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Abstract

Information experiences complex transformation processes in the brain, involving
various errors. A daunting and critical challenge in neuroscience is to understand the
origin of these errors and their effects on neural information processing. While previous
efforts have made substantial progresses in studying the information errors in bounded,
unreliable and noisy transformation cases, it still remains elusive whether the neural
system is inherently error-free under an ideal and noise-free condition. This work brings
the controversy to an end with a negative answer. We propose a novel neural
information confusion theory, indicating the widespread presence of information
confusion phenomenon after the end of transmission process, which originates from
innate neuron characteristics rather than external noises. Then, we reformulate the
definition of zero-error capacity under the context of neuroscience, presenting an
optimal upper bound of the zero-error transformation rates determined by the tuning
properties of neurons. By applying this theory to neural coding analysis, we unveil the
multi-dimensional impacts of information confusion on neural coding. Although it
reduces the variability of neural responses and limits mutual information, it controls the
stimulus-irrelevant neural activities and improves the interpretability of neural
responses based on stimuli. Together, the present study discovers an inherent and
ubiquitous precision limitation of neural information transformation, which shapes the
coding process by neural ensembles. These discoveries reveal that the neural system is
intrinsically error-prone in information processing even in the most ideal cases.

Author summary

One of the most central challenges in neuroscience is to understand the information
processing capacity of the neural system. Decades of efforts have identified various
errors in nonideal neural information processing cases, indicating that the neural system
is not optimal in information processing because of the widespread presences of external
noises and limitations. These incredible progresses, however, can not address the
problem about whether the neural system is essentially error-free and optimal under
ideal information processing conditions, leading to extensive controversies in
neuroscience. Our work brings this well-known controversy to an end with a negative
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answer. We demonstrate that the neural system is intrinsically error-prone in
information processing even in the most ideal cases, challenging the conventional ideas
about the superior neural information processing capacity. We further indicate that the
neural coding process is shaped by this innate limit, revealing how the characteristics of
neural information functions and further cognitive functions are determined by the
inherent limitation of the neural system.

Introduction 1

Human brain features the capacity to process the external world information [1, 2]. This 2

information processing process is triggered by external inputs and consists of various 3

forms of information coding in neural ensembles [3–5]. As shown by vast amount of 4

neuroscience studies, neural coding begins with the neural response initiation that is 5

characterized by neural tuning properties [6–8]. Then, the coding process is essentially 6

involves with the spike propagation in neural clusters [9–12], creating ubiquitous 7

information transformation between neurons. Given with the extensive presence of the 8

inter-neuron information transformation, a pivotal and meaningful question is how 9

precisely the information can be transmitted. 10

Considering the precision limit of neural information transformation, the precision 11

reductions implied by bounded, unreliable and noisy transformation processes are taken 12

into account naturally. It has been unveiled that a significant loss of information is 13

implied when the information amount exceeds the channel capacity of the 14

synapse [13–18], leading to a precision reduction by incomplete information. Moreover, 15

various information errors (e.g., errors caused by the channel unreliability [19] or 16

external random noises [20–22]) are discovered during the transformation, reflecting the 17

fact that precision is frequently limited by the nonideal transformation environments in 18

neural systems. These progresses, however, might lead to a misconception that the 19

precision limit only exists when the transformation is nonideal. Till now, it still lacks of 20

evidence to characterize the neural system as an inherently error-free information 21

processing system. 22

In this work, we put an end to this controversy by indicating the widespread 23

presence of a kind of innate and noise-independent error, namely information confusion. 24

The confusion happens when different information cases elicit the same receiver 25

response. Different from the information losses and errors during the nonideal 26

transformation, the confusion originates after the transmitted information arrives at the 27

receiver and does not rely on external noises or boundaries. We demonstrate that neural 28

information confusion is caused by the interactions between synaptic connection states 29

and neural tuning properties. Therefore, the precision limit implied by information 30

confusion is intrinsically determined by elementary attributes of the neural system. 31

Inspired by Shannon’s information theory, we approach this precision limit in the 32

concept of the zero-error capacity, which is the upper limit or supremum of information 33

transfer rates without error (confusion) in a given channel [23–25]. Specifically, we 34

abstract the information space of any given neuron as a graph, which contains all the 35

possible information cases that can be transmitted to this neuron and all the confusion 36

relationships between these cases. Based on previous studies [26,27], we propose an 37

optimal method to measure the neural zero-error capacity of any neural information 38

space. This systematic theory is demonstrated as mathematically justified and 39

experimentally practical in our work. 40

We then apply our theory to analyze the effects of information confusion on neural 41

coding. We develop a practical detection method for the information confusion during 42

the coding process. To our surprise, the analysis shows that although the confusion 43

reduces the neural response variability and limits mutual information, it is not 44
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completely detrimental for neural coding. This finding may rely on the fact that the 45

stimulus-irrelevant neural activities are hard to survive through the confusion process. 46

These experimental discoveries may deepen the understanding of how neural coding is 47

essentially shaped by the innate neural information processing limit. 48

Results 49

Neural information confusion 50

Neural information channel 51

Using a leaky integrate-and-fire model [7, 8, 28], we can simulate the electrodynamics of 52

a neural population (see the section “Leaky integrate-and-fire networks” in Methods). 53

Then we present a model to define the channel between an arbitrary neuron Ni and its 54

receptive field RF (Ni). 55

In neural systems, the intra-system receptive field for a given neuron is defined as 56

the set of all its pre-synaptic neurons. At any moment, each of those pre-synaptic 57

neurons has its own membrane potential state, and there would be an action potential if 58

the membrane potential reaches the spiking threshold. For the given neuron, those 59

states can determine its pre-synaptic inputs, so it is reasonable to treat the ensemble of 60

them as a message sent from the receptive field to this neuron. In this process, the 61

channel is defined as the set of all synaptic connections between the given neuron and 62

its pre-synaptic neurons (Fig. 1a). 63

Fig 1. An example of the defined neural population. (a) A neural population
defined with 6 neurons is set to code the stimulus sequence. The network includes 4
input neurons (N2, N3, N5 and N6) and 2 intermediary neurons (N1 and N4). There
are 2 channels showed by dashed boxes in the network, which respectively describe the
neural information transformation from {N1, N3, N5} to N4 as well as that from

{N2, N4, N6} to N1. (b) The tuning curve Ĝ (rmax, spre, σ) of each input neuron is
defined with spre ∈ [−10, 10] and σ = 10

3 . The estimated tuning curves of intermediary
neurons (dashed lines with circle markers) share similar variation trends with the
observed neural responses (marked by bars). And all tuning curves are shown in the
normalized form (rmax = 1). (c) The neural responses of the neural population in the
interval of 500 ms.

In a neural population, the stimulus inputs may not be received by all neurons at 64

the same time. We refer the neurons that receive stimuli directly as input neurons. For 65

these neurons triggered by other neurons in their receptive fields but not receive stimuli 66

directly, we refer them as intermediary neurons. The response preference of each input 67

neuron is characterized by a bell-shaped tuning curve Ĝ (rmax, spre, σ), where rmax is 68

the maximum response rate, spre is the preferred stimulus and σ represents the width of 69

the tuning curve. As for intermediary neurons, we do not define explicitly their 70

activities by presetting their tuning curves since they are not directly triggered by 71

stimuli. Theoretically, we can estimate their tuning properties based on the tuning 72

curves of the neurons in its receptive field and the synaptic connections between them 73

(Fig. 1b and the section “Tuning curve and neural response” in Methods). In Fig. 1b, 74

it can be seen that the estimated tuning curves share similar trends with the observed 75

neural responses in our experiment, which accords with the common interpretation that 76

neurons tend to make stronger responses at the peaks of tuning curves [6, 29–31]. With 77

a given tuning curve, each neuron Ni can response to stimuli S (Fig. 1c). 78

October 14, 2020 3/25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2020. ; https://doi.org/10.1101/2020.10.19.345249doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.19.345249
http://creativecommons.org/licenses/by/4.0/


Neural information confusion in the information space 79

The neural information transmits in discrete and finite form. We define the neural 80

information space of neuron Ni as IN (Ni), which contains all possible variant cases of 81

the neural information that Ni can receive. 82

To give a clear vision, we mainly present our theory on the spike-based neural 83

information [32,33], where the neural response is either 1 for spiking or 0 for 84

non-spiking (we also demonstrate our theory can be applied on the potential-based 85

neural information [34,35] in the section “Spike-based information space” in Methods). 86

In the neural network, the neural responses of one neuron can also be the bases of 87

synaptic inputs of its post-synaptic neurons. More specifically, in our simplification, the 88

transmitted spike-based information is the excitatory or inhibitory postsynaptic 89

potential. To simulate it, we define the binary vector P̂i for the neural spiking states of 90

neurons in RF (Ni), and the non-recurrent connection strength matrix C that indicates 91

the synaptic connections between Ni and other neurons in the neural network (see the 92

section “Spike-based information space” in Methods). Then, let Ci be the i column of 93

C, the neural information can be represented by the Hadamard product � of P̂i and Ci 94

(Fig. 2a and the section “Spike-based information space” in Methods). Thus, for each 95

given neuron Ni, the neural information space IN (Ni) (see the section “Spike-based 96

information space” in Methods, equation (12)) is defined as 97

IN (Ni) = {Ît | ∀t, Ît = P̂i (t)� Ci}, where the matrix C can be set as either constant 98

for simplification or dynamical to fit into the plasticity mechanisms (see the section 99

“Neural zero-error capacity definition for the dynamical transformation process” in 100

Methods). 101

Fig 2. Visualizations of neural information space and graph. (a) We define
that RF (Ni) consists of 2 types of neurons with unique tuning curves. Assume that
each j type includes only one neuron, which is marked as Nj . We know that
|IN (Ni) | = 4 and all the possible cases are given above. (b) Assume that both of the
1st and 2nd type of neurons can activate Ni independently. Thus, the connected
component of G (Ni) contains only the neural information cases where one or both of
the 1st and 2nd type of neurons spike. As for the rest cases, they are isolated nodes. (c)
The construction of G (Ni)

n
based on G (Ni).

We address two main questions about the neural information space IN (Ni): How 102

many elements can there be in the space? What is the topology structure of the space? 103

For the first question, if C maintains constant, the variability of P̂i will be the 104

determinant of the cardinal number of the space. We propose a method to work out 105

Ni = {Ni,j}j∈N, which is the set of all neural types classified based on tuning properties 106

(the section “The cardinal number of spike-based information space” in Methods). 107

Ideally, each type of neurons might all emit spikes or all keep silence when a given 108

stimulus comes in. Thus, the total variation of neural spiking states is measured as 109

|IN (Ni) | = 2|Ni| (see the section “The cardinal number of spike-based information 110

space” in Methods. As for the potential-based information, |IN (Ni) | is also measured 111

in the section “The cardinal number of potential-based information space” in Methods). 112

For the second question, the topology concerned here is relevant with information 113

confusion. In Shannon’s theory, there is a confusion relation between two messages if 114

each of them might be mistook for the other. For neural systems, we define that two 115

neural information cases are confused with each other if and only if they can induce 116

same neural response of the receiver neuron. Specifically, the neural response of receiver 117

neuron is demanded explicitly to be spiking in our research. Thus, we represent the 118

confusion relationships based on a binary tuple G (Ni) = (IN (Ni) , E), where ÎxÎy ∈ E 119

if and only if both Îx and Îy can make Ni spike when Ni is not in the refractory period 120
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(see the section “Potential-based information graph definition” in Methods). Fig. 2a-b 121

show an example of G (Ni). In our framework, the proposed information confusion is 122

naturally determined by the interactions between synaptic connection states and neural 123

tuning properties, which does not rely on noises. 124

Neural zero-error capacity 125

In information theory, zero-error capacity is used to indicate the supremum of 126

information transformation rates with zero probability of error in a given channel. 127

Following the classical definition, we define the neural zero-error capacity Θ (Ni) as 128

Θ (Ni) = sup
n∈N

log2
n

√
α (G (Ni)

n
), (1)

where α is an independence number (see the section “Zero-error capacity definition of 129

the neural information space” in Methods). In (1), G (Ni)
n

can be understood as a 130

neural information graph corresponds to the process during which RF (Ni) sends 131

message to neuron Ni via the channel n times (Fig. 2c and the section “Zero-error 132

capacity definition of the neural information space” in Methods). In other words, we 133

can treat G (Ni) as the graph that indicates the relations between basic neural 134

information symbols, and G (Ni)
n

is the graph for the relations between the neural 135

information sequences constructed by n symbols. Apart from that, in the neural 136

information graph, the existence of edge between two nodes means that there is a 137

confusion relation between them. Thus, the independence number α measures the 138

maximum number of neurons can be picked from the graph and have no confusion with 139

each other (see Fig. 3a and the section “Zero-error capacity definition of the neural 140

information space” in Methods). To sum up, Θ (Ni) measures the supremum of 141

information rate can be sent from RF (Ni) to Ni with no confusion. 142

Fig 3. An example of the neural zero-error capacity measurement. (a) We

mark the maximum independent set (MIS) in G (Ni) and G (Ni)
2

with red boxes. (b) It
is clear that there are 8 cliques in G (Ni) in total and all of them have been given above.
As for K∗i , since there is an isolated node (marked by a green box) in the graph and it
can be only included in one clique, which is K8, we can conclude that µ = 1. Similarly,
θ = 1 since there is no other clique in this connected component. (c) For the G (Ni) in
Fig. 2b, we randomly search the zero-error transformation cases in G (Ni)

n
with

n = 1, · · · , 11 by solving the independent set searching problem. For each G (Ni)
n
, we

randomly pick its independent set 1000 times to obtain a set of zero-error information
rates. Moreover, based on our theory, an upper bound of Θ (Ni) can be predicated
(marked by red circles), which equals 1. (d-e) The upper bound is marked as “UB”. Ni
is independent means that its spiking state is independent from spiking states of the
neurons in RF (Ni), which indicates that Ni must be an input neuron rather than an
intermediary neuron.

An important property of equation (1) is that the neural zero-error capacity of any 143

given neural information graph has a close relation with the maximum clique 144

assignment λ of the graph. In our work, we suggest that any neural information graph 145

G (Ni) has a maximum clique assignment λi determined by the properties of RF (Ni) 146

(see the section “The maximum clique of neural information graph” in Methods, (24) 147

and (25)). Then, because of the independence number α satisfies α ≤ λ−1, we can tell 148

that λ can offer an upper bound for the neural zero-error capacity, which is given as 149

Θ (Ni) ≤ log2 λi
−1 (see the section “Upper bound estimation method” in Methods, 150

(22)). Thus, combine the results in (24) and (25) with (22) in the section “Upper bound 151
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estimation method” in Methods, we can know for any neuron Ni, there is 152

Θ (Ni) ≤

{
|Ni|, E = ∅
log2 µ

−1
[
θ + θ

∑
j (1− τj)

]
, E 6= ∅

(2)

where τj indicates if Îj can activate neuron Ni. τj equals 1 when Îj can make Ni spike 153

and equals 0 when Îj can not. 154

We need to pick one node from G (Ni) that has minimum degree (the number of 155

cliques that include this node is smallest), let K∗i be the set of all cliques that contain 156

this node, and let K∗∗i be the set of all cliques in the same connected component with 157

this node. Then, define |K∗i | = µ and |K∗∗i | = θ. Based on (33), (34) and (35) (see the 158

section “The maximum clique of neural information graph” in Methods), µ and λ can 159

be easily calculated. Fig. 3b is an example of the calculation. More examples can be 160

found in S1 Fig in Supporting information. 161

When G (Ni) is not a complete graph, the upper bound predicted above can be 162

proved as the supremum. As for the case when G (Ni) is a complete graph, Θ (Ni) = 0 163

can be directly obtained, thus the upper bound measurement is not necessary (see the 164

section “Upper bound estimation method” in Methods). Therefore, our method can 165

measure the limitation of the zero-error transformation rate efficiently in any possible 166

case. 167

In real neural systems, the situations with E 6= ∅ are ubiquitous. Thus, we suggest 168

that the limited neural zero-error capacity described by (2) is of great significance in 169

understanding the limitation of neural information processing. Shannon had proved 170

that the zero-error information rate of a given channel cannot be decreased by 171

lengthening the message sequence (in other words, by increasing n of G (Ni)
n
) [23]. In 172

Fig. 3c, we demonstrate a sample of the neural zero-error information rate 173

measurement to show that the neural zero-error information rate is not decreasing 174

either (see the section “Upper bound estimation method” in Methods). More examples 175

can be seen in S2 Fig in Supporting information. In addition, many other basic cases 176

of the neural information graph and its neural zero-error capacity or the corresponding 177

upper bound are listed in Fig. 3d-f. 178

Up to now, we have introduced our neural information confusion theory based on the 179

spike-based information. For a neuron, if the neural zero-error capacity is reached by 180

the transformation rate, then there must exist information confusion; if it is not reached, 181

there still exists the probability of confusion. This theory can be applied to any kind of 182

finite and discrete neural information. To demonstrate its potential application in 183

neuroscience studies, we extend our analysis to a simulated neural network and show 184

how the information confusion affects the coding process. 185

Information confusion in the coding process 186

Neural information confusion detection 187

During neural coding, information is transmitted between neurons and frequently but 188

not necessarily involved with the information confusion. Apart from that, it is known 189

that the neural response preference contained in the neural information is summed and 190

transmitted as well, which usually implies a selectivity generalization along the neural 191

pathway (e.g., the selectivity generalization from the V1 neurons to MT neurons in the 192

visual system [36–38]). Due to the similarity between information confusion and 193

selectivity generalization, it might be misunderstood that they are two equivalent 194

conceptions. Here, we propose a method to directly detect the information confusion in 195

neural coding and distinguish it from the selectivity generalization. 196
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We demonstrate a dyeing experiment involves with a network of 500 neurons. In the 197

experiment, the network is assumed to code a stimulus sequence consists of different 198

vectors. Each type of input neuron with unique stimulus selectivity is marked with a 199

specific color and all intermediary neurons are initialized with no innate preference and 200

marked as white (Fig. 4a). For simplification, we use numbers to index those vectors 201

in our results (Fig. 4c). In each iteration, the intermediary neurons are dyed 202

depending on the relation between the neural responses of it and its pre-synaptic 203

neurons (see Fig. 4b and the section “Dyeing method for visualizing the existence of 204

selectivity generalization phenomenon” in Methods). Thus, we can see how the 205

selectivity is generalized through the information transformation process (see Fig. 4d. 206

And more examples can be seen in S3a-d Fig in Supporting information). The 207

corresponding spiking states of this neural population can be seen in Fig. 4e, where we 208

compare the observed responses of intermediary neurons with the tuning curves of 2 209

types of input neurons. We show that many intermediary neurons show responses to the 210

stimuli out of the stimulus range preferred by any single type of input neurons, which 211

offers verification for the results in Fig. 4d. 212

Fig 4. Detecting neural information confusion during neural coding. (a)
There are 2 types of input neurons (respectively marked as pure blue and red). The
stimulus sequence consists of various vectors, among which, the blue and red vectors are
respectively preferred by the input neurons with same color. (b) In each iteration, if an
intermediary neuron spikes, then it is dyed with color averaged from its previous color,
and the colors of the lately spiked neurons in its receptive field. Thus, if the color of an
intermediary neuron is bulish-red (the color has non-zero red and blue components),
then it has multi-stimulus preference. (c) The index of stimulus. (d) The dyeing result
after coding the given stimulus sequence in 100 iterations. (e) The red and blue areas
respectively stand for the normalized tuning curve of the input neurons with same color.
The gray areas measure the response of intermediary neurons. (f) The information
confusion can be detected based on the color variation trajectory.

We know that the existence of neural information confusion means that different 213

neural information implies same neural response of the receiver neuron. In the dyeing 214

experiment, each spiking intermediary neuron is dyed with the color averaged from its 215

previous color and the colors of the lately spiked neurons in its receptive field. So, if 216

there is only one message that makes this neuron spikes, then its color will straightly 217

approach to the averaged color of the spiking neurons described by this information 218

(with a straight trajectory). Otherwise, if the variation trajectory of its color is winding 219

or oscillating (not only one message can activate this neuron), then we suggest that 220

there exists the neural information confusion (see the section “Detect the neural 221

information confusion based on the dyeing experiment result” in Methods). We use the 222

experiment data to show several examples for the color variation trajectory 223

with/without confusion in Fig. 4f. More examples can be seen in S3e-f Fig in 224

Supporting information. As for the selectivity generalization, it only requires the color 225

has at least two non-zero color components (Fig. 4b) and the variation trajectory can 226

be either straight or winding. Together, we conclude that the information confusion is a 227

special case of the selectivity generalization with a winding color variation trajectory 228

and thus they are not equivalent conceptions. 229

The effects of information confusion 230

After detecting the existence of information confusion during the coding process, a 231

natural thought is to wonder if the confusion affects neural coding. To answer this 232

question quantitatively, it is necessary to review three main parameters widely used in 233
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neural coding studies, which are the total response entropy H (measures the total 234

variation of neural response), the noise entropy H∗ (measures the variation of neural 235

response that cannot be explained by the stimulus) and the mutual information H∗∗ 236

(measures the variation of neural response that can be explained by the stimulus). They 237

satisfy H = H∗ +H∗∗ (see the section “Calculate H, H∗ and H∗∗” in Methods for 238

detail). Based on the noise entropy H∗, we can further define H∗s for each input 239

stimulus s (measures the variation of neural response that can not be explained by s). 240

The smaller H∗s is, the less noise the coding process of s produces. In other words, the 241

neural activities can be better explained by s. Thus, we define the stimulus subset that 242

can better explain the neural activities as Ŝ = {s | s ∈ S, H∗s < H∗}. Then, we define 243

the coding scope as ζ = |Ŝ|
|S| (see the section “Definition of the coding scope” in 244

Methods) to measure the proportion of the stimulus that can better explain neural 245

activities in all stimuli. 246

What interests us is if there exists information confusion, then what will happen to 247

H, H∗, H∗∗ and ζ? We demonstrate the changes of these four parameters in an 248

experiment with a random stimulus sequence S (s ∈ [−10, 10]). The experiment is 249

carried out 3000 times. For neuron Ni, we assume its receptive field RF (Ni) contains k 250

neurons (k ∈ [40, 60]). In each iteration, every neuron in RF (Ni) is set to has a tuning 251

curve Ĝ
(
50, spre,

10
3

)
, where spre ∈ [−10, 10]. And the synaptic connection between Ni 252

and RF (Ni) has a connection strength randomly picked from [−1, 1]. Based on those 253

settings, we can simulate almost all the cases of neurons’ behavior in neural systems. 254

In the simulation, there are 357 iterations without confusion and 2643 iterations 255

with confusion (about 88.1% iterations). When information confusion exists, we find 256

that the neural response variability (H), stimulus-irrelevant neural activity variability 257

(H∗) and stimulus-triggered neural response variability (H∗∗) are reduced when the 258

information is transmitted from pre-synaptic neurons to the post-synaptic neurons in 259

most cases. The average reductions are 2.871 bits (H), 1.963 bits (H∗), and 0.909 bits 260

(H∗∗), and the average reduction proportions are 68.4% (H), 71.6% (H∗), and 62.3% 261

(H∗∗) respectively. In contrast, the coding scope (ζ) usually increases after the 262

transformation, the average increase is 0.257 bits and the increase proportions is 62%. 263

See Fig. 5a-b for these results in detail. 264

Fig 5. Effects of neural information confusion on neural coding. (a-b) The
pre-synaptic frequency distributions of H, H∗, H∗∗ and ζ (averaged between all
pre-synaptic neurons) and the corresponding post-synaptic frequency distributions. (c)
The variation distribution of ζ and H∗∗

H . (d) We show the occurrence probability of
each variation case and distinguish them based on the variation trend of H∗. Then we
show the variations of H∗∗

H with respect to different cases.

To explore how the stimulus-related information evolve in the neural system, we use 265

H∗∗

H (a parameter that measures the proportion of explainable part in the total neural 266

response variation) in the following analysis and make a direct comparison between the 267

H∗∗

H with the coding scope. Their relationship can be defined as 4 cases: case 1 means 268

ζ and H∗∗

H increase; case 2 means both ζ and H∗∗

H decrease; case 3 means that ζ 269

increases while H∗∗

H decreases; case 4 means that ζ decreases while H∗∗

H increases. In 270

Fig. 5c, we show the distribution of these 4 cases with the synaptic connection state 271

(the ratio of all inhibitory to all excitatory synaptic strength absolute values), which 272

suggests that the synaptic connection situation cannot offer a clear discrimination 273

between them. Thus, the variations of ζ and H∗∗

H (respectively measured by the ratio of 274

post-synaptic ζ to pre-synaptic ζ and the ratio of post-synaptic H∗∗

H to pre-synaptic 275

H∗∗

H ) can not be simply explained by synapse-relevant factors. In Fig. 5d, the 276

occurrence probability of each case is measured. It can be seen that case 1 is the most 277
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frequently occurred case (probability is 0.778) while the other three cases are scarce. 278

Then, we compare the variation of H∗ (measured by the ratio of post-synaptic H∗ to 279

pre-synaptic H∗), and turns out that the cases where ζ increases (case 1 and 3) 280

correspond to the most significant reduction in H∗ (the ratio of post-synaptic H∗ to 281

pre-synaptic H∗ is less than 3 : 5), while the cases where ζ decreases (case 2 and 4) 282

correspond relatively slight reduction or even increase in H∗. Moreover, we also 283

compare the variation distribution of H∗∗

H between the cases with coding scope increase 284

and decrease, showing thatH
∗∗

H has accordant variation trend with the coding scope ζ 285

(increase or decrease together). Another experiment result can be seen in S4 Fig in 286

Supporting information. 287

To sum up, the information confusion has both detrimental and beneficial effects on 288

neural coding. On the one hand, the total variability H of neural responses is reduced, 289

which limits the mutual information H∗∗; On the other hand, it is highly possible that 290

H∗ decreases when the stimulus-irrelevant neural activities are controlled and both ζ 291

and H∗∗

H increase, which means that the interpretability of neural responses is improved 292

and the activities can be better explained by a wider range of stimuli. 293

Discussion 294

Summary of our work 295

In the present study, we reveal an innate limit of the information processing in neural 296

system by indicating the pervasive information confusion phenomenon during the 297

information transformation between neurons. 298

We first define the neural information confusion in the content of neuroscience and 299

propose a practical method to work out the upper bound of the information 300

transformation rate with zero error of any given neuron (neural zero-error capacity). 301

This systematic theory can be applied to any kind of discrete and finite neural 302

information (e.g., spike-based or potential-based). For a neuron, if the neural zero-error 303

capacity is reached, then there must exist neural information confusion; if it is not 304

reached, there still exists the possibility of neural information confusion. 305

We then propose a practical method to analyze the effects of information confusion 306

on neural coding. The results suggest that the effects of information confusion can be 307

either detrimental or beneficial. On the one hand, it controls the total variability H of 308

neural responses and limits the mutual information H∗∗. On the other hand, it 309

improves the interpretability of neural responses as that the stimulus-irrelevant neural 310

activities are controlled. 311

As unveiled in our work, the precision limit caused by information confusion features 312

widespread presence during the neural information processing, and is intrinsically 313

determined by neural tuning properties and synapse states. This innate limit plays a 314

critical role in characterizing the neural coding process, leading to the variation of coded 315

information along the information transformation pathway. In sum, we demonstrate 316

that neural system is not an inherently error-free information processing system even 317

under ideal conditions, and its essential limit in information transformation creates 318

significant effects in neural coding. 319

Neural information confusion and relevant topics 320

Besides information confusion, there are three other resources related with the 321

information limitation of neural systems. The first one is the information loss caused by 322

channel capacity [13–18]. Information loss happens when the entropy of information 323

exceeds the channel capacity (the maximum transfer rate that the channel supports). 324
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Information loss concerns about the limited information transfer rate rather than the 325

transfer precision. So it is more related to the reduction of the total response entropy H 326

in our research [19–22]. 327

The second one is the information limiting correlation observed experimentally. The 328

origin of it still remains controversial. A classical perspective argues that the similarity 329

in tuning properties implies the correlations among neurons for a target stimulus and 330

affect neural coding significantly [39–41]. These positive correlations are inevitably 331

caused by the shared input connections between neurons with similar tuning 332

characteristics, which suggests that shared connections between neurons might lead to 333

limited information [42]. Recent studies have contradicted this hypothesis in several 334

aspects. Rather than originate from the shared connections, the limitations are 335

suggested to be caused by the correlations proportional to the product of the derivatives 336

of the tuning curves. They spontaneously emerge in the finite information encoding and 337

storage process of a sufficiently large neural population [43–45]. Despite the controversy 338

on the origin mechanism, it is confirmed that the correlation can limit information in 339

neural coding (similar with the information loss). A similar finding is proposed in our 340

research, which suggests that compared with the pre-synaptic variability (information) 341

of neural responses, the post-synaptic one is frequently controlled. 342

The third one is the information error (e.g., errors caused by the channel 343

unreliability [19] or random noises [20–22]). Compare with information confusion, there 344

are two main differences. The first difference lies in that the information confusion does 345

not focus on the noises added to the neuron, confusion is determined congenitally by the 346

tuning properties, even in an ideal situation with no external noise. The second 347

difference is that the transfer losses and errors happen during the transformation while 348

the confusion happens after the information arrives at the receiver. 349

Methods 350

Leaky integrate-and-fire networks 351

Here we describe the network with leaky integrate-and-fire neurons demonstrated in our 352

research. 353

Network definitions 354

In our paper, the recurrent network of leaky integrate-and-fire neurons is used to create 355

the electrodynamics involved in the neural information transformation process. Rather 356

than actuate all neurons directly based on the stimulus as previous researches did [43], 357

we distinguish input neurons from the neuron set and define the stimulus as the 358

synaptic drive for those neurons. 359

The basic element in our simulation is the differential equation for the membrane
potential time evolution of leaky integrate-and-fire neurons with current synapses,
which is defined as

∂Vi
∂t

= −Λ
(
Vi − V̂

) Vi − V̂
τp︸ ︷︷ ︸

(I)

+
∑
j

Wij

∑
n

Qij
(
t−
(
tnj + tj→i

))
︸ ︷︷ ︸

(II)

+ IN ′ (i)
(
Fi
(
S (t)

))
︸ ︷︷ ︸

(III)

. (3)
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In this equation, item (I) is the leak current. Λ denotes the Heaviside step function, 360

τp is the leaky membrane time constant and V̂ is the resting potential. If the membrane 361

potential Vi is not less than V̂ , then neuron Ni will be involved in a hyperpolarization 362

process described based on the leaky mechanism. 363

(II) is the recurrent item, which consists of the spiking mechanism and the synaptic 364

input. In this item, W is the weighted adjacent matrix that defines the connection 365

strength between neurons, 366

Wij =

{
−
(
V − V̂

)
, j = i

r ∈ [Wmin,Wmax] , j 6= i,
(4)

where Wmin and Wmax are respectively the minimum and maximum connection
strength, and V is the spiking threshold. And Qij

(
t−
(
tnj + tj→i

))
is the synaptic

response to the spike, which is given as

Qij
(
t−
(
tnj + tj→i

))
=

ξ
(
t−
(
tnj + tj→i

)) e−(t−(tnj +tj→i))/tj→i

tj→i
, j = i

Λ
(
t−

(
tnj + tj→i

)) e−(t−(tnj +tj→i))/τm

τm
, j 6= i

(5)

in which τm is the membrane time constant. And ξ is given as 367

ξ (r) =

{
1, r ≤ 0

0, r > 0
(6)

In equation (5), tnj ≤ t denotes the time of the nth existing spike of neuron j. And tj→i 368

measures the time cost, if j = i, then tj→i is the refractory period; If j 6= i, then tj→i is 369

the average transmission delay of the spike. Based on equations (4) and (6), 370

ξ
(
t−
(
tnj + tj→i

))
= 1 if and only if t ≤ tnj + tj→i, which means the neuron is still in 371

the refractory period. Furthermore, based on equations (4) and (5), it is clear that if 372

j 6= i, then Qij
(
t−
(
tnj + tj→i

))
corresponds to a current pulse with the random 373

connection strength r selected based on an uniform distribution. As for the case with 374

j = i, if the membrane potential of neuron i reaches the spiking threshold V , then it 375

emits a spike, after which it experiences a polarization and the voltage is reset to V̂ . 376

(III) is the stimulus drive item, whose definition is learned from [43]. In this item, I 377

is the indicative function and N ′ is the index set of all input neurons. 378

If neuron i is an input neuron, then Fi is the synaptic drive of it based on the 379

stimulus S. The definition of Fi can vary based on research targets. In our research, the 380

synaptic drive is defined to represent the characterized response preference of input 381

neurons. More specifically, each input neuron Ni has its own tuning curve Gi, which 382

decides its response strength to given stimuli (see the subsection in Methods for 383

details). Then, we let Fi (S (t)) = Gi (S (t)), thus the stimulus preference of each input 384

neuron is defined. 385

Network parameters 386

Here we present the simulation parameters for the recurrent network. Note that none of 387

the results depend critically on the parameter values. Generally any bio-plausible 388

setting for the neuron populations can be considered. 389
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Table 1. Parameter settings for networks

Par Value Par Value

V̂ 0 V 5
Wmin −0.5 Wmax 1
τp 20 ms τm 2 ms
tj→i 3 ms ti→i 2 ms

Neural information confusion and neural zero-error capacity 390

In this section, we propose a practical method to measure the upper bound of neural 391

zero-error capacity directly based on the properties of the given neuron. 392

Tuning curve and neural response 393

In our research, the stimulus S is set as a sequence where each S (t) is selected 394

randomly and uniformly from the stimulus interval [Smin,Smax]. 395

The tuning curve of any given input neuron is defined as Ĝ (rmax, spre, σ), in which 396

the preferred stimulus spre is randomly selected from [Smin,Smax] based on a random 397

distribution F . In our research, F is set to be an uniform distribution for simplification. 398

And the maximum response rate rmax is randomly selected from an empirical interval 399

[40, 60] based on an uniform distribution. σ represents the width of the tuning curve, 400

which is set randomly from [Smax−Smin

12 , Smax−Smin

6 ]. 401

In detail, the mathematical definition of the tuning curve is given as 402

Ĝ (s) = rmax exp

(
−0.5

(
s− spre

σ

)2
)
. (7)

As for the intermediary neuron, its estimated tuning curve can be calculated based 403

on the recurrent connection strength matrix W and the tuning curves of input neurons. 404

Assuming that each input neuron Ni has a tuning curve Ĝi, the tuning curve Ĝj of a 405

given intermediary neuron Nj is estimated as 406

Ĝj (s) = I[0,+∞)

∑
i

 ∏
(x,y)∈

−−→
Rij

Wxy

 Ĝi (s)

 , (8)

where I is the indicative function and
−→
Rij is the shortest route from Ni to Nj . Based 407

on equation (8), we actually let the tuning curve of intermediary neuron be shaped by 408

the postsynaptic potentials of input neurons. 409

Neural information space definition 410

There are two kinds of widely used neural electrical information forms. The first one is 411

the spike-based and the second one is the potential-based. The spike-based information 412

has 2 symbols (spiking and non-spiking) while the potential-based information has 413

multi-symbol (the number of symbols is determined by the number of all possible 414

potential states that a neuron can have). For simplification, we use the spike-based 415

information to introduce our theory, yet all the necessary definitions for both types of 416

information will be given as following. 417

Spike-based information space To define the spike-based information space, it 418

is necessary to define the neural spiking states in the receptive field of each given 419
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neuron. For a neural population with n neurons, we define that each neuron Ni is 420

equipped with a spiking state Pi (t) at moment t, in which 421

Pi (t) =

{
1, Ni emits a spike at moment t,

0, Ni emits no spike at moment t.
(9)

Then, the spiking states vector P̂i within the intra-system receptive field of any neuron 422

Ni is given as 423

P̂i =



P1

...
Pi−1

Pi+1

...
Pn


. (10)

In equation (13), we exclude the spike state of Ni itself to leave out the recurrent 424

information. Analogously, we can also define a non-recurrent connection strength matrix 425

C to indicate the synaptic connections between neurons by exclude the recurrent items 426

in W . More specifically, we leave out the all elements on the primary diagonal of W 427

C =



W21 · · · W1k · · · W1n

...
. . .

...
...

... W(k−1)k

...
... W(k+1)k

...
...

...
. . .

...
Wn1 · · · Wnk · · · Wn(n−1)


. (11)

Let Ci be the i column of C, by calculating the Hadamard product � of P̂i and C,
we can represent any possible case of the spike information that Ni can receive, based
on which, the spike-based information space IN (Ni) is defined as

IN (Ni) =
I1...
In

∣∣∣∣∣∀t,
I1...
In

 =

P
i
1 (t)
...

Pin (t)

⊙
C1i

...
Cni


 . (12)

Potential-based information space The main difference between spike-based 428

and potential-based information lies in that the first one only indicates whether a 429

neuron spikes or not while the second one can not only show the spiking state, but also 430

indicate the membrane potential. 431

For a given neuron Ni, based on (3), its potential state is Vi (t). When the potential 432

state reaches to V , there will be a spike. In real experiment, the measurement 433

technology can not realize arbitrary precision, there must be a precision limitation of it. 434

So, we can treat Vi (t) as discrete. 435

Following the idea used in the definition of the spike-based information space, we 436

define the potential states vector V̂ i within the intra-system receptive field of any 437
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neuron Ni is given as 438

V̂ i =



V1

...
Vi−1

Vi+1

...
Vn


. (13)

And the corresponding potential-based information space is given as

IN (Ni) =
I1...
In

∣∣∣∣∣∀t,
I1...
In

 =

V
i
1 (t)
...

V in (t)

⊙
C1i

...
Cni


 . (14)

Measure the number of elements in the neural information space 439

The cardinal number of spike-based information space After defining the 440

spike-based information space IN (Ni) = {În}n∈N, a natural thought that comes to 441

mind is how many elements there might exist in it. Since similar tuning properties 442

usually result in the similar responses to given stimuli, we can reasonably measure the 443

total variation of neural spiking states based on the characterized response preference. 444

More specifically, we use the Wasserstein distance to indicate the differentiation 445

between the tuning curves of two neurons Nx, Ny, which is given as 446

dW

(
Ĝx, Ĝy

)
= inf

Σ∈Π(Ĝx,Ĝy)
E(a,b)∼Σ (‖a− b‖2) , (15)

where Π
(
Ĝx, Ĝy

)
is the set of all possible joint distributions of Ĝx and Ĝy. For each 447

given joint distribution Σ, equation (15) takes one sample (a, b) from it at each time and 448

eventually works out the expectation of L2 norm ‖ · ‖2 of all samples. Then, we use the 449

infimum of all possible expectation values to represent the distance between Ĝx and Ĝy. 450

Based on this definition, we define an equivalence relation ∼W that Nx ∼W Ny if 451

and only if dW

(
Ĝx, Ĝy

)
≤ γ, in which γ is a given threshold. Thus, for neuron Ni, its 452

intra-system receptive field RF (Ni) can be classified into RF (Ni) / ∼W , where each 453

element is a neuron type with specific characterized response preference. In our research, 454

we mark that RF (Ni) / ∼W= Ni, where Ni = {Ni,j}j∈N+ . If we let γ approach to 0, 455

we know that the homogeneity between same type neurons will be increased. Thus, 456

under ideal conditions, we assume that for each type of neurons, they can either all emit 457

spikes or all keep silence when a given stimulus comes in. As a result, the total variation 458

of neural spiking states in the intra-system receptive field of neuron Ni is defined as 459

|IN (Ni) | = 2|Ni|. (16)

The cardinal number of potential-based information space Following the 460

idea discussed previously, we continue to use the equivalence relation ∼W to obtain Ni. 461

We assume that the measurement accuracy limitation of the membrane potential is ∆V . 462

Thus, for any given neuron Ni, the number of all possible potential states of it can be 463

measured as max(V )−min(V )
∆V , where max (V ) is the maximum membrane potential and 464

min (V ) is the minimum one. So, the total variation of neural spiking states in the 465
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intra-system receptive field of neuron Ni is defined as 466

|IN (Ni) | =
(

max (V )−min (V )

∆V

)|Ni|

. (17)

Neural information graph definition 467

Spike-based information graph definition Up to now, we have defined the 468

spike-based information space and analysed its cardinal number. It is time to turn to 469

the topology structure of the space. In our research, the concerned topological relation 470

is related to confusion. For nervous system, we define that two spike-based information 471

cases Îx and Îy of |IN (Ni) | are confused with each other if and only if both of them 472

can make Ni spike when Ni is not in the refractory period. To be more specific, we 473

define an equivalence relation ∼C to represent the confusion relation mentioned above, 474

which is given as Îx ∼C Îy if and only if 475

b
∑
j Îx,j

V
c × b

∑
j Îy,j

V
c > 0, (18)

it is clear that (18) means that both of the postsynaptic potentials correspond to Îx and 476

Îy can reach to the spiking threshold V of Vi. 477

To seek for a better representation of the confusion relation, we propose the 478

definition of spike-based information graph. For each given neuron Ni, its spike-based 479

information graph is defined as 480

G (Ni) = (IN (Ni) , E) , (19)

where E ⊂ IN (Ni)× IN (Ni), and ÎxÎy ∈ E if and only if Îx ∼C Îy. 481

Here we suggest that each connected component in G (Ni) must be a clique, or in 482

other words, a complete subgraph. The proof is trivial since ∼C is an equivalence 483

relation and has transitivity. 484

Potential-based information graph definition The potential-based 485

information graph is very similar to the spike-based one. The only one difference 486

between them is about the definition of the equivalence relation ∼C . 487

At first, we define a equivalence threshold εe > ∆V . For two potential-based 488

information cases Îx and Îy, let us assume that the membrane potential states of Ni 489

receive them are Vi

(
Îx

)
and Vi

(
Îy

)
, both of which can be calculated based on (3). 490

Then, if 491

|Vi
(
Îx

)
− Vi

(
Îy

)
| < εe, (20)

then we treat the membrane potential states described by Îx and Îy are same as each 492

other. 493

Then, we can define that 494

• if b
∑
j Îx,j

V
c × b

∑
j Îy,j

V
c > 0, then Îx ∼C Îy; 495

• given b
∑
j Îx,j

V
c × b

∑
j Îy,j

V
c = 0, if |Vi

(
Îx

)
− Vi

(
Îy

)
| < εe, then Îx ∼C Îy. 496

Based on the above definition, we can follow the method in (19) to define the 497

potential-based information graph. 498
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Zero-error capacity definition of the neural information space 499

Up to now, we have obtained the neural information space and the corresponding graph 500

(both the spike-based and the potential-based). We then turn to measure the zero-error 501

capacity based on the graph. Note that what we will discuss is independent from the 502

selection of neural information type, so we do not distinguish between different types of 503

neural information. 504

In the information theory, if we treat G (Ni) as the representation of relation 505

between symbols (nodes in the graph), then G (Ni)
n

represents the relation between the 506

sentences consists of n symbols. We know that if there is an edge between two nodes, 507

then the symbols or sentences represented by them are easy to be confused with each 508

other. For informatics, confusion is a kind of error. So, a meaningful question is to ask 509

about how many symbols or sentences from a given system can be transmitted with 510

zero-error at most. To answer this question, Shannon defined zero-error capacity [23], 511

which is given as 512

Θ (Ni) = sup
n∈N

log2
n

√
α (G (Ni)

n
), (21)

where α is the independence number, which indicates how many nodes can be included 513

in the maximum independent set of G (Ni). 514

In this section, we will not go deeper into the discussion of how Shannon create this 515

concept step by step. What we want to emphasize is that Shannon and later 516

researchers [23,26,27], discovered that for any graph G (Ni) 517

log2 α (G (Ni)) ≤ Θ (Ni) ≤ log2 λ (G (Ni))
−1
, (22)

where λ (G (Ni)) is the maximum clique assignment. Based on this inequality, when it is 518

hard to work out Θ (Ni) directly, we can still obtain a bounded measurement of it. 519

The maximum clique of neural information graph 520

A relevant concept of the neural information graph is the maximum clique assignment. 521

In graph theory, the maximum clique assignment of a graph G is defined as 522

λ (G) = min
X

max
K∈K

∑
v∈K

Xv, (23)

where X is any random distribution X = {Xv | v ∈ V } and K is the set of all cliques in 523

the graph. 524

In our research, the maximum clique assignment λi of any given G (Ni) satisfies 525

• if E = ∅, then 526

λi = 2−|Ni|, (24)

• if E 6= ∅, then there is

µ

θ + θ
∑
j

(1− τj)

−1

≤ λi ≤ 2−|Ni|

∑
j

τj

 , (25)

where we pick one node from G (Ni) that has minimum degree (which also means 527

that the number of cliques include this node is smallest). We then let K∗i be the 528

set of all cliques that contain this node, K∗∗i be the set of all cliques in the same 529

connected component with this node. Next, define |K∗i | = µ and |K∗∗i | = θ. Apart 530
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from that, V is the spiking threshold and τj = τ
(
Îj

)
is used to indicate whether 531

Îj can activate neuron Ni, which is defined as 532

τ
(
Îj

)
= b

∑
k Îj,k

V
c. (26)

It is clear that τ
(
Îj

)
equals 1 when Îj can make Ni spike and equals 0 when Îj 533

can not. 534

To provide a better understanding for (24) and (25), we give the following proof for 535

this theorem. 536

Proof 1 For G (Ni), we know 537

• if E 6= ∅, we can know that
∑
j τj > 1. Then, based on equation (23), we assign

2−|Ni| to the nodes in G (Ni), and assign 0 to the edges in G (Ni), meaning that

λi ≤ max
K∈Ki

∑
v∈K

Xv = 2−|Ni|

∑
j

τj

 . (27)

Then, we can also consider the dual problem of the definition of λ, which is given
by

λi = min
X

max
K∈Ki

∑
v∈K

Xv

= max
Y

min
v∈V (G(Ni))

∑
K3v

YK , (28)

where Y is a any random distribution Y = {YK | K ∈ Ki}. The assignment of Y 538

is a little tricky, which is given as 539

– first, we assign |G (Ni) / ∼C |−1 to each connected component in G (Ni). For 540

instance, if there are 4 connected component in G (Ni), each of them is 541

assigned as 1
4 . Moreover, since E 6= ∅, we know that the number of connected 542

components can be worked out by |G (Ni) / ∼C | = 1 +
∑
j (1− τj); 543

– second, for a connected component containing k cliques, assign each clique as 544

k−1|G (Ni) / ∼C |−1. 545

Based on the assignment described above, it is easy to know

λi ≥

min
v∈V (G(Ni))

∑
K3v

YK = |K∗i ||K∗∗i |−1|G (Ni) / ∼C |−1, (29)

which can be rewritten as 546

λi ≥ µ

θ + θ
∑
j

(1− τj)

−1

. (30)

Thus, based on equation (27) and (30), we can prove that (25) is right when E 6= ∅. 547
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• If E = ∅, we know that
∑
j τj ≤ 1 and there is no edge in G (Ni). So, the

maximum clique exists in this graph is each individual node itself. Then, following
the second assignment method we use above, we can also prove

λi ≤ max
K∈K

∑
v∈K

Xv = |K∗i ||K∗∗i |−1|G (Ni) / ∼C |−1, (31)

λi ≥

min
v∈V (G(Ni))

∑
K3v

YK = |K∗i ||K∗∗i |−1|G (Ni) / ∼C |−1, (32)

where |K∗i | = 1, |K∗∗i | = 1 and |G (Ni) / ∼C |−1 = 2−|Ni|. Thus, (24) is correct 548

when E = ∅. Here we don’t repeat the proof in detail. 549

Specially, to make the calculation easier, for (30), we can have following analyses for 550

µ 551

•
∑
j τ
(
Îj

)
< 2|Ni| means that not all neural information cases can make Ni spike 552

and G (Ni) is not a complete graph. Under this condition, we know there must be 553

at least one isolated node in the graph, and it implies that 554

µ = 1, (33)

since the isolated node is included in only one clique, which is the node itself. 555

•
∑
j τ
(
Îj

)
= 2|Ni| means that any neural information case can activate Ni, so

G (Ni) is a complete graph. Under this condition, every node is included by same
amount of cliques. For convenience, we mark 2|Ni| = n. We then randomly pick
one node from G (Ni), as for its corresponding K∗i , we know that

µ = |K∗i,1|+ · · ·+ |K∗i,n|

= 1 +
n−1∑
m=1

Cmn−1, (34)

where K∗i,j ⊂ K∗i is the set of all the cliques that include this node and have j 556

nodes in total. 557

We can also tell that the θ in equation (30) can be worked out by

θ = |K∗∗i,1|+ · · ·+ |K∗∗i,n|

= |V (G∗∗) |+
∑

v∈V (G∗∗)

deg(v)∑
j=1

j−1Cjdeg(v), (35)

where G∗∗ is the given connected component and deg (v) measures the degree of v. An 558

important property is that if µ = 1, which means that the connected component is a 559

isolated node, we can know θ = 1 as well since there is only one clique in the connected 560

component (the node itself). 561

Upper bound estimation method 562

Based on (24) and (25), we can simply deduce that for any given G (Ni) 563

• if E = ∅, then 564

λ−1
i = 2|Ni|, (36)
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• if E 6= ∅, then 565

λ−1
i ≤ µ

−1

θ + θ
∑
j

(1− τj)

 , (37)

so combine (36), (37) with (22), we can know 566

Θ (Ni) ≤

{
|Ni|, E = ∅
log2 µ

−1
[
θ + θ

∑
j (1− τj)

]
, E 6= ∅

(38)

An important thing is that (38) is actually the supremum of the neural zero-error 567

capacity if G (Ni) is not a complete graph. The following is the proof 568

Proof 2 If G (Ni) is not a complete graph, then we know
∑
j τ
(
Îj

)
< 2|Ni|, which can 569

be divided into two cases 570

•
∑
j τ
(
Îj

)
= 0, which means that E = ∅ and there is no edge in the graph. Under 571

this condition, the biggest independent set in G (Ni) is itself, which deduces that 572

α = 2|Ni|. So, based on (36), we can know that 573

α = λ−1, (39)

combined with (22), (39) implies that 574

@ε > 0,Θ (Ni) + ε ≤ log2 λ
−1, (40)

thus the upper bound predicted by us is the supremum when
∑
j τ
(
Îj

)
= 0. 575

• 0 <
∑
j τ
(
Îj

)
< 2|Ni|, which means that E 6= ∅ and there must be at least one 576

isolated node in the graph. It is clear that the isolated node has the smallest degree, 577

being 0. Based on (33), we know that µ = 1 under this condition. Similarly, θ = 1 578

can be obtained by (35). Then, (37) can be written as 579

λ−1
i ≤ 1 +

∑
j

(1− τj) , (41)

where we know that
∑
j (1− τj) measures the number of isolated nodes. And each 580

isolated node is a connected component. As for the un-isolated nodes, they are 581

connected with each other and belongs to one connected component. Thus, the 582

number of connected component number of G (Ni) is 1 +
∑
j (1− τj). 583

Since the maximum independent set contains only one node from each connected 584

component, we can know α = λ−1. Thus, by following (40), we can prove that the 585

upper bound is actually the supremum when 0 <
∑
j τ
(
Îj

)
< 2|Ni|. 586

To conclude it, we know that when
∑
j τ
(
Îj

)
< 2|Ni|, the upper bound is the 587

supremum. 588

As for the case when G (Ni) is a complete graph, we can directly know that 589

Θ (Ni) = 0 since you can never pick two nodes that have no edge between them in the 590

graph. So, the measurement of upper bound is no longer needed. 591
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Neural zero-error capacity definition for the dynamical transformation 592

process 593

In our paper, we suggest that the synaptic plasticity mechanisms can also be included in 594

the definition of neural information space to realize the dynamical information 595

transformation process with plasticity. 596

Let us consider a plastic neural channel that transmits information to neuron Ni in a 597

long enough interval [t1, tn]. The neural plasticity adjusts the synaptic connection 598

strength described by Ci dynamically, thus the neural information space IN (Ni) and 599

all the concepts dependent on it change through the interval. On the one hand, at each 600

moment, we can find a specific state for all those issues. Therefore, this dynamical 601

information transformation process can be described by a sequence of states {Gt (Ni)}, 602

where each Gt (Ni) corresponds to the state at moment t. At each moment t, RF (Ni) 603

sends a symbol in Gt (Ni) to Ni. On the other hand, the whole process can also be 604

treated as that RF (Ni) sends a n-symbol-message in
∏
t Gt (Ni) to Ni. To summarize, 605

while the channel state might be changed by plasticity over time, at each moment we 606

can still obtain a corresponding static state. So, we can use a group of static neural 607

information graphs to construct a dynamical neural information transformation process. 608

Following the second perspective, the neural zero-error capacity can be defined 609

dynamically by replacing G (Ni) as
∏
t Gt (Ni) in (1), and its upper bound is given as 610

Θ (Ni) ≤
∑
t

log2 λ
−1
i,t , (42)

where each λi,t can be measured following (24) or (25). 611

The effect of neural information confusion on the coding process 612

This part is concerned with the experiment methodology related to the coding scope 613

narrowing phenomenon in our study. 614

Dyeing method for visualizing the existence of selectivity generalization 615

phenomenon 616

To offer a visualization for the selectivity generalization phenomenon, here we propose a 617

simple method: 618

• First, for a neural population described by the leaky integrate-and-fire network, 619

we assume that there exist k types of input neurons, each type has its unique 620

stimulus preference; 621

• Second, for each type of input neurons, we use a unique color to dye them as the 622

initial color. As for the intermediary neuron, they are all initialized as white; 623

• Third, in each iteration of the experiment (where the neural population is set to 624

code a stimulus sequence), if an intermediary neuron spikes, then it is dyed with 625

the color averaged from its previous color and the colors of the lately spiked 626

neurons in its receptive field. 627

Based on this setting, if the final color of an intermediary neuron contains the color 628

components of more than one type of neurons in its receptive field, then its color must 629

be averaged from more than one type of spiking neurons. In other words, this neuron 630

has acquired multi-stimulus preference and the selectivity has been generalized during 631

the information transformation. 632
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Detect the neural information confusion based on the dyeing experiment 633

result 634

To offer a detection for the neural information confusion in real experiments, we propose 635

a method that can be applied directly to the results of the dyeing experiment. 636

Given that in the dyeing experiment, if an intermediary neuron spikes, then it is 637

dyed with the color averaged from its previous color and the colors of the lately spiked 638

neurons in its receptive field. So, it is easy to know that for any intermediary neuron Ni 639

• if G (Ni) contains no edge (there is no confusion), then there are two possible 640

cases: 641

– Ni never spikes, so the color of it always reminds to be the initial color. The 642

variation trajectory of the color of Ni in the color space is a point; 643

– there is only one message that can activate Ni, so the color of Ni gradually 644

approaches to the averaged color of the lately spiked neurons described by 645

this message. The variation trajectory of the color of Ni in the color space is 646

straight. 647

• if G (Ni) contains at least one edge (there is confusion), then the color of Ni will 648

approach to the averaged color of the lately spiked neurons described by different 649

messages in different iterations. So, the variation trajectory of the color of Ni in 650

the color space is winding. 651

Based on those discussions, the detection of the neural information confusion can be 652

realized by verifying whether the color variation trajectory is winding. 653

Calculate H, H∗ and H∗∗ 654

In neuroscience, there are three parameters relevant with the coding efficiency 655

measurement. They are the total response entropy H (measures the total variation of 656

neural responses), the noise entropy H∗ (measures the variation of neural responses that 657

can not be explained by stimulus) and the mutual information H∗∗ (measures the 658

variation of neural responses that can be explained by stimulus). In [6], researchers have 659

proposed a practical method to calculate them, which are also used in our paper. 660

The first step in this method is to obtain the conditional probability distribution 661

P (r | s) of each neuron, which denotes the probability of that the spiking rate of the 662

neuron is r when the stimulus input is s. Of course, this distribution can be obtained 663

directly in a real neural coding experiment. As for the computational experiment used 664

in our paper, this distribution can be worked out based on the tuning curve, which is 665

given as 666

Pi (r | s) =

(
Ĝi (s)T

)rT
(rT )!

e−Ĝi(s)T , (43)

where Ĝi is the tuning curve of Ni and T is the duration. 667

Then, the second step is to work out the total response distribution Pi (r), which 668

measures the probability of that the spiking rate of Ni is r. In our paper, since the 669

probability distribution of the stimulus P (S) has been given, so we have 670

Pi (r) =
∑
s Pi (r | s)P (s). 671

Finally, we can calculate the parameters respectively as 672

H (Ni) = −
∑
r

Pi (r) log2 Pi (r) , (44)
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and 673

H∗ (Ni) =
∑
s

P (s)

(
−
∑
r

Pi (r | s) log2 Pi (r | s)

)
, (45)

and 674

H∗∗ (Ni) = H (Ni)−H∗ (Ni) . (46)

Definition of the coding scope 675

For a given neuron Ni or a neural population {Ni}i∈I that codes the input stimulus, its 676

efficiently coded information set is defined as 677

Ŝ = {s | s ∈ S, H∗s < H∗}, (47)

where H∗s = −
∑
r Pi (r | s) log2 Pi (r | s) denotes the noise entropy of neural coding for 678

s (measures the variation of neural response that can’t be explained by s). 679

Then, we define the coding scope as 680

ζ =
|Ŝ|
|S|

. (48)

Based on those definitions, it is easy to know that the coding scope ζ measures the 681

proportion of the stimuli that can better explain the neural responses. 682
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33. Cessac B, Paugam-Moisy H, Viéville T. Overview of facts and issues about neural
coding by spikes. Journal of Physiology-Paris. 2010;104(1-2):5–18.
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Supporting information

S1 Fig. An example for measuring µ, θ and
∑
j (1− τj). In the example, the

neural information graph G (Ni) is a complete graph with 4 nodes (meaning that 4 cases
of neural information can be transmitted to Ni). Although we can directly know that
Θ (Ni) = 0, we still show the upper bound predicted by our theory is no less than
Θ (Ni) (of course, we have suggest that the upper bound predicted by us is not
supremum when G (Ni) is a complete graph). Given that every node in G (Ni) has the
same degree (degree is 3) and there is

∑
j (1− τj) = 0, we can randomly pick one node

(rounded by green box) as the node with minimum degree value. Then, we can
enumerate all the cliques that contain this node (in gray boxes) and work out that
µ = 8. Similarly, we enumerate all the cliques in the same connected component with
this node and work out that θ = 15. Thus, the upper bound predicted by us is given as
log2

15
8 . It is clear that the upper bound is greater than Θ (Ni) = 0.

S2 Fig. Several examples of the predicated upper bound by our theory.
(a-f) Information rate measurement for the neural information transformation cases
with zero-error. All experimental settings remain the same as Fig. 3c. (a-b) are the
experiment for G (N1), where the upper bound predicted by our theory is log2 3. (c-d)
are the experiment for G (N2), where the upper bound is predicted as log2 7. (e-f) are
the experiment for G (N3), where the upper bound is 2.

S3 Fig. Several dyeing experiments for neural information confusion
detection. (a-d) The dyeing results for various neural populations after encoding the
given stimulus sequence in 100 iterations. All experimental settings remain the same as
Fig. 4d. (e-f) The visualization examples of the color variation trajectories for
distinguishing confusion and non-confusion. All results are obtained based on the
dyeing experiments on a neural population with 1000 neurons.

S4 Fig. Another example for the effects of neural information confusion
on neural coding. This is another experiment result obtained based on the same
settings of the experiment in Fig. 5. (a-b) The pre-synaptic frequency distributions of
H, H∗, H∗∗ and ζ (averaged between all pre-synaptic neurons), and the corresponding
post-synaptic frequency distributions. (c) We show the occurrence probability of each
variation case and distinguish them based on the variation trend of H∗. Then we show
the variations of H∗∗

H with respect to different cases.
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