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Abstract 35 

Neural mismatch responses have been proposed to rely on different mechanisms, including 36 

prediction-related activity and adaptation to frequent stimuli. However, the cortical hierarchical 37 

structure of these mechanisms is unknown. To investigate this question, we used functional 38 

magnetic resonance imaging (fMRI) and an auditory oddball design with a suited control 39 

condition that enabled us to delineate the contributions of prediction- or adaptation-related brain 40 

activation during deviance processing. We found that while predictive processes increased with 41 

the hierarchical position of the brain area, adaptation declined. This suggests that the relative 42 

contribution of different mechanisms in deviance processing varies across the cortical 43 

hierarchy. 44 
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Introduction 45 

Detecting changes in our environment is a cornerstone of perception. A vast amount of 46 

research effort has been put into the investigation of neural correlates of deviance processing 47 

including neuroimaging (Kim, 2014) and electrophysiological approaches (Näätänen et al., 48 

2011; Polich, 2007; Stefanics et al., 2014), showing increased activity to deviant stimuli in 49 

different variants of oddball designs. Recently, hierarchical predictive processing has been put 50 

forward as a theoretical underpinning for these deviance-related effects (Clark, 2013; Garrido 51 

et al., 2009; Stefanics et al., 2014; I. Winkler & Czigler, 2012). From this point of view, the 52 

increase of neural activation for unexpected rare stimuli compared to expected frequent ones 53 

stems from a comparison process where a prediction is compared with the actual sensory input. 54 

If prediction and input do not match, as is the case when a rare – and thus unexpected – deviant 55 

stimulus is presented, a prediction error signal would be elicited. This prediction error signal 56 

would then be propagated upwards in the hierarchy and compared with the predictions of the 57 

next higher level and so forth, enabling efficient information processing (Clark, 2013; Stefanics 58 

et al., 2014).  59 

However, while predictive processing offers a compelling explanation for deviance-60 

related effects, it is not the only process that could be responsible for an observed difference 61 

between rare and frequent stimuli. Stimulus-specific adaptation has also been proposed to play 62 

an important role during deviance processing (Jääskeläinen et al., 2004; May & Tiitinen, 2010; 63 

Nelken, 2014). In this theoretical framework, the difference between rare and frequent stimuli 64 

stems from habituation of neuronal responsiveness to the frequent stimulus, which thus elicits 65 

a smaller response compared to the non-adapted cells (fresh afferents) activated by the rare 66 

stimulus. In other words, deviance responses in typical oddball designs are not driven by 67 

genuine mismatch responses but by altered, i.e., reduced responses to the standard stimulus. 68 

At first glance, prediction and adaptation seem opposing. However, there is evidence 69 
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that both processes can be present in the brain to variable degrees in the same region or at the 70 

same time (Ishishita et al., 2019; Laufer et al., 2008; Opitz et al., 2005; Parras et al., 2017). One 71 

way to delineate the contribution of these two mechanisms to deviance effects is to compare 72 

the responses of deviant and standard stimuli to a control stimulus (Maess et al., 2007; Parras 73 

et al., 2017; Schröger & Wolff, 1996). The control stimulus is usually physically identical to 74 

the deviant but presented in a multi-standard paradigm where all stimuli are displayed with the 75 

same stimulus probability as the deviant. Comparing the deviant with the control thus offers a 76 

way to distill deviance-related activity without being contaminated by adaptation. Additionally, 77 

comparing the control with the standard stimulus shows adaptation-related activity.  78 

Using this experimental procedure, there is initial evidence from an electrophysiological 79 

study in rodents (Parras et al., 2017) that the relative contribution of prediction vs. adaptation 80 

increases from subcortical areas to auditory cortex. In line with these results, two neuroimaging 81 

studies specifically targeting the auditory cortex showed the presence of both mechanisms 82 

within Heschl’s gyrus and superior temporal gyrus (STG) with an anterior-posterior gradient in 83 

humans (Laufer et al., 2008; Opitz et al., 2005). Furthermore, an electrocorticography (ECoG) 84 

study found that temporal areas were related to predictable changes, while frontal areas indexed 85 

unpredictable changes (Dürschmid et al., 2016). However, to date, there are no brain imaging 86 

studies that investigated the effects of prediction vs. adaptation across all typical cortical brain 87 

areas commonly showcasing deviance-related effects (Kiehl et al., 2005; Kim, 2014). Besides 88 

primary and secondary auditory cortex, encompassing Heschl’s gyrus and STG, several frontal 89 

and parietal areas included in ventral and dorsal attention networks, as well as subcortical areas, 90 

reliably show increased activation to deviant vs. standard stimuli (Kiehl et al., 2005; Kim, 91 

2014). Thus, deviance responses are processed on different hierarchical levels traversed during 92 

auditory processing from the thalamus to Heschl’s gyrus and STG and onwards to higher order 93 

association cortices (Li et al., 2019; Parras et al., 2017).  94 

This hierarchical dimension of deviance processing, i.e., whether and how mechanisms 95 
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vary depending on the cortical region, has not been investigated yet. In order to address this 96 

gap, we conducted a high-powered fMRI study (n = 54)  using an oddball design with a suited 97 

control condition that allowed to delineate prediction- and adaptation-related mechanisms in 98 

typical areas involved in auditory deviance processing in humans.  99 

Methods 100 

Participants 101 

Fifty-nine right-handed participants with normal hearing and no history of neurological 102 

or psychiatric illness took part in the experiment and were compensated with €10/h. Four 103 

participants had to be excluded due to excessive head movements (> 3 mm) during recording 104 

and one participant because of anatomical MRI anomalies. The remaining 54 participants (39 105 

female) were aged from 18 to 33 (M = 23.20, SD = 3.04). The local ethics committee has 106 

approved the study and all procedures were carried out in accordance with the Helsinki 107 

declaration.  108 

Experimental procedure and stimulus material  109 

Stimuli consisted of pure sine-tones of 600, 800, 1000, 1200, and 1400 Hz. Stimulus 110 

duration amounted to 100 ms, including rise/fall times of 10 ms. The sound volume was chosen 111 

to be easily audible during functional sequences but not unpleasantly loud. In oddball blocks, 112 

the 800 and 1200 Hz tones served as deviant and standard counterbalanced across participants. 113 

The probability of deviant to standard stimuli was 20:80 and stimulus presentation was 114 

pseudorandomized so that no two deviants were presented consecutively. In control blocks, all 115 

five tone stimuli were presented randomly with a probability of 20% (see Figure 1A). 116 

Throughout, participants’ task was to respond to target stimuli of 300 ms duration, which were 117 

randomly interspersed in the sequence. In total, 40 targets were included, the frequency of 118 

which conformed to the stimulus probability of the current block, i.e., all tone frequencies could 119 

be potential targets. Interstimulus intervals ranged from 1.04 to 17.25 s (M = 3.01, SD = 2.06) 120 
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and were derived using optseq2 (Greve, 2009). Four different optseq sequences were computed 121 

and randomly assigned to two runs per participant, creating 12 different sequence combinations. 122 

In total, two runs of 250 stimuli (ca. 13 min each) were acquired and separated by a short break. 123 

One run could start with either an oddball or control block, which seamlessly changed to control 124 

or oddball block in the middle of the run. Whether the participants started with the oddball or 125 

control block was counterbalanced across participants. The second run was always presented 126 

in reverse order, e.g., if the first run was oddball-control, the second run was control-oddball. 127 

Before starting the experiment, a short practice block of about 1 min was presented in order to 128 

accustom the participants to the task. Stimuli in this practice block were structured like the 129 

experimental block that followed, i.e., they also included brief oddball and control sequences. 130 

At all times, a white fixation cross was presented on a black screen, and participants were asked 131 

to fixate during the run. Stimulus presentation and response collection were controlled by the 132 

Figure 1. Experimental paradigm and mask for data analysis. (A) Schematic of oddball and control 
sequence. In the experiment, the frequencies of deviant and standard stimulus were counterbalanced 
across participants. (B) Decomposition of observed responses into prediction-related and adaptation-
related activity. (C) Illustration of the mask applied during the cluster-based permutation. Red areas 
were included in the mask. 
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software Presentation (Version 21.1, Neurobehavioral Systems, Albany, CA). 133 

Data acquisition and preprocessing 134 

A 3-Tesla Siemens Magnetom Prisma with a 20-channel Siemens Head Matrix Coil 135 

(Siemens Medical Systems, Erlangen, Germany) was used to aquire MRI data. In a first step, 136 

we obtained a high-resolution T1-weighted scan with 192 slices for anatomical localization and 137 

coregistration (repetition time (TR) = 2130 ms, echo time (TE) = 2.28 ms, flip angle (FA) = 8°, 138 

field of view (FOV) = 256 × 256 mm, voxel size = 1 × 1 × 1 mm). A shimming field was applied 139 

in order to minimize magnetic field inhomogeneity. Then, we recorded two functional datasets 140 

per participant (2 runs) consisting of 353 volumes and 42 slices each by means of a T2*-141 

weighted echoplanar sequence sensitive to blood oxygenation level-dependent (BOLD) 142 

contrast (TR = 2300 ms, TE = 30 ms, FA = 90°, FOV = 216 × 216 mm, voxel size = 3 × 3 × 3 143 

mm).  144 

Preprocessing relied on SPM12 v7771 (Wellcome Department of Cognitive Neurology, 145 

London, UK) and the Data Processing & Analysis of Brain Imaging (DPABI) 4.3 toolbox (Yan 146 

et al., 2016) in MATLAB. We removed the first five data volumes to account for spin saturation 147 

effects. Then, slice-scan-time correction and realignment using a six-parameter (rigid body) 148 

linear transformation was performed. In a next step, we co-registered anatomical and functional 149 

images and segmented these into gray matter, white matter and cerebrospinal fluid. Finally, we 150 

normalized functional data to Montreal Neurological Institute (MNI) standard space using 151 

DARTEL (Ashburner, 2007), resampled it to 3 mm isotropic voxels and spatially smoothed it 152 

with an 8 mm full width at half maximum Gaussian kernel.  153 

Statistical Analysis 154 

A general linear model (GLM) was estimated for each participant in the first-level 155 

analysis. In order to eliminate slow signal drifts, we used a high-pass filter with a cutoff of 128 156 

seconds. We applied SPM’s pre-whitening method FAST (Corbin et al., 2018) to model 157 

autocorrelations as recommended by Olszowy and colleagues (2019). The GLM design matrix 158 
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contained the onsets of deviants, standards, controls, targets and responses as predictors as well 159 

as six head movement parameters which represented predictors of no interest. We included two 160 

predictors accounting for the stimuli presented during the control condition. One used the onsets 161 

of the stimulus physically identical to the deviant (later compared with the deviant and 162 

standard), the other modeled the onsets of all other control stimuli. These onsets were then 163 

convolved with a 2-gamma hemodynamic response function to model the BOLD signal change 164 

for each predictor. Contrast images (deviant − standard) of the beta estimates were created for 165 

each participant for the second-level analysis.  166 

In order to isolate mismatch-related activity in the second-level analysis, we used the 167 

cluster-based permutation as implemented in PALM (A. M. Winkler et al., 2014). The voxel-168 

wise α amounted to .001; a cluster was deemed significant with α < .05. The number of 169 

permutations was set to 10000. Based on the recent meta-analysis of Kim (2014), the following 170 

areas of interest were identified and included in one mask based on the Harvard Oxford Atlas 171 

(Desikan et al., 2006): Heschl’s gyrus, superior temporal gyrus (STG), anterior and posterior 172 

cingulate cortex (ACC/PCC), supplementary motor area (SMA), inferior frontal junction (IFJ), 173 

inferior parietal lobule (IPL), temporo-parietal junction (TPJ), insula, thalamus and amygdala 174 

(see Figure 1C). Areas were chosen to correspond to the modality and task of the current study 175 

(auditory and task-irrelevant, see Kim, 2014 for details). In a second step, averaged betas of the 176 

found clusters were extracted for deviant, standard and control stimulus and z-standardized in 177 

order to account for differences in raw beta values between regions. For clusters comprising 178 

several distinct regions, we extracted the cluster averages using significant voxels encompassed 179 

in the original mask templates. Then, adaptation-related activity was computed as control – 180 

standard and prediction-related activity as deviant – control (see Figure 1B). These differences 181 

were then subjected to a repeated-measures ANOVA to check whether adaptation-related and 182 

prediction-related activity varied with brain region. When applicable, violations of sphericity 183 
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were corrected using the Greenhouse-Geisser procedure and corrected p-values as well as 𝜀𝜀̂–184 

values are reported. Two-sided t-tests were used to follow up significant interactions.  185 

Results 186 

Behavioral Data 187 

Performance on the duration task was very high, indexed by an average hit rate of 0.92 188 

(SD = 0.15), an average false-alarm rate of 0.003 (SD = 0.007), and an average d’ of 4.59 (SD 189 

= 0.77), indicating that participants were able to comply with the task easily.  190 

fMRI Data 191 

Main effects of mismatch processing. The cluster-based permutation revealed bilateral 192 

clusters of significant mismatch processing in the auditory cortex, including STG and Heschl’s 193 

gyrus (right: p < .001; left: p < .001), the ACC/SMA (right: p = .01; left: p = .002), the IFJ 194 

(right: p = .003; left: p = .002) and the AI (right: p = .008; left: p = .006). Furthermore, a 195 

significant cluster was found in the left IPL (p = .009). Please see Figure 2 for a visualization 196 

of clusters and beta-values and Table 1 for peak coordinates, t-statistics, and number of voxels 197 

(k) of the effects. 198 

Figure 2. Auditory mismatch responses in the brain. (A) Clusters found in the cluster-based permutation 
comparing deviant and standard stimulus. (B) Mean beta values extracted from the clusters found. The 
deviant, standard and control stimulus are displayed. ACC/SMA: anterior cingulate 
cortex/supplementary motor area, AI: anterior insula, IFJ: inferior frontal junction, IPL: inferior parietal 
lobule, STG: superior temporal gyrus. 
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Table 1. fMRI results of the oddball contrast. ACC/SMA: anterior cingulate 199 
cortex/supplementary motor area, AI: anterior insula, IFJ: inferior frontal junction, IPL: inferior 200 
parietal lobule, STG: superior temporal gyrus. 201 

Lobe Area Hemisphere Peak MNI coordinates t-statistics k 

   x y z max(t) mean(t)  

Temporal STG R 63 -18 0 9.51 5.63 286 

  L -54 -3 -6 7.80 5.34 264 

 Heschl R 51 -9 0 5.87 4.54 90 

  L -57 -15 6 6.03 4.68 131 

Frontal IFJ R 45 15 21 5.38 4.25 74 

  L -42 9 24 6.94 4.58 83 

 ACC/SMA R 6 9 51 4.73 3.85 19 

  L -9 6 48 6.04 4.16 57 

Parietal IPL L -39 -39 39 5.10 4.08 41 

Insular AI R 33 24 0 5.68 4.46 42 

  L -33 21 0 6.28 4.75 49 

 202 

Mechanisms of mismatch processing. We found that the contribution of the different 203 

mechanisms varied depending on the brain region. The repeated-measures ANOVA indicated 204 

a significant main effect of area (F(5,265) = 2.54, p = .05, 𝜀𝜀̂ = 0.75) and a significant interaction 205 

of area and mechanism (F(5,265) = 3.28, p = .01, 𝜀𝜀̂ = 0.79), while the main effect of mechanism 206 

did not reach significance (F(1,53) = 0.03, p = .86). We found significant adaptation in Heschl’s 207 

gyrus (t(53) = 4.64 , p < .001), STG (t(53) = 4.52, p < .001) and ACC/SMA (t(53) = 2.84, p = 208 

.006), while in the AI (t(53) = 1.81, p = .08), IPL (t(53) = 1.08, p = .29) and IFJ (t(53) = 1.57, 209 

p = .12), adaptation did not reach significance, see Figure 3A. In contrast, we observed 210 

prediction in the STG (t(53) = 3.02, p = .004), AI (t(53) = 3.75, p < .001), IPL (t(53) = 2.93, p 211 

= .005) and IFJ (t(53) = 3.18 , p = .002), while no significant prediction was found in Heschl’s 212 

gyrus (t(53) = 1.39, p = .17) and ACC/SMA (t(53) = 1.42, p = .16). 213 
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In order to test how the relative contribution of the mechanisms differs between areas, 214 

we computed the difference between adaptation-related and prediction-related activity. 215 

Mechanisms in Heschl’s gyrus differed significantly from AI (t(53) = -3.34 , p = .002), IPL 216 

(t(53) = -2.48 , p = .02) and IFJ (t(53) = -2.57, p = .01), STG differed significantly from AI 217 

(t(53) = -2.60, p = .01) and IFJ (t(53) = -2.38, p = .02). No other differences reached significance 218 

(all p > .05). See Figure 3B for a visualization of differences between cortical regions. 219 

Discussion 220 

In this study, we investigated the contribution of different mechanisms to explain 221 

increased deviance-related brain activation in humans. We found a hierarchical increase of the 222 

relation of predictive mechanisms vs. adaptation from primary auditory cortex across secondary 223 

auditory cortex to higher frontal and parietal regions.  224 

Our first analytical step, in which we compared oddball and standard stimuli, confirmed 225 

deviance-related activation in most of our ROIs. This includes bilateral Heschl’s gyrus and 226 

STG, which are commonly linked to auditory processing. Heschl’s gyrus encompasses the 227 

primary auditory cortex (Costa et al., 2011), while the STG is involved in higher-order auditory 228 

Figure 3. Mechanisms of mismatch generation. (A) Adaptation and prediction in different brain regions. 
Prediction-related activity is computed by substracting activity elicited by the control from the deviant. 
Adaptation-related activity is computed by substracting activity elicited by the standard from the control. 
Note that positive prediction-related activity is plotted upwards and positive adaptation-related activity is 
plotted downwards. (B) Relative contribution of the mechanisms, negative values correspond to a surplus 
of adaptation in the corresponding brain area, while positive values correspond to a surplus of prediction. 
Error bars depict standard error of the mean. IFJ: inferior frontal junction, AI: anterior insula, ACC/SMA: 
anterior cingulate cortex/supplementary motor area, STG: superior temporal gyrus, IPL: inferior parietal 
lobule, Asteriks correspond to the t-tests reported in the  main text with * p < .05, ** p < .01, *** p < .001. 
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processing (Binder et al., 2000). The effects in both areas have been linked to the modulatory 229 

influences of the dorsal attention network (Kastner & Ungerleider, 2000), as well as preattentive 230 

change detection (Näätänen et al., 2007). Besides effects in sensory processing areas, we found 231 

several distinct clusters in frontal and parietal areas as well as the insula. In line with the meta-232 

analytic results of Kim (2014) for task-irrelevant oddball studies, activations were mainly 233 

detected in regions belonging to the ventral attention network, which is involved in orienting 234 

attention to salient events and thus alerting the organism to environmental changes (Corbetta & 235 

Shulman, 2002; Sestieri et al., 2012). This includes the AI and ACC/SMA (Eckert et al., 2009; 236 

Yeo et al., 2011), which are also strongly involved in detecting salient events and initiating 237 

task-based attention (Goulden et al., 2014; Menon & Uddin, 2010; Shackman et al., 2011). 238 

Furthermore, we found strong bilateral IFJ activity. The IFJ is involved in the dorsal fronto-239 

parietal network modulating goal-directed attention in sensory areas in a top-down fashion 240 

(Kim, 2014; Yeo et al., 2011), but also in a network activated by unexpected salient 241 

environmental changes (Sestieri et al., 2012). This duality fits with the suggestion that the IFJ 242 

presents a dynamic region integrating information from both dorsal and ventral networks 243 

(Asplund et al., 2010). In addition to these activations, we also found deviance-related effects 244 

in the left IPL, which is part of a fronto-parietal control network (Cole et al., 2013; Corbetta & 245 

Shulman, 2002; Yeo et al., 2011), probably involved in indexing expectancy violations 246 

(O’Connor et al., 2010). 247 

These deviance-related effects could be explained to varying degrees by adaptation- and 248 

prediction-related activity. We found significant contributions of adaptation in Heschl’s gyrus 249 

in line with previous research indicating sensory refractoriness effects in this area (Opitz et al., 250 

2005), while prediction did not reach significance. However, this does not mean that primary 251 

auditory cortex does not show prediction-related activation (Opitz et al., 2005), but that 252 

adaptation is – averaged across the deviance-related cluster – the primary driver of information 253 

processing. In contrast to primary auditory cortex, prediction-related activity was significantly 254 
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observed in the STG in accordance with previous studies showing an increase of predictive 255 

processes along the auditory processing hierarchy (Laufer et al., 2008; Opitz et al., 2005; Parras 256 

et al., 2017).  257 

Furthermore, in the AI, IFJ and IPL, a significant prediction effect was found, but no 258 

adaptation effect. This fits well with studies showing a dominant role of these regions during 259 

various predictive processes (Allen et al., 2016; Dürschmid et al., 2016; Geuter et al., 2017; 260 

O’Connor et al., 2010; Siman-Tov et al., 2019). Surprisingly, we found no significant 261 

prediction-related activity in ACC/SMA, probably due to the task-irrelevant oddball paradigm 262 

chosen here, which considerably differs from the paradigms linking ACC to predictive 263 

processing (Alexander & Brown, 2019). Furthermore, even though we used a large sample of 264 

participants, a further increase of sample size could probably alter results for the ACC/SMA. 265 

Comparing the relative contribution of prediction and adaptation, we observed 266 

differences between areas mainly concerned with auditory processing and higher-order areas 267 

like the AI and IFJ. Thus, while prediction starts in auditory areas like the STG, its contribution 268 

to deviance-related effects increases on higher levels. These results are in line with the results 269 

of Dürschmid and colleagues (2016), who found an increase of predictive processing from 270 

temporal to frontal areas. Furthermore, this supposed hierarchical organization fits well with 271 

the results of Li and colleagues (2019). These authors reconstructed the temporal evolution of 272 

deviance-related responses by combining EEG and fMRI and found the information to flow 273 

from auditory cortex via the insula to the inferior frontal cortex. These findings are also in line 274 

with the proposal of hierarchical prediction error processing as a basic principle in the human 275 

brain (Clark, 2013). 276 

While our study has many strengths, there are also limitations. We only investigated 277 

mechanisms of deviance processing during a condition where oddball stimuli had to be attended 278 

to but were not targets. Mechanisms predominantly observed during deviance processing might 279 

be modulated by task settings, thus experimentally combining task manipulations with fMRI 280 
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might help better understand which brain regions vary in their predominant mechanisms and 281 

which do not. Furthermore, we only investigated the auditory modality. Future studies should 282 

also include other sensory stimulations. Finally, future research would profit from other 283 

experimental and analytical approaches for the investigation of different mechanisms of 284 

deviance processing. 285 

Conclusion 286 

 We observed deviance-related effects in a widespread network of different brain 287 

regions. The processes predominantly responsible for these effects varied depending on the 288 

hierarchical level of the brain region. We detected an increase in prediction-related activity and 289 

a concurrent decrease of adaptation-related activity from lower to higher hierarchical areas. 290 

These results highlight hierarchical predictive processing in the human brain. 291 
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