

using the R language allowed us to integrate the predictive modelling framework with modern 
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explainers, such as SHAP (Lundberg and Lee 2017), eNetXplorer (Candia and Tsang 2019), ALE 

(Apley and Zhu 2020) and Friedman’s H-statistic (Friedman and Popescu 2008). These explainers are 

not likely to be available in the purposefully built toolboxes for neuroimaging.  

Our study has limitations. While the ABCD dataset is one of the largest datasets with task-

based fMRI available (Casey et al. 2018), its sample as of 2020 has, by design, a narrow age range. 

The predictive model built from our study may only be generalized to children aged 9-10 years old. 

However, given that the study will trace the participants until they are 19-20 years old, future studies 

will be able to use a similar approach to ours and expand the age range. Next, our method shown 

relied on Freesurfer’s parcellation (Fischl et al. 2002; Destrieux et al. 2010), which is the only 

parcellation available post-processed from the ABCD release 2.0.1 (Yang and Jernigan 2019). This 

commonly used parcellation is based on subject-specific anatomical landmarks, but its regions are 

relatively large.  Future studies may need to demonstrate predictive ability with smaller parcels, 

which will lead to more regions, and in turn, more explanatory variables, but might also result in 

higher inconsistencies in identifying areas across participants. Lastly, there were many large outliers 

in the data that we dealt with via listwise deletion. Many of our algorithms tested, including the mass 

univariate, OLS multiple regression, and Elastic Net, all rely on minimizing the sum of the squared 

errors, which can be disproportionately influenced by outliers (Maronna 2011; Rousselet et al. 2017). 

In the future, it may be useful to test the workflow that mitigates the influences of outliers without 

using the listwise deletion (Lawrence and Marsh 1984; Maronna 2011). 

To conclude, applying the explainable machine-learning framework (Molnar 2019; Belle and 

Papantonis 2021) to task-based fMRI from a large-scale study, we demonstrated poorer predictive 

ability from the conventional mass-univariate approach and the OLS multiple regression. Drawing 

information from multiple brain areas across the whole brain via different machine-learning 

algorithms appeared to improve predictive ability. Elastic Net, a linear and additive algorithm, 

provides predictive performance on par with, if not better than, other algorithms. Using different 

explainers allowed us to explain different aspects of the predictive models: variable importance, 

variable selection, pattern and directionality and interaction. This in turn enabled us to pinpoint 

problems with the OLS multiple regression. We believe our approach should enhance the scientific 
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understanding and replicability of task-based fMRI signals, similar to what polygenic scores have 

done for genetics. 
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Supplementary Figure 1. Bootstrap distributions of the differences in predictive performance between 
the OLS multiple regression and other multivariate algorithms. For Pearson’s correlation and 
traditional r square, values lower than zero indicates lower performance than the OLS multiple 
regression. For mean absolute error and root mean square error, values higher than zero indicates 
lower performance than the OLS multiple regression. The thicker lines reflect 65% bootstrap 
confidence intervals and the thinner lines reflect 95% confidence intervals. MAE = mean absolute 
error; RMSE = root mean square error. 
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Supplementary Figure 2. Bootstrap distributions of the differences in predictive performance between 
Elastic Net and other multivariate algorithms. For Pearson’s correlation and traditional r square, 
values lower than zero indicates lower performance than Elastic Net. For mean absolute error and 
root mean square error, values higher than zero indicates lower performance than Elastic Net. The 
thicker lines reflect 65% bootstrap confidence intervals and the thinner lines reflect 95% confidence 
intervals. MAE = mean absolute error; RMSE = root mean square error. 
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