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ABSTRACT: 

 

Mitochondrial outer membrane permeabilization, which is a critical step in apoptosis, is initiated upon 
transmembrane insertion of the C-terminal α-helix (α9) of the pro-apoptotic Bcl-2 family protein BAX. 
The isolated α9 fragment (residues 173-192) is also competent to disrupt model membranes, and the 
structures of its membrane-associated oligomers are of interest in understanding the potential roles of this 
sequence in apoptosis. Here, we used ultrafast two-dimensional infrared (2D IR) spectroscopy, thioflavin 
T binding, and transmission electron microscopy to show that the synthetic BAX α9 peptide (α9p) forms 
amyloid aggregates in solution and on the surfaces of anionic small unilamellar vesicles (SUVs). Its 
inherent amyloidogenicity was predicted by sequence analysis, and 2D IR spectra reveal that SUVs 
modulate the β-sheet structures of the resulting amyloid species. These results contradict prior models of 
transmembrane α9p pores and motivate further examination of the formation or suppression of BAX 
amyloids in apoptosis. 
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1. Introduction 

The Bcl-2 family of proteins  regulates the mitochondrial pathway of apoptosis,1-3 and dysfunction of one 

or more members can contribute to cancers,4-6 neurodegenerative diseases,7,8 and developmental 

disorders.9,10 The pro-apoptotic member BAX plays a central role in apoptosis via mitochondrial outer 

membrane permeabilization (MOMP), in which BAX oligomerizes on the mitochondrial outer membrane 

(MOM) and forms pores, which in turn release proteins such as cytochrome c and SMAC/DIABLO that 

promote downstream caspase activation and cell death.3,11,12 The early events in this process, including the 

insertion of the BAX C-terminal helix (α9) into the MOM and homodimerization, are increasingly well-

characterized,1,13-16 but the molecular-level structure of the oligomeric BAX pore remains unknown. 

Additionally, non-MOMP functions of BAX have been reported17 and clusters containing hundreds to 

thousands of BAX monomers have been implicated in mitochondrial fission,18,19 suggesting multiple modes 

of action that likely involve undiscovered structural rearrangements.  

 

In prior work, Tatulian and co-workers showed that the C-terminal fragment of human BAX, spanning α9 

residues 173-192, is competent to permeabilize anionic liposomes20 and forms β-rich assemblies on 

supported lipid bilayers (SLBs).21 From these results, they proposed an octameric pore with a dimeter of 

20-22 Å and mixed α/β conformation.21 Secondary structure information was derived primarily from 

analysis of FTIR spectra using Gaussian fitting protocols. Although such methods are useful for global 

characterization of peptide ensembles, they are prone to error from over-fitting22 and cannot easily 

distinguish between uniform structures and mixed states; for unambiguous assignment of spectra, specific 

attention must be paid to the underlying physical phenomena that influence vibrational frequencies and 

lineshapes. For example, low-frequency (~1620 cm-1) amide I signals typically arise from excitonic 

coupling within extended β-sheets, such as those in amyloid aggregates,23-27 and differs from higher-

frequency (≳1630 cm-1) features associated with β-sheets in native proteins.28-30 Similar features were 

observed in the previous data and cannot be accounted for by the small, two-stranded antiparallel β-sheets 

in the proposed BAX α9 pore model.21 Thus, alternative structures must be considered, and doing so may 

shed new light on the diverse roles of BAX and its regulation in cell survival and death. 

 

In this study, we examined the aggregation of a synthetic human BAX α9 peptide (α9p) with the sequence 

H2N-VTIFVAGVLTASLTIWKKMG-CO2H. Using sequence-based structure analysis, we found that this 

region of the BAX sequence has a high β-aggregation and amyloid propensity. We then characterized α9p 

aggregates formed in the absence and presence of anionic small unilamellar vesicles (SUVs) using ultrafast 

two-dimensional infrared (2D IR) spectroscopy. This technique, which is described in detail 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 20, 2020. ; https://doi.org/10.1101/2020.10.20.347567doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.347567


3 
 

elsewhere,25,29,31-33 provides substantial advantages over FTIR spectroscopy, including increased resolution 

of congested spectra, enhancement of vibrational modes with large transition dipole moments, and the 

ability to detect vibrational coupling through cross-peaks. Our 2D IR results, supported by thioflavin T 

(ThT) binding and transmission electron microscopy (TEM), show that α9p forms stable amyloid 

aggregates and that their formation and β-strand organizations are dependent on interactions with 

phospholipid bilayers. 

 

2. Results 

First, we used sequence-based structure analysis to determine β-aggregation or amyloid propensity of the 

full-length human BAX sequence (Figure 1). Four different algorithms (AGGRESCAN,34 TANGO,35-37 

PASTA 2.0,38 and MetAmyl39) showed convergent predictions of high propensities localized within the C-

terminal α-helix (α9) and some elevated propensities within α5 and α6, which are also known to associate  

Figure 1. Structure and aggregation propensity of wild type human BAX. (A) Solution structure of BAX 
(PDB ID: 1F16)41 with helices α1-α8 in grey and α9 in blue, showing the sequence synthesized in this work 
(α9p). (B) Aggregation and amyloid propensities of full-length BAX protein via sequence analysis 
extracted from AGGRESCAN,34 TANGO,35-37 PASTA 2.0,38 and MetAmyl.39 
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with membranes.16,40 Here, the entire α9 region is predicted to form β-sheets, in contrast with the previous 

α/β pore model.21 Although these predictions are broadly consistent with the ability of α9p to form β- 

strands, none of these tools account for bilayer interactions, so independent aggregation trials in the absence 

and presence of model membranes is required to determine their effects. 

 

To examine the aggregation of α9p in solution, we diluted 6 mM stocks of the disaggregated peptide to a 

final concentration of 150 µM into a D2O buffer containing 20 mM Tris (pD 7.5) and 100 mM NaCl, and 

followed the signal in the amide I region over time using rapid-scan 2D IR spectroscopy.30,33,42 Immediately 

after dilution, two diagonal peak pairs near ωpump = 1645 cm-1 and ωpump = 1675 cm-1 appeared, consistent 

with a largely disordered initial structure comprising random coil and β-turns, respectively (Figure 

2A).29,33,43-45 Following a variable lag phase, a transition to β-sheets was observed by the growth of a broad 

diagonal peak pair between ωpump = 1600 – 1635 cm-1 and concomitant reduction in the coil feature (Figure 

2B). Eventually, a stationary phase is reached in which the spectrum is dominated by a narrow peak pair at 

ωpump = 1620 cm-1 (Figure 2C). The low-frequencies of such signals arise from delocalized amide I normal 

modes oriented perpendicular to hydrogen-bonded β-strands, and the size of the resulting red shift scales 

with coupling constants that depend on the distances and angles between oscillators and follows an 

asymptotic trend with the number of strands in the β-sheets.24,26,27,46,47 Similar kinetic behavior observed via 

ThT fluorescence (Figure S1A), and TEM images (Figure S2A) of late-stage (24 h) aggregates confirm the 

formation of amyloid fibrils as was predicted from the sequence (Figure 1). Notably, the appearance and  

Figure 2. Aggregation behavior of α9p in aqueous buffer. (A-C) (Bottom) 2D IR spectra with (Top) 
corresponding diagonal slices for α9p in buffer at (A) early, (B) intermediate, and (C) late time points. 
Spectra are normalized to the largest amide I intensity in the stationary-phase (>250 min) spectrum and 
diagonal slices, which reflect the ν(0-1) bleach signals, are reversed in sign for comparison to FTIR 
absorbance. Horizontal lines are drawn through diagonal frequencies discussed in the main text and 
monitored in (D). (D) Diagonal maxima at 1610 cm-1 (grey), 1620 cm-1 (red), 1645 cm-1 (black), and 1675 
(blue) cm-1 during α9p aggregation. Kinetic traces are color coded as indicated by arrows in A-C (right). 
Additional trials are shown in Figure S3.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 20, 2020. ; https://doi.org/10.1101/2020.10.20.347567doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.347567


5 
 

disappearance of the ~1610 cm-1 diagonal signal (Figure 2D) at the onset of aggregation indicates the 

formation of a transient β-rich intermediate with different coupling parameters.48  

 

Close inspection of the infrared spectra after 24 h incubation provides additional information about the 

orientation of β-strands in these aggregates. The FTIR spectrum and 2D IR diagonal slice (Figure 3A, top), 

are dominated by a ~1620 cm-1 signal, and no other features are resolved above noise. However, in the 2D 

IR spectrum (Figure 3A, bottom) this feature (i) is accompanied by weak diagonal intensity in the coil 

region (ii) and near ωpump = 1685 cm-1 (iii). Weak cross-peaks (iv) are also observed between the high- (iii) 

and low-frequency (i) features, indicating that these modes exist within the same coupled array. The high-

frequency feature may arise from either β-turns or intra-strand coupling of amide I modes, and although 

these are difficult to distinguish in unlabeled samples,47 the low intensity is indicative of a likely parallel-

stranded configuration (vide infra).26,45,46  

 

Next, we performed the aggregation experiments using suspensions of 3:1 POPC:POPG SUVs in the same 

buffer at a peptide:lipid ratio of 1:65 (10 mM total lipids). We observed rapid precipitation immediately 

following dilution; ThT fluorescence increased within ~5 minutes (Figure S1B), and the resulting 

precipitates contained both SUVs and networks of fibril-like structures associated with their surfaces 

(Figure S2B). The accelerated formation of these species precluded 2D IR kinetics experiments, but in 

spectra collected after 24 h we observed a strong ~1620 cm-1 signal that indicates amyloid formation (Figure 

3B). In contrast to the aggregates formed in solution, this feature is broadened in both the FTIR spectrum 

and the 2D IR diagonal slice, and the high-frequency feature near 1685 cm-1 is clearly resolved (Figure 3B, 

top). These features (i, iii) are apparent along the diagonal in the 2D IR spectrum (Figure 3B, bottom) and 

the signal in the coil region (ii) remains relatively weak. The increase in intensity of the high-frequency 

feature, and enhancement of cross-peaks (iv) compared to Figure 3A, indicates that the α9p amyloids 

formed on SUVs have an alternative topology that includes a strongly coupled β-turn, antiparallel β-strands, 

or both.23,24,46,47 Additionally, the signal near 1610 cm-1 resembles low-frequency amide I modes in mature 

fibrils of Aβ, which were previously attributed to a sub-population of aggregates with enhanced inter-strand 

coupling.48 However, the presence of a cross-peak (v) to the dominant excitonic mode (i) indicates that 

different degrees of delocalization occur within the same structures, possibly as a result of structural 

inhomogeneity along β-strands within β-sheets. Interestingly, a similar low-frequency signal is observed in 

the intermediate states during lipid-free aggregation (Figure 2B,D) so it is possible that aggregation 

pathways diverge upon trapping of intermediates on SUVs followed by subsequent growth of aggregates 

with an altered topology.  
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Figure 3. 2D IR and FTIR spectra of mature (24 h) α9p aggregates. A-C: (Bottom) 2D IR spectra with 
(Top) corresponding diagonal slices (black line) and FTIR spectra (red line) for mature α9p aggregates 
alone in solution (A), and in the presence of 10 mM (B) and 1 μM (C) POPC:POPG SUVs. In all cases, 
α9p was incubated at room temperature for ~24 h Tris/D2O buffer (pD = 7.5) to ensure aggregation. 2D IR 
spectra are scaled to 50% of their respective amide I maxima and peaks in regions i-iv correspond to 
structural features discussed in the text. 
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Finally, we repeated the lipid-dependent aggregation experiments using a reduced concentration of SUVs 

(1 µM total lipids) for a peptide:lipid ratio of 150:1. Under these conditions, only a small fraction of α9p 

molecules can interact with bilayers, and a mixture of bilayer-dependent and bilayer-independent 

aggregates may be expected. Again, aggregation proceeded rapidly (Figure S1C) and aggregates containing 

SUVs and fibrillar structures were observed (Figure S2C). The FTIR and 2D IR spectra of the aggregates 

(Figure 3C) reproduced the features of those collected in the presence of excess lipids (Figure 2B), 

indicating that amyloid aggregation of α9p proceeds to completion; surprisingly, the intensities of the high-

frequency (~1685 cm-1) diagonal feature (iii) and its associated cross-peaks (iv) were further enhanced. 

Thus, the predominant structure resembles that of the amyloid aggregates formed with excess lipids (Figure 

3B), and the contribution of bilayer-independent aggregation is minor. These results support a model of 

rapid nucleation of α9p on anionic bilayers followed by amyloid aggregation from a topologically distinct 

state that persists in a stable conformation for at least 24 hours. 

 

3. Discussion 

 

This study provides compelling evidence through sequence analysis, infrared spectroscopy, ThT 

fluorescence, and TEM imaging, that the C-terminal fragment (residues 173-192) of human BAX (α9p) 

forms amyloid fibrils in solution and on the surfaces of anionic (POPC:POPG) SUVs. The 2D IR data 

reveals that while these two classes of aggregates contain extended β-sheets that span the majority of the 

residues, they differ in the organization of their β-strands. Specifically, α9p aggregates formed in solution 

are parallel-stranded and those formed on SUVs have a more complex topology. In future studies, the 

detailed structures of these aggregates can be determined by combining 2D IR spectroscopy with isotope 

editing in order to reveal contacts between specific peptide bonds.47,49-51  

 

By comparing our results to those of Tatulian and co-workers, we gain new insight into the structures of 

BAX α9p assemblies formed on model phospholipid bilayers. First, we consider the similarities between 

the two sets of results. Our FTIR and 2D IR spectra reproduce the strong signal at ~1620 cm-1, which is 

well-known to arise from vibrational excitonic coupling in extended β-sheets23,26,27,31,46 and was likely mis-

assigned to two-stranded structures in the α/β pore model.21 In the 2D IR spectra, we also resolve previously 

unassigned signals at ~1610 cm-1 and ~1685 cm-1, and cross-peaks show that they arise from coupled modes 

in the same assemblies. The latter high-frequency mode is consistent with the presence of antiparallel β-

strands, albeit within amyloid aggregates instead of oligomeric transmembrane pores. The primary 

difference in our results is a reduced contribution of α-helices and disordered structures, which appear 
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between 1635 – 1665  cm-1.44 It is possible that some differences in membrane composition, curvature, and 

stability could bias the system towards a stable transmembrane structure, but this does not account for the 

presence of the aforementioned excitonic signal in spectra of SLB-associated α9p.21 Instead, the pore model 

was more likely based on a mixture of states, including pre-amyloid and amyloid structures (cf. Figure 2A-

C) that were unresolvable by FTIR. Although the final stable state of α9p is clearly amyloid in nature, this 

does not necessarily preclude the formation of transient pores along the bilayer-dependent aggregation 

pathway. Such kinetic details may become accessible via 2D IR with increased scan rates and fast mixing 

techniques.52,53 

 

To date, structural studies of BAX have focused on the early events in MOMP, where transmembrane 

insertion of α9, homodimerization, and oligomerization are well-established.1,11-16 The results presented 

here show that the same region of sequence is highly amyloidogenic, and the resulting structures are 

modulated by model phospholipid bilayers. Clearly, more experiments will be required to establish whether 

the same phenomena occur in full-length BAX upon its interactions with mitochondrial membranes. 

However, the strong amyloid propensity of α9p suggests that the amyloid state of BAX is accessible under 

physiological conditions and must be considered in any detailed mechanistic model of apoptosis. 

Importantly, our observations generate new hypotheses regarding the possible functions of BAX. One 

possibility is that the amyloid pathway is suppressed in vivo by specific interactions of α9 with other regions 

of the BAX sequence, by structural preferences imposed by the MOM itself, or by other proteins involved 

in MOMP. Here, misfolding and amyloid aggregation of BAX would alter the balance of pro-apoptotic and 

anti-apoptotic Bcl-2 family proteins, thus perturbing pathways that regulate cell survival and death. Another 

possibility is that its amyloid-like structures (including intermediates) are directly involved in cell death as 

mitochondrial analogs of cytotoxic amyloid peptides such as Aβ;54-56 such structures could evolve from 

BAX pores,11,12 occur in late-stage BAX clusters,18,19 or form within non-canonical pathways of 

mitochondrial disruption and dysfunction.17 The recent observation that full-length BAX is incorporated 

into fibrils formed by the anti-apoptotic peptide humanin suggests that such heteroamyloids could act to 

suppress BAX function via sequestration in an inactive form.57,58 In either case, our results motivate the 

continued examination of the amyloid state of BAX in vitro and in vivo to further understand the molecular 

mechanisms of apoptosis. 
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4. Materials and Methods 

 

4.1. Sequence analysis. 

The publicly available aggregation prediction servers AGGRESCAN (bioinf.uab.es/aggrescan),34 TANGO 

(tango.crg.es),35-37 PASTA 2.0 (protein.bio.unipd.it/pasta2),38 and MetAmyl (metamyl.genouest.org)39 were 

used to predict the aggregation propensities across the full-length human BAX protein (UniProt Accession 

ID: Q07812, PDB ID: 1F16, Figure S4). The AGGRESCAN server requires no input parameters outside of 

the amino acid sequence. For TANGO analysis, the option “no protection” was used for both the N- and C- 

termini. The pH, temperature, ionic strength, and concentration were set to 7.5, 298.15 K, 0.120 M, and 

0.000150 M, respectively, to reflect solution conditions used for BAX α9 peptide experiments throughout 

this work. For PASTA 2.0 analysis, the Region (90% specificity) threshold was used which corresponds to 

top pairing energies and an energy threshold of 22 and < -2.8 PEU (PEU, 1.0 PASTA Energy Unit = 1.192 

kcal/mol), respectively, which allow for high confidence in aggregation region detection. In the MetAmyl 

analysis, the “best global accuracy” threshold was applied for the BAX aggregation prediction. 

 

4.2. Peptide synthesis and purification. 

The BAX α9 peptide (α9p) H2N-VTIFVAGVLTASLTIWKKMG-CO2H was synthesized in the solid state 

using standard fluorenylmethyloxycarbonyl (Fmoc) chemistry on Gly-Wang resin using an AAPPTec 

FOCUS XC automated peptide synthesizer. The product was purified by reverse-phase HPLC using a 

Hitachi LaChrom Elite system equipped with a Vydac semi-preparative C4 column. Acetonitrile and water, 

supplemented with 0.1% 2,2,2-trifluoroacetic acid (TFA) and 10% 2,2,2-trifluoroethanol (TFE), were used 

as the mobile phase for HPLC purification, with a linear gradient of 30% to 37% acetonitrile:TFE:TFA 

over 60 min. The pure peptide was confirmed using a Bruker Daltonic MALDI-TOF Mass Spectrometer 

(Figure S5).  

 

4.3. Sample preparation. 

Purified α9p was resuspended in deuterated hexafluoroisopropanol (d-HFIP) to deuterate exchangeable 

sites and promote disaggregation of peptides.27 Concentrated (6 mM) peptide/d-HFIP solution was diluted 

into Tris-buffered (20 mM Tris, 100 mM NaCl, pD/pH = 7.5) D2O or H2O, either with or without lipid 

vesicles, to a final peptide concentration of 150 μM and incubated at room temperature for ~ 24 h to ensure 

aggregation unless otherwise noted. For SUV preparation, chloroform solutions of 1-palmitoyl-2-oleoyl-

sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) 

(Avanti Polar Lipids, Alabaster, AL) were combined in a ratio of 3:1 POPC:POPG and dried under vacuum. 

Lipid films were resuspended to 10 mM lipid concentration in the appropriate buffer and mixed vigorously 
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for 1 h. SUVs were prepared by sonicating the resulting suspensions for 10 min.59 For experiments at 10 

mM lipids, SUV suspensions were used as prepared and for experiments at low lipid concentrations SUV 

suspensions were diluted into identical buffers to the desired concentration. 

  

4.4. Infrared spectroscopy. 

Sample and background FTIR spectra were collected with 128 scans at room temperature using a Jasco 

6800 FTIR spectrometer equipped with a PIKE Technologies MIRacle ATR Accessory and DTGS detector 

with a resolution of 1 cm-1. Buffer backgrounds were subtracted and residual baseline correction was 

performed in MATLAB using low-order polynomials. For 2D IR spectroscopy, ~17 μJ mid-IR pulses with 

(~100 fs) were directed into a 2DQuick Array spectrometer (Phasetech Spectroscopy, Inc., Madison, WI) 

equipped with a 128 x 128 pixel MCT array detector as previously described.60 All spectra were collected 

with perpendicular pump and probe polarizations and four-frame phase cycling to reduce interference from 

pump scatter. Probe frequencies were calibrated to the absorbances of 4-nitrobenzaldehyde in 

dichloromethane (1605, 1676, and 1709 cm-1), used as an external standard. All instruments were purged 

continuously with dry air to minimize contributions from water vapor. 2D IR spectra were processed in 

MATLAB using low-order polynomial background correction and Hamming apodization.49 

 

4.5.  Thioflavin T Fluorescence. 

For Thioflavin T experiments, concentrated peptide/d-HFIP solutions were diluted directly into a quartz 

cuvette containing Tris-buffer, ThT (25 μM) and SUVs. Emission spectra between 450 – 600 nm were 

collected in 30 s intervals using a Cary Eclipse spectrofluorometer (λex = 440 nm), and emission intensities 

at 480 nm were monitored over time. 

 

4.6.  Transmission Electron Microscopy. 

For TEM experiments, 5 µL of buffered α9p samples, with or without SUVs, were deposited onto formvar 

coated nickel grids (Electron Microscopy Sciences, Hatfield, PA) and allowed to incubate for 5 min at room 

temperature. Excess buffer was removed by blotting, and the grids were dried in air for 10 min and stained 

with 2% Uranyl Acetate. TEM images were collected with a Hitachi H-7650 Transmission Electron 

Microscope using an acceleration voltage of 60 kV. 
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