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Abstract 

 

The genetic heterogeneity of autism has stymied the search for causes and cures.  Even whole-genomic 

studies on large numbers of families have yielded results of relatively little impact.  In the present work, 

we analyze two genomic databases using a novel strategy that takes prior knowledge of genetic 

relationships into account and that was designed to boost signal important to our understanding of the 

molecular basis of autism. Our strategy was designed to identify significant genomic variation within a 

priori defined biological concepts and improves signal detection while lessening the severity of multiple 

test correction seen in standard analysis of genome-wide association data.  Upon application of our 

approach using 3,244 biological concepts, we detected genomic variation in 68 biological concepts with 

significant association to autism in comparison to family-based controls.  These concepts clustered 

naturally into a total of 19 classes, principally including cell adhesion, cancer, and immune 

response.  The top-ranking concepts contained high percentages of genes already suspected to play 

roles in autism or in a related neurological disorder.  In addition, many of the sets associated with 

autism at the DNA level also proved to be predictive of changes in gene expression within a separate 

population of autistic cases, suggesting that the signature of genomic variation may also be detectable 

in blood-based transcriptional profiles.  This robust cross-validation with gene expression data from 

individuals with autism coupled with the enrichment within autism-related neurological disorders 

supported the possibility that the mutations play important roles in the onset of autism and should be 

given priority for further study. In sum, our work provides new leads into the genetic underpinnings of 

autism and highlights the importance of reanalysis of genomic studies of complex disease using prior 

knowledge of genetic organization.   

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 19, 2020. ; https://doi.org/10.1101/2020.10.19.346072doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.19.346072


	 3	

Author Summary 

The genetic heterogeneity of autism has stymied the search for causes and cures.  Even whole-genomic 

studies on large numbers of families have yielded results of relatively little impact.  In the present work, 

we reanalyze two of the most influential whole-genomic studies using a novel strategy that takes prior 

knowledge of genetic relationships into account in an effort to boost signal important to our 

understanding of the molecular structure of autism. Our approach demonstrates that these genome 

wide association studies contain more information relevant to autism than previously realized.  We 

detected 68 highly significant collections of mutations that map to genes with measurable and 

significant changes in gene expression in autistic individuals, and that have been implicated in other 

neurological disorders believed to be closely related, and genetically linked, to autism.  Our work 

provides leads into the genetic underpinnings of autism and highlights the importance of reanalysis of 

genomic studies of disease using prior knowledge of genetic organization.  
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Introduction 

 

Autism is a complex neurological disorder characterized by restricted communication, impaired social 

interaction, and repetitive behavior.  Diagnosis typically occurs by 4.3 years of  age, with a current CDC 

estimate of approximately 1 in 59 children meeting criteria for autism spectrum disorder (ASD).  

Heritability estimates of ~90% [1] for ASD imply a strong genetic component, making it one of the most 

highly heritable genetic disorders. Despite this high heritability, genetic association studies have been 

unable to detect variants explaining more than a negligible fraction of the phenotypic variability present 

in study populations. 

 

Published genome-scale attempts to identify variants with significant association to ASD have been met 

with limited success. Weiss et al. [2] were not able to identify any individual single-nucleotide 

polymorphism (SNP) meeting genome-wide significance, but were able to detect a highly penetrant 

microdeletion/microduplication in the 16p11.2 region, present in approximately 1% of the cases 

studied.  Examining many of the same families using an alternative genotyping platform, Wang et al.  

uncovered a common variant in the region between two cell adhesion genes, CDH9 and CHD10, that 

met criteria for genome-wide significance after aggregating results from multiple studies. Despite these 

successes, our picture of autism-associated variation remains limited.  

 

The inability to find signal associated with the genetic causes of autism may be partially attributable to 

the phenotypic heterogeneity of ASDs, as the behavioral variation is likely to be rooted in high genetic 

heterogeneity.  It may also be due to technological bias as the genotyping platforms used were designed 

to detect common, rather than rare, variants.  Additionally, purely data-driven approaches to the 

analysis of genotyping data tend to suffer from low power due to inadequate sample sizes and the 
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severity of multiple test correction.  This can be more pronounced in complex disorders like autism 

where it is likely that many variants of weak to moderate effect, which require exponentially larger 

sample sizes to detect, contribute to the onset and progression of the disorder.  

 

The success of GWAS has been debatable [4-7], with studies suffering from insufficient samples sizes 

leading to low statistical power, significant findings in gene deserts which provide little, if any, biological 

insight, and minimal reproducibility of significant findings.  As a consequence, the field has been 

motivated to develop alternative approaches to GWAS analysis that can circumvent some of the signal 

detection problems associated with purely data-driven approaches while elucidating biologically 

meaningful variation.  Borrowing from the field of microarray data analysis, which suffers similar 

problems of multi-dimensionality and low signal-to-noise ratio, methods classifiable as knowledge-

driven strategies have emerged to improve detection of real biological signal among previously elusive 

GWAS data [3, 8-15]. Several of these approaches have enjoyed considerable success.  The strategy 

employed by the majority of these methods begins by assigning a significance level to individual genes 

based on the p-values computed for the GWAS data.  Once significance has been determined at the 

gene level, approaches assess pathway significance using a variety of approaches, including ranking 

genes and testing for overrepresentation in the top of the ordered list, building protein-protein 

interaction (PPI) networks, and testing the distribution of genes within a pathway that contain nominally 

significant SNPs.  However, some strategies use the SNP data directly and look at distributions of 

nominally significant SNPs within pathways or annotation classes.  In many cases these approaches are 

helping to filter the search space of genetic variants associated with various diseases and, in general, 

strategies like these are helping GWAS achieve some of the potential of their original promise.  
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In the present study, we reanalyzed data from two GWAS of autism families with a similar approach 

designed specifically to handle family-based data and to detect previously masked signal among a priori 

defined biological concepts.  By doing so, we were able to identify SNPs significantly associated with 

autism at a whole-genomic scale that had been previously missed by standard analytical methods. These 

SNPs mapped to genes that were highly enriched for neurological disease candidates and that exhibited 

significant differential expression in blood profiles of an entirely different population of autistic 

individuals.  Our results reveal significant genotypic variation in an autistic population that is likely to be 

linked to the molecular pathology of the disorder, and also highlight the important of using knowledge-

driven approaches to study GWAS data that had previously yielded limited signal. 

 

Results 

 

We used two published genome-wide association studies (GWAS), Broad and CHOP, for our analyses 

(Table 1). From these, we acquired a total of 500,000 and 550,000 SNPs for 751 (2,883) and 943 (4,444) 

families, respectively (Table 2). The overlap in genomic coverage between the Broad and CHOP studies 

was low with less than 68,000 SNPs in common between the two platforms, thus the union provided 

significantly higher resolution than either study independently.  After calculating nominal p-values using 

the family-based association test (FBAT) [16], we mapped all SNPs from both the Broad and CHOP 

studies to the MSigDB C2 and C5 gene set collections.  This mapping resulted in 3344 SNP sets that 

ranged in size from 1-57,525 SNPs (mean 1,315.8), representing anywhere from 1-1,873 (mean 59.3) 

genes (Table 2).  We then used these sets to search for significant differences in genotype frequencies 

associated with the population of autistic cases in our two samples. 

 

Set-based analysis 
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After excluding 7 SNP sets with low expected values and controlling the FDR at  = 0.05, 68 of the 3,344 

(3.0%) sets tested achieved significance in either the Broad or CHOP data set (Table 3; Supplementary 

Table 1).  

 

To evaluate potential methodological biases, we looked for correlation between the level of significance 

(p-value) and the number of SNPs per set. The largest correlation found was r2 = 0.03, with all other 

correlations were similarly near zero (Table 2; Supplementary Figure 1). This lack of correlation indicated 

that differences in the sizes of our sets were not related to differences in the observed levels of 

significance, and eliminated the possibility of spurious results among the set of significant biological 

concepts. 

 

Given the limited overlap of genomic coverage between the two studies (Table 1), we were not 

surprised to find no overlap in the sets identified as significant.  The CHOP data yielded the highest 

number of significant sets with 53 passing our adjusted p-value threshold, while only 15 sets passed the 

p-value threshold using the Broad data set.  Close inspection of these sets showed virtually no overlap in 

coverage of SNPS between the Broad and CHOP data sets (Figure 1). In other words, when a set was 

identified as significant using the Broad Affymetrix array the SNPs in the set were not represented on 

the Illumina array, and vice versa. This suggested that the lack of agreement between the two data sets 

was due only to experimental design rather than systematic bias associated with our method.  

 

To characterize redundancy of genes across pathways, we clustered the 68 significant sets according to 

genes contained in each set. By creating binary profiles of presence and absence of the constituent 

genes from each set we could compute a pairwise correlation matrix and generate a clustering for all 68 

€ 
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significant sets.  Nineteen distinct clusters could be identified including several involved in cell adhesion, 

immune response, and cancer progression (Figure 2). 

 

mRNA Expression differences in autistic cases 

To validate the significant gene sets and their potential importance to autism, we used published gene 

expression data from a study of blood-based transcriptional profiles in 17 early-onset autistic cases [17].  

Our objective was to determine whether any of the 19 clusters (Figure 2) contained genes with 

significantly different patterns of expression in autistic individuals when compared with controls.  For 

this, we elected to examine the set in each of the 19 clusters containing the lowest average p value 

(Table 4). All but two processes contained at least some genes with significant (FDR-adjusted) 

differential expression, and several had over 90% of its constituent genes exhibiting significant 

differential expression in autistic cases when compared to controls.  In sum, the biological concepts 

identified as significantly associated with autism genome-wide data appeared to be predictive of 

differential expression of the same genes in whole-blood samples from a different population of autistic 

individuals.  

 

Neurological disease enrichment 

As a second strategy for validation of the significant gene sets, we determined the extent to which each 

set was enriched for genes involved in autism-related disorders, following from previous work on cross-

disease comparison of neurological disorders [18].  Autism spectrum disorders share behaviors and 

potentially genetic mechanisms with a host of other neurological disorders [18, 19].  Using Autworks, a 

knowledge base of genetic associations for autism and related conditions, we computed a neurological 

disease enrichment (NDE) score to determine if our top ranked gene sets contained unusually high 

percentages of neurological disorder candidates (Table 5).  Of the 37 neurological disorders present in 
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Autworks, 36 of them had at least one candidate gene that was a member of one or more of the top-

ranking gene sets passing test correction (Table 5).  All but three of the 19 representative clusters were 

significantly enriched (p < 0.05) for known neurological disorder candidate genes. 

 

Discussion 

 

The challenge of identifying and characterizing the genetic predisposition to autism has been 

exacerbated by the low signal-to-noise ratio inherent to genome-wide association studies.  In complex 

disorders, where it is expected that many variants of mild effect induce the disease state, the sample 

sizes necessary to achieve sufficient statistical power is especially problematic.  In fact, the most 

promising candidate variants in recently published GWAS of autism have detected variants with 

maximum odds ratios of 0.77 [20] and 1.19 [3], stressing the need for alternative analytical strategies.  

Here we leveraged prior biological knowledge to supplement standard analysis of GWAS data in order to 

maximize signal relevant to the genetic basis of autism. 

 

Through application of our knowledge-driven approach (Figure 3), we were able to detect 68 biological 

concepts significantly associated with autism cases in two studies, one from the Broad Institute (Broad) 

and the other from the Children’s Hospital of Philadelphia (CHOP). Upon inspection of the genes 

represented in the 68 concepts of interest, it became apparent that many of the member genes 

functioned in multiple concepts.  Due to this overlap, we were able to cluster the concepts into 19 

groups (Figure 2) and identify that the majority of these gene sets could be mapped to three major 

themes, cell adhesion, cancer response, and immune response.   
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In strong support of their roles in autism, all but five of our top ranking SNP collections proved to be 

predictive of significant changes in gene expression in a different study of autistic individuals [17], and 

all but three yielded significant neurological disease enrichments scores, indicating that they were 

strongly enriched with candidates linked to disorders already known to be related to autism [18].  These 

two independent avenues for validation of our sets strongly supported their role in the molecular 

pathology of autism and stressed the importance of follow-up studies to further refine our 

understanding of which pathways, and which SNPs in those pathways, may contribute to the 

manifestation of this disorder. 

 

The 68 significant SNP sets naturally clustered into 19 groups that could be reliably mapped to three 

themes – cell adhesion, cancer progression, and immune system response.  The enrichment of cell 

adhesion-related concepts in our analysis supports previous results implicating the role of improper 

cohesive states in the manifestation of autism, among the most recent being the identification of a 

genome-wide significant variant in the intergenic region between CDH9 and CDH10 .  Both CDH9/10 are 

members of the cadherin superfamily, which includes integral membrane proteins that mediate calcium-

dependent cell-cell adhesion.  The top scoring of our cell-adhesion concepts was 

HOMOPHILIC_CELL_ADHESION, a collection of 16 genes that function in the attachment of two identical 

adhesion molecules in adjacent cells. This set was highly enriched for neurological disorders (Table 4), 

including three member genes (CADM1, ROBO1, ROBO2) having previous associations with autism . 

Furthermore, genes in these sets play known roles in central nervous system (CNS) related processes, 

including activated T cell proliferation , axon guidance , axon guidance receptor activity , axonal 

fasciculation , brain developmental processes [27-29], central nervous system development , 

myelination [26], nervous system development , neurite outgrowth [31], neuromuscular junction , and 

positive regulation of axonogenesis .  Interestingly, axonal fasciculation is known to be affected by 
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MECP2 levels in Rett Syndrome [34], one of the broad-spectrum autistic disorders.  In addition to 

involvement in the CNS, 6 of the cell adhesion genes identified by our analysis also function in the 

immune system, including in B cell differentiation [35], defense response [36], immune response , 

leukocyte cell-cell adhesion [35], positive regulation of cytokine secretion , positive regulation of 

immunoglobulin mediated immune response [38], positive regulation of natural killer cell mediated 

cytotoxicity , susceptibility to natural killer cell mediated cytotoxicity [23, 40, 41], susceptibility to T cell 

mediated cytotoxicity [42], T-cell activation , T cell mediated cytotoxicity , type 1 fibroblast growth 

factor receptor binding [45], and synapse development .  This intersection in gene function between cell 

adhesion, CNS development, and immune function provides tantalizing insight into the potential 

importance of these biological themes in the pathology of autism. 

 

Little evidence has been found to support the role of cancer-related genes in ASDs.  However, the 

presence of several cancer-related concepts among our top scoring and validated SNP sets warranted a 

deeper look at the function of constituent genes.  The top scoring cancer response related concept was 

BRCA1_SW480_UP (Broad (ALL), mean p = 0.020), a collection of 25 genes affected by BRCA1 expression 

in breast and lung cancer cell lines that cause dysregulation of the cell cycle and DNA repair processes 

[47]. Of the 21 genes with SNPs in the Broad data, one (MET) has previously been listed as a likely 

contributor to autism [48] and 18 of the remaining 20 (90%) have been implicated in at least one other 

closely related neurological disorder. 

 

MET encodes a proto-oncogene that is involved in cell-cell adhesion, CNS development, and neuron 

migration.  Variants in the MET promoter region that interfere with normal gene transcription have 

previously been identified in subsets of autism cases [49, 50].   Another gene member gene in this 

concept, CTNNA1, functions with multiple proteins involved in construction and maintenance of the 
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extracellular matrix. CTNNA1 binds CDH1, a member of the cadherin superfamily that also interacts with 

MET directly to provide support necessary to promote strong cell-cell adhesive states.  The direct 

interaction of CTNNA1 and CDH1, especially in light of the knowledge that CTNNA1 has previously been 

linked to both Rett Syndrome and Schizophrenia, may be another mechanism promoting unhealthy cell-

cell adhesive states in autism.  A third cancer-related gene that promotes healthy cohesive states is the 

tissue inhibitor of metallopeptidase 1 (TIMP1).  The TIMP family of proteins regulates the activity of 

matrix metalloproteinases (MMPs), a family of peptidases involved in degradation of the extracellular 

matrix .  With extracellular degradation being essential in the routine maintenance and repair of tissue 

after injury, the appropriate regulation of MMP activity again emphasizes the importance of proper 

connective states in normal tissue function.  Additionally, the balance of TIMP1/MMP9 levels is thought 

to be important in blood-brain barrier (BBB) function [52].  TIMP1 levels have previously been shown to 

be dysregulated in the serum and cerebrospinal fluid (CSF) of patients with neurological disorders 

related to autism [53-57], suggesting improper TIMP1/MMP9 levels and dysfunction of the BBB may 

contribute to the onset and progression of neurological disorders.   

 

The role of the immune system in the etiology of ASDs has been widely suspect, particularly the 

plausibility of adverse events in the autoimmune system [58, 59]. Accordingly, the presence of several 

immune-related concepts among the 19 concept classes was particularly intriguing.  The immune-

related concept showing the highest associated was 

HSA04060_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION, a set of 257 genes involved in cytokine-

cytokine receptor interaction .  Of the 257 genes, 15 (CCL2, CD40LG, EGF, GHR , HGF, IFNG [62], IL18R, 

LEP, LEPR, MET [48-50, 63], PRL [64], PRLR [64], TGFB1, TNF [65], TPO) already have been labeled as 

candidate genes for autism, and 202 have some association with neurological disorders that are linked 

to autism. 
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We have demonstrated that knowledge-driven approaches to signal detection can detect autism-related 

signal previously missed by alternative approaches. And, we have demonstrated that two of the largest 

published GWAS data sets on autism to-date contain an abundance of significant pathways with SNPs 

that are highly likely to play linked to the molecular pathology. These pathways could be largely verified 

in two ways, first by transcriptional profiles of autistic individuals, and second by their enrichment of 

neurological disease candidates.  In the former, we were able to demonstrate that all but 5 of the 19 

most significant pathways contained genes that are significantly differentially expressed in autistic 

individuals. In the latter, leveraging published studies on autism-related disorders, we were able to 

demonstrate that all but three of these 19 pathways contained significant percentages of genes linked 

to neurological disease. 

 

Our reanalysis of autism genome-wide association data identified significant allelic differences among 

autistic individuals that correspond to a limited number of biological concepts. While it remains difficult 

to determine which SNPs among these concepts are the most informative to the genetic bases of 

autism, our results point to a highly promising set of candidates that are worthy of further investigation.  

 

Conclusions 

Our approach identified significant signal in two historical autism GWAS datasets.  The genomic variants 

were enriched in autism-related neurological disorders and linked to genes that were significantly 

differentially expressed in autistic individuals when compared to controls.  These genetic variants 

represent a high priority set of candidates worthy of deeper inspection in a larger cohort of autistic 

individuals. In sum, our work provides exciting new leads into the genetic underpinnings of autism and 
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highlights the importance of reanalysis of genomic studies of complex disease using prior knowledge of 

genetic organization.   

Materials and Methods 

 

Ethics Statement 

Our study (number: M18096-101) has been evaluated by the Institutional Review Board and identified 

exempt as defined under 45CFR46.102(f) and as meeting the conditions regarding coded biological 

specimens or data. As such, (a) the specimens/data were not collected specifically for the research 

through an interaction or intervention with a living person, and (b) the investigators cannot “readily 

ascertain” the identity of the individual who provided the specimen/data to whom any code pertains. 

{Bailey, 1995 #380} 

Genotype samples 

Genotyping data were acquired from the Autism Genetic Resource Exchange (AGRE) [66], consisting of 

two previously described cohorts from the Broad Institute (Broad)  and the Children’s Hospital of 

Philadelphia (CHOP) [44].  The Broad cohort consisted of 2,883 subjects from 751 families genotyped at 

500K SNPs with probands diagnosed using the Autism Diagnostic Interview-Revised (ADI-R) [67], and the 

CHOP cohort consisted of 4,444 subjects from 943 families genotyped at 550K SNPs with probands 

diagnosed using both the ADI-R and the Autism Diagnostic Observation Schedule (ADOS) [68].   

 

Standard quality control measures were applied using PLINK [69].  SNPs were excluded from the analysis 

if minor allele frequency < 0.05, call rate < 0.80, or Hardy-Weinberg Equilibrium (HWE) was not met (p < 

0.01).  Additionally, genotypes for all nuclear family members were set to “missing” for SNPs in violation 

of Mendelian rules of inheritance.  Genotyping samples were removed where sex or affected status 

were unknown, or genotyping call rate < 0.80.  Finally, subjects of European descent were selected for 
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further analysis, leaving 727 families containing 3,322 subjects and 557 families containing 2,137 

subjects for the CHOP and Broad cohorts, respectively (Table 1).  After applying quality control measures 

and removing SNPs not required for the set-based analysis, 269,214 (ALL) and 112,403 (PRI) SNPs 

remained for the Broad cohort, and 264,543 (ALL) and 102,194 (PRI) SNPs remained for the CHOP cohort 

(Table 1).   

 

SNP set construction 

SNP identifiers were mapped to the 1,892 C2 and 1,454 C5 MSigDB [70] gene sets based on the SNP-to-

gene associations specified in the Affymetrix 5.0 and Illumina HumanHap550 genotyping platform 

annotation files for cohorts from the Broad Institute [2] (Broad) and Children’s Hospital of Philadelphia 

[3] (CHOP), respectively.  All SNPs listed as associated with a gene were mapped to the set.  

 

Set-based analysis 

We devised an analytical strategy that incorporates a priori biological knowledge to collectively test for 

significant association of groups of SNPs with autism in the genome-wide association data utilized here.  

The outline of our strategy is depicted in Figure 3 and described below. 

 

1.  Construction of SNP sets. SNP identifiers were mapped to the C2 (curated gene collections) and C5 

(gene sets from the biological process ontology of Gene Ontology) MSigDB [70] gene sets based on the 

SNP-gene relationships specified in the respective genotyping platform annotation files to create SNP 

sets representing the biological concept of the original gene set.  

 

2.  Compute SNP observed p-values and set counts.  For each SNP si, a p-value, , was calculated 

following the procedure previously described [16] as appropriate for family-based cohorts; an additive 
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effects model was used to code the genotypes.  The number of SNPs in each SNP set SSj with , 

, was then counted and saved for later use. 

 

3.  Compute SNP permuted p-values and set counts.  Affection status was randomly assigned in 

children for K = 1000 iterations, keeping the ratio of affected to unaffected individuals constant.  After 

each reassignment of affection status, p-values were calculated for each si, with  representing the p-

value computed for the ith SNP at the kth permutation.  The number of SNPs in each SNP set SSj with 

, , was then counted for each k  [1, K].  The  for k > 0 generate an appropriate null 

distribution for each SSj since they preserve the original biological concept as well as account for the 

correlation structure inherently present in the genotyping data.   

 

4.  Assessing SNP set significance.  Once all  have been computed, the expected value of  can be 

computed as: 

  

 

Sets with  5 or  5, with  representing the number of SNPs in set j, were 

excluded from further consideration due to the low expected value compromising the reliability of the 

test statistic calculation. 

 

To assess the significance of each , p-values for each SNP set were calculated as follows: 
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where  is the Pearson’s  test statistic for the jth set computed from the contingency table: 

 

   

Observed   

Expected   

 

Finally, q-values [71] for each set were computed using the qvalue package in R and all SNP sets with 

 were considered significant. 

 

Clustering of significant sets 

Once significant sets of SNPs were identified, we clustered the sets to reduce redundancy of the 

representative genes and improve our ability to identify which major biological themes were enriched 

among our autism cases. To do so, we created binary profiles of genes present or absent in each of the 

sets passing our significance cutoff. Then, we computed a Pearson correlation coefficient for all pairs of 

binary profiles to create a pairwise correlation matrix that could be used to generate a simple tree to 

visualize clustering among the sets.   

 

Neurological disease enrichment (NDE) scores 

To assess the representation of neurologically related genes in each of the biological concepts, we 

computed a neurological disease enrichment (NDE) scores as follows: 
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where N = 23402, the number of human gene entries in Entrez gene 

(http://www.ncbi.nlm.nih.gov/gene) at the time of this writing, m = 3511, the total number of genes 

with known association to a neurological disorder, n is the number of genes in gene set j, and k is the 

number of neurologically related genes observed in gene set j.  Intuitively, this represents the 

probability of a biological concept containing at least as many neurological disorder genes as was 

observed. Using Autworks , a knowledge base of genetic associations for autism and related conditions, 

we computed a neurological disease enrichment (NDE) score, to determine if our top ranked gene sets 

contained unusually high percentages of neurological disorder candidates (Table 5).   

 

mRNA expression data processing 

 

We downloaded GSE6575 [17, 59] from the Gene Expression Omnibus (GEO) for validation of the sets 

identified by our SNP-based gene enrichment method. This dataset consisted of 17 samples of autistic 

patients without regression, 18 patients with regression, 9 patients with mental retardation or 

developmental delay, and 12 typically developing children from the general population. In this cohort, 

total RNA was extracted from whole blood samples using the PaxGene Blood RNA System and run on 

Affymetrix U133plus2.0. For the purposes of our study, we compared the 17 autistic cases without 

regression with the 12 control samples from the general population using a student’s t-test to generate 

nominal p values for every transcript. The 18 autistic cases with regression had previously been shown 

to contain limited signal [18] and were excluded from the validation steps in this study.  Preprocessing 
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and expression analyses were done with the Bioinformatics Toolbox Version 2.6 (For Matlab R2007a+). 

GCRMA was used for background adjustment and control probe intensities were used to estimate non-

specific binding [72]. Housekeeping genes, gene expression data with empty gene symbols, genes with 

very low absolute expression values, and genes with a small variance across samples were removed 

from the preprocessed dataset.		To	adjust	for	multiple	testing,	we	used	the	q-value	calculation	[71],	a	

measurement	framed	in	terms	of	the	false	discovery	rate	[73],	considering	q	<	0.05	an	indication	of	

significant	differential	expression.	
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Figure Legends 

Figure 1.  Limited overlap in SNP coverage in the Broad and CHOP data.  Provide here is an example of 

SNP set, “Calcium Channel Activity,” that achieved significance using the CHOP data (red) but not using 

the Broad data (blue).  As depicted, the overlap in SNPs was limited, confirming that the lack of 

replication was due to experimental design and not biases associated with our enrichment technique. 

 

Figure 2.  Clustering of significant SNP sets.  Gene profiles were constructed for each of the significant 

sets based on the presence or absence of genes.  The profiles were then used to generate the 

correlation matrix for the SNP sets that in turn was used to perform clustering of the sets, resulting in 19 

unique clusters as indicated in the figure. The major themes represented among these 19 clusters were 

cell adhesion, cancer progression, and immune system response. 

 

Figure 3.  Overview of analytical strategy.  First, SNP sets were created by mapping gene sets to the 

corresponding SNPs using the annotation files provided by the platform vendor.  P-values for SNPs were 

then computed using standard protocols for testing association of genotypes with affection status.  

After all p-values were calculated, the number of nominally significant SNPs per set was counted.  

Disease labels were then randomly permuted for N=1000 iterations.  Upon each shuffling of the labels, 

p-values were recomputed and the number of nominally significant SNPs per set was recounted.  After 

the final shuffling of the disease labels, the expected number of nominally significant SNPs was 

computed for each set given the distribution of the respective counts in the permuted data.  Finally, a 

2x2 contingency table was constructed for each set and used to compute the Chi Square statistic and p-

value for the set. 
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Supplementary Figure 1.  Gene set size versus p-value.  Correlation coefficients were calculated and 

correlation plots generated to evaluate any potential bias arising from SNP set size.  No substantial 

correlation was found between set size and p-value (maximum r2 = 0.0349), even with larger sets having 

higher statistical power to detect subtle differences.  Points for sets passing FDR correction are shown in 

red. We examined correlation for all SNPs annotated to a gene and only SNPs within the primary coding 

transcript (PRI) for both Broad and CHOP data sets. 
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Table 1.  Summary of SNP genotypes used for analyses.  Individual samples genotyped at both facilities 

were acquired from the Autism Genetic Resource Exchange (AGRE), resulting in a large overlap in 

individuals genotyped in both cohorts.  However, the use of different genotyping platforms at each 

facility produced low overlap in SNP coverage between the two cohorts.   

 
Cohort Platform No. of Pedigrees No. of Individuals No. of SNPs 

Broad Affymetrix 5.0 557 2,137 269,214 

CHOP 
Illumina 

HumanHap 
550 

727 3,322 
264,543 

Overlap ¾ 554 2,093 31,217 
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Table 2. Summary of sets analyzed.  The Broad Institute’s MSigDB C2 (curated) and C5 (GO) gene 

sets were used to group SNPs to enable knowledge-driven analyses of SNP genotypes.  The resulting 

SNP sets ranged in size from 1 to 57,525 SNPs, representative of 1 to 1,873 genes.  After performing 

analyses, Pearson correlation coefficients were calculated to ensure that set sizes did not bias the p-

values; the strongest correlation found was not significant (r2 = 0.03). 

 

 

Cohort No. of Sets 
Scored 

No. of Genes  
(µ ± s) 

No. of Genes 
vs. P-value 
(r2) 

No. of Genes 
vs. FDR (r2) 

No. of SNPs  
(µ ± s) 

No. of 
SNPs vs. 
P-value 
(r2) 

No. of 
SNPs vs. 
FDR (r2) 

Broad 
3,344 1 – 1,873  

(66.4 ± 137.8) 
0.019 0.037 1 – 57,525  

(1,906.1 ± 4,026.4) 
0.019 0.036 

CHOP 
3,344 1 – 1,648  

(62.1 ± 122.7) 
0.038 0.059 2 – 57,461  

(1,953.2 ± 4,012.3) 
0.035 0.054 
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Table 3.  SNP sets significantly associated with autism.  The top 25 sets meeting the FDR threshold for 

significance in either the Broad or CHOP data (N = 102) are shown ranked by q-value (with p-values 

shown in parenthesis).  For each set, q-values shown in italics indicate the set met the significance 

threshold for that dataset with the most significance q-value shown in bold. The complete set of 

significant gene sets are provided online in Supplementary Table 1. 

 
 

Set Name Description Broad  
q (p) 
[# SNPs / # Genes] 

CHOP 
q (p) 
[# SNPs / # Genes] 

Integral To Membrane Genes annotated by the GO term GO:0016021. Penetrating at least one 
phospholipid bilayer of a membrane. May also refer to the state of being 
buried in the bilayer with no exposure outside the bilayer. When used to 
describe a protein, indicates that all or part of the peptide sequence is 
embedded in the membrane 

1 (0.411) 

[14144 / 957] 

1.18E-04 (3.48E-08) 

[37681 / 1033] 

Intrinsic To Membrane Genes annotated by the GO term GO:0031224. Located in a membrane 
such that some covalently attached portion of the gene product, for 
example part of a peptide sequence or some other covalently attached 
moiety such as a GPI anchor, spans or is embedded in one or both leaflets 
of the membrane 

1 (0.618) 

[14416 / 967] 

1.33E-04 (7.85E-08) 

[38529 / 1045] 

Membrane Part Genes annotated by the GO term GO:0044425. Any constituent part of a 
membrane, a double layer of lipid molecules that encloses all cells, and, in 
eukaryotes, many organelles; may be a single or double lipid bilayer; also 
includes associated proteins 

1 (0.593) 

[18533 / 1201] 

1.36E-04 (1.21E-07) 

[48479 / 1304] 

Krebs Tca Cycle  1 (0.905) 

[181 / 28] 

1.36E-04 (1.61E-07) 

[652 / 33] 

Membrane Genes annotated by the GO term GO:0016020. Double layer of lipid 
molecules that encloses all cells, and, in eukaryotes, many organelles; may 
be a single or double lipid bilayer; also includes associated proteins 

1 (1) 

[22557 / 1433] 

2.44E-04 (3.60E-07) 

[57461 / 1552] 

Brca1 Sw480 Up Up-regulated by infection of human colon adenocarcinoma cells (SW480) 
with Ad-BRCA1, versus Ad-LacZ control 

2.72E-04 (1.61E-07) 

[84 / 15] 

0.679 (0.149) 

[283 / 21] 

Cytoplasmic Part Genes annotated by the GO term GO:0044444. Any constituent part of the 
cytoplasm, all of the contents of a cell excluding the plasma membrane and 
nucleus, but including other subcellular structures 

1 (1) 

[10604 / 1016] 

1.48E-03 (3.51E-06) 

[27409 / 1093] 

Macromolecular Complex Genes annotated by the GO term GO:0032991. A stable assembly of two 
or more macromolecules, i.e. proteins, nucleic acids, carbohydrates or 
lipids, in which the constituent parts function together 

0.804 (0.030) 

[7102 / 685] 

2.06E-03 (6.43E-06) 

[19873 / 756] 

Manalo Hypoxia Up Genes upregulated in human pulmonary endothelial cells under hypoxic 
conditions or after exposure to AdCA5, an adenovirus carrying 
constitutively active hypoxia-inducible factor 1 (HIF-1alpha) 

1 (0.449) 

[1335 / 73] 

2.06E-03 (6.88E-06) 

[4671 / 88] 

Substrate Specific Transmembrane 
Transporter Activity 

Genes annotated by the GO term GO:0022891. Catalysis of the transfer of 
a specific substance or group of related substances from one side of a 
membrane to the other 

1 (1) 

[3820 / 271] 

2.06E-03 (7.92E-06) 

[10030 / 304] 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 19, 2020. ; https://doi.org/10.1101/2020.10.19.346072doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.19.346072


	 27	

Secondary Active Transmembrane 
Transporter Activity 

Genes annotated by the GO term GO:0015291. Catalysis of the transfer of 
a solute from one side of a membrane to the other, up its concentration 
gradient. The transporter binds the solute and undergoes a series of 
conformational changes. Transport works equally well in either direction 
and is driven by a chemiosmotic source of energy. Chemiosmotic sources 
of energy include uniport, symport or antiport 

1 (0.571) 

[331 / 36] 

2.76E-03 (1.14E-05) 

[1621 / 42] 

Substrate Specific Transporter 
Activity 

Genes annotated by the GO term GO:0022892. Enables the directed 
movement of a specific substance or group of related substances (such as 
macromolecules, small molecules, ions) into, out of, within or between 
cells 

1 (1) 

[4204 / 304] 

3.06E-03 (1.36E-05) 

[10967 / 341] 

Cation Transmembrane 
Transporter Activity 

Genes annotated by the GO term GO:0008324. Catalysis of the transfer of 
cation from one side of the membrane to the other 

1 (1) 

[3013 / 171] 

4.09E-03 (1.93E-05) 

[7365 / 186] 

Hsc Mature Adult Up-regulated in mouse mature blood cells from adult bone marrow, 
compared to hematopoietic progenitors (Cluster vii, Mature Blood Cells 
Shared + Adult) 

1 (0.272) 

[2674 / 254] 

6.57E-03 (3.53E-05) 

[6671 / 206] 

Receptor Activity Genes annotated by the GO term GO:0004872. Combining with an 
extracellular or intracellular messenger to initiate a change in cell activity 

1 (0.495) 

[7910 / 413] 

6.57E-03 (3.82E-05) 

[20202 / 466] 

Hsa04060 Cytokine Cytokine 
Receptor Interaction 

Genes involved in cytokine-cytokine receptor interaction 1 (1) 

[1184 / 150] 

6.57E-03 (3.88E-05) 

[5281 / 210] 

Ion Transmembrane Transporter 
Activity 

Genes annotated by the GO term GO:0015075. Catalysis of the transfer of 
an ion from one side of a membrane to the other 

1 (1) 

[3371 / 218] 

6.93E-03 (4.30E-05) 

[8686 / 244] 

Calcium Channel Activity Genes annotated by the GO term GO:0005262. Catalysis of facilitated 
diffusion of an calcium (by an energy-independent process) involving 
passage through a transmembrane aqueous pore or channel without 
evidence for a carrier-mediated mechanism 

1 (0.265) 

[1021 / 30] 

6.93E-03 (4.65E-05) 

[2027 / 30] 

Cytoplasm Genes annotated by the GO term GO:0005737. All of the contents of a cell 
excluding the plasma membrane and nucleus, but including other 
subcellular structures 

1 (0.886) 

[17617 / 1560] 

6.93E-03 (4.72E-05) 

[43239 / 1648] 

Transmembrane Transporter 
Activity 

Genes annotated by the GO term GO:0022857. Catalysis of the transfer of 
a substance from one side of a membrane to the other 

1 (1) 

[4022 / 296] 

7.06E-03 (5.01E-05) 

[10632 / 330] 

Plasma Membrane Part Genes annotated by the GO term GO:0044459. Any constituent part of the 
plasma membrane, the membrane surrounding a cell that separates the cell 
from its external environment. It consists of a phospholipid bilayer and 
associated proteins 

1 (1) 

[14654 / 832] 

7.26E-03 (5.37E-05) 

[36998 / 911] 

Cellular Protein Catabolic Process Genes annotated by the GO term GO:0044257. The chemical reactions and 
pathways resulting in the breakdown of a protein by individual cells 

1 (1) 

[535 / 47] 

8.39E-03 (6.64E-05) 

[1090 / 50] 

Plasma Membrane Genes annotated by the GO term GO:0005886. The membrane surrounding 
a cell that separates the cell from its external environment. It consists of a 
phospholipid bilayer and associated proteins 

1 (1) 

[18068 / 1027] 

8.39E-03 (6.70E-05) 

[45530 / 1117] 

Protein Complex Genes annotated by the GO term GO:0043234. Any protein group 
composed of two or more subunits, which may or may not be identical. 
Protein complexes may have other associated non-protein prosthetic 
groups, such as nucleic acids, metal ions or carbohydrate groups 

0.944 (0.042) 

[6742 / 599] 

0.010 (8.34E-05) 

[18289 / 650] 

Protein Catabolic Process Genes annotated by the GO term GO:0030163. The chemical reactions and 
pathways resulting in the breakdown of a protein by the destruction of the 

1 (1) 

[592 / 53] 

0.012 (1.04E-04) 

[1176 / 59] 
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native, active configuration, with or without the hydrolysis of peptide 
bonds 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 19, 2020. ; https://doi.org/10.1101/2020.10.19.346072doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.19.346072


	 29	

 

Table 4.  Representative biological concepts among the highest scoring autism gene sets.  For each of 

the 19 clusters revealed through the analysis of the 68 autism-associated sets (Figure 2), we selected the 

gene set containing the lowest average pvalue as representative, and validated these 19 using both 

measurements of gene expression (mRNA expression) and tests for enrichment in neurological disease 

(Table 5).  mRNA expression indicates the percentage of genes in the set that have significant, FDR-

adjusted p values.  

 
Cluster Gene Set Dataset Average Nominally 

Significant P-value 
mRNA Expression 

3 Delayed Rectifier Potassium Channel Activity  CHOP  1.55E-02 0% 

1 Voltage Gated Cation Channel Activity CHOP  1.91E-02 16% 

9 Brca1 Sw480 Up  Broad  2.00E-02 80% 

10 Cellular Protein Catabolic Process CHOP  2.03E-02 65% 

7 Tca (12/14) CHOP  2.06E-02 85% 

4 Carboxylic Acid Transmembrane Transporter 
Activity 

CHOP  2.14E-02 0% 

8 Lee Myc E2f1 Up CHOP  2.19E-02 35% 

2 Integral To Plasma Membrane  CHOP  2.20E-02 16% 

13 Homophilic Cell Adhesion  CHOP  2.20E-02 35% 

18 Guo Hex Up CHOP  2.29E-02 100% 

5 Hsa04060 Cytokine Cytokine Receptor 
Interaction 

CHOP  2.29E-02 16% 

14 Manalo Hypoxia Up  CHOP  2.30E-02 0% 

6 Response To Stress CHOP  2.32E-02 0.04% 

11 Cmv Hcmv Timecourse 18hrs Dn CHOP  2.33E-02 40% 

15 Serum Fibroblast Cellcycle  CHOP  2.38E-02 14% 

17 Rcc Nl Up CHOP  2.39E-02 68% 

12 Hofmann Mds Cd34 Low Risk CHOP  2.54E-02 37% 
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19 Positive Regulation Of Cell Differentiation CHOP  2.86E-02 0% 

16 Transcription From Rna Polymerase III 
Promoter 

Broad  2.91E-02 0% 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 19, 2020. ; https://doi.org/10.1101/2020.10.19.346072doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.19.346072


	 31	

Table 5.  Neurological disease enrichment of autism-associated gene sets.  The Autworks resource 

(autworks.hms.harvard.edu) was used to find genes among the top scoring gene sets that have been 

implicated in other neurological disorders.  A total of 36 conditions were found to share a linked gene 

with at least one of the significant sets.  Significant sets are shown ranked by the proportion of genes 

implicated in at least one of the 36 conditions (abbreviations provided below). 

 

AD=Alzheimer disease; AH=Attention deficit hyperactivity disorder; AN=Angelman Syndrome; 

AS=Asperger Syndrome; AT=Ataxia; AU=Autism; BI=Brain Injury; CP=Cerebral Palsy; DM=Dementia; 

DR=De Morsier's Syndrome; DS=Down Syndrome; EN=Encephalopathy; EP=Epilepsy; FX=Fragile X; 

HD=Huntington Disease; HP=Hypotonia; HX=Hypoxia; HY=Hydrocephalus; MD=Major Depression; 

MG=Migraine; MI=Microcephaly; MR=Mental Retardation; MS=Multiple Sclerosis; NM=Neuronal 

Migration Disorders; NR=Neurotoxicity; OC=Obsessive Compulsive Disorder; RS=Rett Syndrome; 

SD=Seizure Disorder; SL=Systemic Lupus Erythematosus; SP=Spasticity; ST=Stroke; SZ=Schizophrenia; 

TR=Tourette Syndrome; TS=Tuberous Sclerosis; WL=Williams Syndrome; WS=West Syndrome 

 
SNP Set No. of Genes No. of Genes in 

Neurological 
Disorder (%) 

NDE Score Neurological 
disorders 

Hsa04060 Cytokine Cytokine Receptor Interaction 257 140 (54.5%) 2.14E-49 AD, AH, AS, AT, 
AU, BI, CP, DM, 
DS, EN, EP, FX, HX, 
MD, MG, MR, MS, 
NR, OC, SD, SL, ST, 
SZ, TR, TS 

Positive Regulation Of Cell Differentiation 25 13 (52.0%) 1.67E-05 AD, DM, HX, MD, 
MS, OC, SL, ST, SZ 

Response To Stress 509 245 (48.1%) 1.26E-71 AD, AH, AN, AS, 
AT, AU, BI, CP, 
DM, DS, EN, EP, 
FX, HD, HP, HX, 
MD, MG, MI, MR, 
MS, NR, OC, SD, 
SL, ST, SZ, TS, WS 

Brca1 Sw480 Up 25 12 (48.0%) 9.76E-05 AD, AT, AU, DM, 
MR, MS, SL, ST, SZ 

Integral To Plasma Membrane 978 413 (42.2%) 1.47E-98 AD, AH, AN, AS, 
AT, AU, BI, CP, 
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DM, DR, DS, EN, 
EP, FX, HD, HP, 
HX, HY, MD, MG, 
MR, MS, NR, OC, 
RS, SD, SL, ST, SZ, 
TR, WS 

Lee Myc E2f1 Up 57 22 (38.6%) 1.17E-05 AD, CP, DM, EP, 
HX, MD, MG, MR, 
MS, OC, SD, SL, ST, 
SZ 

Carboxylic Acid Transmembrane Transporter Activity 44 17 (38.6%) 1.11E-4 AD, AH, AS, AU, 
DM, MD, MR, MS, 
OC, ST, SZ, TR 

Manalo Hypoxia Up 107 41 (38.3%) 3.06E-09 AD, AH, AU, DM, 
HD, HX, MD, MG, 
MR, MS, OC, SL, 
ST, SZ 

Voltage Gated Cation Channel Activity 66 25 (37.9%) 4.50E-06 AD, AT, AU, DM, 
DS, EP, FX, MD, 
MG, MR, NR, SD, 
ST, SZ 

Homophilic Cell Adhesion 16 6 (37.5%) 0.024 AD, DM, MS, ST, 
SZ 

Cmv Hcmv Timecourse 18hrs Dn 21 7 (33.3%) 0.029 AD, AU, DM, HX, 
MD, MS, OC, SL, 
ST, SZ, TS 

Delayed Rectifier Potassium Channel Activity 12 4 (33.3%) 0.092 DS, FX, MG, MR, 
SZ 

Hofmann Mds Cd34 Low Risk 52 14 (26.9%) 0.01850658 AD, AT, AU, DM, 
MR, MS, NR, SL, 
ST, SZ 

Tca 15 4 (26.7%) 0.177 HX, MS, SL 

Guo Hex Up 88 20 (22.7%) 0.035 AD, AH, AT, AU, 
DM, DS, EP, HX, 
MD, MR, MS, OC, 
SD, SL, ST, SZ 

Rcc Nl Up 519 101 (19.5%) 3.17E-3 AD, AH, AT, AU, 
BI, DM, DS, EN, EP, 
FX, HD, HX, MD, 
MG, MI, MR, MS, 
NR, OC, RS, SD, SL, 
ST, SZ, TR 

Serum Fibroblast Cellcycle 138 25 (18.1%) 0.181 AD, AH, AT, AU, 
CP, DM, DS, EN, 
EP, HD, HP, MG, 
MR, MS, NR, RS, 
SD, SL, ST, SZ, WS 

Cellular Protein Catabolic Process 58 10 (17.2%) 0.370 AD, AH, AT, AU, 
DM, MD, MR, OC, 
ST, SZ 

Transcription From Rna Polymerase III Promoter 19 1 (5.3%) 0.954 AT, MS 
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