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Abstract 
Reinforcement learning models have been used extensively and with great success to capture 
learning and decision-making processes in humans and other organisms. One essential goal of 
these computational models is generalization to new sets of observations. Extracting parameters 
that can reliably predict out-of-sample data can be difficult, however: reinforcement learning 
models often face problems of non-identifiability, which can lead to poor predictive accuracy. The 
use of prior distributions to regularize parameter estimates can be an effective way to remedy this 
issue. While previous research has suggested that empirical priors estimated from a separate 
dataset improve identifiability and predictive accuracy, this paper outlines an alternate method for 
the derivation of empirical priors: hierarchical Bayesian modeling. We provide a detailed 
introduction to this method, and show that using hierarchical models to simultaneously extract and 
impose empirical priors leads to better out-of-sample prediction while being more data efficient.  
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Introduction 
First-hand experience and decades of behavioral studies teach us that reward is one of the 

most powerful drivers of learning, and that behavior is often modified to maximize its acquisition 

(Gormezano & Moore, 1966; Rescorla & Wagner, 1972; Schultz et al., 1997; Skinner, 1935; 

Sutton et al., 1991; Thorndike, 1898; Yerkes & Morgulis, 1909). Although our daily lives are ripe 

with examples of this phenomenon, the question of how to accurately quantify reward’s influence 

on our actions remains an active area of research. A quantitative theory of reward learning is 

crucial; it provides a necessary bridge towards understanding the internal computations underlying 

behavior.  

One popular framework for modeling learning and decision-making processes is 

reinforcement learning (Daw & Doya, 2006; Niv, 2009; Sutton & Barto, 1990, 1998). A pervasive 

issue with reinforcement learning models, however, is how to handle variability between people 

(Ballard & McClure, 2019; Gershman, 2016; Katahira, 2016; Shahar et al., 2019). In this paper, 

we provide an introduction to one emerging set of strategies for handling this variability: 

hierarchical Bayesian models. Our goals are to 1) give a detailed description of hierarchical models 

and their application in the context of reinforcement learning and 2) compare these models to other 

commonly used approaches. We show that hierarchical Bayesian models provide the best 

predictive accuracy compared to other methods, including a recently suggested technique that 

relies on the collection of a separate dataset to enable robust inference (Gershman, 2016). 

Reinforcement learning (RL) models are a mathematical framework through which we can 

describe how humans (and other organisms) learn behavioral policies from reward (Daw & Doya, 

2006; Niv, 2009; Sutton & Barto, 1990, 1998). In their most basic formulations, these models 

estimate the probability of a specific action in a given context based on two determining factors: 

that action’s value in that context (learned through its reward history), and how influential this 

value will be in determining choice. When fitting these models to data from humans or other 

organisms, both of these factors can vary from one individual to the next. To manage this 

variability, standard RL models fit two individual-specific parameters: learning rate and inverse 

temperature. The learning rate (𝛼) determines the extent to which surprise will play a role in 

updating an action’s value. This surprise is quantified as the difference between the expected value 

of an action and the actual outcome on a given trial, referred to as reward prediction error. Higher 

values of 𝛼 imply greater sensitivity to the most recent choice outcome, while lower 𝛼’s are 
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indicative of more gradual value updating. Once value is computed, people can also differ in how 

much influence it exerts on their behavior, or how exploratory they are in their choices. This is 

governed by an inverse temperature parameter (β) whose magnitude determines the impact of 

value on choice. We will provide more precise mathematical formulations of RL models below, 

but to begin with, it is worth considering the overarching goal of fitting them—or of fitting any 

statistical model— in the first place. 

In using RL models to summarize or compress observed data, we seek to extract 

meaningful structure from these observations. To this end, we want our models to generalize 

beyond the specific data we use to fit them. With this goal in mind, a common way of evaluating 

models is out of sample prediction (Akaike, 1998; Arlot & Celisse, 2010; Vehtari et al., 2017). In 

RL models, for instance, we might ask how well our parameters for any specific subject predict 

future data from that individual, or how well our group-level averages predict data from new 

subjects (Daw, 2011).  

Extracting parameter values that can reliably predict out-of-sample data is not a trivial task. 

Computational models must often grapple with problems of identifiability, which arise when 

different combinations of parameter values can fit a subject’s data equally well (Daw, 2011; 

Gershman, 2016). In RL models, an extreme case of this phenomenon occurs when a subject’s 

data is described similarly well whether we assume that no learning whatsoever has taken place, 

or that it has but that value is not being used to guide choices.  If we knew α was close to zero, we 

would be very uncertain about β—many values would fit the data similarly well —and vice versa. 

In cases like this one, an example of which is illustrated in Figure 1A, picking just the one pair of 

estimates that maximizes the likelihood of a particular person’s data can potentially overfit the 

data and have poor predictive accuracy out of sample. Unbiased point estimates can thus be 

overconfident about the best parameters, leading to low predictive accuracy (Efron & Morris, 

1975; Gershman, 2016). This poses a problem for our goal of identifying generalizable structure 

in a dataset. 
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One way to counter the overconfidence that results from selecting just one set of estimates 

has to do with the distinction between modes (or maxima) and expectations. While maximum 

likelihood or maximum a posteriori methods use the parameters values with the best fit (based on 

the mode of the likelihood or posterior distribution), a more fully Bayesian approach is to integrate 

over the posterior distribution of possible values, taking the expected value of the distribution 

rather than selecting the best value. These Bayesian models, which are often fit using Markov 

Chain Monte Carlo (MCMC), sample approximate posterior distributions over all parameters, 

effectively averaging over uncertainty about all other parameters when expressing uncertainty 

about any subset of those parameters. In some simple cases, the Bayesian and the maximum 

likelihood approach will lead to identical results. However, when fitting models with hierarchical 

structure, many dimensions, or parameters whose values may be close to boundaries (such as 

variance, which cannot be less than zero), these two summary statistics can differ substantially. In 

this paper, we will not directly compare modal vs. expectation approaches and will instead use 

MCMC to sample posterior distributions in all cases. For a more direct comparison demonstrating 
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Figure 1: Illustration of the problem of identifiability. (A) Posterior distribution of parameter estimates derived from 
an example subject performing a standard RL task. If α is close to zero, there is a wide range of β values that explain 
the data equally well. The same is true for values of α if β is close to zero. With this distribution, it is unclear which 
particular pair of parameter values would be best, if any. (B) An example of more clearly identifiable parameter values. 
The posterior distribution is closer to a Gaussian distribution centered more tightly around a single mode representing 
the most likely pair of values.  
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the benefits of this approach, see Asparouhov & Muthén, 2020; Browne & Draper, 2006; Gelman 

et al., 2013.  

A distinct strategy used to aid identifiability is regularization, often through the use of prior 

distributions (Cao & Ray, 2012; Efron, 1996). Prior distributions constrain the values of model 

parameters by biasing estimates towards regions of parameter space considered more plausible a 

priori. By setting priors on parameter values, we are inserting inductive bias into the model in the 

hopes of minimizing the variance of our estimates over repeated samples, which can translate to 

greater predictive accuracy (Briscoe & Feldman, 2006). There is a potential tradeoff between fit 

to a specific dataset and generalizability, and the inclusion of priors is one way of balancing the 

two extremes (Gershman, 2016). In addition to whether or not to include priors in RL models, the 

best practice for doing so remains an open question. 

For data with the hierarchical or repeated-measures structure often found in psychology 

and neuroscience experiments, one way to generate priors for lower-level observations is to extract 

them empirically from group-level data. The parameter estimates for individual subjects in an 

experiment, for example, would be biased towards a group mean based on a population distribution 

of subject-level parameters. This principle of utilizing group-level data to inform individual-level 

estimates underlies mixed-effects modeling (Baayen et al., 2008; Barr, 2013; Bates, 2005) , which 

uses the maximum likelihood approach described above, as well as the fully Bayesian hierarchical 

models we will describe here.  

In the case of RL models, it has recently been suggested that empirical priors can be 

estimated from the group distributions derived from a separate dataset (Gershman, 2016). Doing 

so constrains individual variability in parameter estimates based on the behavior of a separate 

group of participants on the same task. Although this method has been shown to improve predictive 

performance, it requires a large dataset to draw from: a substantial subset of subjects is used to 

generate group-level priors and then discarded from the final model. In this paper, we will 

demonstrate that a hierarchical Bayesian approach to fitting reinforcement learning models, which 

allows the simultaneous extraction and use of empirical priors without sacrificing data, actually 

predicts new data points better, while being much more data efficient. In the next section, we will 

provide a detailed overview of the hierarchical model’s implementation. We will then use this 

approach to compare different reinforcement learning models and finally compare the hierarchical 
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Bayesian approach to other ways of modeling the data, including the two-dataset approach 

described above. 

 

Model (M1) 

 To illustrate the hierarchical Bayesian approach, we first fit a standard computational model 

for so-called ‘bandit’ problems, where an individual makes repeated choices in the same 

environmental context or state (Sutton & Barto, 1998; Daw, 2011). We used the data from 

Gershman (2016) to fit this model. The dataset consists of choice behavior from 205 participants 

pooled across five different studies, each consisting of four blocks. In all five studies, participants 

were instructed to choose one of two colored buttons, based on which one they believed had a 

higher expected reward. In our model, the value of each of the two options was initialized at 0.5 

and updated after each trial as the sum of the predicted value of the chosen option (𝑄!,#$ ) and a 

reward prediction error (𝑅!$ − 𝑄!,#$ ), weighted by 𝛼!. More formally, this update corresponds to: 

𝑄!,#$%& = 𝑄!,#$ + 𝛼!'𝑅!$ − 𝑄!,#$ (, 

where s refers to subject, t to trial, and a to left or right choice. The likelihood of choosing left or 

right is then modeled as Bernoulli distribution governed by parameter 𝜃, where 𝜃 is a softmax 

transformation of the action values, weighted by a subject-specific β, which we will refer to as 

𝛽!,&. Because there are only two choice options, the softmax simplifies to a logistic transform. 

Higher values of 𝛽!,&correspond to a greater bias towards the option that has a higher estimated 

value. Because participants used both hands to make button presses and given the prevalence of 

right-handedness in the population, we also included an intercept term (𝛽!,') to account for bias 

towards pressing one side more than the other. Characterizing choice as either 0 (choose right) or 

1 (choose left), we can model the choice probability as: 

𝑃'𝑐 = 1.𝛼!, 𝛽!,&, 𝛽!,'( =Bernoulli (𝜃) 

𝜃 =
1

1 + 𝑒()!,#()!,$*+!,$% (+!,#% ,
 

 This represents the likelihood of an observed choice according to our model, given a set of 

parameter values. 

 However, we have yet to address how to most reliably extract these parameters from the data. 

As we mentioned above, fitting unbiased estimates maximizes the likelihood of each participants’ 

data, but might lead to lower predictive accuracy. In order to address this challenge, we include 
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empirical priors on 𝛼!, 𝛽!,&and 𝛽!,' according to the distributions listed below, which are models 

of how the parameters are distributed in the population we have sampled from.  For computational 

efficiency, 𝛽! is a vector of subject-level 𝛽!,& and 𝛽!,' parameters. 

𝛼! ∽ 𝐵𝑒𝑡𝑎(𝜏&, 𝜏-) 

𝛽! ∽ 𝑁(𝛽. , 𝛴.) 

Here, 𝜏& and 𝜏- are shape parameters that describe the distribution of 𝛼′𝑠across subjects, and thus 

constrain the subject-level estimates, which are assumed to follow a Beta distribution. Similarly, 

the subject-level 𝛽! vectors are assumed to follow a multivariate normal distribution, where 𝛽.  is 

a vector of the population means for the slope and intercept. 𝛴.  is a matrix that includes the 

variance around the group-level distribution of the slope (𝜎&-), the variance around the group-level 

distribution of the intercept (𝜎'-), and the covariance between the two parameters across subjects. 

The magnitude of 𝜎&- and 𝜎'- tell us the extent to which individuals differ in their intercept (right 

bias) and slope (inverse temperature), respectively. The larger the variances, the more we allow 

individual parameter values to stray from the group means. Similarly, the inter-individual variance 

for learning rate can be computed as the variance of the Beta distribution specified by 𝜏& and 𝜏-as 

follows: 
𝜏&𝜏-

(𝜏& + 𝜏- + 1)(𝜏& + 𝜏-)-
 

 

 In addition to regularizing the subject-level parameters based on group-level data, we will 

also set weakly informative hyperpriors on the parameters of the group distributions themselves. 

These hyperprior distributions are chosen for computational convenience and to have little impact 

on inference. The heavy-tailed nature of the Cauchy distribution helps ensure that the hyperpriors 

will be only weakly informative, and we use a positive half-Cauchy to guarantee that the parameter 

values will be positive (as is necessary to specify a Beta distribution).  In other settings (strong 

prior knowledge about the group distributions or different estimation methods), other hyperpriors 

may make more sense. Here, they are defined according to the following means and variances: 

𝜏& 	∽ 𝐶𝑎𝑢𝑐ℎ𝑦%(0, 5-) 

𝜏- 	∽ 𝐶𝑎𝑢𝑐ℎ𝑦%(0, 5-) 

			𝛽. ∽ 𝑁(0, 5-) 
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We will also set a hyperprior on 𝛴. . Because it can be more convenient to specify prior 

distributions on covariance matrices in terms of correlation matrices and standard deviations, we 

will do so by decomposing the matrix into the product of two matrices with 𝜎' and 𝜎& along their 

diagonals. We will then multiply these by a correlation matrix (𝛺) as follows (Barnard et al., 2000; 

Gelman & Hill, 2007): 

𝛴. = 𝑑𝑖𝑎𝑔(𝜎) × 𝛺 × 𝑑𝑖𝑎𝑔(𝜎) 

 

Thus, the between-subject covariance for 𝛽 parameters is parameterized through the standard 

deviations of and correlations between those parameters. Hyperpriors can then be set on the 

components of 𝛴.  such that: 

𝜎 ∽ 𝐶𝑎𝑢𝑐ℎ𝑦%(0, 5-) 

𝛺	~	𝐿𝐾𝐽(2) 

Here, we use the LKJ distribution, following Lewandowski et al., 2009. It is a distribution for 

sampling random correlation matrices, with a single parameter governing the distribution of 

correlation values. As this parameter gets larger, the samples become increasingly close to 

identity matrices, meaning zero correlation.  

 Finally, we fit the reinforcement learning model using Hamiltonian Markov Chain Monte 

Carlo in Stan (Carpenter et al., 2017) with four chains of two thousand iterations (including 

warmup). MCMC methods are algorithms for approximating posterior distributions by 

constructing random samples from them. Hamiltonian MCMC methods are designed to encourage 

efficient sequences of samples spanning the whole posterior, making them particularly suitable for 

hierarchical models (Betancourt & Girolami, 2013).This allows us to estimate the posterior 

distribution over all subject- and group-level parameters simultaneously.   

 The marginal posterior distributions for the parameters of the group-level variables in the 

model described above can be found in Figure 2. These group-level estimates are in line with 

previously reported results (Davidow et al., 2016; Daw et al., 2011; Eckstein et al., 2020; 

O’Doherty et al., 2007) . The histograms of MCMC samples for the group-level variables reflect 

posterior uncertainty about the parameters governing the distributions of learning rates and inverse 

temperatures across subjects.  
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 In the next section, we will evaluate the simple Q-learning model’s performance in 

comparison to two more complex models. We will then compare the best-fitting hierarchical 

Bayesian model to that of three commonly used alternatives: one that allows for no subject-level 

variability and only fits the model at the level of the group, one that allows for infinite subject-

level variability, which is equivalent to fitting a separate model for every subject, and another in 

which group-level empirical priors are extracted from a subset of the data and then fit on the 

remaining group (Gershman, 2016). We show that the hierarchical approach outperforms all of 

these alternatives in terms of accurately predicting new data. 

 

Model Comparison 

 The model we have described so far (M1) is a standard Q-learning model with one learning 

rate. Following the method used in Gershman 2016, we compared its performance to two alternate 

models with additional parameters: 

Figure 2: Posterior histograms for group-level parameters in model M1. Dashed line corresponds to the median of the 
each distribution. The distributions for and  have been truncated at 50 for legibility.τ1 τ2
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- M2: Dual learning rates. This model uses the same choice function and the same set of priors 

as M1, but allows for two different learning rates depending on whether the prediction error 

was positive or negative. In other words, if 𝑅!$ − 𝑄!,#$ > 0, the Q-value is updated such that: 

𝑄!,#$%& = 𝑄!,#$ + 𝛼!,&'𝑅!$ − 𝑄!,#$ ( 

If 𝑅!$ − 𝑄!,#$ < 0, however, then the Q-value is updated such that: 

𝑄!,#$%& = 𝑄!,#$ + 𝛼!,-'𝑅!$ − 𝑄!,#$ ( 

This two-learning-rate model is commonly used in the literature, and allows for differential 

value-updating mechanisms for outcomes that are better or worse than expected (Daw et al., 

2002; Frank et al., 2009; Gershman, 2015; Niv et al., 2012). 

 

- M3: Dual learning rates + stickiness. This model is identical to M2 but includes an additional 

stickiness parameter w that captures participants’ tendency to repeat the same choice as on the 

previous trial, regardless of whether it was rewarded. In practice, adding this parameter 

consists of updating the choice function such that: 

𝑃'𝑐 = 1.𝛼!,&, 𝛼!,-, 𝛽!,-, 𝛽!,&, 𝛽!,'( =Bernoulli (𝜃) 

𝜃 = &

&%/&'!,#&'!,$()!,$
% &)!,#

% *&'!,+(-)
 ,  

where 𝜔 takes on a value of 0.5 when the previous choice was left, and a value of -0.5 when the 

previous choice was right. With the added stickiness parameter, the model allows for 3 group-

level and subject-specific 𝛽 parameters, which are constrained according to the same priors as 

denoted above. The only change is that since there are now 3 group-level 𝛽 parameters and the 

covariance matrix for our group-level 𝛽 distribution is 3x3. 

 To compare the three models of interest – single learning rate (M1), dual learning rate (M2), 

and dual learning rate plus stickiness (M3) – we fit each reinforcement learning model using the 

MCMC method described above. To evaluate the fit of each model, we computed the expected log 

predictive density (ELPD) based on leave-one-out information criteria for each of the three 

models. This method for estimating predictive accuracy, as implemented in the R-package “loo” 

(Vehtari et al., 2017), approximates the would-be log-likelihood for each observation if it were 

held out from fitting the parameters. A larger ELPD indicates less expected out-of-sample 

deviance and thus a more generalizable model. We find that the model with dual learning rates and 

stickiness (M3) has a significantly larger ELPD than the other two (Figure 2). 
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Evaluation of Model Fitting Methods 

 So far, we have used a hierarchical Bayesian approach to fit and compare reinforcement 

learning models. According to the comparison described above, the model with dual learning rates 

and a stickiness parameter (M3) outperforms both M1 (single learning rate) and M2 (dual learning 

rates). However, we have not shown that the hierarchical approach itself is any more useful than 

its various alternatives. To this end, we now turn our attention towards identifying the model-

fitting technique that, when applied to M3, yields the most reliable results. We will do so by 

comparing the performance of 4 different model-fitting techniques that vary in whether and how 

they utilize group-level distributions to regularize individual estimates. The first two models 

Model Expected Log Predicted 
Density (ELPD)

Standard Error 

M3: Dual LL + Stickiness -2896.14 39.58
M2: Dual LL -3216.13 32.21
M1: Single LL -3329.71 30.10
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Figure 2: The reinforcement learning model with dual learning rates and stickiness 
is more predictive out of sample. Expected log predicted density (ELPD) from leave-
one-out approximation for three hierarchically fit reinforcement learning models. Values 
closer to 0 indicate greater predictive accuracy. The model with dual learning rates and a 
stickiness parameter (M3) outperforms the models with both double and single learning 
rates (M2 and M1, respectively). Error bars correspond to the standard errors of the 
ELPD estimates.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2020. ; https://doi.org/10.1101/2020.10.19.345512doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.19.345512
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

represent opposite extremes: one avoids all group-level regularization to allow for infinite subject-

specific variability (no pooling of information between subject-specific parameters), and the other 

allows for no subject-specific variability whatsoever (full pooling). The third and fourth models 

both constrain individual estimates based on empirical group-level priors, but while the former 

derives these priors from held-out data, the fully hierarchical model extracts and imposes group-

level priors from a single data set.   

1. Importance of empirical priors 

 Unless we can demonstrate that introducing group-level priors to constrain individual 

estimates improves predictive accuracy, the question of how to best derive them is moot.  

To address this question, we first compared performance across two models – one that constrained 

individual estimates based on the group (described in Section 1: Model) and another in which 

these individual estimates were not pooled across subjects. We evaluated a Q-learning model with 

dual learning rates and stickiness (M3) on all 205 participants for both model-fitting techniques. 

For the no pooling model, this required adapting our hierarchical approach to eliminate group-

level priors, and instead setting weakly informative hyperpriors on subject-specific parameters. 

Accordingly, the hyperpriors on individual learning rates (contained in the 𝛼! vector), inverse 

temperatures, intercepts, and stickiness (contained in the 𝛽! matrix) were specified as follows: 

𝛼! ∽ 𝐵𝑒𝑡𝑎(0.5,0.5) 

𝛽! ∽ 𝑁(0, 5-) 

This approach essentially fits separate reinforcement learning models to each subject, and only 

constrains these estimates with weakly informative hyperprior distributions. It is perhaps the most 

common method for fitting reinforcement learning models in the literature (Davidow et al., 2016; 

Daw, 2011; Dezfouli & Balleine, 2013; Niv et al., 2015, 2012).  

 In order to evaluate the accuracy of the parameter estimates obtained from each of our two 

models of interest, we fit both of them on 3 out of 4 experimental blocks for each participant and 

computed the average log-likelihood of observations in the held-out block. We utilize this 

approach rather than the Information Criterion used above for easier comparison to Gershman 

(2016). Nonetheless, similar results were obtained using LOOIC for all comparisons. The results 

are reported as the average log-likelihood for an observation for each participant, averaged across 

trials and posterior samples. As shown in Figure 2A, the full hierarchical model results in higher 

expected log likelihood for the held-out data (t(204) = 6.55 ; mean = 0.057 [0.040; 0.074]; p < 
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0.00005). This finding indicates that generalization is improved when group-level estimates are 

included as constraints on the extent of individual variability. 

  

 Crucially, this leaves open the question of whether estimates should be allowed to vary across 

individuals at all. To answer this, we repeated the same model comparison procedure replacing the 

no pooling model with one that pools individuals completely, yielding only group-level estimates, 

which are used for each subject. We found that once again, the full hierarchical model results in 

higher expected log likelihood for held-out data (t(204) = 4.47, mean = 0.070 [0.040, 0.10], p < 

0.00005, Figure 2B). This further supports the notion that a model’s predictive accuracy is 

improved by accounting for individual variability while constraining it, which is the premise 

underlying most multi-level modeling (Gelman & Hill, 2007). Empirical priors seem to provide 
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Figure 3: Hierarchical Bayesian models outperform two common alternatives. (A) Plot of the difference in log 
likelihoods (hierarchical model – no pooling model) averaged across trials and MCMC samples for each subject, on held 
out Block 4 data. Positive values indicate that the hierarchical model has greater predictive accuracy. A paired t-test 
indicates that held-out log likelihoods are significantly higher on average for the fully hierarchical model, meaning that 
group-level priors lead to greater predictive accuracy on held-out data (t(204) = 6.55 ; mean = 0.057 [0.040; 0.074]; p < 
0.00005). ). (B) Plot of the difference in log likelihoods (hierarchical model – full pooling model) averaged across trials and 
MCMC samples, for each subject on held out Block 4 data. Positive values indicate that the hierarchical model has 
greater predictive accuracy. A paired t-test shows that held-out log likelihoods are significantly higher on average for the 
fully hierarchical model, meaning that allowing for individual variability leads to greater predictive accuracy on held-out 
data (t(204) = 4.47, mean = 0.070 [0.040, 0.10], p < 0.00005).
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the right balance between too much and too little group-level influence for reinforcement learning 

models. A crucial question, then, lies in which is the best strategy for deriving empirical priors. 

2. Derivation of empirical priors 

 While we have shown that constraining individual estimates based on data-derived priors 

leads to improved predictive accuracy, the question still remains of how these empirical priors 

should be obtained. In Gershman (2016), the data from 165 out of 205 participants are set aside 

for the purpose of generating reliable group-level priors. This involves fitting a reinforcement 

learning model with weakly informative priors on the 165-person subset and once subject-specific 

parameter estimates are obtained, estimating group-level priors by moment matching. The 

resulting empirical priors are then applied to the remaining 40 participants, which leads to 

improved model fit and generalizability for this subset of participants. 

 Using the same dataset, we replicated the approach by fitting the version of our model that 

includes only weakly informative group-level priors – on 165 of the participants. Following the 

method described above, we used a moment-matching function to approximate the parameter 

estimates that best describe the distributions of subject-level parameters derived from the models 

fit to each subject. More specifically, this moment-matching function uses gradient descent on the 

distribution of individual MAP estimates to derive the best parameters for a group-level probability 

distribution. The outputs of the function (Table 1) describe the distributions of the group-level 

priors that we then used on a separate dataset, consisting of the 40 remaining participants. 

 

 
  

 We first replicate the results from Gershman, 2016: including out-of-sample priors improves 

predictive accuracy when compared to a model run on the same 40 participants without any group-

level constraints (t(39) = 3.18; mean = 0.039 [0.014; 0.065]; p = 0.0029, Figure 4 A&B). The 

inclusion of out-of-sample priors also yields a higher average predictive accuracy on held-out data 

Learning Rate Intercept Inverse Temperature Stickiness

α1 ∼ Beta(1.15,1.84)
α2 ∼ Beta(1.01,1.20)

β0 ∼ Normal(0.050,0.632) β1 ∼ Normal(2.55,3.182) β2 ∼ Normal(−0.13,2.82)

Table 1: Empirical Prior Distributions.
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than the full pooling model that ignores individual variability entirely (t(39) = 2.24; mean = 0.077 

[0.0074; 0.15]; p = 0.031, Figure 4A).  

  The question remains, however, of whether it is necessary to derive these priors from a 

separate, held-out group of participants. One of the benefits of the hierarchical Bayesian approach 

is that it generates group-level priors and individual estimates using the same data. This method 

circumvents the need to discard data for the purpose of generating reliable empirical priors because 

it accomplishes both tasks at the same time. Furthermore, because of the two-way nature of 

hierarchical modeling – group estimates affect individual estimates and vice versa – the parameter 

values for the participants that would normally be discarded will also be more accurate. For these 

held-out participants, this is the equivalent of the comparing the no pooling approach to the 

empirical pooling approaching, which we have already shown increases predictive accuracy 

(Figure 4, A&B). 

 

A B

Figure 4: Extracting out-of-sample priors improves predictive accuracy when compared to full pooling and to no 
pooling, but not when compared to hierarchical pooling. (A) Mean of the log-likelihoods for held-out Block 4 data across 
40 participants for each of the four candidate models. Value closer to zero indicate higher predictive accuracy. Error bars 
reflect within-subject differences based on the method described in Cousineau (2015). (B) Plot of the difference in log 
likelihoods (model with out-of-sample priors – no pooling model) averaged across trials and MCMC samples for each subject, 
on held out Block 4 data. Positive values indicate that the model that uses out-of-sample empirical priors has greater 
predictive accuracy. A paired t-test shows that held-out log likelihoods are significantly higher on average for the model with 
out-of-sample priors, meaning that out-of-sample priors lead to greater predictive accuracy on held-out data (t(39) = 3.18; 
mean = 0.039 [0.014; 0.065]; p = 0.0029). (C) Plot of the difference in log likelihoods (hierarchical model - model with out-of-
sample priors) averaged across trials and MCMC samples, for each subject on held out Block 4 data. Positive values indicate 
that the full hierarchical model has greater predictive accuracy. A paired t-test shows that held-out log likelihoods are 
significantly higher on average for the hierarchical model, meaning that hierarchically enforcing group-level priors leads to 
greater predictive accuracy that extracting the priors from held-out data (t(39)= 2.48; mean = 0.014 [0.0025; 0.025]; p = 0.018).
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To assess the computational benefits of extracting empirical priors from a held-out group of 

participants, we can compare the log-likelihood estimates from this model to those of the fully 

hierarchical approach. Figure 4C shows that log-likelihood estimates for Block 4 data are in fact 

higher when the group-level priors are derived and fit simultaneously using a hierarchical Bayesian 

approach on just 40 participants, compared to when the priors are derived from a separate group 

of 165 people (t(39)= 2.48; mean = 0.014 [0.0025; 0.025]; p = 0.018). Thus, the hierarchical model 

allows for greater predictive accuracy, while also cutting down the number of participants needed 

to fit the model by over 80% (40 participants instead of 205).  

 

Discussion 

 In this paper, we have provided an overview of the implementation and benefits of 

hierarchical Bayesian models of reinforcement learning. We began with a tutorial on how to fit 

such models, ranging from potential parameters to include to how and when to incorporate priors. 

We found that fitting all three versions of the reinforcement learning model hierarchically, 

predictive accuracy was highest for the model that included dual learning rates as well as a 

stickiness parameter (M3). In the subsequent section, we focused on M3 specifically and compared 

its performance across four different model-fitting techniques. 

 In line with previous work (Daw, 2011; Efron, 1996; Gershman, 2016), we have argued that 

data-driven group-level priors improve reinforcement learning models in several ways. Their 

inclusion constitutes a reliable middle-ground in the variance-bias tradeoff, as it allows for subject-

specific estimates and individual differences, while also constraining these estimates based on the 

group. This approach aids in parameter identifiability, as it pushes unidentifiable parameters 

towards a group average. The improvements group-level priors provide become evident when we 

compare the predictive accuracy of reinforcement learning models with no group-level constraints 

to those with empirical priors. 

 Furthermore, we have compared the hierarchical model’s performance to that of a model that 

also leverages empirical priors, but derives them from a separate dataset. Doing so reveals that the 

benefits of the hierarchical model are two-fold: not only does it predict held-out data with greater 

accuracy, it does so with significantly fewer data points and, consequently, is more efficient when 

considered in an experimental context. As data collection takes time and slows scientific progress, 

we see this as an important virtue of the hierarchical approach.  
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 Although it is not the main focus of the paper, we believe that Bayesian models of 

reinforcement learning also provide a more transparent handling of uncertainty than methods that 

rely on approximating point estimates. They do so by yielding a full distribution of possible values 

for all parameters, which avoids the potential issues caused by selecting just one value through 

maximum likelihood estimation. The fully Bayesian hierarchical model we have described 

maintains a measure of epistemic uncertainty (the uncertainty derived from trying to map 

observations onto parameters) throughout, acknowledging the ambiguity inherent in 

computational modeling at each level of analysis.   

 There are nonetheless several potential limitations to our methodology. To begin with, we 

have limited our model comparisons to a small number of relatively straightforward reinforcement 

learning models in order to focus on a detailed illustration of hierarchical modeling. It is possible 

that more complex versions, which include more than just our maximum number of five 

parameters (M3), would yield different results. In those cases, one might imagine out-of-sample 

priors outperforming other alternatives, though this remains to be seen.  

 Secondly, model performance is inherently tied to the metric used to assess it. Throughout 

this paper, we have computed or estimated log-likelihoods on held-out data for each subject in 

order to compare one model fitting technique to the next. While this method is valid and echoes 

more standard information criteria, it does not predict observations from new subjects. Relatedly, 

one comparative advantage of deriving empirical priors from held-out data is that the estimated 

group distribution is derived from a group of participants that is kept separate. Thus, it is possible 

that this distribution would generalize better to new people, as it is more removed from the in-

sample group. Future work should explore the effect of hierarchical modeling decisions on 

prediction to new subjects and experimental contexts.  

 Individual difference measures play a crucial role in computational modeling in psychology 

and neuroscience. Latent parameters from reinforcement learning models, for example, are often 

correlated with other behaviors and demographic variables, or even with clinical traits in 

psychiatric populations (Huys et al., 2016; Maia & Frank, 2011; Radulescu et al., 2016; Rouhani 

& Niv, 2019). In the field of cognitive neuroscience, parameter estimates are also often used to 

track correlates of brain activity, such as BOLD activation (Behrens et al., 2007; Cohen et al., 

2017; McClure et al., 2003; Niv, 2009; O’Doherty et al., 2007; O’Reilly, 2013). Given the 

prevalence of these methods, it is evident that the extraction of reliable parameter estimates is 
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crucial: the strength of a study’s conclusions is contingent on the stability of the estimated 

parameters. In recognition of this delicate situation, hierarchical models, especially the Bayesian 

models we describe here, provide an effective method for generating reliable estimates with 

appropriate levels of uncertainty.   
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