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Abstract 

Neural activity underlying decision making has been reported in many brain regions in the form 

of choice-specific neuronal sequences that span entire task periods. In contrast to this behavioral-

timescale activity, recent work has raised the possibility of fast-timescale decision-making activity 

in hippocampal and prefrontal regions. Whether these are distinct or complementary mechanisms 

is unknown. Here, we examined simultaneous hippocampal and prefrontal ensemble activity 

during learning of a spatial working-memory decision task. We found that both regions formed 

choice-specific sequences at the behavioral timescale (~seconds), as well as two fast timescales 

(~100-200 ms), theta cycles during navigation and sharp-wave ripples in inter-trial periods. 

Behavioral-timescale sequences maintained representations of current goals during navigation. In 

contrast, at the fast timescales, hippocampal sequences supported deliberation, whereas prefrontal 

ensembles predicted actual choices. Error trials resulted from impaired interaction between 

behavioral- and fast-timescale mechanisms. These results establish cooperative interaction at 

multiple timescales for memory-guided decision making.  
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Introduction 

The neural substrates that support decision making are still not fully understood. The link between 

decision making and neural representations at the behavioral timescale has been studied 

extensively in various cortical and sub-cortical circuits of different species. Early classic work 

showed that during tasks involving sustained attention or decision making, neurons in the 

prefrontal cortex (PFC) and the posterior parietal cortex (PPC) can exhibit persistent activity over 

seconds throughout retention intervals for maintenance of decision-related information1-4. In 

contrast to these low-dimensional representations that require long-lived stable states, decision-

related information can also be held in a dynamic population code. At the ensemble level, 

heterogenous activity patterns comprising sequences of neuronal activation that span entire task 

periods have emerged as a common coding scheme in many brain regions, including PFC5,6, 

hippocampus6,7, PPC8,9 and striatum10,11. 

In addition to this behavioral-timescale activity, recent work has raised the possibility that 

neural dynamics at fast, cognitive timescales that occur transiently during discrete subsets of task 

periods can also underlie upcoming decisions. In many brain areas, such as prefrontal, parietal, 

orbitofrontal cortices, and hippocampus, population activity can change in an abrupt, coordinated, 

and transient manner in support of flexible decisions12-16. For example, discrete transient bursts of 

gamma and beta oscillations in PFC have been shown to increase with working-memory load 

during delays14. In particular, recent studies have identified time-compressed neuronal sequences 

in the hippocampus and also PFC as a specific cell-assembly pattern at fast timescales that can 

support decision-making processes. Hippocampal theta sequences provide time-compressed 

ensemble representations of spatial paths within single cycles of theta oscillations (6-12 Hz) during 

active navigation, which reflect a candidate neural mechanism for planning at decision time16-19, 
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although whether these sequences exist in PFC has yet to be determined. Conversely, during 

pauses in exploration, replay sequences are observed both in the hippocampus and PFC during 

individual sharp-wave ripples (SWRs)20-22, reactivating past and future trajectories on the temporal 

scale of 100-200 ms to guide navigation decisions20. Disruption of these fast sequences in the 

hippocampus, while leaving behavioral-timescale spatial representations intact, impairs navigation 

decisions23-26. Thus, fast sequences are promising transient activity patterns that could support 

decision making at sub-second speed17,18,20,27. Whether and how these fast-timescale 

representations are linked to behavioral-timescale mechanisms for decision making is unknown, 

with the possibility that they represent either distinct or co-operative decision making modes. To 

address these questions, we examined neuronal ensemble activity simultaneously in the 

hippocampus and PFC of rats during learning of a spatial working-memory decision task. 

 

Results 

Slow and fast sequences during navigation decisions 

We trained nine rats to learn a spatial working-memory task (Fig. 1a), which has been previously 

reported to require both the hippocampus and PFC23,24,28,29, and involves memory-guided decision 

making20,23,30. In this continuous alternation W-track task, animals had to remember their past 

choice between two possible locations (the left or L vs. right or R arm; inbound reference memory 

task), and then choose the opposite arm correctly when facing the two upcoming options after 

running through a delay section on the center stem (outbound working memory task; Fig. 1b). All 

subjects learned the task rules over eight training sessions in a single day (Supplementary Fig. 1; 

final performance: 92.5 ± 1.8% for inbound, 80.8 ± 2.8% for outbound, in mean ± SEM).  
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Using continuous recordings over learning in the experimental paradigm, we examined the 

ensemble activity of dorsal CA1 hippocampal and PFC neurons at different timescales (Fig. 1c,d 

and Supplementary Fig. 1; mean ± SEM = 43.9 ± 7.6 CA1 place cells, 29.8 ± 5.6 PFC cells per 

session). We first verified the presence of CA1 place-cell sequences at both the slow behavioral 

timescale (i.e., place-field sequences) and the fast compressed timescales (i.e., theta sequences 

during navigation, and replay sequences at reward wells; Fig. 1d). Interestingly, PFC cell 

assemblies appeared to be organized into sequences at these timescales as well, and could occur 

concurrently with the hippocampal sequences (Fig. 1d). Given these observations, we further 

investigated the content of these sequences and their roles in decision making. 

 

Slow behavioral-timescale sequences predict behavioral choices 

First, we characterized how slow behavioral-timescale sequences encode animals’ location and 

choice. Consistent with prior reports5,6,20,31,32, we found that many CA1 and PFC cells exhibited 

strong preferential firing during navigation on L- versus R- side trajectory (trajectory-selective 

cells; mean ± SEM = 38.4 ± 1.2% in CA1, 23.5 ± 1.3% in PFC for inbound, 35.0 ± 0.7% in CA1, 

20.9 ± 0.6% in PFC for outbound; Fig. 2a,b and Supplementary Fig. 2). These trajectory-

selective cells, when ordered by the peak firing on the preferred trajectory, form a unique sequence 

for each choice type spanning the entire trial length, including the common center stem prior to 

the choice point (CP) and the side arms after the CP (Fig. 2c,d). Different sequences of neurons 

were thus activated on L vs. R trials at the behavioral timescale (Fig. 2c,d). To directly assess the 

cell-assembly representation of the animals’ choices, we used a memoryless Bayesian decoding 

algorithm (see Methods)20. We found that cell assemblies in CA1 and PFC consistently predicted 

the animals’ current location and choice at the behavioral timescale well above chance level across 
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all positions of a trial5,6,20,31, even on the common center stem (Fig. 2e,f and Supplementary Fig. 

2), and this decoding accuracy increased with familiarity with the task (Fig. 2e,f and 

Supplementary Fig. 2) as in previous reports20. 

Therefore, these results suggest that choice information progresses through heterogeneous 

neuronal sequences in CA1 and PFC at the behavioral timescale as rats run along each trajectory. 

Importantly, the unique representations of different trial types at the behavioral timescale also 

provide distinguishable templates for the Bayesian decoder to determine the content of fast 

sequences during theta oscillations and SWRs. 

 

Look-ahead fast theta sequences in CA1 and PFC 

Theta oscillations are prominent in CA1 during navigation, and prior work has found that CA1 

cell assemblies are organized into theta sequences within single oscillation cycles that encode paths 

ahead of the animal, potentially providing a “look-ahead” prediction of upcoming locations33,34. 

While it is not known whether PFC activity is directly related to hippocampal theta sequences, 

previous studies have shown that PFC cells phase-lock to hippocampal theta oscillations35,36; 

further, theta-frequency synchrony and coherent spatial coding between the hippocampus and PFC 

is apparent during memory-guided navigation37-39. To detect theta sequences, population spikes 

within each candidate hippocampal theta cycle (≥ 5 cells active in a given brain region) during 

active running were analyzed using the Bayesian decoding approach, and the sequential structure 

of the Bayesian reconstructed positions was evaluated by shuffling procedures (see Methods). 

Using this method, clear theta sequences were found in CA1 during inbound and outbound 

navigation across all sessions (Fig. 3a-f), and the majority of CA1 theta sequences (~70%) 

successively represented past, present, and future locations within each theta cycle (forward 
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sequences; Supplementary Fig. 3), consistent with previous studies33,40. Intriguingly, significant 

theta sequences were also detected in PFC (Fig. 3g-l), and the prevalence of theta sequences in 

PFC was similar to that in CA1 (Supplementary Fig. 3a), although higher trajectory scores 

(suggesting more reliable timing of sequences) were observed in CA1 compared to PFC 

(Supplementary Fig. 3b). Furthermore, the trajectory scores and slopes (sequence speed) in both 

regions increased with experience (Supplementary Fig. 3b,c). 

Notably, for forward-shifted theta-sequence representations, when reconstructed positions 

in different theta-phase bins were averaged over all candidate theta cycles, we found that the 

positions behind the actual location of the animal were decoded with higher probability during 

inbound than outbound navigation in both CA1 and PFC (Fig. 4a,b). To further confirm this result, 

we directly compared the start and end positions of each significant theta sequence, and indeed, 

forward sequences in both CA1 and PFC started farther behind the actual position of the animal 

during inbound than outbound navigation (Fig. 4c). Previous theoretical and experimental 

evidence has suggested that the initial tail of asymmetric spatial fields allows cells with fields 

ahead of an animal’s position to fire during earlier theta cycles, which results in “look-ahead” of 

theta sequences33,34,41. We therefore examined whether there was any relationship between firing 

field asymmetry and the shift in ahead-sequence length during outbound and inbound navigation 

(Fig. 4d-g). Quantification of field asymmetry revealed that while the asymmetry developed with 

experience as reported previously (Fig. 4d-f)41, working-memory-guided outbound navigation was 

associated with fields with a more extended initial tail compared to inbound travel (Fig. 4d-f), and 

this was stronger for trajectory-selective than non-selective cells in both CA1 and PFC (Fig. 4g). 

Additionally, CA1 and PFC cells had similar slopes of theta phase precession for inbound and 
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outbound navigation (Supplementary Fig. 4), which thus cannot explain the difference in inbound 

and outbound look-ahead of theta sequences. 

Together, these results suggest that beyond the pure sensory features of the environment, 

memory demands influenced the look-ahead properties of theta sequences in both CA1 and PFC, 

and the increased look-ahead distance during working-memory-guided outbound navigation 

allows the animal to represent future locations earlier in the trajectory, which can aid in decision 

making. 

 

Theta sequences support vicarious memory recall 

How do theta sequences relate to the animals’ upcoming choices, and do they represent these 

choices throughout navigation similar to the behavioral-timescale sequences? To test this, we 

examined theta sequences along each trajectory (Fig. 5). We found distinct representations of 

choices by theta sequences in CA1 and PFC, which were dependent on task phases (i.e. prior to 

and after the decision or choice point, CP). Before the CP (corresponding to periods on the center 

stem for outbound navigation), CA1 theta sequences serially encoded both alternative trajectories 

(Fig. 5a,e and Supplementary Fig. 5), in agreement with prior work that observed hippocampal 

theta activity patterns representing hypothetical scenarios, which can support deliberation16,18. 

However, after the choice was made, CA1 theta sequences preferentially encoded the animal’s 

current choice (Fig. 5b,e and Supplementary Fig. 5). In contrast, PFC theta sequences 

preferentially encoded the animal’s current choice throughout a trial (Fig. 5c-e and 

Supplementary Fig. 5). This effect was robust across sessions (Fig. 5e), enabling trial-by-trial 

prediction of decisions, in which upcoming choice was decoded by PFC theta sequences well 

above chance before the CP, whereas CA1 theta sequences encoded actual and alternative 
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available paths equivalently before the CP (Fig. 5f,g). Similar results were found for inbound trials 

(Supplementary Fig. 5). Note that these results could not be accounted for by similar spatial-field 

templates for L versus R choices on the center stem, because spatial-field activity can decode L 

versus R choices well above chance within the center stem in both CA1 and PFC, and this decoding 

accuracy was higher for CA1 than PFC (Fig. 2e,f). We also controlled for the last theta sequence 

on the center stem and found similar effects (Supplementary Fig. 5l). A previous study has 

reported that alternating representations of possible future choices in the hippocampus are linked 

to single-cell cycle skipping, in which cells fire on alternate theta cycles18. Here, we confirmed the 

expression of cycle skipping in CA1, and we found that PFC cells clearly exhibited this 

phenomenon as well (Supplementary Fig. 6). 

Next, we asked if PFC theta sequences encoded choices that were coherent with CA1 

sequences within single theta cycles. We detected PFC theta sequences simultaneously with CA1 

theta sequences for a subset of theta cycles (Fig. 5h,i; mean ± SEM = 10.53 ± 1.42% for outbound, 

11.17 ± 1.52% for inbound; p = 0.78 comparing outbound vs. inbound proportions, rank-sum test). 

Among these synchronous sequence events, when CA1 theta sequences represented the actual 

choice, PFC sequences were also significantly biased to the actual choice, whereas this coherent 

CA1-PFC representation was not observed when CA1 theta sequences represented the alternative 

choice (Fig. 5j). 

Taken together, these results suggest that CA1-PFC theta sequences occurred in tandem 

with, but distinct from, behavioral-timescale sequences for choice representations, and that CA1-

PFC theta sequences underlie a novel mechanism that supports vicarious memory recall on a fast 

timescale for deliberative decision making. 
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Fast replay sequences prime decisions 

While we found a clear relationship between CA1 and PFC sequences at both behavioral and theta 

timescales for upcoming decisions, it remains unclear if these contributed to correct versus 

erroneous decisions. We therefore analyzed neural activity during correct versus incorrect trials, 

with incorrect trials corresponding to erroneous outbound navigation to the same side arm as the 

past inbound visit (Fig. 6a). We found that sequential firing that occurred at the behavioral 

timescale during incorrect trials was similar to that during correct trials (Fig. 6b), and the decoding 

accuracy for the chosen side was comparable for correct and incorrect trials (Fig. 6c). Furthermore, 

CA1 and PFC theta sequence prediction of upcoming choice was also similar for correct and 

incorrect trials (Fig. 6d). Correct versus incorrect trials did not differ in running speed and theta 

power (Supplementary Fig. 7a,b). CA1-PFC theta coherence and the strength of single-cell 

phase-locking to theta oscillations during navigation, which have been proposed to support spatial 

working memory37, were also similar between correct versus incorrect trials (Supplementary Figs. 

7c,d and 8). Therefore, both theta-linked phenomena at the two timescales likely represented 

maintenance mechanisms for working memory and decision making, making it plausible that 

incorrect destinations were chosen prior to embarking on trajectories from the center well. 

We therefore examined replay sequences during SWRs in the inter-trial periods prior to 

trajectory onset (Fig. 1c,d). Previously, we have reported that CA1 replay sequences, similar to its 

theta sequences, underlie deliberation between actual and alternative choices, whereas CA1-PFC 

reactivation represents actual choice for current trials20. Here, we confirmed these observations 

(Fig. 7a and Supplementary Fig. 9). Importantly, using CA1-PFC reactivation strength for actual 

versus alternative choices preceding the correct and incorrect trials, we could predict correct and 

incorrect responses significantly better than chance (Fig. 7b and Supplementary Fig. 9c), 
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indicating impaired CA1-PFC reactivation prior to incorrect outbound navigation. Furthermore, 

quantification of SWR reactivation using a standard cell-pair measure revealed that incorrect 

decisions were distinctively associated with impaired reactivation of the trajectory-selective CA1-

PFC cell pairs (Fig. 7c,d and Supplementary Fig. 9d,e). These results suggest that CA1-PFC 

replay sequences during awake SWRs prime initial navigation decisions, which are further 

maintained by theta-sequence and trajectory-selective mechanisms during retention periods on a 

trial-by-trial basis, underlying successful performance in the working memory task.  

 

Discussion 

Our findings provide a new framework that integrates behavioral-timescale and cognitive-

timescale mechanisms for memory-guided decision making. The presence of prominent sequential 

activation patterns of hippocampal-prefrontal ensembles at multiple timescales during spatial 

working memory tasks offers a unique opportunity to dissect the neural mechanisms at different 

timescales for decision making. By studying hippocampal-prefrontal population coding at multiple 

timescales, we demonstrate that two forms of cell-assembly dynamics for decision making can be 

distinguished, i.e., slow behavioral-timescale sequences and fast cognitive-timescale sequences. 

During delay periods of the spatial navigation task, choice information was maintained by 

behavioral-timescale sequences in CA1 and PFC on correct as well as incorrect trials. These 

sequences are contextually modulated by current journeys and goals, and can enable choice-related 

information processing on a behavioral timescale for planning actions6,9. In contrast, compressed-

timescale sequences during theta oscillations and sharp-wave ripples were strongly modulated by 

internal cognitive states beyond current external context, retaining representations of actual and 

alternative options. Such representations can support continuous internal exploration of 
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possibilities, suggesting a novel role of compressed sequences in guiding ongoing choice behavior. 

This is in contrast to models of deliberative decision making via accumulation of evidence to a 

threshold42. Notably, the mechanism of using internally generated sequences to simulate future 

scenarios has been used as a key feature that improves performance of model-based learning 

computations19,43,44. 

At the level of single theta cycles, we found compressed theta sequences in both CA1 and 

PFC nested within the behavioral-timescale sequences during navigation. However, these two 

types of theta-associated sequences are functionally dissociated. We found that prior to the 

decision-making point in the navigation task, CA1 theta sequences report both actual and 

alternative choices, and are unable to predict chosen destination till after the decision has been 

made. On the other hand, we found robust PFC theta sequences that maintain prediction of 

upcoming choice prior to the decision point. Thus, theta sequences underlie a cognitive timescale 

mechanism that also maintains choice information, with the key distinction that this fast timescale 

mechanism can support vicarious memory recall of different choices, which was not seen at the 

behavioral timescale. This process may be important in the event that animals have to change 

decisions or adapt to change in contingencies15,27,30. In agreement with this idea, a recent study has 

shown that theta timescale mechanisms in CA1 can not only represent possible future paths, but 

also possible directions of motion on a moment-to-moment basis18. Representation of past 

locations within theta cycles has also been recently reported45. Complementing these results, 

previous studies have shown that theta oscillation cycles comprise cognitive computation units, 

corresponding to segregation of cell assemblies that represent different spatial experiences46-48 and 

alternatives16-18. The results shown here establish that the representation of alternatives in the 
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hippocampus interacts with prefrontal theta sequences in a content-specific manner, which can be 

used to guide actual choices. 

Notably, both theta-associated mechanisms during navigation supported retention during 

working memory periods, but did not predict errors in decisions. Rather, we found that compressed 

SWR replay sequences during inter-trial periods prior to the onset of trajectories prime the decision 

without apparent external cue triggers, which is maintained from the onset of the trajectory via 

behavioral and theta timescale sequences. Previous studies have shown that SWR-reactivation in 

the hippocampus is less coordinated prior to incorrect versus correct trials20,49, and disrupting 

awake SWRs leads to increase in errors in the spatial working memory task23,24. Consistent with 

these results, our findings provide definitive evidence that coherent CA1-PFC replay of future 

trajectories indicate the chosen destination in this memory-guided decision making task, and errors 

in CA1-PFC replay predict incorrect decisions. 

It is important to note that the expression of behavioral- and compressed-timescale 

sequences representing different trajectories are inextricably linked. Choice-specific 

representations of both theta and replay sequences depend on choice encoding through trajectory 

preferred firing of behavioral-timescale sequences. Furthermore, incorrect decisions were 

specifically associated with replay of the trajectory-selective neurons in PFC and CA1, with 

trajectory selectivity inherently a behavioral-timescale characteristic. Thus, it is the interactions 

between behavioral-timescale and fast cognitive-timescale firing properties that govern decision 

making. The network mechanisms that enable expression of sequences at distinct timescales in 

multiple circuits remain a key question for future investigation. 

Overall, our results provide a critical extension to classic models, which emphasize 

behavioral-timescale activity patterns typically spanning entire retention intervals, by establishing 
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a role of discrete, fast timescale ensemble activity patterns in decision making processes. Such a 

mechanism is broadly supported by recent findings of rapid shifts in activity patterns during 

decision making12,13,15,50, including discrete gamma oscillatory bursts in PFC underlying working 

memory4,14, which occur at a similar timescale to compressed theta and replay sequences. Together, 

these results suggest the possibility of transient LFP oscillations as informative signatures of fast 

evolving cell assemblies that bear on decision-making processes, and the cooperative behavioral- 

and cognitive-timescale mechanisms described here may reflect a general organizing principle of 

neural dynamics underlying decision making. 
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Main Figures and Legends 

 

Fig. 1| Sequential organization of CA1 and PFC cell assemblies at multiple timescales during navigation 
decisions. a, W-maze spatial alternation task. In this task, rats are rewarded (yellow circle) for choosing between Left 
(L) versus Right (R) in the correct order shown. b, Diagrams of two possible past (inbound; left) and future (outbound; 
right) scenarios. CP: choice point. c,d, Three modes of organizing neuronal sequences in CA1 and PFC. c, 
Diagrammed are sharp-wave ripples (SWRs) occurring at the well, spatial fields (colored ovals) and theta oscillations 
during trajectory running. d, Illustrative ensembles from real data (simultaneously recorded cells in CA1 and PFC), 
showing replay sequences (~260 ms; brown shading), theta sequences (~100-200 ms; blue shadings), and spatial-
field sequences at the behavioral timescale (~8 s). Each row represents a cell ordered and color-coded by field center 
on the C-to-L trajectory shown top right. Grey lines: actual position. Dashed vertical line: reward well exit. Black, 
brown, and dark blue lines: broadband, ripple-band (150-250 Hz), and theta-band (6-12 Hz) filtered LFPs from one 
CA1 tetrode, respectively.  
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Fig. 2| Choice-predictive representations of behavioral-timescale sequences. a,b, Four trajectory-selective 
example cells during (a) outbound and (b) inbound navigation (shadings: SEMs; each row on the rasters represents 
a completed trajectory, or a trial; trajectory type denoted on the left; arrowheaded line indicates animal’s running 
direction). c,d, Example choice-specific behavioral-timescale sequences. For each plot pair, the top illustrates a raster 
of trajectory-selective cell assemblies ordered by field centers on the preferred trajectory (L-selective assemblies in 
blue, R-selective assemblies in red); the bottom shows population decoding of animal’s choice and locations at the 
behavioral timescale (bin = 120 ms; note that summed probability of each column across two trajectory types is 1). 
Green and yellow arrowheads indicate the example cells shown in a,b. Color bar: posterior probability. Green lines: 
actual position. Blue and red arrowheads: the CP. Note that the rasters only show trajectory-selective cells, whereas 
the population decoding was performed using all cells recorded in a given region. e,f, Behavioral-timescale sequences 
in (e) CA1 and (f) PFC predicted choices. Left: decoding accuracy of current choice over locations (n = 9 rats × 8 
sessions); Right: decoding accuracy of current choice on the center stem across sessions. Note that the decoding 
performance is significantly better than chance (50%; all p’s < 1e-4, rank-sum tests). Error bars: SEMs.  
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Fig. 3| Fast theta sequences in CA1 and PFC. a-d, Four examples of theta sequences in CA1 for (a,b) outbound 
and (c,d) inbound trajectories. Left: spikes ordered and color coded by field center on the decoded trajectory (see 
Right) over a theta cycle. Broadband (black) and theta-band filtered (green) LFPs from CA1 reference tetrode shown 
below. Middle: corresponding linearized spatial fields (blue colormap for L-side trajectory, red colormap for R-side 
trajectory). Right: Bayesian decoding with p-values based on shuffled data denoted (see Methods). Yellow lines: the 
best linear fit on the decoded trajectory. Cyan lines and arrowheads: actual position. Note that summed probability 
of each column across two trajectory types is 1. e,f, Example CA1 theta sequences across 8 sessions (or epochs, E1 
to E8). Each column of plots represents a theta-sequence event. Sequence score (r) on the decoded trajectory denoted. 
g-j, Four examples of theta sequences in PFC for (g,h) outbound and (i,j) inbound trajectories. Data are presented as 
in a-d. k,l, Example PFC theta sequences across 8 sessions. Data are presented as in e,f.  
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Fig. 4| Look-ahead of theta sequences during outbound versus inbound navigation. a, Theta sequences 
representing past, current, and future locations on outbound (OUT) and inbound (IN) trajectories in CA1 and PFC. 
Each plot shows the averaged Bayesian reconstruction of all forward candidate theta sequences (sequence score r > 
0), replicated over two theta cycles for visualization, relative to current position (y = 0; y > 0: ahead, or future location; 
y < 0: behind, or past location). Color bar: posterior probability. Arrowheaded line: animal’s running direction. b, 
Distance index in CA1 (top) and PFC (bottom), compared the posterior probabilities on future versus past locations 
(< 0, biased to past; > 0, biased to future). 1st half of theta phases (light circles): -π to 0; 2nd half of theta phases (dark 
circles): 0 to π. Error bars: 95% CIs. c, Distributions for start and end of reconstructed trajectories relative to actual 
position (x = 0) of all significant forward theta sequences. ****p < 1e-4, **p = 0.007, Kolmogorov-Smirnov test. d,e, 
Spatial-field asymmetry during Session 1 (top) and Sessions 7-8 (bottom) in (d) CA1 and (e) PFC. Blue is for 
outbound fields (OUT) and green is for inbound fields (IN). Left: Averaged firing rate relative to spatial field center 
(x = 0) across all cells in the given sessions (error bars: SEMs). Right: Distributions of spatial-field asymmetry index 
(colored vertical lines: mean values). f, Spatial-field asymmetry across sessions (****p < 1e-4, ***p < 0.001, **p < 
0.01, *p < 0.05, n.s. p > 0.05, signed-rank tests compared to 0). Lines are derived from polynomial fits. g, Trajectory-
selective cells exhibit highly asymmetric fields on the preferred (Pref) trajectory compared to the non-preferred 
trajectory (Non-pref). Non-select: non-selective cells. P-values for each condition derived from signed-rank tests 
compared to 0; p-values across conditions derived from rank-sum tests (****p < 1e-4, ***p < 0.001, **p < 0.01, *p 
< 0.05, n.s. p > 0.05). Data are presented as mean and SEMs.  
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Fig. 5| Theta sequence representations of behavioral choices in CA1 and PFC. a-d, Four decoding examples 
during outbound navigation within the center stem (i.e., before CP) and after CP in (a,b) CA1 and (c,d) PFC. Left: 
Animal’s behavior. Green line: the trajectory pass shown on the middle; Blue/red arrowheaded line: currently taken 
trajectory. Green circles: locations where theta-sequence events occurred (numbered corresponding to middle). 
Middle: Decoding plots. Data are presented as in fig. 2c,d (bin = 120 ms), except that whenever a theta sequence was 
detected, the decoding was performed on the theta timescale (bin = 30 ms) and color-coded by trajectory type for 
clarity (red or blue: R-side or L-side trajectory; bars above show decoded identity and timing of each event). Note 
that at both timescales, summed probability of each column across two trajectory types is 1. Yellow shading: example 
event with detailed view shown on the right. e, Percent of theta sequences representing actual or alternative choice 
before and after CP in CA1 (left) and PFC (right) (****p < 1e-4, n.s. p > 0.05, session-by-session rank-sum paired 
tests). Error bars: SEMs. f, Trial-by-trial theta-sequence prediction of choice (****p < 0.0001, n.s., p > 0.05, trial-
label permutation tests). Red horizontal lines: chance levels (i.e., 95% CIs of shuffled data) calculated by permutation 
tests. g, Theta-sequence prediction persists over sessions. Early: Sessions 1-3; Middle: Sessions 4-5; Late: Sessions 
6-8. Data are presented as in f. Only correct trials are shown in f,g. h-j Coherent CA1-PFC theta sequences biased to 
actual choice. h,j, Two examples of coherent CA1-PFC theta sequences. j, Percent of coordinated CA1-PFC theta 
sequences coherently representing actual vs. alternative choices (for each condition from left to right: p = 0.0312, 
0.94, 0.0312, 0.48, signed-rank test compared to 50%; for comparisons between two conditions from left to right, p 
= 0.0312 and 0.0469, rank-sum tests). OUT: outbound; IN: inbound. Alter.: alternative choice. Error bars: SEMs.  
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Fig. 6| Choice representations of behavioral-timescale and theta sequences were not impaired during incorrect 
trials. a, Illustration of a set of correct (top) and incorrect (bottom) trials. For incorrect trial, the actual choice is the 
unrewarded side. b,c, Choice representations of behavioral-timescale sequences were not impaired for incorrect trials. 
b, Rasters and population decoding during an incorrect outbound trial. Data are taken from the same session and 
animal and presented as in Fig. 2c. c, Choice decoding accuracy during incorrect trials is not significantly different 
from that during correct trials in CA1 (n.s., p > 0.99 for outbound, = 0.67 for inbound) and PFC (n.s., p > 0.99 for 
outbound, = 0.11 for inbound; Friedman tests with Dunn’s post hoc). Corr.: correct trials; Incorr.: incorrect trials. 
Inbound trials for the incorrect condition were taken from the one right before an incorrect outbound trial (i.e., “Past” 
trial of the diagram shown in a). d, Choice representations of theta sequences were not impaired during incorrect 
trials (compare with Fig. 5f).  
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Fig. 7| Impairments in replay sequences prior to incorrect trials. a, Example forward CA1-PFC replay sequences 
representing actual future choice (see also Fig. 1d for this event with example cells, and ripples from a different 
tetrode). Left: Ordered raster plot during a SWR event (black line: ripple-band filtered LFPs from one CA1 tetrode). 
Middle: Corresponding spatial fields. Top right: Actual (immediate future) trajectory (orange circle: current position 
when replay sequences occurred). Bottom right: Reactivation strength (trajectory schematics on the bottom). Blue 
horizontal lines: 95% CIs computed from shuffled data. Red bar: the decoded trajectory. b, CA1-PFC replay strength 
predicts correct and incorrect responses. ROC curves were computed for the SVM classifiers (p-value from trial-label 
shuffling denoted; see Methods). Shadings: SDs. c,d, Specific impairment of reactivation of CA1-PFC trajectory-
selective pairs during incorrect trials. c, Correct trials. d, Incorrect trials. For each panel, SWR correlation at the 
center well is plotted against peak theta correlation of cell pairs on the upcoming future trajectory (outbound), divided 
into six subgroups with equal number of cell pairs (sextiles). Symbols on the upper left corner indicate p-values (****: 
p < 1e-4, **: p < 0.01, n.s.: p > 0.05, Pearson correlation). Lines are derived from polynomial fits. Error bars: SEMs. 
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Methods 

Subjects. Nine adult male Long-Evans rats (450-550 g, 4-6 months) were used in this study. All 

procedures were approved by the Institutional Animal Care and Use Committee at the Brandeis 

University and conformed to US National Institutes of Health guidelines. Data from six subjects 

have been reported in an earlier study20. 

 
Animal pre-training. Animals were habituated to daily handling for several weeks before 

training. After habituation, animals were food deprived to 85-90% of their ad libitum weight, and 

pre-trained to run on a linear track (~1-m long) for rewards (sweetened evaporated milk), and 

habituated to an high-walled, opaque sleep box (~30 × 30 cm) as described previously23,36,51. After 

the pre-training, animals were surgically implanted with a multi-tetrode drive. 

 

Surgical implantation. Surgical implantation procedures were as previously described20,23,36,51. 

Eight animals were implanted with a multi-tetrode drive containing 30-32 independently moveable 

tetrodes targeting right dorsal hippocampal region CA1 (-3.6 mm AP and 2.2 mm ML) and right 

PFC (+3.0 mm AP and 0.7 mm ML). One animal was implanted with a multi-tetrode drive 

containing 64 independently moveable tetrodes targeting the bilateral CA1 of dorsal hippocampus 

(-3.6 mm AP and ±2.2 mm ML; Supplementary Fig. 1a, left) and PFC (+3.0 mm AP and ±0.7 

mm ML; Supplementary Fig. 1b, left). On the days following surgery, hippocampal tetrodes were 

gradually advanced to the desired depths with characteristic EEG patterns (sharp wave polarity, 

theta modulation) and neural firing patterns as previously described20,23,36,51. One tetrode in corpus 

callosum served as hippocampal reference (CA1 REF), and another tetrode in overlying cortical 

regions with no spiking signal served as prefrontal reference (PFC REF). The reference tetrodes 
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reported voltage relative to a ground (GND) screw installed in skull overlying cerebellum. 

Electrodes were not moved at least 4 hours before and during the recording day. Following the 

conclusion of the experiments, micro-lesions were made through each electrode tip to mark 

recording locations (Supplementary Fig. 1). 

 

Behavioral task. Following recovery from surgical implantation (~7-8 days), animals were food-

deprived and again pre-trained on a linear track for at least two days before the W-track sessions 

started. During the recording day, animals were introduced to the novel W-track (Fig. 1a; ~80 × 

80 cm with ~7-cm wide tracks) for the first time, and learned the task rules over 8 behavioral 

sessions (or epochs, denoted as E1-E8; Supplementary Fig. 1c). Each behavioral session lasted 

15-20 mins and was interleaved with 20-30 min rest sessions in the sleep box (total recording 

duration ≅ 6 hours within a single day)20. On the W-maze, animals were rewarded for performing 

a hippocampus-23,24,28 and prefrontal-dependent29 continuous alternation task: returning to the 

center well after visits to either side well (left or right well; inbound trajectories), and choosing the 

opposite side well from the previously visited side well when starting from the center well 

(outbound trajectories). Rewards were automatically delivered in the reward wells (left well: L; 

right well: R; center well: C) triggered by crossing of an infrared beam by the animal’s nose. 

Therefore, animals performed four types of trajectories during correct behavioral sequences in this 

task (Fig. 1a): center-to-left (C-to-L), left-to-center (L-to-C), center-to-right (C-to-R), and right-

to-center (R-to-C). Among these trajectory types, C-to-L and C-to-R are outbound trajectories, 

while L-to-C and R-to-C are inbound trajectories. When animals were on the center stem, the two 

inbound trajectories thus represented possible past paths (one actual, and one alternative; Fig. 1b, 
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left), and the two outbound trajectories represented possible future paths (Fig. 1b, right). The 

learning curves were estimated using a state-space model (Supplementary Fig. 1c)20,23,52. 

 

Behavioral analysis. Locomotor periods, or theta states, were defined as periods with running 

speed > 5 cm/s, whereas immobility was defined as periods with speed ≤ 4 cm/s. The animal’s 

arrival and departure at a reward well was detected by an infrared beam triggered at the well. The 

well entry was further refined as the first time point when the speed fell below 4 cm/s before the 

arrival trigger, whereas the well exit was defined as the first time point when the speed rose above 

4 cm/s after the departure trigger20. The time spent at a reward well (i.e., immobility period at well) 

was defined as the period between well entry and exit. Only SWRs occurring during immobility 

periods at reward wells were analyzed in this study (see also SWR detection). The center stem of 

the W-maze was defined as the set of linear positions (see Spatial fields and linearization) between 

the center well and the center junction (i.e., choice point, CP). For a given behavioral trajectory, 

the before-CP period was defined as the time spent at the center stem, and the after-CP period was 

defined as the time spent at locations between 10 cm away from the center stem and the side well 

(Fig. 5 and Supplementary Fig. 5). Therefore, for outbound trajectories, before-CP periods began 

when animals exited the center well and ended when animals reached the choice point (Fig. 5), 

and for inbound trajectories, before-CP periods began when animals entered the choice point from 

the side arm and ended when animals entered the center well (Supplementary Fig. 5). 

 

Neural recordings. Data were collected using a SpikeGadgets data acquisition system 

(SpikeGadgets LLC)20,51. Spike data were sampled at 30 kHz and bandpass filtered between 600 

Hz and 6 kHz. LFPs were sampled at 1.5 kHz and bandpass filtered between 0.5 Hz and 400 Hz. 
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The animal’s position and running speed were recorded with an overhead color CCD camera (30 

fps) and tracked by color LEDs affixed to the headstage. Single units were identified by manual 

clustering based on peak and trough amplitude, principal components, and spike width using 

custom software (MatClust, M. P. Karlsson) as previously described20,36,51. Only well isolated 

neurons with stable spiking waveforms were included20. 

 

Cell inclusion. Units included in analyses fired at least 100 spikes in a given session. Putative 

interneurons were identified and excluded based on spike width and firing rate criterion as 

previously described23,36. Peak rate for each unit was defined as the maximum rate across all spatial 

bins in the linearized spatial field (see Spatial fields and linearization). A peak rate ≥ 3 Hz was 

required for a cell to be considered as a place cell. 

 

Spatial fields and linearization. Spatial fields were calculated only during locomotor periods (> 

5 cm/s; all SWR times excluded) at positions with sufficient occupancy (> 20 ms). To construct 

the 1D linearized spatial fields on different trajectory types, animal’s linear positions were first 

estimated by projecting its actual 2D positions onto pre-defined idealized paths along the track, 

and further classified as belonging to one of the four trajectory types20,51. The linearized spatial 

fields were then calculated using spike counts and occupancies in 2-cm bins of the linearized 

positions and smoothened with a Gaussian curve (4-cm SD). We found all linearized positions 

along each trajectory type were sufficiently covered by the spatial fields of CA1, as well as PFC, 

populations20. 
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Trajectory selective index. To measure the trajectory selectivity of single cells, a trajectory 

selectivity index (SI) was calculated (Supplementary Fig. 2g) by comparing the mean firing rates 

on the Left- (or L-) versus Right- (or R-) side trajectories for outbound (C-to-L vs. C-to-R) and 

inbound (L-to-C vs. R-to-C), respectively: 

 , 

where FRL is the mean firing rate on the L-side trajectory, and FRR is for the R-side trajectory. 

Only cells that had at least one spatial field (peak firing rate ≥ 3 Hz) detected on either the L- or 

R-side trajectory were considered, and the spatial fields in different sessions were analyzed 

separately. A cell with |SI| > 0.4 in CA1, or |SI| > 0.2 in PFC was classified as trajectory-selective 

cells (Supplementary Fig. 2g,h)18. The trajectory type (L vs. R) with highest firing rate was 

designated as the cell’s preferred (Pref) trajectory, and the other type designated as the non-

preferred (Non-pref) trajectory. 

 

SWR detection. Sharp-wave ripples (SWRs) were detected during immobility periods (≤ 4 cm/s) 

as described previously20,23,36,51. In brief, LFPs from CA1 tetrodes relative to the CA1 reference 

tetrode were filtered into the ripple band (150-250 Hz), and the envelope of the ripple-filtered LFPs 

was determined using a Hilbert transform. SWRs were initially detected as contiguous periods 

when the envelope stayed above 3 SD of the mean on at least one tetrode, and further refined as 

times around the initially detected events during which the envelope exceeded the mean. For replay 

and reactivation analysis, only SWRs with a duration ≥ 50 ms were included as in previous 

studies20,21. 

 

SI = FRL − FRR

FRL + FRR
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Theta phases and theta cycles. Peaks and troughs of theta oscillations, as well as theta phases, 

were identified on the band-passed (6-12 Hz) LFPs from the CA1 reference tetrode36,53. To 

precisely define a theta cycle for theta sequence detection, theta phase locking of each cell in CA1 

was calculated across locomotor periods (> 5 cm/s) in each session using the methods developed 

in previous reports35,36. A phase histogram was then calculated by averaging across all phase-

locked CA1 cells (Rayleigh tests at p < 0.05) in each session, and the phase with minimum cell 

firing was used to separate theta cycles in the given session (approximately valley-to-valley of 

hippocampal REF theta, or peak-to-peak of hippocampal fissure theta)48. 

 

Theta phase precession. Theta phase precession was examined in linearized spatial fields with a 

peak rate ≥ 3 Hz, and multiple fields of a single cell were analyzed separately (e.g., 

Supplementary Fig. 4a, top right). For each firing peak of linearized spatial fields detected (using 

MATLAB findpeaks function with a 20-cm minimal peak distance), a spatial field was defined as 

contiguous positions with rate > 10% of the peak rate, and at least 8 cm large (Supplementary 

Fig. 4a,b)54. For spikes within each spatial field, phase precession was computed using a circular-

linear fit as previously described (cl_corr function in the measure_phaseprec toolbox; 

https://github.com/HoniSanders/measure_phaseprec)55,56. The slope, correlation coefficient (r), 

and its p-value from the circular-linear regression were reported (Supplementary Fig. 4). 

 

Theta power and coherence. Power spectra and coherograms were computed from the LFPs 

referenced to GND using multitaper estimation methods from the Chronux toolbox 

(http://chronux.org; version 2.12)20. We obtained the SD and mean for each frequency across a 

given session, and normalized the power of that frequency as a z-score (Supplementary Fig. 7b). 
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Coherence between a pair of CA1 and PFC tetrodes was calculated during locomotor periods (> 5 

cm/s; locations within 15 cm of the reward well were excluded to prevent contamination from 

SWR activity). Coherograms averaged over all available CA1-PFC tetrode pairs with 

simultaneously recorded LFPs were shown in Supplementary Fig. 7c,d. Theta power and 

coherence were measured as the mean power and coherence between 6-12 Hz, respectively. 

 

Spatial field asymmetry. For cells showing significant phase precession (circular-linear 

regression at p < 0.05), we further analyzed their spatial field asymmetry (Fig. 4d-g). Only fields 

with the highest peak rate of a single cell for each trajectory type, and at least 20 cm large, were 

used. The spatial fields were then binned into 10% field length relative to field center57, and the 

asymmetry index (AI) was calculated as: 

 , 

where AR denoted the area under the firing rate profile to the right of the field center (i.e., x > 0 in 

Fig. 4d,e), while AL represented the same to the left of the field center (i.e., x < 0 in Fig. 4d,e). 

Therefore, a negative AI corresponds to a spatial field with an extended initial tail. 

 

Theta cycle skipping. To quantify theta cycle skipping in single cells (Supplementary Fig. 6), 

we measured a cycle skipping index (CSI) on their auto-correlograms (ACGs). Data on different 

trajectory types were analyzed separately, and thus a single cell could contribute to more than one 

ACG. For each ACG, data was restricted to locomotor periods (> 5 cm/s) that lasted at least 1.5 s, 

and with at least total 100 spikes18. Each ACG was first estimated as a histogram of nonzero lags 

across the interval ± 400 ms (bin = 10 ms)18,47, and was further corrected for the triangular shape 

caused by finite duration data18,58. The corrected ACG was then smoothed (Gaussian kernel, SD = 

AI = AR − AL

AR + AL
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20 ms) and peak-normalized. To detect the theta-modulated peaks of ACGs, power spectra for 

ACGs were generated using FFT, and the relative theta power of an ACG was calculated by 

dividing its power in the theta band (6-10 Hz) by its total power in the 1-50 Hz range59. An ACG 

with relative theta power > 0.15 was considered theta-modulated. For all theta-modulated ACGs, 

the ACGs were band-pass filtered between 1 and 10 Hz59, and the amplitudes of the first and 

second theta peaks on the filtered ACG were then determined by finding a first peak (p1) near t = 

0 in the 90-200 ms window, and the second peak (p2) near t = 0 in the 200-400 ms window, as 

described previously18. The CSI was then determined as: 

 , 

The CSI ranges between −1 and 1, and higher values indicate more theta cycle skipping. 

 

Sequence analysis. Sequence analysis here focused on three different ensemble sequences: 

behavioral-timescale sequences, theta sequences, and replay sequences (Fig. 1c,d). To evaluate 

neural representations at the ensemble level, Bayesian decoding was implemented as previously 

described20,51,60,61: a memoryless Bayesian decoder was built for different trajectory types (for 

outbound, C-to-L vs. C-to-R; for inbound, L-to-C vs. R-to-C) to estimate the probability of 

animals’ position given the observed spikes (Bayesian reconstruction; or posterior probability 

matrix): 

 , 

where X is the set of all linear positions on the track for different trajectory types (i.e., Tr; Tr 

∈{L, R}, where L represents the L-side trajectory, R represents the R-side trajectory), and we 

CSI = p2 − p1
max p1, p2( )

P(X,Tr spikes) = P(spikes X,Tr)P(X,Tr)
P(spikes)
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assumed a uniform prior probability over X and Tr. Assuming that all N cells active in a sequence 

fired independently and followed a Poisson process: 

 , 

where τ is the duration of the time window (see below), fi(X,Tr) is the expected firing rate of the i-

th cell as a function of sampled location X and trajectory type Tr, and spikesi is the number of 

spikes of the i-th cell in a given time window. Therefore, the posterior probability matrix can be 

derived as follows: 

 , 

where C is a normalization constant such that  (xj is the j-th position 

bin, D is the total length of the track, and trk is the k-th trajectory type; k = 1 or 2, representing L- 

or R-side trajectory, respectively). 

Specifically, for behavioral-timescale sequences, the Bayesian decoder was used to decode 

animal’s current location (x) and choice (tr) (Fig. 2 and Supplementary Fig. 2) as in previous 

studies20. Data was restricted to locomotor periods (> 5 cm/s; locations within 15 cm of the reward 

well were excluded for decoding to prevent contamination from SWR activity), and binned into 

120-ms bins (i.e., τ = 120 ms; moving window with 60 ms overlap). For each time bin, the location 

and choice (i.e., trajectory type) with maximum decoded probability was compared to the actual 

position and choice of the animal in that bin (Fig. 2c-f and Supplementary Fig. 2a-f). Decoding 

error of positions in this bin was determined as the linear distance between estimated position and 

actual position (Supplementary Fig. 2e,f), and the accuracy of animal’s choices decoded was 

reported (Fig. 2e,f). 

P(spikes X,Tr) = P(spikesi X,Tr)
i=1

N

∏ =
τ fi X,Tr( )( )spikesi e−τ fi (X ,Tr )

spikesi !i=1

N

∏

P(X,Tr spikes) = C fi X,Tr( )spikesi
i=1

N

∏⎛⎝⎜
⎞
⎠⎟
e−τ fi X ,Tr( )

i=1

N∑

P(x j ,trk spikes) = 1j=1

D∑k=1

2∑
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For theta sequences, we first defined candidate events as theta cycles with at least 5 cells 

active in a given brain region (CA1 or PFC). Only theta cycles with running speed > 10 cm/s, and 

a duration ranging from 100 to 200 ms were used62. A time window of 20 ms (i.e., τ = 20 ms; 

moving window with 10 ms overlap) was used to examine theta sequence structure at a fast, 

compressed timescale. To identify sequential structure within a theta cycle, two measures were 

adapted from previous theta-sequence studies40,62-64. In the first method, a weighted 

correlation62,64, , was calculated for the posterior probability matrix of each trajectory 

type (Pmat, D × T, D is the total number of spatial bins, and T is the total number of temporal 

bins). The weighted means were computed across locations (x) and time (t) as: 

 , 

 , 

and the weighted covariance, , was computed as: 

 , 

where ti is the i-th temporal bin, and xj is the j-th spatial bin of the posterior probability matrix 

(Pmat). The weighted correlation was then calculated as: 

 , 

and the weighted correlation was reported as the sequence score (r). 

r x,t Pmat( )

EX (x Pmat) =
Pmatij x jj=1

D∑i=1

T∑
Pmatijj=1

D∑i=1

T∑

ET (t Pmat) =
Pmatijtii=1

T∑j=1

D∑
Pmatiji=1

T∑j=1

D∑

covar x,t Pmat( )

covar(x,t Pmat) =
Pmatij x j − EX x Pmat( )( ) ti − ET t Pmat( )( )j=1

D∑i=1

T∑
Pmatijj=1

D∑i=1

T∑

r x,t Pmat( ) = covar x,t Pmat( )
covar t,t Pmat( )covar x, x Pmat( )
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In the second method, we measured whether the decoded positions in successive temporal 

bins of the posterior probability matrix were tightly arranged along an oblique line as previously 

reported61-63. Briefly, the best-fit line of a theta sequence (e.g., yellow lines in Fig. 3) was 

determined by a fitted line that yielded maximum posterior probability in an 8-cm vicinity (d). For 

a given candidate line with a slope v and an intercept ρ, the average likelihood R that the decoded 

position is located within a distance d of that line is: 

 , 

where k is the temporal bin of the posterior probability matrix, and ∆t is the moving step of the 

decoding window (i.e., 10 ms). To determine the best-fit line for each theta sequence, we densely 

sampled the parameter space of v and ρ (v > 1 m/s to exclude stationary events) to find the value 

that maximized R (Rmax, i.e., goodness-of-fit).  

In order to assess the significance of theta sequences, we circularly shifted the space-bins of 

the posterior probability matrix (n = 1000 times) as described previously40,63,64, and calculated the 

weighted correlation and the goodness-of-fit from the shuffled data. A sequence was considered 

significant if it met two criteria: first, its sequence score (i.e., weighted correlation) exceeded the 

97.5th percentile or was below the 2.5th percentile (for reverse sequences) of the shuffled 

distributions; and its goodness-of-fit (Rmax) was higher than the 95th percentile of their shuffles. 

We considered the significant trajectory type as the decoded trajectory, and if more than one 

trajectory type were significant, the trajectory with the highest sequence score was considered as 

the decoded trajectory. For plotting purposes only, a moving window (30 ms, advanced in steps of 

5 ms) was used for displaying theta sequences (Figs. 3 and 5 and Supplementary Fig. 5).  

The detection of replay sequences has been described previously20. Briefly, candidate replay 

events were defined as the SWR events during which ≥ 5 place cells fired. Each candidate event 

R v,ρ( ) = 1
n

P pos − vk ⋅ Δt ≤ d( )
k=0

n−1

∑
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was then divided into 10-ms non-overlapping bins (i.e., τ = 10 ms), and decoded based on the 

Bayes’ rule described above. The assessment of significance for replay events was implemented 

by a Monte Carlo shuffle, in which the R-squared from linear regression on the temporal bins 

versus the locations of the posterior probability matrix was compared to the R-squared derived 

from the shuffled data (i.e., time shuffle, circularly shuffling temporal bins of the posterior 

probability matrix). A candidate event with an R-squared that exceeded the 95th percentile of their 

shuffles (i.e., p < 0.05) was considered as a replay event. 

For SWR events with significant CA1 replay sequences detected, we further measured CA1-

PFC reactivation during these events (Fig. 7 and Supplementary Fig. 9) as described previously20. 

We only analyzed the events where ≥ 5 place cells and ≥ 5 PFC cells fired. Briefly, for an event 

with N CA1 and M PFC cells active, a (N × M) synchronization matrix during RUN (CRUN) was 

calculated with each element (Ci,j) representing the Pearson correlation coefficient of the linearized 

spatial fields on a certain trajectory type (see Spatial fields and linearization) of the i-th CA1 cell 

and the j-th PFC cell. To measure the population synchronization pattern during the SWR, the 

spike trains during the SWR were divided into 10-ms bins and z transformed20,65. The (N × M) 

synchronization matrix during the SWR (CSWR) was then calculated with each element (Ci,j) 

representing the correlation of the spike trains of a CA1-PFC cell pair. Finally, the reactivation 

strength of this event for each trajectory type was measured as the correlation coefficient (R) 

between the population matrices, CRUN and CSWR. 

 

Theta-sequence predication of behavioral choices. For theta-sequence prediction of behavioral 

choices (Figs. 5f,g and 6d and Supplementary Fig. 5), trial-by-trial classification analysis was 

performed using support vector machines (SVMs) through the libsvm library (version 3.12)66. For 
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each region (CA1 or PFC), two independent SVMs were trained for before-CP and after-CP 

periods. For each trial, the numbers of theta sequences representing the actual versus the alternative 

choice during a given period (before CP, or after CP) were used as a feature (n = 2) to predict the 

current choice (k = 2, L or R). All classifiers were C-SVMs with a radial basis function (Gaussian) 

kernel and trained on correct trials. Hyperparameter (C and γ; regularization weight and radial 

basis function width, respectively) selection was performed using a random search method with 

leave-one-out cross-validation to prevent overfitting. The selected hyperparameters were then used 

to report the leave-one-out cross-validation accuracy. The percentage of correctly inferred trials 

was computed across all training/test trial combinations to give prediction accuracy. The 

significance of this prediction was determined by comparing to the distribution of shuffled data by 

randomly shuffling the trial labels (L or R), and this shuffled dataset was used to train a classifier 

in the same way as the actual dataset. A prediction accuracy based on the actual dataset that was 

higher than the 95th percentile of its shuffles (p < 0.05) was considered as significant. Only trials 

with at least one theta sequence for actual and alternative choices were used for prediction. 

 

CA1-PFC reactivation predication of correct and incorrect responses. For prediction of 

correct and incorrect responses with CA1-PFC reactivation (Fig. 7b and Supplementary Fig. 9c), 

SVMs were used similar to the theta-sequence prediction analysis (see above). Two independent 

SVMs were trained on forward and reverse replay events. For each trial, the averaged CA1-PFC 

reactivation strength for the actual versus the alternative trajectory across all reactivation events 

during immobility at the reward well prior to the trial was used as a feature (n = 2; Supplementary 

Fig. 9a) to predict correct versus incorrect responses (k = 2, correct or incorrect, regardless of 

which side arm that the animals choose49). The significance of this prediction was determined by 
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comparing it to the distribution of shuffled data by randomly shuffling the trial labels (correct or 

incorrect), and this shuffled dataset was used to train a classifier in the same way as the actual 

dataset. Given the unbalanced nature of the dataset (a lot more correct trials than incorrect trials), 

we resampled the incorrect trials (with replacement) to match the correct trials, and used ROC 

analysis to measure the predictive power of the classifiers. The area under each ROC curve (AUC) 

was computed33, and an AUC based on the actual dataset that was higher than the 95th percentile 

of its shuffles (p < 0.05) was considered as significant. Only trials with at least one reactivation 

event of the given type (forward or reverse) were used for prediction. 

 

CA1-PFC pairwise correlation. Spike-time pairwise correlation during theta and SWR states 

were calculated as previously described23,35,36,51 (Fig. 7c,d and Supplementary Fig. 9d,e). In brief, 

cross-correlation was computed using 10 ms bins, normalized by the mean firing rates of the 

neurons, and followed by smoothing (Gaussian kernel, SD = 30 ms). The peak of the cross-

correlations was determined in a ±200 ms window around the 0-ms lag. Given the different firing 

rates on different trajectory types, correlations of all cell pairs for a given trajectory type were 

scaled by their average value for that trajectory (i.e., transformed correlation)67,68. For trajectory-

selective cell pairs in Fig. 7c,d and Supplementary Fig. 9d,e, cells with the same trajectory 

preference were paired to calculate the cross-correlation. 

 

Statistical Analysis. Data analysis was performed using custom routines in MATLAB 

(MathWorks) and GraphPad Prism 8 (GraphPad Software). We used nonparametric and two-tailed 

tests for statistical comparisons throughout the paper, unless otherwise noted. We used Kruskal-

Wallis or Friedman test for multiple comparisons, with post hoc analysis performed using a Dunn’s 
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test. P < 0.05 was considered the cutoff for statistical significance. Unless otherwise noted, values 

and error bars in the text denote means ± SEMs. No statistical methods were used to pre-determine 

sample sizes, but our sample sizes are similar to those generally employed in the field. 

 

Data and code availability: The reported data and code used are archived on file servers at 

Brandeis University, and are available from the corresponding author upon request. 
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