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eTOC Summary:  
A translation-ready ultrasound technique enhances the brain penetration of intrathecally delivered agents 
via upregulating the glymphatic pathway. 
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Summary 

Intrathecal drug delivery is routinely used to bypass the blood-brain barrier in treating varied central 

nervous system conditions. However, the utility of intrathecal delivery is limited by poor parenchymal 

uptake of agents from the cerebrospinal fluid. We demonstrate that a simple noninvasive transcranial 

ultrasound protocol significantly increases the brain parenchymal uptake of intrathecally administered 

drugs and antibodies. Essentially, we show that our protocol of transcranial ultrasound can accelerate 

glymphatic fluid transport from the cisternal space into the parenchymal compartment. Specifically, we 

administered small (~1kDa) and large (~150 kDa) molecule agents into the cisterna magna of rats and 

then applied low, diagnostic-intensity focused ultrasound in a scanning protocol throughout the brain. 

Using both real-time magnetic resonance imaging and ex vivo histologic analyses, we observed 

significantly increased uptake of each agent into the brain parenchyma from the cisternal cerebrospinal 

fluid, notably with no brain parenchymal damage. The low intensity of the ultrasound and its 

noninvasiveness underscores the ready path to clinical translation of this technique for whole-brain 

delivery of a variety of agents. Furthermore, this technique can be used as a means to probe the causal 

role of the glymphatic system in the variety of disease and physiologic processes to which it has been 

correlated. 
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Introduction 

Drug delivery to the brain is significantly limited by the blood-brain barrier (BBB), which excludes ~98% 

of potential small molecule therapeutics and nearly 100% of large therapeutics (Abbott and Romero, 1996; 

Neuwelt et al., 2008; Pardridge, 2005). In principle, if an agent is administered into the cerebrospinal fluid 

(CSF) of the cisterns or ventricles of the central nervous system (CNS), e.g. via intrathecal delivery during 

a spinal tap, the agent would already be across the BBB and therefore able to access the brain and spine 

parenchyma. Indeed, intrathecal delivery is already used in the treatment or prophylaxis of a variety of 

CSF-based diseases, including leptomeningeal metastatic cancer and infectious meningitis (Jain et al., 

2019). However, drug penetration into the brain and spine parenchyma from the CSF is known to be 

severely limited (Burch et al., 1988; Calias et al., 2014; Leal et al., 2011). A means to overcoming this 

effective CSF-parenchyma barrier could greatly expand the utility of myriad off-the-shelf therapeutics for 

the treatment of numerous CNS diseases. 

Recently, researchers have observed that vascular pulsations may drive active transport of cisternal 

CSF fluid into the interstitial compartment of the brain parenchyma, a system coined the “glymphatic 

pathway” (Iliff et al., 2012, 2013). While the glymphatic pathway could be utilized for drug delivery, at 

baseline its rate of fluid transport is insufficient to drive significant convection of intrathecally 

administered agents into the brain parenchyma (Rasmussen et al., 2018). Further, while the glymphatic 

system has been linked to a variety of physiological states, like sleep, and diseases like Alzheimer’s 

disease or traumatic brain injury, these studies are fundamentally correlative as there are no described 

means for independently controlling glymphatic transport (Ahn et al., 2019; Benveniste et al., 2019; 

Gaberel et al., 2014; Goulay et al., 2017; Hawkes et al., 2014; Iliff et al., 2012, 2014; Jessen et al., 2015; 

Kress et al., 2014; Louveau et al., 2015; Mesquita et al., 2018; Peng et al., 2016; Rasmussen et al., 2018; 

Yang et al., 2013).  
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As the glymphatic system is driven by convective pressures induced by arterial pulsation (Iliff et 

al., 2013), and since ultrasound is a high-frequency wave of pressure oscillations in the medium, we 

hypothesized that ultrasound application could induce similar pressure oscillations in the perivascular and 

interstitial space as seen with glymphatic transport, and that this could be used to increase the brain 

parenchymal penetration of intrathecally administered agents. Several groups have shown that ultrasound 

may increase the diffusion of agents within tissue after either pairing ultrasound with exogenous 

microbubble contrast agents (Aryal et al., 2015; B et al., 2019; Chen and Konofagou, 2014; Chen et al., 

2014; Etame et al., 2012; Wei et al., 2013) or by using high in situ pressures (Curley et al., 2020; Mead et 

al., 2019; Mohammadabadi et al., 2020). It has yet been determined whether a low-intensity ultrasound 

protocol on its own may increase the cisternal CSF-parenchymal transport that is the hallmark of the 

glymphatic pathway (Iliff et al., 2013). Here, we demonstrate that we may indeed use noninvasive 

transcranial low-intensity ultrasound to increase the parenchymal penetration of intrathecally administered 

small and large therapeutic agents via glymphatic upregulation.  
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Results 

Given the known effects of anesthesia and sleep on glymphatic transport (Gakuba et al., 2018; Mendelsohn 

and Larrick, 2013), titration of isoflurane anesthetic dose and environmental heating was used with 

cardiorespiratory monitoring to ensure physiologic stability during the up to 4 hours of each experiment 

and intervention, with respiratory rates maintained in the range of 50 to 60 breaths per minute, heart rates 

of approximately 300–370 beats per minute, O2 saturation of approximately 98%–100%, and body 

temperature of 36.5°C to 37.5°C. A scanning ultrasound protocol was chosen to treat the whole rat brain 

with transcranial focused ultrasound of an intensity below FDA-approved limits for diagnostic ultrasound 

(0.25 mechanical index, MI, in situ, 7.7 % local duty cycle, for a total of 10 min.; Fig. 1). This intensity 

of ultrasound was chosen as it is less than or similar to the intensities used in routine diagnostic ultrasound 

imaging of adult and neonatal human patient brains, and is readily achievable with ultrasound systems 

designed for diagnostic or therapeutic transcranial ultrasound applications in the adult human brain 

(Mainprize et al., 2019). Notably, the total temperature rise in the sonicated zone due to this level of 

ultrasound exposures is estimated to be <0.01 °C  (Nyborg 1988; Haar and Coussios 2007).  
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Fig. 1. Schematic of ultrasonic glymphatic induction for enhancing the brain penetration of an 

intrathecally administered agent. A. Following intrathecal injection of an agent into the cisternal 

cerebrospinal fluid (CSF) to bypass the blood-brain barrier (BBB) transcranial focused ultrasound (FUS) 

is applied across the intact skull. B. Scanning an ultrasound focus across the whole brain is hypothesized 

to increase glymphatic transport of cisternal CSF into the brain. The ultrasound focus trajectory is 

indicated by the dashed line, with the full-width at half maximum of the ultrasound field in orange, and is 

overlaid onto a maximum intensity projection (MIP) of a 3D volumetric T1w MRI (left; major cerebral 

arteries in white) and a representative transverse Paxinos brain atlas section (right) (Paxinos 2017), 

indicating the relevant anatomical structures. Ultrasound protocol: 650 kHz ultrasound frequency, 0.25 

MI (0.2 MPa estimated in situ peak negative pressure), held continuously on while scanning the indicated 

8 x 10 mm rectangular trajectory repeatedly for 10 min; estimated local duty cycle of 7.7% given the focus 

transverse full-width at half-maximum (FWHM) of 2.78 mm (longitudinal FWHM 12 mm); 24 sec per 36 

mm loop, for 25 loops across 10 min. 
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Transcranial ultrasound noninvasively accelerates glymphatic transport of a 1 kDa tracer 

A gadolinium (Gd)-chelate MRI contrast agent was injected intrathecally into the cisterna magna, to label 

the CSF to allow MRI visualization of glymphatic CSF transport from the basal cisterns into the brain 

parenchyma. 3D T1w MRI images revealed that perivascular influx of CSF into the brain is observed 

initially 12 min after intrathecal Gd-chelate administration. Dynamic quantitative T1-mapping MRI 

imaged the time-dependent CSF influx, parenchymal uptake, and clearance of the Gd-chelate (Fig. 2B). 

Without ultrasound intervention, the 1 kDa Gd-chelate enters the brain from the cisterns with a peak brain 

concentration at approximately 35 min and then clears from the brain interstitial compartment within 3 h 

from injection (Fig. 2B).  With a low-intensity transcranial scanning ultrasound treatment, a more diffuse 

pattern of Gd-chelate brain distribution was observed. The peak parenchymal uptake with ultrasound was 

increased by 72-101% with a relatively delayed peak of 105 min from injection, and with increased tracer 

in the brain at 3 h post-injection (Fig. 2; Supplementary Video V1). Notably, the contrast agent entered 

the brain preferentially near sites of arterial influx into the parenchyma (Fig 1B, left; Fig. 2), in keeping 

with known patterns of glymphatic entry into the brain (Iliff et al., 2013). We noted a statistically 

significant difference of brain parenchymal tracer uptake in these trends between the ultrasound and sham 

conditions at 35, 70, and 105 min following tracer administration.  
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Fig. 2. Transcranial ultrasound noninvasively accelerates glymphatic transport into the brain 

parenchyma for an intrathecally administered 1 kDa MRI tracer. A. Experimental timeline to 

measure the spread of intrathecally administered MRI contrast agent into the brain using quantitative T1-

mapping MRI before and after ultrasound intervention. B. Representative pseudocolor T1w MRI images 

of rat brains following intrathecal MRI contrast agent injection with sham (top) or ultrasound (bottom) 
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intervention. C-D. Quantitative T1-mapping MRI was used to quantify the contrast agent concentration 

in the brain before and after intervention. C. Representative T1-maps showing contrast agent in the brain 

with (bottom) and without (top) transcranial ultrasound application, at 105 min after contrast agent 

administration and 70 min from the ultrasound intervention; dark regions indicate higher MRI contrast 

agent concentration. D. Brain volume containing a resolvable amount of the intrathecally administered 

contrast agent over time showing that the 1 kDa contrast agent is driven into a significantly larger volume 

of brain with the ultrasound intervention, versus sham. Gray column indicates ultrasound intervention 

timing. Presented as mean ± S.D. for groups of n = 10-11 (12 -105 min) and n = 3-4 (180 - 240 min). *: 

p ≤ 0.05, **: p ≤ 0.01 by ANOVA and post-hoc t-tests, comparing ultrasound to sham (black asterisk) and 

comparing ultrasound timepoints with the baseline at 12 min (red asterisk). Only the significantly different 

comparisons are noted.  

 
 
Ultrasound noninvasively increases glymphatic transport of both small and large agents  
 
To gain higher resolution of the distribution of the delivered agent, during Gd-chelate injection, we co-

administered an optical (infrared-fluorescent) dye (~1 kDa, IRDye800CW) in free form or conjugated to 

the therapeutic antibody panitumumab (~150 kDa, in active clinical use for EGFR-targeted therapy) (Gao 

et al., 2018) to model the delivery of both small and large therapeutic agents. Glymphatic upregulation 

with this ultrasound protocol was confirmed as before using MRI visualization of the Gd-chelate. Animals 

were sacrificed two hours after agent administration (at the peak parenchymal uptake noted in the initial 

experiments, Fig. 2D). Histologic infrared fluorescent microscopy verified that both the small and large 

optical tracers indeed penetrated to a greater degree into the brain with this brief, 10 min noninvasive 

ultrasound therapy (Fig. 3).  
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Fig. 3. Transcranial ultrasound noninvasively accelerates glymphatic transport into the brain of 

small (1 kDa) and large (150 kDa) molecule agents following intrathecal administration. A. 
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Experimental timeline to measure ultrasound-induced changes in brain penetration of intrathecally 

administered small and large optical agents. B. Representative pseudocolor near-infrared images of brain 

slices following cisternal injection of a small molecule optical tracer (top; ~1 kDa, IRDye800CW dye) 

and a large molecular tracer (bottom; ~150 kDa, Panitumumab-IRDye800). C. Near-infrared fluorescent 

imaging-defined dye-enhanced area for the small and large molecular tracers revealed that both agents 

penetrated into the brain to a significantly greater degree with ultrasound, compared to sham. Presented 

as mean ± S.D. for groups of n = 3-4 for each agent. *: p ≤ 0.05 by two-tailed t-tests, comparing ultrasound 

to sham.  

 

 

Ultrasonic glymphatic induction is safe  

To evaluate the safety of this approach, high-field 7T MRI and histologic evaluation were utilized in both 

the acute and delayed settings, up to 72 h following ultrasound intervention. No evidence of 

microhemorrhage or edema was noted using T2*w MRI either within hours of intervention (Fig. 4) or up 

to 72 h following intervention (Fig. S2). Notably, no prolonged Gd-chelate deposition was seen in the 

brain up to 72 h, by when the CSF is known to be fully replaced (Fig. S2) (Lee et al., 2018; Liu et al., 

2004). High-field histological evaluation (Fig. 4C-E) confirmed the lack of brain parenchymal damage 

with this intervention. Importantly, the total temperature change in the sonicated zone with this ultrasound 

protocol (0.25 MI in situ, 7.7% local duty cycle for 10 min) is estimated to be <0.01 °C based on the bio-

heat transfer equation  (Nyborg 1988; Haar and Coussios 2007). Further, this in situ intensity of ultrasound 

is similar to that used commonly for diagnostic brain imaging in both adult and neonatal human 

populations, and is well below FDA guidelines for ultrasound application in human tissue (Nelson et al., 

2009). Therefore, this level of safety with this approach is expected.  
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Fig. 4. Ultrasonic glymphatic induction is safe. A. Experimental timeline for safety assessment. B. 

Representative MRI images showing no signs of damage, including edema or hemorrhage, in the brain 

parenchyma before (left) and after (right) transcranial ultrasound application (trajectory in orange; 0.25 

MI in situ, 7.7% local duty cycle for 10 min). C-E. Ex vivo brain slice analysis. C. Representative bright-

field image and D. Representative hematoxylin and eosin-stained (H & E) transverse sections of the brain 

of the same rat as in B. E. Magnified views of the indicated areas of D demonstrating no evidence of brain 

parenchymal damage with this ultrasound protocol.   
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Discussion  

We have demonstrated that low-intensity noninvasive transcranial ultrasound can upregulate the 

glymphatic pathway to improve the efficacy of intrathecal drug delivery. With MRI, we observed that this 

ultrasound protocol safely accelerates the transport of a ~1 kDa MRI tracer from the CSF into the 

interstitial space before it clears from the brain (Fig. 1, 2, S1, Video V1, Table S1) with a clearance 

timeline of 3 hrs. Using optical tracers, we validated the MRI findings using a ~1 kDa optical tracer that 

has a similar molecular weight as the MRI tracer and which models the distribution of small molecule 

drugs that are commonly intrathecally administered, like methotrexate (Fig. 3). Further, we used the same 

optical probe conjugated to a ~150 kDa therapeutic antibody panitumumab (Gao et al., 2018) and saw 

similar increases of brain parenchymal uptake of this larger therapeutic agent (Fig. 3). Importantly, we 

saw no evidence of brain parenchymal damage with this approach (Fig. 4, S2).  

 

Overall, our results suggest that low-intensity noninvasive transcranial ultrasound may be used to increase 

the whole-brain delivery of a variety of off-the-shelf small or large therapeutic agents, following the same 

intrathecal administration that is used routinely in clinics worldwide to administer therapeutic agents into 

the CSF (Burch et al., 1988; Calias et al., 2014; Edeklev et al., 2019; Eide et al., 2018; Jain et al., 2019; 

Leal et al., 2011; Liu et al., 2004; Mack et al., 2016).  Further, this method provides a means to directly 

upregulate glymphatic transport, which could be used for causative evaluation of the role of the glymphatic 

system in the variety of physiological and disease processes to which the glymphatic system has been 

correlated (Abbott et al., 2018; Ahn et al., 2019; Aspelund et al., 2015; Benveniste et al., 2019; Gaberel 

et al., 2014; Gakuba et al., 2018; Iliff et al., 2014; Kress et al., 2014; Lundgaard et al., 2017; Mader and 

Brimberg, 2019; Mendelsohn and Larrick, 2013; Peng et al., 2016; Plog and Nedergaard, 2018; Pu et al., 

2019; Simon and Iliff, 2016). Given the low intensity of ultrasound necessary for these results (Bein et 

al., 2006; Chen et al., 2018; Meijler and Steggerda, 2019; Naqvi et al., 2013; Nelson et al., 2009; Onweni 

et al., 2020; Purkayastha and Sorond, 2012; Rasulo et al., 2017; Sarkar et al., 2007), at levels readily 
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achievable with currently-utilized clinical transcranial ultrasound systems (Abrahao et al., 2019; Arvanitis 

et al., 2013; Bystritsky et al., 2011; Fini and Tyler, 2017; Ghanouni et al., 2015; Hersh et al., 2016; 

Hynynen and McDannold, 2004; Izadifar et al., 2020; Jolesz, 2009; Lamsam et al., 2018; Medel et al., 

2012; Poon et al., 2017; Pouliopoulos et al., 2020; Vykhodtseva et al., 2008), and the absence of non-

therapeutic exogenous agents in this protocol or the need for chemical modification of the drug to be 

delivered, there is a ready path for clinical translation of a therapy based on these results. 
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Methods and Materials 

Animals 

The Institutional Animal Care and Use Committees of Stanford University approved all animal 

experiments. Tests were performed in 42 male Long-Evans rats with bodyweight 300–350 gm (Charles 

River Laboratories, Wilmington, MA, USA). Animals were randomly assigned to one of two groups: (1) 

no treatment (Sham), and (2) treatment (Ultrasound). Ultrasound (0.25 MI in situ, 7.7% duty cycle for 10 

min) or sham was applied transcranially throughout the brain (Fig. 1A). Before each procedure, the fur on 

the neck was shaved and a cisterna magna injection of a gadolinium (Gd) chelate (Multihance, Bracco 

Diagnostics, NJ, USA) was performed while the animal was anesthetized under isoflurane. The body 

temperature, cardiac and respiratory rates, and O2 saturation were monitored throughout the experiment 

and the isoflurane level was titrated to keep these parameters constant; environmental heating was used to 

help maintain body temperature. Localizer, FLASH-T1-3D, T1-mapping, and T2*-weighted MR images 

were taken to visualize glymphatic transport across the brain, to quantify Gd-chelate kinetic parameters, 

and to evaluate for parenchymal damage. In separate cohorts, either of two different sized optical tracers, 

a small molecule (IR800CW Carboxylate, LICOR, Lincoln, NE, USA; ~1 kDa) or a large molecule 

(Panitumumab-IRDye800: ~150kDa, 5 nM, produced under GMP at the Leidos Biomedical Research 

Center, Frederick, MD, USA) (Gao et al., 2018) were co-delivered with the Gd-chelate to model the 

delivery of similar-sized therapeutic agents.  

 

Intrathecal Cisterna Magna Injection 

For anesthesia, the animals were induced with 5% isoflurane in oxygen using an induction chamber and 

then switched to a maintenance dose of 2%. The animal was positioned in a stereotaxic frame (Stoelting, 

Wood Dale, IL, USA), immobilized with ear bars, and then the head flexed to 45 degrees (Liu and Duff, 

2008; Santos et al., 2018). A 27-gauge catheter (Butterfly Needle, SAI Infusion Technology, Lake Villa, 
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IL, USA) was inserted in the cisterna magna to inject up to 80 µl of tracers (Gd-chelate: MultiHance, 

gadobenate dimeglumine; Bracco Diagnostics Inc, NJ, USA; 0.21 ml/kg) slowly over 30 seconds. To 

model the delivery of similar-sized therapeutic agents, two different sized molecules, free dye 

(IRDye800CW Carboxylate, LICOR, Lincoln, NE, USA; ~1 kDa; 36 nmol/kg) and IR dye-conjugated 

antibody (Panitumumab-IRDye800: ~150 kDa; 0.133 mg/kg) were co-delivered with the Gd-chelate. The 

respiratory rate (45-50 breaths per minute), and normal body temperature (36.5-37.50C) were maintained 

throughout the experiment through titration of isoflurane dose and with environmental heating.  

 

Magnetic Resonance Imaging Protocol 

In the first set of the experiment (N = 26), 3D-T1w and T1-mapping MR images were taken to visualize 

CSF-ISF exchange of Gd-chelate into the brain and to quantify Gd-chelate kinetic parameters. The 

experimental timeline is shown in Fig. 2A and Supplementary Fig. S1, S2. Detailed imaging protocol is 

described in Supplementary Methods. For quantitative measurements T1-map RARE protocol was set 

based on a RARE-sequence with one echo image, RARE factor = two and six T1 experiments. Each 

experiment has a different TR producing one image. By default, a T1-map is generated automatically for 

a single slice. Typical values for T1 of the rat brain can be found in previous publications (Behroozi et al., 

2018; Guilfoyle et al., 2003; de Graaf et al., 2006). To achieve enough signal to noise ratio within a 

particular part of the organ, it is recommended to acquire several images so that they cover a time up to 

five times the T1 (Chow et al., 2012; de Graaf et al., 2006; Guilfoyle et al., 2003; Lin et al., 2000). To 

ensure agreement of T1-values with the literature, we first optimized the T1-mapping sequences within 

the hippocampal region of the brain at different spin-lattice relaxation time as shown in Table S1. Since 

T1-values at constant volume of the rat brain were not affected by different spin-lattice relaxation time, 

we decided to use a TR = 3000ms, 8 min scan time for further studies. A post-processing macro Fitinlsa 

which was implemented on the 7T Bruker Scanner to automatically start the T1 parameters map 

calculation to extract quantitative measurements of T1-mapping.  
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Analysis 

T1 was calculated from the Image Sequence Analysis (ISA) functiont1sat: 

𝑌 = 𝐴 + 𝐶	𝑥	[1 − exp .−
𝑡
𝑇11] 

The parameters are defined in the following way: 

• A – absolute bias, 

•  C – signal intensity, 

• T1 – spin-lattice relaxation time. 

This function supplied by Bruker uses a repetition time list calculated from the protocol parameters to 

generate the T1 relaxation curve. The fit is based on the magnitude image of the reconstructed dataset. 

OsiriX 10.0.5 was used to calculate the Gd-enhanced brain volume over time after cisternal Gd-chelate 

injection using the T1-mapping sequences.  

 

Focused Ultrasound System  

For good acoustic coupling of the FUS beam and for getting access to the cisterna magna for intrathecal 

injection, the dorsal scalp fur in the sonication trajectory plus up to 3 cm towards neck was removed using 

standard hair removal cream. After the cisternal injection, animals were placed in a plastic stereotactic 

frame that is coupled to an MR compatible FUS system (Image Guided Therapy - IGT, Pessac, France), 

and immobilized with ear bars and a bite bar. A thin layer of ultrasound gel was applied to pair the water-

filled coupling membrane of the FUS transducer to the skin of the head. Once the anesthetized animal was 

secured in the holder and the transducer was placed over its head, approximately at the center of the brain, 

the assembly was inserted in the bore of the MRI scanner. The sonication trajectory was selected using 

the remote positioning capabilities of the transducer in all three axes. Stereotactic coordinates for 

sonication are shown in Fig. 1B, right. Briefly, an 8 x 10 mm black-dotted rectangle centered on the brain 
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is selected with corners starting from 4 mm lateral at the bregma region (4,0) and move 8 mm to left at (-

4,0) then 10 mm posterior at (-4, -10) and then move 8 mm to the right at (4, -10) as indicated in Fig. 1B. 

Ultrasound was held on continuously while the transducer slowly moved around the FUS trajectory for 

10 min. Total time to complete one trajectory loop: 24 sec, with a 50 ms pause time between each loop, 

with 25 total loops for each rat. For sham procedures, the same positioning and trajectory was chosen but 

the power to the ultrasound transducer was disconnected. FUS (0.25 MI in situ, ~ 7.7% duty cycle for 10 

min) or sham was applied transcranially throughout the brain. The orange rectangle represents the 

expected ultrasound exposure zone based on the ultrasound transducer’s focal spot size (2.78 x 12 mm) 

that covers a significant part of the rat brain. To account for skull attenuation, a 30% pressure insertion 

loss was assumed for this size and age of rats (O’Reilly et al., 2011). The expected volume coverage region 

in rat brain by a single sonication using this particular transducer can be envisioned based on our previous 

paper (Supplementary Fig. S1) (Wang et al., 2018).  

 

Fluorescence Imaging 

In the second set of experiments (N =13), two different sized molecules, free dye (IRDye800CW: 1 kDa) 

and IR dye-conjugated antibody (Panitumumab-IRDye800: 150 kDa) were co-delivered with Gd-chelate 

to model the delivery of similar-sized therapeutic agents. The experimental timeline can be found in Fig. 

3A. Briefly, dyes were diluted with Gd-chelate and injected intrathecally at 0 min. A 3D T1w image was 

used to confirm the cisternal injection and FUS (0.25 MI in situ, 2% duty cycle for 10 min) or sham was 

applied transracially throughout the brain. About 2 hours after the intrathecal delivery, animals were 

euthanized with an overdose of euthasol. Then the rat brain was flash frozen in dry ice with 2-

methylbutane (Fisher, Pittsburgh, PA). For tissue sectioning, the frozen rat brain was mounted with a 

minimal amount of optimal cutting medium (OCT) compound and sectioned at a 20 µm thickness using a 

cryostat (LEICA CM 1950, Buffalo Grove, IL, USA) ). Every 10th section (200 μm apart) was saved for 

optical imaging. The specimen temperature was set at -19 ºC and the chamber temperature at -20 ºC. 
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Tissue sections were thaw-mounted on microscope glass slides (Fisher, Pittsburgh, PA), fixed the tissue-

slides using 4% paraformaldehyde, and applied DAPI for fluorescence imaging. All fluorescence images 

were collected in a near-infrared fluorescence imager (Ex/Em: 785/820 nm, Pearl Trilogy Imaging 

System, LI-COR) with 85 µm resolution and processed with Image Studio (version 5.2, LI-COR). 

 

Hematoxylin and Eosin Staining Histology 

In the third set of the experiment (N = 3), T2*w images, as well as hematoxylin and eosin (H & E) staining, 

were used to evaluate for parenchymal damage. The experimental timeline is shown in Fig. 4A. Two hours 

after the Gd-chelate injection, animals were sacrificed and the brain fixed via transcardial perfusion (0.9% 

NaCl, 100 mL; 10% buffered formalin phosphate, 250 mL). The brain was then removed, embedded in 

paraffin, and serially sectioned at 5 μm in the axial plane (perpendicular to the direction of ultrasound 

beam propagation). Every 50th section (250 μm apart) was stained with H&E.  

 

Quantification and Statistical Analysis  

All MR-images were analyzed in OsiriX (version 10.0.5). An axial plane of T1-mapp sequence with 

5/1700 as a lower/upper threshold was used for manual ROI segmentation to calculate the volume of brain 

parenchymal penetration of the gadolinium tracer. All IRDye images were analyzed in Image Studio 

(version 5.2, LI-COR). Four-five slices were included from each animal to the analysis. Signals above the 

background was used for manual ROI segmentation to calculate the area of brain parenchyma penetration 

of the dye.  All the data that were generated from the imaging software were plotted using Microsoft Excel 

(version 16.16.22). All values were presented as mean ± standard deviation. Statistical analyses were 

performed with Microsoft Excel (version 16.16.22) and JMP (version 13.2.1). Two-tailed paired Student’s 

t-test was used to compare the gadolinium-enhanced volume and IRDye-enhanced area between sonicated 

and non-sonicated (Sham) groups. One-way ANOVA with post-hoc Tukey-Kramer tests were used to 

compare gadolinium-enhanced volume at different time points (12min, 35 min, 70 min, 105 min, 180 min, 
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240 min) within the same group, either Ultrasound or Sham. P-values < 0.05 were considered statically 

significant. 

 

 

Supplementary Materials 

Fig. S1. Optimization of Magnetic Resonance Imaging sequences. 

Fig. S2. Ultrasonic glymphatic induction is safe 

Table S1. MRI protocol used for the experiment. 

Video V1. 3D visualization of contrast diffusion in MRI. 
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