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Abstract: 

Functional outcomes (e.g., subjective percepts, emotions, memory retrievals, decisions, 

etc...) are partly determined by external stimuli and/or cues. But they may also be 

strongly influenced by (trial-by-trial) uncontrolled variations in brain responses to incom-

ing information. In turn, this variability provides information regarding how stimuli and/or 

cues are processed by the brain to shape behavioral responses. This can be exploited 

by brain-behavior mediation analysis to make specific claims regarding the contribution 

of brain regions to functionally-relevant input-output transformations. In this work, we 

address four challenges of this type of approach, when applied in the context of mass-

univariate fMRI data analysis: (i) we quantify the specificity and sensitivity profiles of 

different variants of mediation statistical tests, (ii) we evaluate their robustness to hemo-

dynamic and other confounds, (iii) we identify the sorts of brain mediators that one can 

expect to detect, and (iv) we disclose possible interpretational issues and address them 

using complementary information-theoretic approaches. En passant, we propose a com-

putationally efficient algorithmic implementation of the approach that is amenable to 

whole-brain exploratory analysis. We also demonstrate the strengths and weaknesses of 

brain-behavior mediation analysis in the context of an fMRI study of decision under risk. 

Finally, we discuss the limitations and possible extensions of the approach. 
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Introduction 

 

Functional outcomes (e.g., subjective percepts, emotions, memory retrievals, decisions, 

etc...) are partly determined by external stimuli and/or contextual cues. But they may 

also be strongly influenced by irreducible variability in brain responses to incoming 

information (Ferster, 1996; Shadlen and Newsome, 1994). In particular, neural noise 

may be a critical determinant of illusory percepts, aberrant emotions, erroneous memory 

retrievals, biased decisions, etc... (Bays, 2014; Faisal et al., 2008; Hong and Rebec, 

2012). For most existing statistical data analyses of neurophysiological data, neural 

noise is typically treated as a statistical nuisance, since it compromises the identification 

of relationships between measured brain activity and experimental variables (Doi and 

Lewicki, 2011; Naselaris et al., 2011). This perspective is unfortunate however, since 

neural noise can provide complementary information regarding how incoming 

information is processed and/or distorted by the brain to yield functional outcomes 

(Dinstein et al., 2015; McDonnell and Ward, 2011; Stein et al., 2005). The critical point is 

that a brain system may encode functionally-relevant information that is not used by the 

brain when producing a functional outcome. This has been repeatedly demonstrated in 

neurological patients who do not exhibit significant behavioral impairments despite being 

lesioned in brain regions that are known to encode behaviorally-relevant 

information(Aerts et al., 2016; Alstott et al., 2009). But what if one can show that neural 

noise contributes to -otherwise unexplained- behavioral variability? This is the essence 

of brain-behavior mediation analysis, which aims at detecting neural systems that both 

respond to behaviorally-relevant cues or stimuli and eventually impact overt behavior 

(MacKinnon et al., 2007). 
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Recall that any cognitive function can be seen as some form of -potentially complex, 

context-dependent, redundant, partially unconscious, etc- neural transformation of 

relevant stimuli into adaptive behavioural outcomes (Robbins, 2011). By adaptive, we 

simply mean that cognitive functions serve a specific purpose, which can be abstracted 

and put to a (behavioural) test. At the limit, one could argue that understanding cognitive 

functions reduces to assessing input-output relationships, where inputs are 

experimentally controlled stimuli and/or task instructions, and outputs are overt 

behavioural outcomes. In this view, neuroimaging in healthy subjects should serve to 

identify how brain networks contribute to the input-output transformation (Palestro et al., 

2018; Rigoux and Daunizeau, 2015; Turner et al., 2019). A reasonable strategy here is 

to identify intermediary neural states that mediate the impact of incoming information 

onto overt behavior and/or subjective reports. In its simplest form, brain-behavior 

mediation analysis reduces to a twofold regression analysis that aims at detecting 

uncontrolled variability in brain responses that significantly improves behavioral 

predictability. The ensuing statistical tests typically reason as follows: if region M 

responds to experimental factor X, and explains behaviour Y above and beyond the 

effect of X, then M mediates the effect of X onto Y. For example, brain-behavior 

mediation analysis was used to identify the prefrontal and/or subcortical systems that 

mediate successful emotional regulation (Wager et al., 2008), threat response (Wager et 

al., 2009a, 2009b) or risk avoidance (Yamamoto et al., 2015). More recently, the anterior 

cingulate cortex, the anterior insula, the thalamus and some brain stem nuclei were 

shown to mediate various aspects of pain perception (Atlas et al., 2010, 2014; Geuter et 

al., 2018; Koban et al., 2017, 2019; Woo et al., 2015). Most of these studies were 

performed using the multilevel mediation/moderation or M3 toolbox (Wager, 2008), 

which was first derived for probing effective connectivity from fMRI signals. Since then, a 

few multivariate extensions of brain-behavior mediation analysis were proposed, aiming 
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at improving either spatial or temporal resolution (Chén et al., 2018; Lindquist, 2012; 

Zhao and Luo, 2017). But these approaches neither lay out nor address the specific 

methodological and interpretational challenges posed by brain-behavior analysis, when 

applied to typical fMRI experiments. In our view, progress in brain-behavior mediation 

analysis requires answering at least four important (and related) questions: 

 (Q1) Which test statistics should be used? Not only should the test statistics be 

valid (i.e. yield controlled false positive rate), but they also should be maximally 

powerful. The latter is a pressing issue because fMRI induces a massive multiple 

comparison problem, which can only be solved by using more stringent 

significance thresholds (Lindquist and Mejia, 2015; Worsley and Friston, 1995). 

We will summarize and compare the statistical properties of the most established 

test statistics of mediation analysis. 

  (Q2) How robust is brain-behavior mediation analysis to assumptions regarding 

the hemodynamic response function (HRF) and other confounds? Recall that 

virtually all forms of fMRI time-series analyses rely on HRF models to assess 

effects of interest (Deshpande et al., 2010; Gitelman et al., 2003; Liao et al., 

2002; Pedregosa et al., 2015). Although brain-behavior mediation analysis 

involves similar assumptions, different modelling strategies may be employed 

that yield distinct bias-variance tradeoffs. We will compare the statistical 

properties of these candidate approaches in the presence of  deviations to 

modelling assumptions. 

 (Q3) What sort of brain mediators can we expect to detect? Consider the bottom-

up chain of neural information processing stages that eventually yield behavioral 

outcomes (from low-level sensory processing to high-level cognitive treatment of 

stimuli and/or cues). It turns out that these stages do not have the same chance 

of being detected. As we will see, this is a corollary consequence of the nontrivial 
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(and yet undisclosed) impact of neural noise onto the statistical properties of 

mediation analysis.  

 (Q4) Does mediation analysis induce potential interpretational issues? As we will 

see, some interpretational issues are specific to the chosen statistical testing 

approach, but others are generic to any brain-behavior mediation analysis. In 

particular, significant mediated effects are compatible with two distinct scenarios 

regarding the causal relationship between brain activity and behavioral 

responses. We discuss the importance of this and related issues and identify 

ways to address them. 

In this work, we address these four questions from a user-oriented statistical 

perspective. Our aim here is to set a methodological standard for brain-behavior 

mediation analysis. The Methods section serves as the statistical and conceptual basis 

for addressing the four questions (Q1-Q4) above. It starts with a description of the brain-

behavior mediation model and its associated null-hypothesis testing alternatives. 

Specific issues that arise in the context of typical fMRI experiments (factorial designs 

and condition contrasts, group-level random effects analysis, etc) are shortly discussed. 

We then consider the critical role of neural noise in brain-behavior mediation analyses, 

and present alternative solutions to the issue of HRF deconvolution. We close this 

section with a note on causality and its accompanying interpretational issue. We address 

the latter using a complementary information-theoretic approach (so-called I/O test). En 

passant, we show how to exploit the underlying mathematical degeneracy to drastically 

reduce the computational cost of whole-brain mediation analysis. In the Results section, 

we use numerical Monte-Carlo simulations to answer questions Q1-Q4. We compare the 

specificity and sensitivity of candidate mediation tests, as a function of neural noise, and 

in the presence of hemodynamic confounds. We also evaluate the utility and robustness 

of our I/O test. We then strengthen our in-sillico conclusions with an application to an 
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experimental fMRI dataset acquired when people make decisions under risk. We 

exemplify the use of brain-behavior mediation analysis to ask questions regarding intra- 

and between-subjects variations in behavioral responses and attitudes. Finally, we 

discuss our results in the light of the existing literature and highlight potential 

weaknesses and perspectives (Discussion section). 

 

 

Methods 

In what follows, we will consider behavioral paradigms akin to decision tasks, whereby 

subjects need to process some (experimentally-controlled) information X  to provide a 

(measured) behavioral response Y . Brain-behavior mediation analysis then aims at 

identifying whether some (anatomically-specific) feature of their observed brain activity 

M  mediates the effect of X  onto Y . In our example fMRI application (see Results 

section), we will focus on a value-based decision making task, whereby participants 

have to accept or reject (response Y ) a risky gamble composed of a 50% chance of 

winning a gain G and a 50% chance of loosing L (input information X ). But more 

generally, X  is an experimental manipulation of some sort, M  is a measure of neural 

activity at the time of processing the stimulus, and Y  is some overt expression of the 

stimulus-induced covert mental state of interest. 

 

The brain-behavior mediation model 

Let n  be the number of trials in a typical experimental session. Let X , M  and Y  be 

1n  column vectors encoding the trial-by-trial experimental manipulation, the brain’s 

response to the experimental manipulation (e.g., the magnitude of the fMRI BOLD 

response to the stimulus at each trial, in some voxel or region of interest) and the 
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behavioral response to the experimental manipulation, respectively. For the sake of 

mathematical simplicity, and without loss of generality, we will assume that X , M  and 

Y  have all been z-scored. 

From the perspective of identifying the determinants of behavior, one may first ask 

whether X  has an effect on Y  or not. In its simplest mathematical form, this question 

reduces to considering the following simple linear regression model: 

0

YY Xc  
          (1) 

where c  is an unknown regression coefficient that measures the strength of the 

statistical relationship between the independent ( X ) and dependent (Y ) variables, and 

0

Y  are model residuals. On would then simply test for the statistical significance of c , 

under some assumptions regarding the distribution of model residuals 
0

Y . 

Now, one may also ask whether M  mediates the effect of X  onto Y . In its simplest 

mathematical form, this question relies on the following pair of linear regression models: 

0

'

M

Y

M Xa

Y Mb Xc





  


            (2) 

where the first equation expresses the fact that M  responds to X  (with some unknown 

susceptibility a ), and the second equation states that Y  depends upon both M  (with 

some unknown susceptibility b ) and X  (with some unknown susceptibility 'c ). On may 

think of residuals 
0

M  in terms of some form of neural noise, because they capture trial-

by-trial variations in M  that are independent of X . As we will see, they play a pivotal 

role in brain-behavior mediation analysis.  

Although simple, Equation 2 does not explicitly quantify the size of a mediated effect. But 

this can be done by noting that Equation 2 can be rewritten as follows: 
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 

0

0

'

'

M Y

M Y

Y Xab b Xc

X ab c b

 

 

   

   
        (3) 

where M  has simply been replaced by its expression from Equation 2. Equation 3 is 

helpful in realizing that the total effect of X  onto Y  is partitioned into a direct effect 

(whose size is 'c ) and an indirect effect (whose size is ab ). This distinction is important 

because the latter is the effect of X  onto Y  that is mediated by M . This is why 

established mediation tests rely on assessing the statistical significance of the indirect 

effect (MacKinnon et al., 2007). Note that so-called full mediation occurs when ' 0c   

(no direct path), and one speaks of partial mediation whenever ' 0c  . 

 

Importantly, when we perform mass-univariate mediation analysis, we effectively 

consider each voxel or region of interest in isolation, and ask whether the local indirect 

effect is statistically significant. If mediation tests are repeated over voxels, then they 

form a statistical mediation map, which can localize which brain structure(s) mediate(s) 

the effect of X  onto Y . In this context, Equations 1-3 have two interesting implications, 

which we will highlight now. 

To begin with, recall that the incoming information X  is processed by a distributed brain 

system, whose elements (sampled across large voxel sets) concurrently contribute to 

the behavioural response Y . The structure of this distributed brain system is likely to 

involve multiple processing pathways that work both in series and in parallel, as in 

Figure 1 below.  
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In simple bottom-up hierarchical architectures such as this one, lower levels would 

correspond to e.g., occipital low-level visual processes, whereas higher levels would 

map to, e.g., prefrontal decision making processes. Clearly, Figure 1 is already an 

oversimplification because it ignores reciprocal connections, branching processes and/or 

context-dependent gating mechanisms (Friston, 2011; He and Evans, 2010; Rubinov 

and Sporns, 2010). But when we perform mass-univariate brain-behavior mediation 

analysis, we reduce the complexity even further by considering each voxel or region of 

interest in isolation, effectively ignoring any hierarchical structure of this sort.  

Figure 1: Example structure of a processing hierarchy in the brain.M 
Here, X  and Y  encode the experimental manipulation and the ensuing behavioral response, 

respectively. Variables 
i

jM  are activity within brain regions that act as intermediary processing 

steps. In this oriented graphical model, arrows represent causal relationships. Although 
processing pathways operate both in series and in parallel, mass-univariate brain-behavior 
mediation analysis ignore this and treat each region/voxel independently of each other (red dotted 
arrows). 
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First, given the likely parallel nature of processing pathways, one would not expect that 

any isolated voxel or region of interest may ever fully mediate the impact of X  onto Y . 

The implicit assumption of mass-univariate brain-behavior mediation analysis is that, in 

each voxel, the direct path 'c  effectively captures, in a non specific manner, mediated 

effects that go through other (parallel) pathways. This, however, places a very heavy 

load on the statistical sensitivity of mediation tests, which need to be able to detect 

potentially small indirect effect sizes, even when correcting for multiple comparisons 

(e.g., across voxels). 

Second, nothing prevents different processing pathways to have strong but opposing 

impacts on the behavioral response. An example here would be opponent brain systems 

that yield strong but ambivalent (e.g., appetitive-aversive) cognitive states, whose 

idiosyncratic balance may explain one's specific ability to suppress e.g., impulsive 

behavioral responses (Seymour et al., 2005; Zhang et al., 2017). In particular, if the 

impact of different pathways balance out, then the total effect of X  onto Y  may 

become undetectable ( 0c  ). It follows that brain-behavior mediation analyses may be 

required for faithfully identifying the determinants of behavior. Alternatively, the relative 

contribution of different pathways may vary across individuals, which may drive inter-

individual behavioral differences. We will see an example of this in the Results section 

below. 

 

 

Statistical tests of mediation 

In what follows, we recall the most established approaches to null-hypothesis testing of 

mediated effects. We start with the premise that if M  mediates the effect of X  onto Y , 

then the corresponding indirect effect has to be different from 0 ( 0ab  ). In what 
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follows, we summarize two kinds of statistical testing approaches (namely: the “indirect” 

and the “conjunctive” approaches) that differ in terms of how they frame the 

corresponding null hypothesis. 

 

The indirect approach follows from noting that the null hypothesis of mediation analysis 

can be framed as follows: 
( )

0 : 0indirectH ab 
. 

Under the simple brain-behavior mediation model in Equations 1-2, the indirect effect 

equates the difference between total and direct effects, i.e. 'ab c c  . This is why early 

approaches to mediation testing were assessing the statistical significance of the 

difference 'c c  (Baron and Kenny, 1986). However, theoretical work demonstrated that 

this equivalence may not always hold (Pearl, 2012), which would render the ensuing test 

invalid. This applies to typical fMRI experiments, because of the effect of confounding 

variables on path coefficient estimates. 

Another, more valid, approach is to compare estimates of the indirect effect to their 

distribution under the null. This is the principle of Sobel’s test (Sobel, 1982). Recall that 

all parameters are identifiable from Equation 2, given X , Y  and M . In particular, the 

ordinary least-squares (OLS) estimates â  and b̂  of unknown path coefficients a  and b  

are given by (all X , Y  and M  variables are z-scored, see Appendix A for a 

mathematical derivation): 

0

2

ˆ

1ˆ ˆ
ˆ

T

T

M

M X

a X M n

b Y n


 

 

          (4) 

where the neural noise estimate 
0ˆ ˆ
M M Xa  

 is the component of M  that cannot be 

explained by X , and 

2 2ˆ ˆ1
M X

a  
 is its sample variance. From Equation 4, one can 
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see that b̂  is simply the sample correlation between behavioral data Y  and the neural 

noise estimate 
0ˆ
M . In other words, 

ˆ 0b   when M  has an effect on Y  above and 

beyond the effect of X .  In addition, the variance of these OLS estimates are given by: 

 

2

2

2

,2

2

ˆ
ˆ

ˆ
ˆ

ˆ1

M X

a

Y M X

b

M X

n

n














 
 
          (5) 

where 
 

2
2 2

,
ˆ ˆˆ ˆ1 T

Y M X
b X Y n ab    

 is the sample variance of behavioral residuals' 

estimates 
ˆˆ ˆ 'Y Y Mb Xc   

. 

Under the assumption that model residuals Y  and 
0

M  are i.i.d. normal variables, then 

both â  and b̂  follow normal distributions: 
 2ˆ ˆ, aa N a 

 and 
 2ˆ ˆ, bb N b 

. It can then 

be shown (see Appendix B) that the product 
ˆâb  approximately follows a normal 

distribution, i.e.: 
 2 2 2 2ˆ ˆˆ ˆ ˆ ˆ, a bab N ab b a 

. This implies that, under the null, the following 

pseudo z-statistics:  

( )

2 2 2 2

ˆˆ

ˆˆ ˆ ˆ

Sobel

ab

a b

ab
z

b a 



        (6) 

approximately follows a Student probability density function. This then serves to derive 

the p-value of Sobel’s unsigned (two-tailed) significance test 
 ( ) ( )

0 1 2Sobel Sobel

abp z  
, 

where   is Student’s cumulative density function with appropriate degrees of freedom. 

Later improvements over Sobel’s test (Hayes and Scharkow, 2013) derived from 

theoretical statistical works on the distribution of the product of two normal random 
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variables, which essentially include an additional 
2 2ˆ ˆ
a b 

 term to the denominator of 

Sobel’s pseudo-zscore (Aroian, 1947; Goodman, 1960).  

( )

2 2 2 2 2 2

( )

2 2 2 2 2 2

ˆˆ

ˆˆ ˆ ˆ ˆ ˆ

ˆˆ

ˆˆ ˆ ˆ ˆ ˆ

Aroian

ab

a b a b

Goodman

ab

a b a b

ab
z

b a

ab
z

b a

   

   


 


 

       (7) 

We refer to these extensions as Aroian’s and Goodman’s tests, respectively. 

Alternatively, non-parametric approaches have been proposed to derive the distribution 

of indirect effect size estimates under the null (MacKinnon et al., 2002, 2004). Here, we 

will use the same bias-corrected bootstrap approach as the one proposed in the M3 

toolbox (Wager, 2008). 

 

The conjunctive approach follows from noticing that the null hypothesis of mediation 

analysis is composite (Moran, 1970), i.e.:  
( )

0 : 0 0conjunctionH a OR b 
. Of course, both 

null hypotheses are exactly equivalent, but the composite null highlights the fact there is 

no mediated effect as long as one path coefficient is null (which breaks the causal 

cascade). In turn, one may test for the conjunction of both effects, i.e. test for the 

statistical significance of both a  and b  path coefficients. In practice, conjunctive testing 

relies on the "maximum p-value" approach (here, two-tailed test): 

    

  

( )

0 max 2 ,2

1 2 min ,

conj

a b

a b

p t t

t t

    

  
       (8) 

where 
ˆ ˆ

a at a 
 and 

ˆ ˆ
b bt b 

 are Student’s test statistics of a  and b  path 

coefficients, respectively. Formally speaking, 
( )

0

conjp
 provides an upper bound on the 

joint probability that, under the null, two independent Student’s test statistics take more 
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extreme values than at  and bt  (Friston et al., 2005a; Nichols et al., 2005). This is 

important, because conjunctive testing cannot be invalid but may have low sensitivity. 

However, it is trivial to show that Sobel’s pseudo z-score is always smaller than the 

conjunctive test statistics, i.e.: 

( ) ( )Sobel conj

ab abz z
, where 

( ) min ,conj

ab a bz t t     is the 

conjunctive test statistics (see Appendix B). This means that one would expect 

conjunctive testing to be systematically more efficient than Sobel’s approach. At this 

point, we note that the sensitivity profile of indirect and conjunctive approaches actually 

depends upon neural noise strength and model misspecifications (see next sections). 

We will address this and related issues in the Results section, using extensive numerical 

Monte-Carlo simulations. 

We refer the reader interested in extending these statistical approaches to experimental 

designs including multiple conditions (cf., e.g., factorial designs) and/or multiples 

subjects (cf. group-level random effects analysis) to Appendix C and D, respectively. 

 

 

The non-trivial impact of neural noise 

Although indirect and conjunctive null hypotheses are formally equivalent to each other, 

the latter is helpful to disclose the subtle tension behind mediation testing. In brief, two 

conditions must be satisfied for detecting a mediated effect: (i) strong evidence for 0a   

and (ii) strong evidence for 0b  . The former means that X  partly explains the trial-by-

trial variability of M . And the latter means that M  partly explains the variability of Y  

that is unexplained by X . The critical point here is to realize that these two conditions 

are in conflict with each other. This is because they have opposing demands on neural 

noise 
0

M . Note that the conjunctive test statistics 
( )conj

abz
 is given by: 
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( )

,

ˆ
ˆ

ˆmin , 1
ˆ ˆ

conj

ab M X

M X Y M X

ba
z n n 

 

 
  
 
        (9) 

where we simply have inserted Equation 5 into the definition of the conjunctive test 

statistics. One can see that the standard deviation 
ˆ

M X


 of the neural noise estimate 

0ˆ
M  will have opposing effects on the conjunctive test statistics. In brief, if 

ˆ 0
M X

 
, 

then 
( )conj

ab bz t
, which tends towards 0 when 

ˆ 0
M X

 
. Recall that, by definition, 

0

M  is 

the component of M  that cannot be explained by X  (cf. Equation 2). Thus, in the 

absence of neural noise, the evidence for 0a   is maximal, but M  cannot explain any 

variability in Y  that is unexplained by X , i.e. the evidence for 0b   is minimal. 

Reciprocally, if 
ˆ

M X
 

, then 
( )conj

ab az t
, which tends also towards 0 when 

ˆ
M X

 

. In other words, if neural noise strength is very high, then evidence for 0a   is weak. 

Only for intermediary levels of neural noise can evidence for both 0a   and 0b   reach 

statistical significance. We note that this observation generalizes to any mediation test, 

irrespective of the mathematical form of the brain-mediation model. We refer the 

interested reader to Appendix E.  

 

We will quantify the impact of neural noise on the statistical efficiency of candidate 

mediation testing approaches in the Results section below. But this property of 

mediation analysis has an important implication, which we now highlight. 

Recall the structure of the processing hierarchy in Figure 2. Within a given processing 

pathway, each hierarchical level responds to its (lower-level) parents, eventually 

changing the information content in an incremental manner, e.g.: 
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0

1 0

1

2 1 1

1

'

M

M

i

i i i M

N Y

M Xa

M M a

M M a

Y M b Xc











  


 



 



           (10) 

where 
 1 2, , , , ,i NM M M M

 are local neural responses (indexed by their level along 

the hierarchy), and local neural noise increments 
i

M  effectively capture, in an agnostic 

manner, the unique contribution of each hierarchical level. Here, one would expect that 

local neural responses gradually diverge from the initial explanatory variable X . This is 

simply because the correlation between X  and the local neural response iM
 degrades 

as the accumulated neural noise increments 0

i j

Mj



 increases. In turn, one would 

expect that mass-univariate mediation analysis can only detect those neural information 

processing steps that are positioned at an intermediary hierarchical level, i.e. sufficiently 

far away from either end of the hierarchy. We will exemplify this in the Results section 

below. 

 

 

 

Dealing with hemodynamic confounds 

Clearly, the brain-behavior mediation model in Equation 2 cannot directly be applied to 

fMRI time series. The reason is twofold. First, behavioral and neural variables are not 

sampled in the same manner. In brief, the former is collected at each "trial" of the 

behavioral task, while the latter is typically sampled at a sub-trial temporal resolution. 

Second, fMRI BOLD dynamics effectively result from the convolution of neural activity 
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with the hemodynamic response function or HRF (Logothetis et al., 2001; Martin et al., 

2006). This implies that the event-related BOLD response is delayed in time, when 

compared to trial onsets. In addition, if the inter-trial interval is smaller than the HRF 

duration (which is typically the case), BOLD signals measured during a trial may derive 

from the additive contributions of multiple neural responses (to the current and preceding 

trials). For the purpose of brain-behavior mediation analysis, there are essentially two 

ways of dealing with such hemodynamic confounds. 

On the one hand, one may deconvolve BOLD signals from the HRF, as follows. Let k  

(resp., k ) be the onset time (resp., duration) of the k th trial in the experimental design. 

One first construct "trial" regressors that span the duration of the fMRI session (at the 

sampling resolution of fMRI ; typically: TR=1-2secs), which are zero everywhere except 

during the time interval defined as 
 ,k k k   

. Each of these is then convolved with the 

canonical HRF and its temporal derivatives, to account for potential mismatches in 

hemodynamic delays (Liao et al., 2002). One then augment the resulting GLM with fMRI 

confounds (e.g., motion regressors and slow drifts), and fit it to fMRI time series. Fitted 

regressor weights at each voxel thus provide an estimate M̂  of the local neural 

response to each trial, which is deconvolved from the HRF and corrected for typical fMRI 

confounds, and can then enter a mediation analysis. We call this the deconvolution 

approach. 

On the other hand, one may reframe the brain-behavior mediation model in the HRF-

convolved space. One first resample the explanatory and dependent variables at the 

fMRI temporal resolution by reweighing each "trial'" regressor above with its 

corresponding X  and Y  entries and them summing over trials. One then convolves the 

resulting regressors with the canonical HRF (and its temporal derivatives) and augment 
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the resulting GLM with fMRI confounds prior to entering a mediation analysis. We call 

this the convolution approach. 

Both approaches can, in principle, deal with hemodynamic and other fMRI confounds, 

but they differ in terms of their respective bias-variance tradeoff. The convolution 

approach effectively yields reliable neural response estimates, under the implicit 

assumption that the HRF is identical across trials. In contrast, the deconvolution 

approach allows for trial-by-trial variations in HRF, at the cost of compromising the 

reliability of neural response estimates. 

In the Results section below, we evaluate the robustness of these two strategies w.r.t. 

deviations to canonical HRF models. 

  

 

A note on causality 

Let us now highlight a possible interpretational issue of mediation analysis. Note that 

Equation 2 implicitly assumes a cascade of causal influences (MacKinnon et al., 2002), 

which may be best summarized in terms of the directed acyclic graph depicted on Figure 

2 below (left panel). 

 

 

Figure 2: The two causal interpretations of mediated effects.  
Left panel: “native” causal interpretation of brain-behavior mediation analysis (cf. Equation 2). 
Right panel: “swapped” causal interpretation of brain-behavior mediation analysis (cf. Equation 
11). Corresponding path coefficients are shown in red. 
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One would then be tempted to interpret a statistically significant mediated effect in 

causal terms, as in: perturbing the independent variable X  should result in changes in 

the mediator variable M  that would eventually cascade down to the dependent variable 

Y . In the context of brain-behavior mediation, this causal interpretation aligns with the 

intuitive notion that behavioral responses to stimuli necessarily has to emerge from an 

intermediate neural information processing step. This causal reasoning, however, does 

not hold regarding the relationship between M  and Y , which are both observed data. In 

Equation 2, the strength of this relationship is controlled by the path coefficient b . 

Importantly, statistical inference on the path coefficient b  is but a quantitative 

assessment of the conditional mutual information 
 ,I M Y X

, which is invariant under a 

reversal of the directionality of the relationship between M  and Y . In other terms, 

Equation 2 is formally equivalent to the following alternative model: 

0

'

M

M

M Xa

M Yd Xa





  


            (11) 

where the second line simply derives from swapping (with impunity) the explanatory and 

response variables in the second line of Equation 2. Here, d  and 'a  are "swapped" 

path coefficients that have a different causal interpretation (cf. Figure 1, right panel), and 

M  are model residuals that are not equivalent to the neural noise 
0

M  of Equation 2. 

One can show (see Appendix E) that both native and swapped path coefficients 

estimates are analytically related as follows: 

2

2

ˆ
ˆ ˆ

ˆ

Y X

M X

b d





          (12) 
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where 
 

2
2ˆ 1 T

Y X
X Y n  

 is the sample variance of Equation 1's residuals estimates 

 0ˆ T

Y I XX n Y  
. It should be clear from Equations 11-12 that assessing the 

conditional mutual information 
 ,I M Y X

 can be equivalently addressed either by 

assessing the evidence for 0b   (native form of the mediation model, cf. Equation 2), or 

by assessing the evidence for 0d   (cf. Equation 11). In fact, the ensuing t-statistics bt  

and dt  are exactly equal (see Appendix E), i.e. brain-behavior mediation test statistics 

are invariant under a permutation of M  and Y  variables. 

This has two important consequences. 

First, one may rely on Equations 11-12 to improve the computational efficiency of brain-

behavior mediation analysis by several orders of magnitude. Recall that in the context of 

whole-brain fMRI, working with regression models where fMRI signals only enter as 

dependant variables is computationally very advantageous. This is because many 

algebraic operations that are required for parameter estimation (e.g., here, matrix 

multiplications and inversions, etc) can be computed once and for all. In brief, the 

computational gain of performing brain-behavior mediation analysis using Equations 9-

10, when compared to Equation 2, is of the order of 

2

scan voxeln n
, where scann

 and voxeln
 

are the number of fMRI time samples and voxels, respectively. This may speed up 

whole-brain mediation analysis by several orders of magnitude. 

 

Second, a statistically significant mediated effect is compatible with two causal 

interpretations. In particular, under the "swapped" model of Equation 11, variations in 

behavior Y  may cause changes in the neural response M  (cf. Figure 1, right panel). 
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This alternative causal interpretation (Y M ) is not as nonsensical as it may first 

sound. For example, somatosensory cortices will respond to variations in motor actions, 

eventually enabling proprioceptive sensations. More generally, a given brain system may 

be collecting and/or processing information regarding overt behavior (which may have 

been produced elsewhere in the brain) for the purpose of, e.g., learning, memory, 

metacognition, etc... In any case, this interpretational issue is important, because the 

implicit intention behind brain-behavior mediation analysis is clearly to provide statistical 

evidence for the "native" causal scenario ( X M Y  ). We will comment on this and 

related issues in the Discussion section of this manuscript. 

One may think that affording evidence for the "native" causal claim of brain-behavior 

mediation analysis may require non observational studies, e.g., causal perturbations of 

neural activity (lesion studies, transcranial magnetic stimulation, etc).  Nevertheless, we 

argue that one may perform complementary data analyses that may partially address the 

interpretational issue above. For example, having assessed the significance of a 

mediated effect, one may exploit locally multivariate information to provide statistical 

evidence for or against candidate causal claims. In fact, when considering the set of 

mediator variables within a significant cluster together, "native" ( M Y ) and “swapped” 

(Y M ) causal interpretations induce a many-to-one and a one-to-many M-Y mapping, 

respectively (see Figure 3 below). Because "native" and "swapped" causal scenarios 

differ in terms of whether Y  is viewed as an input or as an output of local neural 

information processing, we refer to the ensuing test statistics as an I/O test statistics.  
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Figure 3: Candidate multivariate input/output M-Y mappings.  
Left panel: “native” causal interpretation (many-to-one input/output mapping, Y as an output). 
Right panel: “swapped” causal interpretation (one-to-many input/output mapping, Y as an input). 

Let iM
 be the trial-by-trial variations of a voxel belonging to a given mediator cluster, 

where 
 1,i N

 and N  is the number of voxels in the cluster. We define our I/O test 

statistics   as follows: 

 1

1 N

i

iN
 



 
          (13) 

where i  is the loss of conditional mutual information between iM
 and Y  when ac-

counting for other neighboring voxels j iM  : 
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   , , ,i i i j iI M Y X I M Y X M  
       (14) 

 In Equation 14, 
 , ,i j iI M Y X M 

 and 
 ,iI M Y X

 are the conditional mutual 

information between iM
 and Y , given X  and the activity in all other voxels 

j i
 or 

not, respectively. Note that i  is sometimes coined the interaction information (McGill, 

1954). In brief,   measures the average improvement or worsening of the mutual 

information between candidate mediator voxels and behavioral responses, when 

accounting for variations in neighboring brain activity. 

For arbitrary gaussian variables X  and Y , the mutual information 
 ,I X Y

 can be 

written as 
   2

,, 1 2log 1 X YI X Y   
, where ,X Y

 is the correlation between X  and 

Y (Marrelec et al., 2005). In turn, Equation 12 can be rewritten as follows: 

2

2
1

ˆ11
log

2 1

N
i

i i

b

N b




 
     


        (15) 

where ib
 is the conditional correlation between iM

 and Y , given X  and j iM  : 

 
1

,

   with 

i j i

T T T

i i i i i i i
i

T T

i i i i
i i

i i i

Z M X

Y M P I Z Z Z Z
b

Y Y M M Y PY

M PM





    

  

 
 


     (16) 

It turns out that the sign of   provides evidence in favor or against the native causal 

interpretation of the brain-behavior mediation model. More precisely: if M Y , then 

0E     , whereas if Y M , then 
0E     . This is because if Y  is an output of 
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local brain activity ( M Y ), then any given univariate statistical relationship between 

iM
 and Y  (path coefficient 

ˆ
ib
) is obscured by the (partially independent) contributions 

of all other mediator variables j iM  . Therefore, when removing all the variability that 

can be explained with j iM  , one reveals the unique contribution of iM
 (i.e. 

ˆ
i ib b

). In 

contrast, if Y  is an input to local brain activity (Y M ), then the variability shared by all 

mediator variables results from the influence of Y . Therefore, when removing all the 

variability that can be explained with j iM  , one degrades the statistical relationship 

between iM
 and Y  (i.e. 

ˆ
i ib b

). We will evaluate the utility and robustness of our I/O 

test statistics in the Results section below.  

 

 

 

Results 

In what follows, we will be comparing five testing approaches: Sobel's test, Aorian's test, 

Goodman's test, the M3 bootstrap test, and the conjunctive approach, in terms of their 

statistical sensitivity and specificity. Using numerical simulations, we will assess the 

impact of neural noise and deviations to HRF assumptions. Taken together, these in-

silico experiments will serve to address questions Q1 to Q3. Using further numerical 

simulations, we will demonstrate the utility of our I/O test statistics for addressing the 

main interpretational issue of brain-behavior mediation analysis (Q4). Finally, we will 

report the results of a brain-behavior mediation analysis in the context of an fMRI 

experiment on decision making under risk.  
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Comparing the statistical specificity and sensitivity of testing approaches 

First, we ask whether candidate testing approaches yield valid inferences, i.e. whether 

they allow for a faithful control of false positive rate. To address this question, we 

simulated data under three different variants of the null hypothesis. More precisely, we 

simulated 40,000 datasets with Equation 2, using three different settings of the path 

coefficients, i.e.: (i) 0a   and  
1 2b 

, (ii) 
1 2a 

 and 0b  , or (iii) 0a b  . In all 

simulations, we simulated 50n   trials, set the direct effect size to 
' 1 2c 

 and used 

unitary variance for all independent variables in Equation 2 (i.e. X , 

0

M  and Y ). Across 

these 40,000 simulations, we then measured the (false positive) detection rate of each 

candidate testing approach, as one varies the significance threshold  . Note that all 

(indirect or conjunctive) parametric tests were performed with Student's probability 

distribution functions with 2n  degrees of freedom. Finally, we kept the default number 

of 1000 resamplings in the bias-corrected M3 bootstrap test. 

Second, we asked how sensitive are candidate testing approaches under moderate 

mediated effect sizes. Here, we simulated 40,000 datasets with Equation 2, using 

1 2a b 
, and measured the (true positive) detection rate of each candidate testing 

approach, as one varies the significance threshold  . 

The results of these analyses are summarized on Figure 4 below. 
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Figure 4: Statistical specificity and sensitivity of variants of mediation significance 

testing approaches. 
Left panel: The sensitivity of mediation tests (y-axis) is plotted against the significance threshold α 
(x-axis), for each candidate testing approach (dark blue: conjunctive testing, blue: M3 bootstrap 
indirect approach, light blue: Goodman’s indirect approach, green: Sobel’s indirect approach, 
yellow: Aorian’s indirect approach). Upper right panel: The specificity of mediation tests (y-axis) is 
plotted against the significance threshold, for H0: a=0 and b=1/2 (same format as left panel). 
Middle right panel: Same format as upper right panel for H0: a=1/2 and b=0. Lower right panel: 
Same format as upper right panel for H0: a=b=0. 

 

As expected, the conjunctive test is more sensitive than both Sobel and Aorian tests. 

Slightly more surprising maybe is the fact that the conjunctive test turns out to also be 

more sensitive than Goodmans test and the M3 bootstrap test, though the latter reach 

similar sensitivity levels for significance thresholds higher than 0.001. We will refine our 

evaluation of statistical sensitivity when assessing the impact of neural noise below. 

In addition, all approaches except Goodman and the M3 bootstrap tests are valid, i.e. 

they yield a false positive rate that is equal or smaller than the significance threshold  . 

Goodman's test always yield invalid inference if the significance threshold is small 

enough, whereas the M3 bootstrap test only yields invalid inference when 0b  . Note 
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that the conjunctive approach is the least conservative of all tests, and this difference 

grows when the significance threshold decreases.  

 

 

Assessing the impact of neural noise 

Recall that the magnitude of neural noise is expected to play a critical role for the statis-

tical sensitivity of mediation analysis. To demonstrate this effect, we simulated 10,000 

datasets using the same parameter settings as above, except for neural noise magni-

tude, which we varied from 

0 210MVar       to 

0 210MVar     . For each neural noise 

magnitude, we then measured the (true positive) detection rate of each candidate testing 

approach, when setting the significance threshold to 0.05  . The ensuing sensitivity 

profiles are summarized on Figure 5 below (left panel). 

 

Figure 5: The impact of neural noise on statistical power. 
Left panel: The sensitivity of mediation tests (y-axis) is plotted against the variance of neural 
noise (x-axis), for each candidate testing approach (same format as Figure 4), when a=b=1/2. 
Chance level is indicted using a black dotted line. Right panel: The sensitivity of conjunctive 
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mediation tests (y-axis) is plotted against the variance of neural noise (x-axis), when varying path 
coefficients (dark blue: a=2 and b=1/2, blue: a=1 and b=1/2, cyan: a=b=1/2, orange: a=1/2 and 
b=1, yellow: a=1/2 and b=2). 
 

All testing approaches have a similar sensitivity profile, which follows a bell-shaped func-

tion of neural noise magnitude, with an apex around 

0 1MVar     . This corresponds to 

a situation in which about 20% of the trial-by-trial variance in M  is explained by X . As 

the amount of explained variance in M  departs from this nominal level, the sensitivity of 

mediation analysis effectively tends towards chance level. Now, everything else being 

equal, increasing a  or the variance of X  eventually inflates sensitivity on the right tail of 

the sensitivity profile, while increasing b  rather boosts its left tail. This moves the posi-

tion of sensitivity apex towards smaller and stronger noise variance, respectively (see 

Figure 5, right panel). 

 

Now, in the Methods section above, we reasoned that the expected sensitivity profile of 

mediation analysis should eventually favor the detection of neural information processing 

steps that are positioned away from either end of the processing hierarchy. In what fol-

lows, we compare candidate testing approaches w.r.t. their ability to detect levels in a 

simple feed-forward hierarchy. In brief, we simulated 1,000 datasets under Equation 10, 

using 100 intermediary network nodes. In all simulations, initial and final path coefficients 

were set to 0 1 2a b 
 and all intermediary path coefficients were set to 

1ia i 
. In 

addition, the variance of all independent variables were set to unity except for the local 

neural noise increments, whose standard deviation was set to 0.3. Following the princi-

ple of mass-univariate mediation analysis, a mediation test was then performed on each 

node in isolation (significance threshold: 0.05  ). For each network node, the ensuing 

remix, or adapt this material for any purpose without crediting the original authors. 
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, 

The copyright holder has placed thisthis version posted October 17, 2020. ; https://doi.org/10.1101/2020.10.17.343798doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.17.343798


 30 

(true positive) detection rate was then measured across the 1,000 simulations. The re-

sult of the ensuing detection profile is shown on Figure 6 below. 

 

Figure 6: The heterogeneity of statistical sensitivity.  
The sensitivity of mediation tests (y-axis) is plotted against the hierarchical level of candidate 
mediators along the serial processing pathway (x-axis), for each candidate testing approach 
(same format as Figure 4). 

 

As expected, local neural noise increments accumulate along the hierarchy, effectively 

increasing the neural noise level estimate as the hierarchical level increases. In turn, the 

detection profile also follows a bell-shaped function of hierarchical level, such that lower 

and higher hierarchical levels are less easy to detect. Interestingly, one can also see that 

different testing approaches have different sensitivity profiles. In particular, one can see 

that the conjunctive approach exhibits a higher sensitivity than all other approaches, 

irrespective of the hierarchical level of interest. Note that the M3 bootstrap test is better 

than other indirect approaches for intermediate hierarchical levels, but eventually loses 

its competitive advantage for higher hierarchical levels. 
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Assessing the robustness to deviations from hemodynamic assumptions 

Despite the inclusion of HRF derivatives in the mediation model, deviations to the canon-

ical HRF can impair test sensitivity. In this section, we compare the robustness of convo-

lution and deconvolution approaches to unanticipated delays in HRF. We thus simulated 

100 datasets using the same parameter settings as above, except that we varied sys-

tematically the HRF delay, effectively inducing a shift with the canonical HRF ranging 

from -5 second to 5 seconds. Each dataset was then analyzed using all (indirect and 

conjunctive) testing approaches, under both convolution and deconvolution strategies 

(with the canonical HRF and its delay derivative). For each HRF delay shift, we then 

measured the (true positive) detection rate of each candidate mediation analysis strate-

gy, when setting the significance threshold to 0.05  . The ensuing sensitivity profiles 

are summarized on Figure 7 below. 
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Figure 7: The impact of unmodelled hemodynamic delays.  
The sensitivity of mediation tests (y-axis) is plotted against the HRF shift (x-axis), for each 
candidate testing approach (same format as Figure 4, thick lines: convolution approach, thin 
lines: deconvolution approaches). 
 

All mediation analysis strategies exhibit a bell-shaped sensitivity profile, eventually peak-

ing when there is no deviation to the canonical HRF (i.e. when the HRF delay shift is 

null). Also, when there is no deviation to the canonical HRF, deconvolution and convolu-

tion strategies yield similar test sensitivity. However, when the deviation to the canonical 

HRF increases, the loss of statistical sensitivity is much stronger for deconvolution than 

for convolution approaches. For example, with a (realistic) delay shift of 3 seconds, most 

deconvolution approaches lose about 10% to 15% sensitivity on average. In comparison, 

convolution approaches only lose about 2% sensitivity. In addition, the conjunctive ap-

proach always exhibit higher sensitivity than indirect approaches, irrespective of whether 

one chooses a convolution or deconvolution strategy. 
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We note that, with a significance threshold of 0.05  , deviations to the canonical HRF 

has no adverse effect on the validity of statistical tests, i.e. all mediation test approaches 

yield 5% or less false positive rates under the null. 

 

 

Addressing the interpretational issue of brain-behavior mediation analysis with the I/O 

test statistics 

Recall that a significant mediated effect may have two distinct causal interpretations: the 

behavioral variable may either be an input (Y M ) or an output ( M Y ) of the brain 

region where the null has been rejected. To address this issue, we proposed a simple 

I/O test statistics, whose sign is expected to discriminate between these two scenarios. 

Here, we evaluate the utility of the I/O test statistics  , in conditions similar to our fMRI 

data analysis below, using numerical Monte-Carlo simulations. 

First, we simulated data under three scenarios: 

 H1 (native causal scenario M Y ): the independent variable X  is sampled 

under a normal distribution, each multivariate mediator unit iM
 is set to a noisy 

affine transformation of X  (with random weights), and the dependent variable Y  

is set as a noisy mixture of X  and all mediator units (with random weights). 

 H2 (“swapped” causal scenario Y M ): the independent variable X  is sampled 

under a normal distribution, the dependent variable Y  is set as a noisy affine 

transformation of X  (with a random weight) and each multivariate mediator unit 

iM
 is set to a noisy mixture of X  and Y  (with random weights). 
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 H0 (null scenario): the independent variable X  is sampled under a normal 

distribution, and all other variables are set to a noisy affine transformation of X  

(with random weights). 

We simulated each scenario 1000 times, with 64 trials and 20 mediating units (all 

random variables and weights were sampled under a centered normal distribution with 

unit variance). Note that, in all three scenarios, M  and Y  variables are correlated with 

each other (under the null, this is because of the influence of X , which acts as a 

confounding variable). For each simulated dataset, we derive the I/O test statistics  . 

The resulting Monte-Carlo distributions are shown on Figure 8 below (left panel). 

 

 

Figure 8 : Sensitivity and robustness of the I/O test statistics λ. 
Left panel: The Monte-Carlo distribution of the I/O test statistics λ (y-axis) is plotted under 
alternative scenarios (H1: blue, H2: yellow, H0: grey). Right panel: Same format as left panel, but 
under data dimension reduction (20 first principal components of a PCA). 

 

On can see that the three scenarios are very well discriminated. In particular, the 

distribution of the   under the null is centered on zero, and lies in between its 
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distribution under H1 and under H2. Moreover, and as expected, 1 0E H     and 

2 0E H    . 

These simulations however, do not account for the limitations that arise in realistic 

settings. In particular, the number of neural units or voxels that compose the multivariate 

set of mediators may largely exceed the number of trials. Here, a pragmatic solution is to 

perform a PCA decomposition, and keep the K first principal components to summarize 

the within-region variability. We now ask whether the ensuing I/O test statistic is robust 

to this dimension reduction. In brief, we performed the same set of simulations as above, 

this time simulating 100 mediating units and deriving the test statistics from the ensuing 

K=20 first principal components. The resulting Monte-Carlo distributions are shown on 

the right panel of Figure 8. 

One can see that the dimension reduction strongly reduces the range of variation of the 

I/O test statistics, when compared to the situation above, where all the relevant variation 

is available. Furthermore, the magnitude of   under scenario H1 and H2 is 

asymmetrical. More precisely, one can see that 
1 2E H E H        . In other terms, 

when relevant information is lacking, the average evidence in favor of H1 is weaker than 

the average evidence in favor of H2. Nevertheless, the sign of the I/O test statistics can 

still be interpreted as evidence for or against the native causal interpretation of the brain-

behavior mediation model, i.e. 1 0E H     and 1 0E H    . 

 

 

fMRI study of decision making under risk 
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Here, we perform a brain-behavior mediation analysis of previously acquired fMRI data 

(Chen, 2014), which is openly available as part of the OpenFMRI project (Poldrack et al., 

2013). In this study, 60 participants made a series of 64 accept/reject decisions on risky 

gambles. On each trial, a gamble was presented, entailing a 50/50 chance of gaining an 

amount G of money or losing an amount L (so-called "baseline" condition). Participants 

were told that, at the end of the experiment, four trials would be selected at random: for 

those trials in which they had accepted the corresponding gamble, the outcome would 

be decided with a coin toss, and for the other ones -if any-, the gamble would not be 

played. All 64 possible combinations of G/L pairs (10$<G<40$, 5$<L<20$) were pre-

sented across trials, which were separated by 7 seconds on average (min 6, max 10). 

MRI scanning was performed on a 3T Siemens Prisma scanner. High-resolution T1w 

structural images were acquired using a magnetization prepared rapid gradient echo 

(MPRAGE) pulse sequence with the following parameters: TR = 2530 ms, TE = 2.99 ms, 

FA = 7, FOV = 224 × 224 mm, resolution = 1 × 1 × 1 mm. Whole-brain fMRI data were 

acquired using echo-planar imaging with multi-band acceleration factor of 4 and parallel 

imaging factor (iPAT) of 2, TR = 1000 ms, TE = 30 ms, flip angle = 68 degrees, in-plane 

resolution of 2X2 mm 30 degrees of the anterior commissure-posterior commissure line 

to reduce the frontal signal dropout, with a slice thickness of 2 mm and a gap of 0.4 mm 

between slices to cover the entire brain. See 

https://openneuro.org/datasets/ds000053/versions/00001 for more details. 

Data preprocessing included standard realignment and movement correction steps. Note 

that we excluded 2 participants, either due to missing information or because the misa-

lignment between functional and anatomical scans could not be corrected. 
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We first regressed, for each participant, the observed choices against gains and losses 

(Equation 1). This yielded estimates of the total effects 
ˆ
Gc

 and 
ˆ

Lc
 of gains and losses, 

respectively. This also provided an estimate 
ˆ

Y X


 of the behavioral residuals' standard 

deviation. The results of this analysis are shown on Figure 9 below. 

 

Figure 9: Summary of behavioral results. 
Left panel: Between-subject empirical distribution of estimated within-subject parameters (left: 
constant term in the regression, middle: gain weight cG, right: loss weight cL). The black and red 
lines show the group-level mean and median, respectively. Right panel: Between-subject 
empirical distribution of the loss-version index (same format as left panel). 

 

In brief, both gain and loss factors have a significant effect on decisions under risk (gain 

factor: p<10-5, loss factor: p<10-5). We note that, together, gain and loss factors explain 

on average 44.6% (std: 24.2%) of the trial-by-trial variance on participants’ decisions 

(average balanced accuracy: 84.84%, std: 9%). 

For each participant, we also derived a loss-aversion index: 
 ˆ ˆlog L Gc c 

, which is 

positive when losses have a stronger weight on accept/reject decisions than gains. One 
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can see that the average loss-aversion index is significant (p<10-5), i.e. losses have 

more weight on participants’ decisions than gains.  

 

Then, we analyzed fMRI time series (at the within-subject level) using both convolution 

and deconvolution approaches. 

The convolution strategy relied upon the following two GLMs: 

 Equation 10 (first line): GLM1 included regressors for trial-by-trial gains and 

losses (temporally aligned with the gamble presentation and convolved with the 

canonical HRF and its delay derivative), and basic confounding factors (six 

movement regressors and their squared values, as well as a Fourier basis set for 

slow drift removal). Fitting GLM1 to each fMRI voxel time series yielded a map of 

estimates 
ˆ

Ga
 and 

ˆ
La
 that correspond to the local effect of gain and loss on neu-

ral activity at the time of gamble presentation, respectively. In addition, we ex-

tracted the standard deviation of GLM1's residuals, which form a map of the local 

neural noise's strength 
ˆ

M X


. 

 Equation 11 (second line): GLM2 is identical to GLM1, but also includes ac-

ceptance/rejection choices (convolved with the canonical HRF and its temporal 

derivatives). Fitting GLM2 to fMRI time series yielded regressor weight estimates 

that measure the correlation between local neural activity and behavior, above 

and beyond the effect of gain and losses ( d̂ ). The map of local path coefficients 

b̂  was then obtained from d̂ , 
ˆ

Y X


 and 
ˆ

M X


 using Equation 12. 

The deconvolution strategy was implemented as follows. First, we fitted GLM3, which 

included "trial" regressors (temporally aligned with the gamble presentation) as well as 

basic fMRI confounds. Regression weight estimates yielded local trial-by-trial neural re-
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sponses M̂ . Maps of path coefficients estimates â  and b̂  were obtained using Equa-

tion 4, given local neural responses M̂ .  

Random-effect group-level inference on the mediation of gain and loss factors was then 

performed by reporting group averages of path coefficients â  and b̂ , after 8mm FWHM 

smoothing. We applied all indirect and conjunctive approaches except for the M3 boot-

strap method (because of its limited statistical gain, when compared to its computational 

cost). For all approaches, we used unsigned (two-tailed) tests with standard random field 

theory (RFT) correction for whole-brain multiple comparisons correction. 

 

In brief, no mediation testing approach based upon the deconvolution strategy reached 

statistical significance. This was the case even when using more lenient corrections for 

multiple comparisons (e.g., FDR). This was however not the case for mediation analyses 

based upon the convolution strategy. Here, indirect approaches yielded group-level sig-

nificant clusters at low-set inducing thresholds (p=0.01 or p=0.05, uncorrected). In what 

follows, we discard these results as these thresholds are known to violate RFT assump-

tions (Flandin and Friston, 2019). Now, under the default set-inducing threshold 

(p=0.001, uncorrected), the conjunctive approach identified 6 clusters that significantly 

mediate the effect of gain: the right supramarginal gyrus or SMG (p=0.011, RFT-

corrected), bilateral posterior dorsomedial PFC or BA8 (left: p=0.003, right: p=0.008, 

RFT-corrected), the right anterior ventrolateral PFC or BA45 (p=0.018, RFT-corrected) 

and bilateral posterior dorsolateral PFC or BA8/9 (left: p=0.007, right: p=0.009, RFT-

corrected). In addition, there was a trend (p=0.06, RFT-corrected) for 1 cluster mediating 

the effect of loss, in the left anterior ventrolateral PFC. These clusters are shown on Fig-

ure 10 below. 
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Figure 10: Significant mediators of gains and losses on decisions under 
risk. 
Upper panel: the six significant clusters of brain-behavior mediation analysis 
(conjunctive/convolution approach) are shown on axial (up), sagittal (middle) and coronal views 
(bottom). All maps used a default set-inducing threshold of correction p=0.001 uncorrected (red 
areas) for the RFT correction, except the bilateral dmPFC’s map where with p=0.0002 
uncorrected (yellow areas) in order to separate the two hemispheres.  Lower panel: The ensuing 
between-subject empirical distribution of the I/O test statistics λ (y-axis, group-level mean 
±standard deviation) is shown for each significant clusters (x-axis). 

remix, or adapt this material for any purpose without crediting the original authors. 
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, 

The copyright holder has placed thisthis version posted October 17, 2020. ; https://doi.org/10.1101/2020.10.17.343798doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.17.343798


 41 

We note that regions contralateral to significant unilateral mediators of the gain effect 

were all close to statistical significance: c.f. left SMG (p=0.094, RFT-corrected) and left 

anterior vlPFC or BA45 (p=0.177, RFT-corrected).  

 

At the very least, these analyses demonstrate the superior statistical efficiency of con-

junctive/convolution approaches. In brief, no other candidate variant of mediation analy-

sis yields positive results on this dataset. 

Now, the significant mediated effects above may have two distinct causal interpretations. 

To afford evidence in favor or against the “native” causal claim of brain-behavior media-

tion analysis, we derived, for each participant and each significant cluster, our I/O test 

statistics. Note that, prior to the analysis, we summarized the trial-by-trial variance in 

each cluster using the 20 first principal components from the within-cluster PCA decom-

position (on average cross clusters and participants, these preserve 89% ±2% of the 

trial-by-trial variance). The group-level empirical distribution of   is shown on the lower 

panel of Figure 10, for each of the 6 significant clusters. Reassuringly, all clusters exhibit 

strong evidence in favor of the “native” causal interpretation of brain-behavior mediation 

analysis, i.e. 0   for all subjects and all clusters. We will comment on these results in 

the Discussion section. 

Now, the effect of experimental factors seems to be mediated by a set of anatomically 

segregated regions in the brain. These regions are likely to be organized into a function-

al network (cf. Figure 1 above), eventually exerting competitive and/or cooperative influ-

ences on behavioral responses. The analysis above is agnostic about the functional ar-

chitecture of this network. However, the extent to which each of these network nodes 

actually mediates the effect of gains and losses onto choices varies across subjects. 

Thus, a given individual may have an idiosyncratic structure of brain pathways for pro-
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cessing gain and loss information. In turn, inter-individual differences in the pattern of 

mediated effect sizes may have behavioral consequences in terms of how strongly gains 

and/or losses impact decisions under risk. 

Recall that the balance between the behavioral effects of gains and losses is measured 

using the loss aversion index 
 ˆ ˆlog L Gc c 

 (cf. Figure 9). One may thus ask whether 

the pattern of mediated effect sizes predicts loss aversion. We thus extracted, in each 

voxel of the 6 significant mediating clusters above, the indirect effect size 

ˆˆ
Ga b

, and av-

erage these within each cluster. This resulted in 6 region-specific indirect sizes per par-

ticipant. We then regressed loss aversion indices against (log-transformed) indirect ef-

fect sizes, across participants. The results of this analysis are summarized on Figure 11 

below. 

 

Figure 11: Inter-individual differences in loss-aversion. 
Left panel: regression coefficients of the analysis of inter-subject differences of loss aversion 
(grey: constant term, blue: weight of inter-individual differences in cluster-averages of indirect 
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effect size). Errorbars depict standard errors of the mean. Right panel: Observed (y-axis) versus 
predicted (x-axis) loss aversion. Each dot is a participant. 

 

First, an omnibus F-test shows that the pattern of indirect effect sizes significantly pre-

dicts loss aversion (F=5.13, dof=[7,51], R2=12.8%, p=2x10-4). This is important, since 

this means that one can think of loss aversion in terms of a trait that is partly determined 

by the relative contribution of processing pathways that mediate the effect of gains onto 

decisions under risk. In addition, one can see that loss aversion increases when the indi-

rect effect size in the left posterior dmPFC increases (t=2.66, dof=51, p=0.01). No indi-

rect effect size in any other region has a significant effect on loss aversion (all p>0.29). 
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Discussion 

In this work, we identified the specific challenges of brain-behavior mediation analysis. In 

particular, we evaluated the specificity and sensitivity of five statistical tests, including 

so-called indirect and conjunctive approach. In brief, the conjunctive approach systemat-

ically shows higher sensitivity, while yielding valid inference. In addition, we disclosed 

the non-trivial impact of neural noise, and assessed the robustness to deviations from 

fMRI modelling assumptions. The former implies that brain-behavior mediation analysis 

cannot detect mediators that are too close from either end of the neural information pro-

cessing hierarchy. In-silico investigations of the latter eventually favor the convolution 

approach to HRF modelling. We also disclosed some interpretational issues of mediated 

effects, in particular: significant mediated effects have two distinct causal interpretations. 

Importantly, this causal degeneracy may be partially addressed using complementary 

multivariate I/O test statistics. In addition, it has unexpected favorable computational 

consequences for whole-brain mediation analysis. Lastly, brain-behavior mediation anal-

ysis of fMRI data acquired in the context of decisions under risk further demonstrated the 

importance of methodological choices regarding brain-behavior mediation analysis. 

Eventually, the conjunctive/convolution test approach showed that the right SMG, bilat-

eral posterior dmPFC, right anterior vlPFC and bilateral posterior dlPFC mediate the 

effect of prospective gains on decisions under risk. Group-level I/O test statistics provid-

ed evidence that these regions are contributing to shaping behavioral responses (in a 

feedforward, causal, manner), rather than collecting and/or processing information about 

it (cf. interpretational issue). Finally, we showed that inter-individual differences in loss 

aversion is partly determined by the relative contribution of these six regions to behav-

ioral control. 
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Taken together, our numerical simulations and analyses of experimental fMRI data 

demonstrated that conjunctive testing has higher statistical sensitivity than indirect ap-

proaches. This is true even for the bias-corrected M3 bootstrap test, despite its huge 

computational cost. We note that the sensitivity of the M3 bootstrap test may, in princi-

ple, be improved by increasing the number of permutations used to approximate the null 

distribution (here: 1,000). This however, would render whole-brain analysis excessively 

slow. Note that M3 bootstrap and conjunctive tests had already been compared at the 

standard 5% significance threshold outside the context of fMRI (Hayes and Scharkow, 

2013). Although authors noted that bias-corrected bootstrap tests were slightly invalid 

(false positive rate greater than 5%), they recommended them because they eventually 

yielded more reliable confidence interval estimations. We extended these simulations, 

eventually showing that the invalidity of bias-corrected bootstrap tests increases as one 

relies on more stringent significance threshold (cf. Figure 3), which is required when cor-

recting for multiple comparisons. For all these reasons (test validity, statistical sensitivity 

and computational cost), we would rather favor conjunctive testing for mass-univariate 

brain-behavior mediation analysis. 

 

Although computationally expedient, mass-univariate brain-behavior mediation analysis 

essentially relies upon an incomplete model. Not only is it agnostic about the structure of 

the distributed brain system that process the incoming information (cf. Figure 1), but lo-

cal, voxel-based, mediation tests simply ignore about 99.999% of the brain. We would 

argue however, that such incompleteness may be necessary for statistical mediation 

analysis. Recall that evidence for a mediated effect requires an appropriate amount of 

neural noise. But neural noise estimates have two entirely distinct sources. On the one 

hand, it may derive from irreducible variations in neural responses that are inherent to 

the underlying neurobiological processes. On the other hand, it may arise from imperfec-
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tions in the way neural responses are modeled. The latter most likely applies to the line-

ar brain-behavior model in Equation 2. For example, saturating neural responses to 

stimuli would, under Equation 2, inflate model residuals. However, although the ensuing 

neural noise estimates 

0ˆ
M  would be partly artefactual, they would still be very informa-

tive to predict behavioral responses Y  above and beyond the linear effect of X . Now, let 

us assume that a neurocognitive model was available, that would describe how incoming 

information X  would be distorted, transformed and integrated with other (potentially in-

cidental) processes, along the processing hierarchy. For example, such model may de-

rive from recent work in theoretical neuroscience regarding population coding (Averbeck 

et al., 2006; Georgopoulos et al., 1986), predictive coding (Bastos et al., 2012; Hosoya 

et al., 2005; Rao and Ballard, 1999) or efficient coding (Barlow, 1961; Doi and Lewicki, 

2011). Or it could rely on agnostic multivariate and/or nonlinear decompositions that, 

when properly parameterized, would account for all sorts of complex relationships be-

tween X  and M . In any case, if the model was complete enough, then observed neural 

activity would not strongly deviate from its predictions. This would preclude the statistical 

detection of mediated effects. Ironically speaking then, progress in modelling neural in-

formation processing may eventually hinder the statistical efficiency of brain-behavior 

mediation analysis. More practically, this means that statistical brain-mediation analysis 

may be used in an exploratory manner, to identify brain regions that contribute to behav-

ioral control. Further, complementary, model-based approaches to neural information 

processing would then help reducing one's epistemic uncertainty regarding neural noise. 

For example, artificial neural network modelling may be useful to identify either the struc-

ture of processing pathways (Rigoux and Daunizeau, 2015) and/or the impact of inci-

dental biological constraints that may distort local neural information processing (Bro-

chard and Daunizeau, 2020). 
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This is not to say, however, that statistical brain-behavior mediation analysis cannot be 

improved. 

For example, one may aim at providing more informative inferences regarding the struc-

ture of the underlying processing hierarchy. A possibility here is to merge mediation 

analysis with existing graph analysis techniques that were developed for assessing ef-

fective connectivity in the brain (Alstott et al., 2009; Smith et al., 2011; Sporns, 2013). 

Another, less exhaustive but simpler, solution is to work iteratively: having identified a 

brain region that significantly mediates the X Y  effect, one may then look for other 

brain regions that would mediate both X M  and M Y  relationships, and repeat on 

subsequent mediators. Note that this would require additional corrections for the natural 

dependencies between brain regions. We refer the interested reader to Van Kesteren & 

Oberski (2019) for an interesting first step in this direction. 

We also think that progress can be made regarding the main interpretational issue of 

brain-mediation analysis. In this context, let us highlight two extensions of linear mass-

univariate approaches that sound promising. 

First, one may rely on more stringent inferences regarding the causality of the M Y  

relationship (Preacher, 2015). For example, temporal precedence may be accounted for, 

and inserted in the brain-mediation model using variants of Granger causality (Zhao and 

Luo, 2017). Note that special care must be taken regarding hemodynamic delays, whose 

variations across brain regions may confound temporal precedence. In particular, estab-

lished fMRI applications of Granger causality are known to be prone to such confounds 

(David et al., 2008; Deshpande et al., 2010; Zhao and Luo, 2017). Nevertheless, con-

straining the brain-behavior mediation model with temporal precedence would likely re-

duce spurious inferences. 
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Second, one may exploit locally multivariate information to discriminate between many-

to-one ( M Y ) and one-to-many (Y M ) input/output mappings. In this work, we 

proposed a first step in this direction: namely, the I/O test statistics  . Numerical simu-

lations demonstrated the utility of this information-theoretic measure, and its robustness 

to partial information losses that result from data dimensionality reduction. However, this 

work falls short of an exhaustive analytical treatment of I/O test statistics. For example, 

neither did we investigate whether and how nonlinearities in causal relationships con-

found and/or bias   estimates, nor did we derive a formal statistical test of the signifi-

cance of    estimates. We note that the difficulty here, is that the null hypothesis may 

not be the most useful reference point for I/O test statistics. Rather, one aims at compar-

ing two alternative non-nested models. Therefore, an optimal statistical treatment of I/O 

tests statistics may be best approached using a bayesian approach (Kass and Raftery, 

1995; Liu and Aitkin, 2008). We will pursue this and related extensions of I/O test statis-

tics in subsequent publications. 

 

Finally, let us discuss the results of our fMRI analysis. Recall that we identified six can-

didate mediators of the effect of gain onto decisions under risk. Among these, the poste-

rior dmPFC was previously shown to regulate speed-accuracy tradeoffs (Forstmann et 

al., 2008) and its anatomical lesion is known to impair inhibitory control in the presence 

of response conflict (Nachev et al., 2007). Also, decades of neuroimaging, stimulation 

and lesions studies have evidenced the role of posterior dlPFC and vlPFC cortices in 

cognitive control (Gbadeyan et al., 2016; Levy and Wagner, 2011; MacDonald et al., 

2000; Miller and Cohen, 2001; Nee and D’Esposito, 2017; Soutschek and Tobler, 2020). 

In addition, functional and anatomical studies report convergent evidence that the right 

SMG is crucial for regulating emotional responses (Adolphs, 2002; Makovac et al., 2016; 
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Silani et al., 2013). Now, in the context of decisions under risk, automatic fear responses 

may induce a default tendency to reject risky gambles, eventually yielding loss aversion 

(Martino et al., 2006, 2010). This default emotional bias may enter in conflict with the 

appetitive effect of prospective gains. Whether the appetitive dimension of gambles 

eventually dominates automatic fear responses may then depend on the potentiation of 

emotional responses and on the efficiency of downstream cognitive control, which would 

explain why the SMG, dmPFC, dlPFC and vlPFC cortices mediate the effect of gain on 

decisions. This is also in line with our analysis of inter-individual differences of loss aver-

sion, which shows that peoples' loss aversion increases when the indirect effect size (of 

gains on accept decisions) in the left dlPFC pathway increases. This is because a strong 

involvement of the dlPFC pathway may signal inefficient cognitive control (Braver et al., 

2010; Poldrack, 2015), which would result in loss aversion worsening. 

Although quite self-consistent and elegant, this interpretation really relies on the "native" 

causal interpretation of brain-behavior mediation analysis. So what if we had not found 

support for this causal scenario with our I/O test statistics? In fact, the existing literature 

may also be queried to find past evidence that may be more compatible with the alterna-

tive causal interpretation of brain-behavior mediation analysis. For example, beyond its 

well-known implication in language processing, the right SMG has been shown to be 

involved in somatosensory perception (Ben-Shabat et al., 2015; Tunik et al., 2008). Un-

der this perspective, evidence for 0b   (or, equivalently, 0d  ) may be interpreted in 

terms of low-level perceptual representations of (motor?) action plans. We note that the 

experimental design is compatible with this interpretation because the spatial arrange-

ment of accept/reject responses is not randomized over trials (Chen, 2014). This high-

lights the need for developing approaches that reduce the causal ambiguity of simple 

brain-behavior mediation analyses.  
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Appendix A: OLS estimators of path coefficients 

Recall that the second line of Equation 2 can be re-written as: 

 

'

'

Y

Y

Y Mb Xc

b
M X

c





  

 
  

           (A1) 

The OLS estimators of b  and 'c  path coefficients are thus given by: 
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where the third line derives from the analytical formulation of 2x2 inverse matrices. 

Now recall that 
0ˆˆ
MM Xa  

 with 
ˆ 1 Ta nM X . The estimator of path coefficients b  

and 'c  thus writes: 
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This completes the derivation of path coefficients' estimates. 
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Appendix B: Sobel's test. 

In what follows, we summarize the derivation of Sobel's mediation test.  

First, recall that, given Equations 4 and 5, both â  and b̂  follow gaussian distributions, 

namely: 
 2ˆ ˆ, aa N a 

 and 
 2ˆ ˆ, bb N b 

. Sobel's approach effectively reduces to a 

Laplace approximation of the distribution of the product 
ˆâ b  of path coefficients' 

estimates. 

Let 
 ˆ ˆˆ ˆ,f a b ab

 be the function that maps the pair of path coefficient estimates to their 

product. One can approximate 
 ˆˆ,f a b

 using a first-order Taylor expansion in the 

neighborhood of some arbitrary point 
 0 0,a b

: 
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  
    (A4) 

If we choose to use the above Taylor expansion in the neighborhood of the unknown 

true values of path coefficients 
 0 0,a a b b 

, then Equation A4 provides us with a 

Laplace approximation to the first two moments of the bivariate product 
ˆâ b

: 

2 2 2 2

ˆˆ

ˆˆ ˆ ˆ
a b

E ab ab

Var ab b a 

   
  


              (A5) 

The Sobel test directly relies on this approximation to form a pseudo z-score 
( )Sobel

abz
 for 

the strength of the indirect path, as follows: 
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( )

2 2 2 2
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a b
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z

b a 
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
        (A6) 

where the unknown path coefficients have been replaced by their OLS estimates. Note 

that 
( )Sobel

abz
 is invariant under arbitrary rescaling of X , Y  and/or M . Under the null 

0 : 0H ab 
, 

( )Sobel

abz
 approximately follows Student's probability density function with 

appropriate degrees of freedom. 

We note that this approximation will be quite tight away from the diagonal lines 
ˆâ b  , 

where the product 
ˆâb  will start to behave as a quadratic function. But Sobel's 

approximation error will grow quicker than estimation errors on path coefficients. 

One can also show that Sobel’s test statistics is always smaller than conjunctive’s test 

statistics: 
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where 
 min ,a bt t

 is the conjunctive test statistics (cf. Equation 9). 

 

Appendix C: Dealing with contrasts on experimental conditions 

So far, we have only considered simple independent variables X . However, a typical 

experiment includes more than one condition or factor, and the question of interest might 
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be best framed in terms of mediating the effect of a linear combination of independent 

variables. In other terms, we want to generalize classical mediation analyses of the sort 

implied by Equation 1 to contrasts of experimental factors.  

Without loss of generality, let us consider an experimental design with condn
 conditions, 

which are encoded through a condn n
 design matrix X . Typically, the entries of X 's 

columns would be zero everywhere, except at trials that belong to the corresponding 

condition (where their value would be one). Replacing X  with the design matrix X  in 

Equation 2 induces the following two-fold lieanr regression model: 

'

M

Y

M

Y Mb





 


  

Xa

Xc
         (A8) 

where a  and 'c  are now 
1condn 

 vectors of regression coefficients that encode the 

condition means. In this context, most experimental questions of interest are framed in 

terms of contrasts on path coefficients a . So how can one ask whether M  mediates 

the effect of an arbitrary contrast on path coefficients? 

Two cases may arise. In the simplest case, one would deal with single contrasts. Let w  

be an arbitrary 
1condn 

 vector of contrast weights. For example, in a typical 2×2 factorial 

design, 
 1 1 1 1  w

 would be capturing the interaction between the two factors.  

Single contrasts of this sort do not require any specific adaptation of mediation analyses, 

because 
T

w a  is a scalar, and its OLS estimate has a known fixed-form distribution 

under the null. In turn, asking whether single contrasts are mediated by M  reduce to 

testing whether 
  0T b w a

, which can be done using either the indirect or conjunctive 

approaches described above. Slightly more subtle is the case of multiple contrasts, as 

induced by global null hypotheses tests. For example, let us consider an experimental 

remix, or adapt this material for any purpose without crediting the original authors. 
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, 

The copyright holder has placed thisthis version posted October 17, 2020. ; https://doi.org/10.1101/2020.10.17.343798doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.17.343798


 61 

design with three conditions. In analogy to ANOVA, we wish to test for the mediation of 

any difference between the conditions. The corresponding contrast of interest w  is now 

a 3×2 matrix of weights, and 
T

w a  becomes a 2×1 vector. Outside the context of brain-

behavior mediation analysis, assessing the statistical significance of such a contrast 

would be performed using an F-test, for which p-values can be derived analytically 

(Friston et al., 1995). When using the conjunctive approach, this poses no problem, as 

one would simply compute the p-value of the resulting minimum F-statistics. The indirect 

approach is more difficult to adapt here. In principle, one would first have to partition the 

design matrix 0,   X X X
 into subspaces respectively spanning the contrast of 

interest X Xw  and the effects of no interest 
 0

 X X I w w
. Then, one would 

remove the effects of no interest from both the mediator and the dependant variable. 

Finally, one would have to test whether any indirect path induced by the ensuing 

columns of X  is significant. The latter issue is not entirely trivial, but can be solved using 

the minimum p-value approach (Friston et al., 1999; Nichols et al., 2005) of conjunction 

analysis.  

 

 

Appendix D: group-level random-effect analysis 

Let us now consider the specific issue of experiments performed with multiple subjects. 

For example, let us assume that each subject participates in an experiment consisting of 

multiple trials, such that Equation 2 describes the relationship existing between X , M  

and Y  across trials, at the subject-level. We now want to ask whether there is a 

mediated effect that is consistent across subjects, at the group-level. This calls for 

mixed-effects analyses, which essentially assume that subject-level path coefficients are 
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sampled from a parent (population) distribution whose mean we wish to infer on. This 

can be efficiently performed using a summary statistics approach (Friston et al., 2005b; 

Holmes et al., 1998), whereby one first estimates subject-level effects (here, 
ˆ

ia
 and 

ˆ
ib
, 

where 
 1,...i n

 is the participant’s index), and then report these for a random-effect 

analysis at the group-level. 

Similarly to subject-level analysis, both conjunctive and indirect approaches are possible 

here. Let a  and b  be the unknown population mean of a  and b  path coefficients, 

respectively. At the group-level, the null hypothesis of mediation analysis can be written 

as follows: 

( )

0

( )

0

: 0 0

: 0

conjunction

a b

indirect

a b

H OR

H

 

 

  


        (A9) 

where 
( ) ( )

0 0

conjunction indirectH H
 as before. 

The conjunctive approach then simply reduces to testing whether both group-mean 

estimates 
ˆ ˆ1a ii

n a    and 
ˆˆ 1b ii

n b  
 differ from zero, which can be tested using 

the p-value for the minimum statistic. 

The indirect approach relies on testing whether the group-mean of the indirect effect 

differs from zero. According to the central limit theorem (Rosenblatt, 1956), the 

distribution of the average product 
ˆˆ1 i ii

n a b
 will quickly tend towards a Gaussian 

distribution. However, any non-zero covariance between path coefficients will bias the 

inference, because 
 ˆ ˆ ˆˆ ˆ ˆcov ,E ab E a E b a b      

       (Kenny et al., 2003). In other terms, 

even if the null hypothesis is true, covarying fluctuations in path estimates may 

significantly differ from zero. This is why the indirect approach should rather rely on 
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testing the product 
ˆ ˆ

a b 
 of group-mean estimates. This can be done using either 

parametric (cf. Sobel, Airoian or Goodman test statistics) or non-parametric (cf. M3 

bootstrap) approaches. 

 

   

Appendix E: Causal impact of neural noise 

The non-trivial impact of neural noise is not a feature of univariate linear brain-behavior 

mediation models. In fact, one can show that this generalizes to any form of brain-

behavior. In what follows, we rely on an information-theoretic framework that was 

developed for addressing mediation claims, irrespective of the mathematical form that 

the mediation model may take (Pearl, 2012). The only requirement here, is that of a 

causal cascade from X  to M  and Y , and from M  to Y  (cf. directed acyclic graph in 

Figure 2, left panel). 

Let 
 'XXIE Y

 be the expected impact of the mediator variable on the behavior, under a 

virtual change of the manipulation (from X x  to 'X x , see Equation 9 in Pearl, 

2012): 

      ' , 'xx

M

IE Y E Y X M P M x P M x    
     (A10) 

where 
 P M X

 is the conditional distribution of the mediator variable. Note that, in 

Equation A10, the causal relationships between X , M  and  Y  are implicitly absorbed 

in conditional distributions. In brief, 
 'xxIE Y

 measures the strength of the indirect effect 

of X  onto Y , i.e. it serves as a summary statistics for significance tests of (possible 

multivariate and nonlinear) mediated effects. 
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Now, when there is no neural noise, the mediator variable brings no additional 

information on the behavior, i.e. 
,E Y X M E Y X        . In turn, the mediator’s impact 

 'xxIE Y
 becomes negligible: 

     ' ' 0xx

M M

IE Y E Y X P M x P M x
 

      
 
 

. In 

other terms, when the mediator brings no additional information on behavior, it cannot be 

detected. 

Conversely, when neural noise dominates, the mediator is effectively independent from 

the manipulation, i.e.: 
     'P M x P M x P M 

. It follows that, here again: 

      ' , 0xx

M

IE Y E Y X M P M P M     
. In other words, when the manipulation 

brings no or little information on the mediator, no mediation can be detected. 

In conclusion, mediated effects can only be detected for intermediate neural noise 

magnitudes, irrespective of the mathematical form of the brain-behavior mediation 

model. 

 

 

Appendix F: Equivalence of causal interpretations of mediation analysis 

In what follows we give a proof of (i) Equation 12 in the main text, and (ii) equality of t-

statistics of "native" and "swapped" path coefficients. 

First one can use the expressions of their OLS estimates to derive the ratio of the two 

path coefficients (see Appendix A): 
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     (A11) 

where 
 ˆ ,  

 is the sample correlation between arbitrary vectors. 

Now, recall that, in Equations 1-2, (i) all mediation variables are z-scored and (ii) residual 

estimates are, by construction, orthogonal to the variable X . Therefore : 
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|
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1

Y X
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X Y

X M
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
         (A12) 

This concludes the demonstration of Equation 12 of the main text (
2 2

| |
ˆ ˆ ˆ ˆ/Y X M Xb d   

). 

 

Now let us prove the equality of t-statistics of "native" and "swapped" path coefficients. 

Using the definition of these test statistics we have: 
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      (A13) 
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Now recall the iterative decomposition of the determinant of a gram matrix: 

         1

det , , det
T T T T T TA v A v A A v v v A A A A v



  
, where A  and v  are arbitrary 

matrix and vectors, respectively (Csató and Opper, 2003).  This yields: 

         
 

2

| ,

2 2 2

| | ,

ˆ

ˆ

det , , , , det , ,

d ˆet

T T

Y X M

T

M X Y X M

X M Y X M Y n X M X M

n X X



 

  

  
   (A14) 

Similarly, we have: 

      2 2 2

| | ,det , , , , det ˆ ˆ
T T

Y X M X YX Y M X Y M n X X    
    (A15) 

Lastly, because the order of the matrix’s columns leaves the determinant unchanged, 

Equations A14 and A15 are identical. This implies that  
2 2 2 2

| | , | | ,
ˆ ˆ ˆ ˆ

Y X M X Y M X Y X M   
, which 

concludes our proof. 

 

 

remix, or adapt this material for any purpose without crediting the original authors. 
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, 

The copyright holder has placed thisthis version posted October 17, 2020. ; https://doi.org/10.1101/2020.10.17.343798doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.17.343798

