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 2 

Abstract 43 

White matter hyperintensities of presumed vascular origin (WMH) are frequently found in MRIs of 44 

patients with various neurological and vascular disorders, but also in healthy elderly subjects. 45 

Although automated methods have been developed to replace the challenging task of manually 46 

segmenting the WMH, there is still no consensus on which validated algorithm(s) should be used. In 47 

this study, we validated and compared three freely available methods for WMH extraction: 48 

FreeSurfer, UBO Detector, and the Brain Intensity AbNormality Classification Algorithm, BIANCA 49 

(with the two thresholding options: global thresholding vs. LOCally Adaptive Threshold Estimation 50 

(LOCATE)) using a standardized protocol.  51 

We applied the algorithms to longitudinal MRI data (2D FLAIR, 3D FLAIR, T1w sMRI) of 52 

cognitively healthy older people (baseline N = 231, age range 64 – 87 years) with a relatively low 53 

WMH load.  54 

As a reference for the segmentation accuracy of the algorithms, completely manually segmented gold 55 

standards were used separately for each MR image modality. To validate the algorithms, we 56 

correlated the automatically extracted WMH volumes with the Fazekas scores, chronological age, 57 

and between the time points. In addition, we analyzed conspicuous percentage WMH volume 58 

increases and decreases in the longitudinal data between two measurement points to verify the 59 

segmentation reliability of the algorithms.  60 

All algorithms showed a moderate correlation with chronological age except BIANCA with the 2D 61 

FLAIR image input only showed a weak correlation. FreeSurfer fundamentally underestimated the 62 

WMH volume in comparison with the gold standard as well as with the other algorithms, and cannot 63 

be considered as an accurate substitute for manual segmentation, as it also scored the lowest value in 64 

the DSC compared to the other algorithms. However, its WMH volumes correlated strongly with the 65 

Fazekas scores and showed no conspicuous WMH volume increases and decreases between 66 

measurement points in the longitudinal data. BIANCA performed well with respect to the accuracy 67 

metrics – especially the DSC, H95, and DER. However, the correlations of the WMH volumes with 68 

the Fazekas scores compared to the other algorithms were weaker. Further, we identified a significant 69 
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 3 

amount of outlier WMH volumes in the within-person change trajectories with BIANCA. UBO 70 

Detector’s WMH volumes achieved the best result in terms of cost-benefit ratio in our study. 71 

Although there is room for optimization with respect to segmentation accuracy (especially for the 72 

metrics DSC, H95 and DER), it achieved the highest correlations with the Fazekas scores and the 73 

highest ICCs. Its performance was high for both input modalities, although it relies on a built-in 74 

single-modality training dataset, and it showed reliable WMH volume estimations across 75 

measurement points. 76 

 77 

Keywords 78 
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Healthy aging 82 
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1 Introduction 86 

As our lifespan increases and the population ages, cognitive limitations caused by 87 

cerebrovascular diseases will become more common (Baker et al., 2012). White matter 88 

hyperintensities of presumed vascular origin (WMH) are considered as a marker of 89 

cerebrovascular diseases. They appear hyperintense on T2-weighted MRI images, like fluid-90 

attenuated inversion recovery (FLAIR) sequences, without cavitation, and isointense or 91 

hypointense on T1-weighted (T1w) sequences (Wardlaw et al., 2013). The FLAIR sequence is 92 

generally the most sensitive structural sequence for visualizing WMH via magnetic resonance 93 

imaging (MRI) (Wardlaw et al., 2013). WMH are often seen in MR images of the brain in 94 

patients with neurological and vascular disorders but also in healthy elderly people (Caligiuri et 95 

al., 2015). In the context of clinical diagnostics, the Fazekas scale (Fazekas, Chawluk, Alavi, 96 

Hurtig, & Zimmerman, 1987), the Scheltens scale (Scheltens et al., 1993), and the age-related 97 

white matter changes scale (ARWMC) (Wahlund et al., 2001) are commonly used to visually 98 
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assess the severity and progression of WMH. However, these visual rating scales unfortunately 99 

do not provide true quantitative data, have a relatively low reliability and are time-consuming to 100 

obtain (Mäntylä et al., 1997). Compared to such scales, volumetric measurements are more 101 

reliable and more sensitive to age effects in longitudinal studies of WMH (T. L. A. van den 102 

Heuvel et al., 2016), especially in cognitively healthy samples where the expected WMH volume 103 

increases over time are rather small. While several previous studies have been segmenting WMH 104 

manually (Anbeek, Vincken, van Osch, Bisschops, & van der Grond, 2004; Dadar et al., 2017; de 105 

Sitter et al., 2017; Klöppel et al., 2011; Kuijf et al., 2019; Steenwijk et al., 2013), this extremely 106 

time-consuming option seems not feasible in future studies, especially when considering the 107 

current trend towards big data (i.e., datasets with a large N and multiple time points of data 108 

acquisition). Automated methods that can detect WMH robustly and with high accuracy are 109 

therefore very useful and promising. Recently, Caligiuri and colleagues (Caligiuri et al., 2015) 110 

compared different existing algorithms including supervised, unsupervised, and semi-automated 111 

techniques. They found that many of these algorithms are not freely available, study and/or 112 

protocol specific and have been validated on small sample sizes. There is still  no consensus on 113 

which algorithm(s) is (are) of good quality  and should be applied to detect WMH (Dadar et al., 114 

2017; Frey et al., 2019). Consequently, the methodology of pertinent studies is very 115 

heterogeneous and compromises the comparability of such studies. 116 

The primary goal of our current work is therefore to validate and precisely compare the 117 

performance of three freely available WMH extraction methods: FreeSurfer (Fischl, 2012), UBO 118 

Detector (Jiang et al., 2018), and BIANCA (Brain Intensity AbNormality 119 

ClassificationAlgorithm) (Griffanti et al., 2016).  120 

The FreeSurfer Image Analysis Suite (Fischl, 2012) is a fully automated software for the surface- 121 

and volume-based analysis of brain structure using information of T1w images. While 122 

quantifying WMH is not FreeSurfer’s main aim, it still provides an unsupervised WMH 123 

segmentation as part of its pipeline and enables WMH quantification based on T1w images alone.  124 
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UBO Detector and BIANCA are supervised tools specifically developed to automatically 125 

respectively semi-automatically segment WMH based on the k-nearest neighbor (KNN) 126 

algorithm. Although recent studies have been using these three algorithms, their validity and 127 

reliability is still not sufficiently clear. Former validations were often performed i) in patients 128 

with moderate to high WMH load, ii) using cross-sectional data, iii) in small samples. For a better 129 

overview see Table 1. 130 

In this study, we aim to provide complementary information on the performance of the three 131 

WMH extraction algorithms and the effects of the three different modalities (T1w, 3D FLAIR, 132 

2D FLAIR). We applied the algorithms to longitudinal MRI data of cognitively healthy older 133 

people (baseline N = 231, study interval = four years). First, we used three fully manually 134 

segmented gold standards (based on 16 images per modality) to cross-sectionally compare the 135 

segmentation accuracy of the algorithms using different metrics, such as the Dice Similarity 136 

Coefficient (DSC), the Outline Error Rate (OER), the Detection Error Rate (DER), and the 137 

modified Hausdorff distance for the 95th percentile (H95). Second, we statistically compared the 138 

WMH volumes estimated by the algorithms as well as the correlation of those WMH volumes 139 

with the Fazekas scores in a subset of 162 subjects containing all three image modalities. Third, 140 

we used the full longitudinal dataset to validate the three algorithms by examining the 141 

correlations of the outputted WMH volumes (a) with the Fazekas score ratings for clinical 142 

validation and (b) with chronological age. In addition, we run correlations of the outputted WMH 143 

volumes between the time points of data acquisition. Based on the results of the first three 144 

analysis steps, we performed additional exploratory analyses to study the variability of the WMH 145 

segmentation between the measurement points more closely. 146 
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Table 1 147 

Table of the articles which validated the methods in this study, listed according to Dice Similarity Coefficient (DSC), sensitivity, and false positive ratio (FPR).  148 
This table does not claim to be complete. 149 

 
Article 
 

Algorithm Sample Subjects 

WMH 
load of 
the 
subjects 

GS 
Inter-rater 
agreement for 
the GS 

Type of 
algorithm 
validation 

DSC 

between GS 
and 
algorithm 

Sensitivity 
between GS and 
algorithm 

FPR 

between GS and 
algorithm 

Additional results 
between GS and 
algorithm 

Population 
based study 

Ajilore et 
al. (2014) 

FreeSurfer N = 126 
 
(n = 53  
n = 73)  
 

 
LLDa 
HCa 

* manually  
(N = 20, LLD) 

– cross-sectionally – – – r = 0.91, p < 10-7 – 

Olsson et al. 
(2013) 

FreeSurfer N = 152  MCIa (incl. dementia) * not totally manually, 
with MRIcron  (N = 27) 

yes (N =2)*** cross-sectionally – –  2D FLAIR (GS) vs T1w (FS) 
Spearman’s Rho = 0.65 
ICC = 0.51 
Kendall’s tau = 0.48** 
 

Gothenburg 
MCI study 

Samaille et 
al. (2012) 

FreeSurfer 1) N = 24 
2) N = 43 

1) MCIa, 
2) CADASILa 

1) * 
2) very high 

1) manually 
2) FLAIR images as base 
using BioClinica SAS 
 

– cross-sectionally 0.40 – – ICC = 0.52 – 

Smith et al. 
(2011) 

FreeSurfer N = 147 
 
(n = 40, 
n = 96, 
n = 11) 
 

 
 
normal cognition 
MCIa 
ADa 

* manually  
(N = 10) 

_ cross-sectionally – – – Intraclass Correlation 
Coefficient = 0.91 

Community 
based study 

Jiang et al. 
(2018) 
(developers) 

UBO 
Detector 
 

1) N = 400  
2) N = 539 at 

baseline  

1) + 2) incl. stroke, 
TIAa, AFa, depression, 
dementia (not at 
baseline) 

low – high* manually  
(N = 40) 

– 1) cross-
sectionally 
2) longitudinally 

0.848 (overall) 0.913 (overall) 0.026 (overall) overall Specificity = 0.989 
overall Accuracy = 0.989 
overall OER = 0.224 
overall DER = 0.039 
** 

1) Older 
Australian 
Twins Study 
(OATS) 
2) Sydney 
Memory and 
Ageing Study 
(Sydney MAS) 
 

Griffanti et 
al. (2016) 
(developers) 

BIANCA 1) N = 85  
2) N = 474 

1) ADa, MCIa,  
subjective CIa, HCa 

2) (neurodegenerative 
cohort = NDGEN) 
non-disabling stroke, 
TIA (vascular cohort 
= OXVASC) 

 

medium* manually 
 
1. N = 21 
2. N = 109 

_ cross-sectionally 1) 0.76 
2) 0.52 

_ 1) 0.22 
2) 0.46 

1) ICC = 0.990,  
DERa = 0.03,  
OERa = 0.46** 

 
2) ICC = 0.919,  

DERa = 0.19,  
OERa = 0.76** 

 

1) Oxford 
Project to 
Investigate 
Memory and 
Ageing 
(OPTIMA) 
2) Oxford 
Vascular Study 
(OXVASC) 
 

Ling et 
al.(2018) 

BIANCA 1) N = 90  
(2D FLAIR 

2) N = 66/90  
(3D FLAIR) 
 

CADASILa very high semi-automated 
(N = 20) 

yes (N =2)*** cross-sectionally 1) median 0.79 
2) median 0.76 

_ 1) 0.23 
2) 0.20 

1) ICC = 0.81** 
2) ICC = 0.78** 

CADASIL study 

Sundaresan 
et al. (2018) 
(developers) 

LOCATE 
 
 
 
 

1) N = 21 
2) N = 18 
3) N = 15 
4) N = 19 
5) N = 60 

1) + 2) same as in 
Griffanti et al. (2018) 

3) CADASILa 

4) HC 
5) from the WMH 

segmentation study 
MWSC, see Kuijf et 
al. (2019) 

low –  
very high 

1) + 2) see  
Griffanti et al. (2018) 

3) no GS  
4) no GS 
5) manually 

(Kuijf et al., 2019) 
 
For 3) + 4) they used 
BIANCA trained with 2) 
as a reference – no 
manually traced GSs 

5) yes (N =2)*** cross-sectionally 1) 0.77 
2) 0.75 
3) 0.79 
4) – 
5) range =  

0.63 – 0.73 
 

1) 0.03 (increase to 
global threshold 
of BIANCA) 

2) 0.10 (increase) 
3) 0.48 (increase) 
4) – 
 
1), 2), 5) for 

PVWMH and 
DWMH ** 

1) 0.001(increase) 
2) 0.002 (increase) 
3) 0.00  
4) – 
5) small increase** 

– – 

Notes: GS = gold standard; Tp = Time point; N = Number of subjects; ICC = Interclass Correlation Coefficient, OER = Outline Error Rate.  150 
a Subjects’ clinical status: MDD = major depression disorder, LLD = late-life depression, HC = healthy controls, MCI = amnestic mild cognitive impairment; CADASIL = Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and 151 
Leukoencephalopathy, AD = Alzheimer’s disease, TIA = transient ischaemic attack, AF = arterial fibrillation, CI = cognitive impairment.* no clear information; ** for more results/information see article; *** The number of N takes into account the number of 152 
operators included in the calculation for the inter-operator reliability.  153 
If multiple results are given, those based on the highest DSC are given. 154 
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2 Material and Methods 155 

2.1 Subjects 156 

Longitudinal MRI data were taken from the Longitudinal Healthy Aging Brain Database Project 157 

(LHAB; Switzerland) – an ongoing project conducted at the University of Zurich (Zöllig et al., 158 

2011). We used data from the first four measurement occasions (baseline, 1-year follow‐up, 2-year 159 

follow-up, 4-year follow-up). The baseline LHAB dataset includes data from 232 participants (age at 160 

baseline: M = 70.8, range = 64–87; F:M = 114:118). At each measurement occasion, participants 161 

completed an extensive battery of neuropsychological and psychometric cognitive tests and 162 

underwent brain imaging. Inclusion criteria for study participation at baseline were age ≥ 64, right‐163 

handedness, fluent German language proficiency, a score of ≥ 26 on the Mini Mental State 164 

Examination (Folstein, Folstein, & McHugh, 1975), no self‐reported neurological disease of the 165 

central nervous system and no contraindications to MRI. The study was approved by the ethical 166 

committee of the canton of Zurich. Participation was voluntary and all participants gave written 167 

informed consent in accordance with the declaration of Helsinki. 168 

For the present analysis, we only included participants with complete structural MRI data, which 169 

resulted in a baseline sample size of N = 231 (age at baseline: M = 70.8, range = 64–87; F:M = 170 

113:118). At 4-year follow-up, the LHAB dataset still comprised 74.6% of the baseline sample (N 171 

= 173), of which N = 166 datasets (age at baseline: M = 74.2, range = 68–87; F:M = 76:90) had 172 

complete structural data. In accordance with previous studies in this field, we ensured that none of 173 

the included datasets had intracranial hemorrhages, intracranial space occupying lesions, WMH 174 

mimics (e.g. multiple sclerosis), large chronic, subacute or acute infarcts, and extreme visually 175 

apparent movement artefacts.  176 

 177 
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2.2 MRI data acquisition 178 

Longitudinally data MRI scans were acquired at the University Hospital of Zurich on a Philips 179 

Ingenia 3T scanner (Philips Medical Systems, Best, The Netherlands) using the dsHead 15-channel 180 

head coil. T1‐weighted (T1w) and 2D-FLAIR structural images were part of the standard MRI 181 

battery and are therefore available for the most part. T1w images were recorded with a 3D T1w turbo 182 

field echo (TFE) sequence, repetition time (TR): 8.18 ms, echo time (TE): 3.799 ms, flip angle (FA): 183 

8°, 160 × 240 × 240 mm3 field of view (FOV), 160 sagittal slices, in-plain resolution: 256 × 256, 184 

voxel size: 1.0 × 0.94 × 0.94 mm3, scan time: ∼7:30 min. The 2D FLAIR image parameters were: 185 

TR: 11000 ms, TE: 125 ms, inversion time (TI): 2800 ms, 180 × 240 × 159 mm3 FOV, 32 transverse 186 

slices, in-plain resolution: 560 × 560, voxel size: 0.43 × 0.43 × 5.00 mm3, interslice gap: 1mm, scan 187 

time: ∼5:08 min. 3D FLAIR images were recorded for a subsample only. The 3D FLAIR image 188 

parameters were: TR: 4800 ms, TE: 281 ms, TI: 1650 ms, 250 × 250 mm FOV, 256 transverse slices, 189 

in-plain resolution: 326 × 256, voxel size: 0.56 × 0.98 × 0.98 mm3, scan time: ∼4:33 min.  190 

Table 2 provides an overview of the number of available MRI images per MR modality (T1w, 2D 191 

FLAIR, 3D FLAIR) and data acquisition time points. While the 2D FLAIR + T1w and 3D FLAIR + 192 

Tw1 images serve as input for the validation of the UBO Detector and BIANCA algorithms, the T1w 193 

images only are used for the validation of the FreeSurfer algorithm. 194 

 195 

2.3 Subsets 196 

In this work we used three subsets to validate the algorithms. The datasets differ in MRI sequence 197 

and number of images. 198 

 199 

2.3.1.1 Subset 1 (input FreeSurfer) 200 

Subset 1 included 800 sessions, containing one or two T1w images. For details on the number of 201 

subjects per time point, see Table 2.  202 
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2.3.1.2 Subset 2 (input UBO Detector and BIANCA) 203 

Subset 2 consisted of 762 MR sessions, including a 2D FLAIR, and one or two T1w images. For 204 

details on the number of subjects per time point, see Table 2.  205 

 206 

2.3.1.3 Subset 3 (input UBO Detector and BIANCA) 207 

Subset 3 comprised 166 MR sessions, including a 3D FLAIR, and one or two T1w images. For 208 

details on the number of subjects per time point, see Table 2.  209 

 210 

2.3.1.4 Subset «n162»  211 

This subset «n162» (age: 72.3; range = 65.1 – 83.9; F:M = 66:96) represents a subset of the original 212 

LHAB dataset and was built by including only sessions (n = 162) containing all three imaging 213 

modalities (T1w, 3D FLAIR, 2D FLAIR). 214 

 215 

Table 2  216 

Number (N) of sessions per time point (Tp), and in total per modality. 217 

 Time points  

Modality Tp1 N Tp2 N Tp3 N Tp5 N Total N 

T1-weighted 231 207 196 166 800 

2D FLAIR 228 203 174 157 762 

3D FLAIR 4 46 53 63 166 

 218 

2.4 Validation metrics  219 

We use different metrics to draw specific and comprehensive conclusions about the different 220 

segmentation accuracies of the algorithms. These metrics provide information about the degree of 221 

overlap, the degree of resemblance, and the volumetric agreement when comparing (a) the gold 222 
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standards amongst each other and (b) the algorithm outputs with the gold standards. The equations 223 

can be found in Table 3.  224 

 225 

2.4.1 Overlap agreement 226 

 If voxels are correctly classified in a binary segmentation, they can be true positives (TPs) or true 227 

negatives (TNs). In contrast, when there is a discrepancy between the gold standard and the 228 

algorithm, then the voxels are false positives (FPs) or false negatives (FNs). In case of a low WMH 229 

load, as in this work, the number of TPs is much smaller than the number of TNs, which can affect 230 

the accuracy measures. The FPR, also known as sensitivity, was calculated and mentioned. The 231 

specificity (also known as recall) was not provided since it is equal to 1 - FPR.   232 

The Dice Similarity Coefficient (DSC) provides information about the overlap agreement between 233 

two segmentations (operators or automated segmentation methods) and it is perhaps the most 234 

established metric in evaluating the accuracy of WMH segmentation methods. However, since the 235 

DSC depends on the lesion load (the higher the lesion load, the higher the DSC), it is difficult to 236 

evaluate operators or automated segmentation methods against each other if assessed on different sets 237 

of scans with different lesion loads (Wack et al., 2012).  238 

Extending the DSC, the Outline Error Rate (OER)  and Detection Error Rate (DER) are independent 239 

of lesion burden (Wack et al., 2012). In these metrics, the sum of FP and FN voxels is split, 240 

depending on whether an intersection occurred or not. The sum is then divided by the mean total area 241 

(MTA) of the two operators to obtain a ratio with the DER as a metric of errors without intersection, 242 

and OER as a metric of errors where an intersection is found.  243 

 244 

2.4.2 Resemblance agreement 245 

The Hausdorff distance is a shape comparison method and can be used to evaluate the degree of 246 

resemblance of two images (Beauchemin, Thomson, & Edwards, 1998; Huttenlocher, Klanderman, 247 

& Rucklidge, 1993). It represents the maximum distance of a point in one set to the nearest point in 248 
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the other set (Shonkwiler, 1991). To avoid problems with noisy segmentations we used the modified 249 

Hausdorff distance for the 95th percentile (H95) (Huttenlocher et al., 1993).  250 

 251 

2.4.3 Volumetric agreement 252 

For the volumetric agreement, an Interclass Correlation Coefficient (ICC) can be calculated 253 

additionally to identify the reliability. For comparisons with a gold standard we used the «unit» 254 

single (ICC(3,1)) and for the comparison without a gold standard, we used the equation with a pooled 255 

average (ICC(3,k)) (Koo & Li, 2016; McGraw & Wong, 1996; Shrout & Fleiss, 1979).  256 

 257 

Table 3 258 

The following metrics were used to determine the agreements between the operators (Inter-Operator) 259 

and between the outcomes of the algorithms and the gold standards (Validation). 260 

 261 

Metrics	 Formulas		
(Inter-Operator)	

Formulas		
(Validation)	

Hausdorff distance  
for the 95th percentile (H95) !(#, %) = 	95. ,!"	$

%& !(-, %)a	

Dice Similarity Coefficient (DSC) 
2 ∗ 0$	⋂	(
0$	+	0(

	 2 ∗ 23
43 + 2 ∗ 23 + 45	

Detection Error Rate (DER) 
(All Clusters without intersection 6)	⋂	* 
divided by MTAb) 

0$	+	0(
72# 	 2 ∗ (43 + 45)	

FP + FN + 2 ∗ TP	

Outline Error Rate (OER) 
(All Clusters with intersection 6)	⋂	*  
divided by MTAb) 

	
0$	 + 0(	 − 2 ∗ 0$	⋂(

72# 	
2 ∗ (43 + 45)	
FP + FN + 2 ∗ TP	

Sensitivity =  
true positive ratio (TPR) 

	 23
23 + 45	

false positive ratio (FPR) 	 43
43 + 25	

Notes: a 95
. $!"	$

%&  represents the ,%& ranked distance such that ,/5!	 = 95% (Dubuisson & Jain, 1994). 262 
b MTA = mean total area, area of rater A and area of rater B divided by 2 (Wack et al., 2012). 263 

 264 
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2.5 Gold standard measures 265 

To provide a valid baseline for the evaluation of the WMH segmentation accuracy of the different 266 

algorithms, WMH were (a) manually segmented in a subsample of images and (b) visually rated 267 

using the Fazekas scale (Fazekas et al., 1987). We refer to these segmentations and ratings as gold 268 

standard measures given that the manually segmented WMH represent strong proxies of the WMH 269 

load «ground truth».  270 

 271 

2.5.1 Manual segmentation  272 

Selection of the subsample: WMH of a subsample of all participants of the LHAB database were 273 

manually segmented on three different MRI modalities (T1w, 2D FLAIR, 3D FLAIR), resulting in 274 

three binary masks with the values 0 for background and 1 for WMH. Only participants, for which 275 

T1w, 2D FLAIR and 3D FLAIR images were available across all data acquisition time points, were 276 

considered for the manual segmentation subsample. Of those, datasets were chosen based on the 277 

median values of the Fazekas scores (see Validation of gold standard) to adequately represent the 278 

whole sample. The remaining datasets were filtered according to the MRI images available and 279 

visually inspected to find the most representative images. 280 

Further, as an algorithm has to deal with special conditions, such as milky regions and silent lacunes 281 

(SL), five additional datasets comprising such special conditions were chosen to be included in the 282 

manual segmentation subsample. This procedure led to a selection of sixteen images. 283 

Segmentation of FLAIR images: Three operators (O1, O2, O3) segmented the WMH on a MacBook 284 

Pro 13-inch with a Retina Display with a screen resolution of 2560 × 1600 pixels, 227 pixels per inch 285 

with full brightness intensity to obtain comparable data. Sixteen 3D FLAIR images and ten 2D 286 

FLAIR images were manually segmented. The segmentations were carried out independently 287 

resulting in three different masks per operator. Six additional 2D FLAIR images were segmented by 288 

one operator (O2) obtaining the required training dataset for BIANCA (for more details see 289 

Validation of the gold standard), and resulting in an equal number of images per modality. All 290 
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operators were trained and supported for several months by S.K., a neuroradiology professor with 291 

over 30 years of experience in diagnosing cerebral MRI images. All MRI sequences were fully 292 

manually segmented in all three planes (sagittal, coronal, axial) using FSLeyes (McCarthy, 2018). 293 

The software allows simultaneous viewing during segmentation in the coronal, sagittal and axial 294 

planes.  295 

Segmentation of T1w images: Two operators (O1, O2) split the 16 T1w images to carry out fully 296 

manual segmentation. All images were checked by O3, and any discrepancies were discussed 297 

amongst all operators and S.K.. 298 

Mean mask: The three manually segmented masks of the same MR image were displayed as overlays 299 

in FSLeyes in order to evaluate mask agreement across the operators (voxel value 1.0: all three 300 

operators classified the voxel as WMH; voxel value  0.666#####: two operators classified the voxel as 301 

WMH; 0.333#####: one operator classified the voxel as WMH (“insert Supplementary Figure 1 here”). 302 

Each mask overlay was then revised by consensus in the presence of all operators (O1, O2, O3), 303 

using the same MacBook Pro 13 inch with full brightness intensity and converted back to a binary 304 

mask to serve as gold standard. The between-operator disagreements mostly regarded voxels at the 305 

WMH borders. The resulting masks were shown to S.K. and corrected in case of mistakes. 306 

Validation of the gold standard: The mean dice similarity coefficient (DSC) between all three 307 

operators for the 3D (n = 16) and 2D FLAIR images (n = 10) was 0.73 and 0.67, respectively. The 308 

mean DSC of 0.7 (Anbeek et al., 2004; Caligiuri et al., 2015) is considered as a good segmentation. 309 

As expected, due to the lower surface to volume ratio, DSC is lower for images with lower WMH 310 

load (Wack et al., 2012). In this case, a DSC above 0.5 is still considered as a very good agreement 311 

(Dadar et al., 2017). Our average result for both modalities for the medium WMH load was higher 312 

than 0.7, and for the low WMH load higher than 0.6, which can be considered as an excellent 313 

agreement. The reliability of the volumetric agreement between the segmentations of the 3D and 2D 314 

FLAIR images, as indicated by the ICC as excellent (Cicchetti, 1994) (3D FLAIR: mean ICC = 315 

0.964; 2D FLAIR: mean ICC = 0.822). Detailed results on further metrics and on segmented WMH 316 

volume can be found in “insert Supplementary Table 1 here”. 317 
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In preparation for the optimization phase of the UBO Detector (Jiang et al., 2018), and for the 318 

mandatory training dataset for BIANCA (Griffanti et al., 2016), six additional 2D FLAIR images (the 319 

remaining six to obtain a subsample size of n = 16 images also for the 2D FLAIR sequence) were 320 

manually segmented. Because of the inter-operator reliabilities in the first ten 2D FLAIR 321 

segmentations, only one operator (O2) segmented the additional images. To assure high segmentation 322 

quality, the WMH masks for these six images were peer reviewed by O1. Then, O3 checked all 323 

images, and any discrepancies were discussed amongst all operators and S.K.. Table 4 shows an 324 

overview of the mean WMH volumes resulting from the manual segmentations based on with the 16 325 

images per sequence. No significant mean WMH volume differences were revealed between the 326 

three different MR modalities using the Kruskal-Wallis test (X2(2) = 0.0016, p = 0.999). Also, after 327 

the post hoc test (Dunn-Bonferroni with Holm correction) there were no WMH volume differences 328 

between the gold standards. The Pearson's product-moment correlation showed an almost perfect 329 

(Dancey & Reidy, 2017) linear association between all gold standards (all combinations): mean 330 

(0.97, p < 0.001) (see “insert Supplementary Figure 2 here”). 331 

 332 

Table 4 333 

Mean WMH volume in cm3 of manually segmented gold standard (GS) with the same 16 images 334 

each modality. 335 

 T1w GS 3D FLAIR GS 2D FLAIR GS 

Total WMH volume 7.781 cm3 8.311 cm3 9.032 cm3 

Notes: No significant differences were found between the modalities (Kruskal-Wallis, Post-Hoc 336 

Dunn-Bonferroni with Holm correction). 337 

 338 

2.6 Visual ratings 339 

The Fazekas scale is a widely used visual rating scale that provides information about the location of 340 

WMH lesions (periventricular WMH (PVWMH) and deep WMH (DWMH)) as well as the severity 341 

of the WMH lesions. It ranges from 0 to 3 for both domains, leading to a possible minimum score of 342 

0 and a maximum score of 6 for total WMH. In a first step, the three operators (O1, O2, O3) were 343 
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specially trained by the neuroradiologist S.K. for several weeks on evaluating WMH with and the 344 

Fazekas scale. S.K. was blinded to the demographics and neuropsychological data of the participants. 345 

800 images were then visually rated using the Fazekas scale. If a 3D FLAIR image was available it 346 

was used for the rating, if none was available the 2D FLAIR was taken, in a few cases the T1w image 347 

had to be used. Again, the ratings were carried out independently by the three operators validated for 348 

the further procedure with the following statistical indicators.  349 

Validation of the Fazekas scale: The inter-operator agreements across all four time points were 350 

determined with Kendall's coefficient of concordance (Moslem, Ghorbanzadeh, Blaschke, & Duleba, 351 

2019) by calculating it for total WMH, DWMH and PVWMH separately for each data acquisition 352 

time point. Furthermore, inter-operator reliabilities were evaluated between the three operators for 353 

total WMH, PVWMH and DWMH across the four time points by using a weighted Cohen's kappa 354 

(Cohen, 1968). Finally, Spearman’s rho was calculated based on subsets 1–3 to investigate the 355 

correlation of the extracted WMH volumes of the different algorithms and the ordinally scaled 356 

Fazekas scores. Therefore, the median score was calculated for each participant for each time point, 357 

split into total WMH, PVWMH and DWMH. For presentation reasons the WMH volumes were log-358 

transformed (see Figure 1, panel A; Figure 2, panel A and B; Figure 3, panel A and B). The 359 

correlation between WMH volume and Fazekas score for FreeSurfer could only be calculated for the 360 

total WMH volume because its output does not discriminate between PVWMH and DWMH.  361 

The median Fazekas scores for all three operators were: total WMH = 3; PVWMH = 2; DWMH = 1. 362 

For more descriptive details see (“insert Supplementary Table 3 here”).  363 

The mean inter-operator concordances across all time points over all three operators were strong 364 

(Moslem et al., 2019) according to Kendall's coefficient of concordance for total WMH (W = 0.864, p 365 

< 0.001), for PVWMH (W = 0.828, p < 0.001), and for DWMH (W = 0.842, p < 0.001). The mean 366 

inter-operator reliabilities according to weighted Cohen’s kappa (Cohen, 1968) between the three 367 

operators over the four time points were substantial to almost perfect (Landis & Koch, 1977) (see 368 

“insert Supplementary Table 2 here”). 369 

 370 
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2.7 Automated WMH segmentation 371 

2.7.1 FreeSurfer 372 

The FreeSurfer Image Analysis Suite (Fischl, 2012) uses a structural segmentation to identify regions 373 

in which WMH can occur, while regions in which WMH cannot occur  are excluded (cortical and 374 

subcortical gray matter structures). The algorithm assigns a label to each voxel based on probabilistic 375 

local and intensity related information that is automatically estimated from 41 manually segmented 376 

training data (Fischl et al., 2002) including hypointensities in the white (WMH) and grey matter 377 

(non-WMH). The T1w images (subset 1) were processed with FreeSurfer v6.0.1 as implemented in 378 

the FreeSurfer BIDS-App (Gorgolewski et al., 2017). 379 

 380 

2.7.2 UBO Detector 381 

The UBO Detector WMH extraction pipeline (Jiang et al., 2018) uses T1w and FLAIR images as 382 

input. We conducted the analysis once with subset 2, and once with subset 3. The probability of 383 

WMH is calculated by applying a classification model trained by 10 manually segmented 2D FLAIR 384 

images (built-in training dataset). A user-definable probability threshold generates a WMH map by 385 

segmenting the subregions including PVWMH, DWMH, lobar and arterial regions. As recommended 386 

by Jiang and colleagues (2018) we used a 12 mm threshold to define the borders of PVWMH.  387 

Segmentation of the T1w images failed in the processing of five images, whereupon these images 388 

were excluded from the following procedures. After visualizing WMH volumes once over time and 389 

once over chronological age, a massive slope was noticed in one participant. Visual inspection of the 390 

data for this participant uncovered a segmentation error (the eyeballs have been marked as WMH), 391 

thus, this time point was excluded from further analysis leading to a total number of data points of  392 

N = 756. 393 

 394 
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2.7.2.1 Optimizing the k value and the threshold 395 

To determine which settings are best suited for our datasets, we have evaluated the performance of 396 

four different settings proposed by (Jiang et al., 2018), using the leave-one out cross-validation 397 

method. Since we had manually segmented the WMH for both, 3D and 2D FLAIR images, we 398 

examined the performance of UBO Detector (Jiang et al., 2018) separately for each sequence. To do 399 

so, we calculated the validation metrics separately for the different settings, and checked which 400 

adjustments achieved the most optimal values (“insert Supplementary Table 4 here”). For 3D 401 

FLAIR images, UBO Detector worked most accurately with a threshold of 0.7 and a KNN of k = 5. 402 

For the 2D FLAIR images, the best performance was achieved with a threshold of 0.9 and a KNN of 403 

k = 3. For the subsequent calculations we used these optimized settings. 404 

 405 

2.7.3 BIANCA  406 

For BIANCA (Griffanti et al., 2016), a training dataset is mandatory. As an output BIANCA 407 

generates a probabilistic map of WMH for total WMH, PVWMH and DWMH. We performed the 408 

calculations once with subset 2 and once with subset 3. The 16 manually segmented gold standard 409 

masks derived from 3D and 2D FLAIR images were used as training dataset. For defining the 410 

PVWMH we adopted the 10 mm distance rule from the ventricles (DeCarli et al., 2005), which was 411 

also suggested by Griffanti et al. (2016). To reduce false positive voxels in the gray matter, and at the 412 

same time only localize WMH in the white matter, we applied a WM mask. For the BIANCA options 413 

we chose the ones that Griffanti et al. (2016) indicated as the best in terms of DSC and cluster-level 414 

false-positive ratio: MRI modality = FLAIR + T1w, spatial weighting = «1», patch = «no patch», 415 

location of training points = «noborder», number of training points = number of training points for 416 

WMH = 2000 and for non-WMH = 10000. For more details on the descriptions and the options, see 417 

Griffanti and colleagues (2016).  418 
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2.7.3.1 Preprocessing 419 

The preprocessing steps applied before the BIANCA segmentation procedure were performed with a 420 

nipype pipeline (v1.4.2; (Gorgolewski et al., 2011)) as follows: Based on subject-specific template 421 

created by the anatomical workflows of fMRIprep (v1.0.5; (Esteban et al., 2019) ), a WM-mask 422 

(FSL’s make_bianca_mask command) and distancemap (distancemap command) were created. The 423 

distancemap was thresholded into periventricular and deep WM (cut-off = 10 mm). For each session, 424 

T1w images were bias-corrected (ANTs v2.1.0; (Tustison et al., 2010)), brought to the template 425 

space, and averaged. FLAIR images were bias-corrected, and the template-space images were 426 

brought into FLAIR space using FLIRT (Jenkinson & Smith, 2001).  427 

 428 

2.7.3.2 Threshold optimization 429 

To select the best threshold for the probabilistic output of BIANCA we first used the leave-one out 430 

cross-validation method to calculate the different validation metrics separately for the 3D FLAIR and 431 

2D FLAIR gold standard images. The global threshold values 0.90, 0.95, 0.99. were applied, with the 432 

threshold of 0.99 for both FLAIR sequences proving to be the best fitting. For a more detailed 433 

overview see (“insert Supplementary Table 5 here”). 434 

 435 

2.7.3.3 LOCally Adaptive Threshold Estimation (LOCATE) 436 

LOCATE is a method that, in contrast to a global threshold, determines spatially adaptive thresholds 437 

in different regions in the probability map. This allows to overcome the influence of spatial 438 

heterogeneity of lesion probabilities due to changes in lesion contrast, load and distribution on the 439 

final threshold map of WMH. As input, LOCATE uses the lesion probability map at subject level 440 

obtained from a WMH detection algorithm. For more details on the descriptions see Sundaresan et al. 441 

(2018). Before applying LOCATE, we normalized the FLAIR images' values within the brain masks 442 

to a range of 0 to 1 to avoid different ranges of intensities between the images.  443 
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2.8 Analysis plan 444 

In a first step, we evaluated segmentation accuracy of the three algorithms by voxel wise comparing 445 

their segmentation outputs to the manual segmentations (i.e., gold standards). In this step we used the 446 

16 brain images, which were manually segmented to build the gold standard, and classified each 447 

voxel of a given WMH mask outputted by the algorithms as TP, TN, FP or FN. Based on these 448 

numbers we calculated the DSC for a given mask as compared to its specific gold standard (i.e., UBO 449 

Detector segmentation based on 3D FLAIR images vs. manual segmentations based on 3D FLAIR 450 

images). The DCS (see 2.5.1 Manual segmentation) was calculated across all 16 images and for 451 

different levels of WMH load (i.e. low: < 5cm3; medium: 5–15 cm3; high: > 15 cm3).  Besides the 452 

DCS, we calculated the following metrics: Sensitivity, H95, FPR, DER and OER. In addition, we 453 

statistically compared the automatically extracted WMH volumes with the gold standard WMH 454 

volumes by means of a Wilcoxon rank-sum test and calculated the ICC to quantify volumetric 455 

agreement.  456 

 457 

In preparation of a second step, we compared the two thresholding options of BIANCA (global 458 

thresholding vs. LOCATE, see 2.7.3.3 LOCally Adaptive Threshold Estimation (LOCATE) to 459 

investigate which option had the better segmentation quality. For this we used the leave-one out 460 

cross-validation method with the 16 brain images, which were manually segmented to build the gold 461 

standard, and calculated the same metrics as in the first step. Because LOCATE did not perform 462 

better than the global thresholding with 0.99 we used the latter analysis pipeline for further analyses.  463 

 464 

In step two, the accuracy of the three algorithms in relation to the gold standard – measured with the 465 

mentioned metrics – was compared using the 16 images per modality. With the subset «n162» the 466 

WMH volumes of the algorithms, and further the correlations of the Fazekas scores with the WMH 467 

volumes could be compared with a larger data set. The comparisons of the algorithms with the 468 

accuracy metrics (n = 16) and the comparisons of WMH volumes of the algorithms (n = 162) were 469 

compared using the Kruskal-Wallis test and analyzed post-hoc with the Dunn-Bonferroni (Holm 470 
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correction). Further we compared these outputted WMH volumes with the effect sizes according to 471 

Cohen's d (Cohen, 1992). With the Spearman’s rank correlation, we correlated the Fazekas scores 472 

with the WMH volumes of the algorithms (n = 162), and compared them by using the effect sizes 473 

according to Cohen's q. The ICC's of the algorithms were interpreted with a degree of reliability 474 

according to Cicchetti (1994). The Wilcoxon-rank-sum test was used to determine whether the WMH 475 

volumes of the algorithms differ from the WMH volumes of the gold standards (n = 16) (effect sizes 476 

according to Cohen's d).   477 

 478 

In a third step, we validated the three algorithms by examining the correlations of the outputted 479 

WMH volumes (a) with the Fazekas scores ratings for clinical validation and (b) with chronological 480 

age, which is known to be positively related to WMH volume (D. M. J. van den Heuvel et al., 2006). 481 

In addition, we ran correlations of the outputted WMH volumes between the four time points of data 482 

acquisition. For this third step we used the predefined subsets 1, 2 and 3. For the validation of 483 

FreeSurfer subset 1 (T1w only) was used, while the validation of UBO Detector and BIANCA relied 484 

on subset 2 (2D FLAIR + T1w) and 3 (3D FLAIR + T1w).  485 

 486 

Analysis step 4 was exploratory and based on our observation of strong fluctuations of the WMH 487 

volumes extracted with BIANCA between two time points. To further investigate the variability of 488 

WMH volumes in within-person change trajectories for the algorithms and modalities, we determined 489 

the percentage and number of «conspicuous intervals between two measurement points» and also of 490 

«subjects with conspicuous longitudinal data» based on the mean percentages of WMH volume 491 

increases (mean + 1SD) and decreases (mean - 1SD), separately for the different intervals (1-, 2-, 3-, 492 

4-year intervals) to calculate a «range of tolerance» and exclude conspicuous data points. The 493 

conspicuous data points were further classified for low, medium and high WMH load (based on the 494 

Fazekas scale) in order to identify a specific pattern. If the number of «conspicuous intervals between 495 

two measurement points» exceeded the number of «subjects with conspicuous longitudinal data», this 496 

indicated peaks or even several conspicuous data points in a single person – and would be an 497 
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indication of the zigzag pattern over time. For a more detailed description see 3.4.1 Longitudinal 498 

comparisons. 499 

 500 

2.9 Computer equipment 501 

All WMH extractions were undertaken on a Supermicro X8QB6 workstation with 4 × Intel Xeon 502 

E57-4860 CPU (4 x10 cores, 2.27 GHz) and 256 GB RAM. The computing host was a KVM 503 

virtualized guest instance with Ubuntu 18.04.4 LTS with 32 x Intel Xeon E7-4860 CPU (2.27 GHz) 504 

and 92 GB RAM. 505 

 506 

3 Results 507 

The results are divided into two subsections. First, we report the comparisons of the three WMH 508 

extraction algorithms with the respective gold standard (n = 16). In the second part the validations of 509 

the three algorithms with the subsets (see Table 2) and the «n162» comparison subset are presented, 510 

thus exploiting as much of the LHAB data as possible. 511 

 512 

3.1 Comparisons of the algorithms  513 

In this first subsection we will compare the results of the algorithms with the different modalities. 514 

First, the 16 gold standards per modality were used to compare the already mentioned metrics (DSC, 515 

H95 etc.), the ICCs, and the WMH volumes of the algorithms with those of the gold standards.  516 

Furthermore, the «n162» subset was used to compare the WMH volumes provided by the algorithms 517 

but also to interpret the correlations of the Fazekas scores with the WMH volumes of the different 518 

algorithms. 519 

 520 
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3.1.1 Confusion matrix 521 

To better understand the differences of the outcomes, the values can be discussed in terms of a 522 

confusion matrix based on the gold standards by calculating the mean TPs, mean TNs, mean FPs, and 523 

mean FNs in the number of voxels and in percent (see Table 5).  524 

 525 

Table 5 526 

Confusion Matrix for the three methods, with the total number (N) of voxels per modality and further 527 

the true mean true positives, true negatives, false positives and false negatives in percent and the 528 

corresponding number of voxels. 529 

Method 
Modality   Mean TP Mean TN Mean FP Mean FN 

       

FreeSurfer  
T1w 

Total N 
voxel 16777216     

N voxel  2660.8 16768'659.2 775.4 5'120.5 

Percent  0.016 99.949 0.005 0.031 

UBO  
3D FLAIR 

Total N 
voxel 21364736     

N voxel  7673.2 21345497.8 3552.9 8011.8 

Percent  0.036 99.910 0.017 0.038  

BIANCA  
3D FLAIR 

Total N 
voxel 21364736     

N voxel  9939.1 21343431.1 5619.6 5746 

Percent  0.047 99.900 0.026 0.027 

UBO  
2D FLAIR 

Total N 
voxel 10035200     

N voxel  4286.0 10024079.3 3866.2 2968.5 

Percent  0.043 99.889 0.039 0.030  

BIANCA  
2D FLAIR 

Total N 
voxel 10035200     

N voxel  5937.1 10021871.6 3512.6 3878.8 

Percent  0.059 99.867 0.035 0.039 

Notes: Matrix with the respective 16 gold standards. 530 

TPs = true positives; TNs = true negatives; FPs = false positives; FNs = false negatives. 531 

 532 

3.1.2 Dice Similarity Coefficients 533 

As demonstrated in Table 6, the DSC of all algorithms is sensitive to the WMH load,  534 
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categorized according to the respective gold standard.  However, because of the constant 535 

underestimation of the WMH volume by FreeSurfer, it already reached the maximum DSC at the 536 

medium WMH load. Therefore, FreeSurfer could not achieve an improvement of medium to high 537 

WMH exposure in terms of DSC. 538 

 539 

Table 6 540 

Comparison of the mean Dice Similarity Coefficient (DSC) of the different algorithms according to 541 

subjects with low (L) (< 5cm3), medium (M) (5 – 15 cm3), and high (H) (> 15 cm3) mean WMH load 542 

for the corresponding manual segmentation of 16 images per modality. 543 

WMH load 
T1-wa 3D FLAIRb 2D FLAIRc 

FreeSurfer UBO Detector BIANCA UBO Detector BIANCA 
Mean DSC 

< 5 cm3 L 0.371 0.414 0.501 0.432 0.482 

5 – 15 cm3 M 0.487 0.550 0.674 0.556 0.577 

> 15 cm3 H 0.473 0.638 0.700 0.668 0.684 

Total  
± SD  0.434 

± 0.111  
0.501  

± 0.124 
0.602  

± 0.133 
0.531 

± 0.113 
0.561  

± 0.118 

Notes: a T1-w gold standard: L: (n = 7), M: (n = 7), H: (n = 2).  544 
b 3D FLAIR gold standard: L: (n = 7), M: (n = 7), H: (n = 2). 545 
c 2D FLAIR gold standard: L: (n = 5), M: (n = 9), H: (n = 2). 546 

 547 

 548 

3.2 Summary of the comparisons 549 

Table 7 provides an overview of the outcomes of the inferential statistics. On the one hand, the 550 

different metrics of the algorithms are compared, using the 16 manually segmented gold standards of 551 

each sequence. On the other hand, the «n162» subset was used to compare the correlation between 552 

WMH volume and Fazekas score, but also to compare the total WMH volumes across modality and 553 

algorithms. 554 

The results of the mean DSC suggest that BIANCA performed best in terms of the degree of overlap 555 

between gold standard and algorithm output. However, a significant difference could only be seen 556 

between FreeSurfer and BIANCA. The 3D FLAIR inputs indicate a slightly better value on average, 557 

with BIANCA 3D FLAIR showing the best result. Nevertheless, the methods using FLAIR images as 558 

input are comparable regarding the mean DSC. With the H95, a comparison is only valid within the 559 
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same modality. Here BIANCA, especially BIANCA with the 3D FLAIR input, was very accurate, 560 

and on average, significantly better than UBO 3D FLAIR. Visually, there are also noticeable 561 

differences to the other algorithms, see “insert Supplementary Figure 3 here”. The accuracy of 562 

BIANCA with both modalities was also reflected by the high sensitivity. However, UBO 2D FLAIR 563 

does not differ significantly from BIANCA. Only FreeSurfer performed significantly worse than 564 

BIANCA and UBO 2D FLAIR. In contrast, FreeSurfer on average showed a significantly better FPR 565 

than all others. BIANCA 3D FLAIR achieved on average a significantly better DER than UBO, 566 

while FreeSurfer performed significantly worse regarding the OER compared to all other results. 567 

FreeSurfer was the only algorithm that on average significantly underestimated the WMH volumes 568 

compared to the gold standard. Moreover, the mean WMH volume was significantly different from 569 

all outputs of the other algorithms and from the «n162» subset (both with a large effect size). 570 

Furthermore, significant mean WMH volume differences between 2D FLAIR and 3D FLAIR inputs 571 

were found, with 2D FLAIR inputs tendentially leading to higher WMH volume estimations. In 572 

terms of the ICC(3,1), FreeSurfer achieved a fair, BIANCA 3D FLAIR a good, and BIANCA 2D 573 

FLAIR, UBO 3D and 2D FLAIR an excellent degree of reliability with UBO 2D FLAIR showing the 574 

highest ICC. BIANCA ranks worst in the correlation between WMH volume and the Fazekas scores 575 

using the «n162» subset. Within BIANCA, the 2D FLAIR sequences performed worse than the 3D 576 

FLAIR sequences with a moderate effect size. A large effect size was shown between BIANCA 2D 577 

FLAIR and FreeSurfer, UBO 2D FLAIR, as well as UBO 3D. UBO Detector showed the highest 578 

correlation of all algorithms between the total WMH volume and the Fazekas scores.579 
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Table 7 580 

Summary of comparison for FreeSurfer, UBO Detector and BIANCA compared to the gold standard for Dice Similarity Coefficient (DSC), Hausdorff distance for the 581 
95th percentile (H95), sensitivity, false positive ratio (FPR), Detection Error Rate (DER), Outline Error Rate (OER), WMH volume of the gold standards versus WMH 582 
volume of the algorithms, and Interclass Correlation Coefficient (ICC). Comparison with the «n162» subset: WMH volumes of the different algorithms, and correlation 583 
between WMH volume and Fazekas score. 584 

 
FreeSurfer (T1w) UBO (3D FLAIR) UBO (2D FLAIR) BIANCA (3D FLAIR) BIANCA (2D FLAIR)  

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI p-
value 

Post-Hoc  
Dunn-Bonferroni (Holm correction) 

DSCa (n = 16) 0.434 0.375 – 0.493 0.500 0.435 – 0.567 0.531 0.471 – 0.591 0.602 0.531 – 0.672 0.561 0.498 – 0.624 0.005 BIANCA 3D > FreeSurfer 

H95 (mm)a (n = 16) 8.660 6.804 – 10.515 11.533 8.520 – 14.545 13.522 10.324 – 16.720 6.200 4.093 – 8.305 8.443 6.421 – 10.464 < 0.001 BIANCA 3D > UBO 3D, UBO 2D 

Sensitivitya (n = 16) 0.315 0.260 – 0.370 0.427 0.353 – 0.501 0.572 0.500 – 0.643 0.611 0.538 – 0.683 0.575 0.492 – 0.657 < 0.001 
UBO 2D, BIANCA 3D, BIANCA 2D > 

FreeSurfer; BIANCA 3D > UBO 3D 

FPRa (n = 16) 4.62 E-5 0.0000 – 0.0001 0.0002 0.0001 – 0.0002 0.0004 0.0003 – 0.0006 0.0003 0.0001 – 0.0004 0.0004 0.0002 – 0.0005 < 0.001 
FreeSurfer < all others; 

UBO 3D < UBO 2D 

DERa (n = 16) 0.200 0.146 – 0.253 0.313 0.228 – 0.398 0.327 0.231 – 0.423 0.162 0.113 – 0.210 0.215 0.143 – 0.287 < 0.001 BIANCA 3D < UBO 3D, UBO 2D 

OERa (n = 16) 0.932 0.839 – 1.025 0.687 0.629 – 0.746 0.611 0.540 – 0.683 0.635 0.538 – 0.733 0.664 0.586 – 0.742 < 0.001 all others < FreeSurfer  

Volume (cm3)a 
(n = 162) 

3.369 2.758 – 3.980 6.630 5.471 – 7.790 11.373 9.687 – 13.060 7.047 6.138 – 7.957 14.086 12.098 – 16.073 < 0.001 

FreeSurfer (d > 1.0)* < all others; 

BIANCA 2D (d = 0.98)*, UBO 2D (d = 

0.78)* > BIANCA 3D, UBO 3D (d = 0.28)* 

  

 coeff p-value coeff p-value coeff p-value coeff p-value coeff p-value Interpretation 

GS vol. vs.  
Alg. Vol.b (n = 16) 

 
W = 43 < 0.001 W = 85 0.11 W = 137 0.752 W = 133 0.862 W = 123 0.867 

large effect size (d > 1.0)* between GS vol. and FreeSurfer 

vol.* 

ICC(3,1) (n = 16) 0.454 0.081 0.876 < 0.001 0.927 < 0.001 0.743 < 0.05 0.859 < 0.001 
FreeSurfer fair, BIANCA 3D good, BIANCA 2D, UBO 3D 

and UBO 2D excellent degree of reliability** 

Fazekas score 
Spearman’s rhoc  
(n = 162) 

0.711 < 0.001 0.802 < 0.001 0.799 < 0.001 0.582 < 0.001 0.347 < 0.001 

Small effect between FreeSurfer and UBO 2D (q = 0.207), 

UBO 3D (q = 0.215), BIANCA 3D (q = 0.224),  

moderate effect between BIANCA 3D and BIANCA 2D  

(q = 0.303), UBO 2D (q = 0.430), UBO 3D (q = 0.439),  

large effect between BIANCA 2D and FreeSurfer (q = 0.527), 

UBO 2D (q = 0.734), UBO 3D (q = 0.742) *** 

 
Cohen’s q: small effect sizes between 

FreeSurfer and UBO 3D (0.215), and 

between FreeSurfer and UBO 2D 

(0.207)*** 

Notes: a Comparison by Kruskal-Wallis. b Comparison by Wilcoxon-rank-sum-test. c Spearman’s rho = 0.1 – 0.3 = weak, 0.4 – 0.6 – 0.7 = moderate, 0.7 – 0.9 = strong, – 1 = perfect (Dancey & Reidy, 2017) 585 
* Cohen’s d = 0.5 – 0.7 = moderate, 0.8 – ≥ 1.0 = large effect size (Cohen, 1988); 2.0 = huge effect size (Sawilowsky, 2009) 586 
** Between 0.40 – 059 = fair, 0.60 – 0.74 = good, 0.75 and 1.00 = excellent (Cicchetti, 1994) 587 
*** Cohen’s q = < 1 = no effect, 1 – 3 = small effect, 3 – 5 = moderate effect,  >5 = large effect (Cohen, 1988) 588 
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3.3 Validation of the algorithms 589 

For the validation every method was used for segmenting the WMH on all images of subset 1 590 

(800 images), subset 2 (756 images), and subset 3 (166 images). To clinically validate the 591 

algorithms we correlated the WMH volumes with the Fazekas scores but also with chronological 592 

age, which is regarded as a good external standard (D. M. J. van den Heuvel et al., 2006). To 593 

analyze the reliability of the WMH volume over time, we correlated it between the time points 594 

(Tp1 – Tp2, Tp2 – Tp3, Tp3 – Tp5). We further compared the BIANCA output with the global 595 

threshold with the output of LOCAL using the gold standard as a reference. 596 

 597 

3.3.1 Validation of FreeSurfer 598 

3.3.1.1 Correlation with Fazekas scale, chronological age and between the time points 599 

In subset 1 (800 images) a significant correlation between total WMH volume and Fazekas scores 600 

was found. The Spearman's rho correlation was strong (rs= 0.770) according to (Dancey & Reidy, 601 

2017). The visual distribution of the log-transformed total WMH volume with respect to the 602 

Fazekas scores is shown in Figure 1 (panel A).  603 

A significant correlation between chronological age and total WMH volume extracted by 604 

FreeSurfer was found in subset 1. The Spearman's rho correlation was moderate: FreeSurfer 605 

totalWMH (rs= 0.443) (see Figure 1, panel B).  606 

We also found a significant correlation for the total WMH volumes extracted by FreeSurfer 607 

between the time points. The Pearson's product-moment correlation showed an almost perfect 608 

(Dancey & Reidy, 2017) linear distribution: Tp1 to Tp2 (r = 0.997), Tp2 to Tp3 (r = 0.994), Tp3 609 

to Tp5 (r = 0.995) (see Figure 1, panel C). For an overview of the results of all algorithms see 610 

Table 9. 611 

 612 

 613 
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Figure 1 614 

FreeSurfer validation. Scatter plot of the total WMH volume distribution according to Fazekas 615 

scale (A), chronological age (B), and correlation between the time points (C). The correlation 616 

values are mentioned in the main text. 617 

 618 

3.3.2 Validation of UBO Detector 619 

3.3.2.1 Correlation with Fazekas scale, chronological age and between the time points 620 

In subset 2 and 3 (756 images for subset 2, and 166 images for subset 3) significant correlations 621 

between WMH volumes and Fazekas scores were found. The Spearman's rho correlations were 622 

strong (Dancey & Reidy, 2017) for UBO Detector in subset 2: UBO totalWMH (rs = 0.794), 623 

UBO PVWMH (rs = 0.734), UBO DWMH (rs = 0.615), and in subset 3: totalWMH (rs = 0.803), 624 

UBO PVWMH (rs = 0.770), UBO DWMH (rs = 0.606).  625 
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The visual distribution of the log-transformed total WMH volume with respect to the Fazekas 626 

scores for subset 2 and 3 is shown in Figure 2 (panel A and B).  627 

A significant correlation between chronological age and total WMH volume extracted by UBO 628 

Detector was found in both subsets. The Spearman's rho correlations were moderate in subset 2: 629 

UBO totalWMH (rs = 0.398), and in subset 3: UBO totalWMH (rs = 0.351) (see Figure 2, panel 630 

C). We also found significant correlations in subsets 2 and 3 for the total WMH volumes 631 

extracted by UBO Detector between the time points. The Pearson's product-moment correlation 632 

showed an almost perfect (Dancey & Reidy, 2017) linear distribution in subset 2: Tp1 to Tp2 (r = 633 

0.990), Tp2 to Tp3 (r = 0.992), Tp3 to Tp5 (r = 0.983) (see Figure 2, panel D), and in subset 3 634 

(due to insufficient longitudinal data, only two correlations between the time points could be 635 

calculated): Tp2 to Tp3 (r = 0.998, p < 0.001), Tp3 to Tp5 (r = 0.970, p < 0.001). For an 636 

overview with the results of all algorithms see Table 9. 637 

 638 

 639 

 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

 651 

 652 
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Figure 2 653 

UBO validation. Scatter plot of the total WMH volume distribution according to Fazekas scale 654 

(A and B), chronological age (C), and correlation between the time points (D). The correlation 655 

values are mentioned in the main text. 656 

 657 

 658 

3.3.3 Validation of BIANCA 659 

3.3.3.1 Comparison of the threshold methods  660 

In order to determine whether BIANCA with the best global threshold of 0.99 or the LOCAL 661 

method is more suitable for our data, for each method we carried out a leave-one-out cross-662 

validation against both the 3D FLAIR and 2D FLAIR gold standards.  663 

As shown in Table 8 and “insert Supplementary Figure 5 here”, on average BIANCA marks 664 

significantly less FPs compared to LOCATE. In BIANCA 3D FLAIR, the mean H95 was 665 

significantly better than in LOCATE 3D. Only the mean sensitivity was better in LOCATE than 666 
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in BIANCA. The mean WMH volume of LOCATE was significantly different from the gold 667 

standard and also significantly higher than the mean WMH volume of BIANCA. This was also 668 

reflected in the low and non-significant ICC(3,1) of LOCATE. 669 

Based on the results in Table 8, the outliers of each DSC in LOCATE compared to the gold 670 

standard (DSC range: LOCATE 2D FLAIR =  0.194 – 0.687, 3D FLAIR = 0.165 – 0.705; 671 

BIANCA 2D FLAIR 0.334 – 0.734, BIANCA 3D 0.292 – 0.783), and the visual inspections, we 672 

decided to use BIANCA for the whole sample.  673 

 674 

Table 8 675 

Statistical comparison between BIANCA (global threshold of 0.99) and LOCATE – using the gold 676 

standard with the 16 images per modality as reference – of the different accuracy metrics, and 677 

the WMH volumes, but also the comparison between the automated methods and the manually 678 

gold standard of the WMH volumes and the ICCs.  679 

 
BIANCA 

3D 
FLAIRa 

LOCATE 
3D 

FLAIRb 

WILCOXON BIANCA 
2D 

FLAIRa 

LOCATE 
2D 

FLAIRb 

WILCOXON 

W p W p 

DSC 0.602 0.552 144 0.564 0.561 0.512 150 0.423 

OER 0.635 0.706 124 0.897 0.664 0.751 106 0.423 

DER 0.162 0.190 87 0.128 0.215 0.224 117 0.696 

H95 6.200 9.298 54 0.004 8.443 9.314 102 0.337 

FP 5619.6 19241.4 46 0.001 3512.6 10820.1 46 0.001 

TP 9939.1 12761.4 99 0.287 5937.1 7605.6 97 0.254 

FPR 0.0003 0.0009 46 0.001 0.0004 0.0011 46 0.001 

Sensitivity 0.611 0.812 19 < 0.001 0.575 0.766 32 < 0.001 

 COEFF 
p-value 

COEFF 
p-value   COEFF 

p-value 
COEFF 
p-value   

Vol. method 
vs  
Vol. GSa 

W = 133 
p = 0.867 

W = 198 
p = 0.007   W = 123 

p = 0.867 
W = 194 
p = 0.012  

ICC(3,1) 0.743 
< 0.001 

0.206 
p = 0.141   0.859 

< 0.001 
0.526 
p < 0.05*  

Vol. in cm3 8.317 17.106   8.695 16.955  
Vol. BIANCA 
vs Vol. 
LOCATEa 

W = 65 
p = 0.017   W = 64 

p = 0.015  

Notes: a Comparison by Wilcoxon-rank-sum-test. 680 

DSC = mean DSC; OER = Outline Error Rate; DER = Detection Error Rate; H95 = Hausdorff distance for the 95 681 

percentile; FP = false positives; TP = true positives; FPR = false positive rate; Vol. = WMH Volume; ICC = 682 

Interclass Correlation Coefficient 683 

 684 
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3.3.3.2 Correlation with Fazekas scale, chronological age and between the time points 685 

In subset 2 (762 images) and subset 3 (166 images) significant correlations between WMH 686 

volumes and Fazekas scores were found. The Spearman's rho correlations were moderate 687 

(Dancey & Reidy, 2017) for BIANCA in subset 2: BIANCA totalWMH (rs = 0.401), BIANCA 688 

PVWMH (rs = 0.361), BIANCA DWMH (rs = 0.345), and in subset 3: BIANCA totalWMH (rs = 689 

0.577), BIANCA PVWM (rs = 0.557), BIANCA DWMH (rs = 0.410). The visual distribution of 690 

log-transformed total WMH volume with respect to the Fazekas scores for subset 2 and 3 is 691 

shown in Figure 3 (panel A and B).  692 

A significant correlation between chronological age and total WMH volume extracted by 693 

BIANCA was found in both subsets. The Spearman's rho correlation was weak in subset 2: 694 

BIANCA totalWMH (rs = 0.301), and moderate in subset 3: BIANCA totalWMH (rs = 0.390) 695 

(see Figure 3, panel C).  696 

We found significant correlations in subset 2 and 3 for the total WMH volumes extracted by 697 

BIANCA between the time points. The Pearson's product-moment correlation showed a strong 698 

(Dancey & Reidy, 2017) linear distribution in subset 2: Tp1 to Tp2 (r = 0.802), Tp2 to Tp3 (r = 699 

0.807), Tp3 to Tp5 (r = 0.768) (see Figure 3, panel D), and in subset 3 (due to insufficient 700 

longitudinal data, only two correlations between the time points could be calculated): Tp2 to Tp3 701 

(r = 0.716, p = 0.013), Tp3 to Tp5 (r = 0.917, p < 0.001). For an overview with the results of all 702 

algorithms see Table 9. 703 

 704 

 705 

 706 

 707 

 708 

 709 

 710 

 711 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 17, 2020. ; https://doi.org/10.1101/2020.10.17.343574doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.17.343574
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

     32 

Figure 3 712 

BIANCA validation. Scatter plot of the total WMH volume distribution according to Fazekas 713 

scale (A and B), chronological age (C), and correlation between the time points (D). The 714 

correlation values are mentioned in the main text. 715 

 716 

 717 

3.4 Additional calculations to analyze the longitudinal data 718 

3.4.1 Longitudinal comparisons 719 

Throughout the BIANCA outputs, we detected massive fluctuations in the individual change 720 

trajectories over time that could not be seen in the cross-sectional data with the gold standard. An 721 

example of a segmentation of a BIANCA 2D FLAIR output over four time points of one subject 722 

is illustrated in “insert Supplement Figure 4 here” (total WMH volume of the different time 723 

points: Tp1 = 5.136 cm3, Tp2 = 4.213 cm3, Tp3 = 20.746 cm3, Tp5 = 7.848 cm3). In this example 724 
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time point 3 shows a huge derivation. These fluctuations between the time points are reflected 725 

visually in a conspicuous zigzag pattern in Figure 3, panel C, as well as in the BIANCA output 726 

masks in the way of false positive segmentations, see “insert Supplement Figure 4 here”). 727 

Further, compared to the other algorithms, BIANCA shows a lower correlation between the total 728 

WMH volume and the Fazekas score as well as between the time points (see Table 9), which is 729 

visible in the more widely scattered dots in Figure 3, panel D. As depicted in Table 9, 730 

BIANCA's WMH volumes show lower correlations between time points, with the Fazekas scores 731 

and with chronological age compared to FreeSurfer and UBO Detector. 732 

 733 

Table 9 734 

Correlations between the time points (Tp1–Tp2, Tp2–Tp3, Tp3–Tp5), total WMH volume 735 

calculated by the respective algorithm correlated with the Fazekas score (totalWMH – Fazekas) 736 

and with chronological age (total WMH – Age) for subset 1 for FreeSurfer, and subset 2 for UBO 737 

Detector and BIANCA. 738 

 
FreeSurfer 

N = 800 
UBO 2D FLAIR 

N = 756 
BIANCA 2D FLAIR 

N = 762 

Tp1 – Tp2a r = 0.997*** r = 0.990*** r = 0.802*** 

Tp2 – Tp3a r = 0.994*** r = 0.992*** r = 0.807*** 

Tp3 – Tp5a r = 0.995*** r = 0.983*** r = 0.768*** 

totalWMH – Fazekasb rs = 0.770*** rs = 0.794*** rs = 0.401*** 

totalWMH – Ageb rs = 0.443*** rs = 0.398*** rs = 0.301*** 

Notes: a Pearson's product-moment correlation. b Spearman's rho. 739 

Pearson’s prodcuct-moment correlation coefficient and Spearman’s rho = 0.1 – 0.3 = weak, 0.4 – 0.6 – 0.7 = 740 

moderate, 0.7 – 0.9 = strong, – 1 = perfect (Dancey & Reidy, 2017) 741 

*** p < 0.001 742 

 743 

Since it is crucial to know whether these within-subject fluctuations are only isolated cases or a 744 

more wide-spread problem, we evaluated the amount of conspicuous fluctuations. For this 745 

purpose, we checked the entire WMH volume output files of BIANCA 3D FLAIR and examined 746 

randomly the 2D FLAIR output WMH volume files. We further checked the BIANCA 747 

segmentation masks of the values found to be conspicuous. It was found that all of these WMH 748 

segmentations masks contained erroneous voxels, particularly in the following areas: semi-oval 749 

centre, orbitofrontal cortex (orbital gyrus, gyrus rectus, above the putamen) and occipital lobe 750 

below the ventricles. Although recent studies indicate some WMH variability (Shi & Wardlaw, 751 
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2016), we assume that the massive peaks in the within-subject trajectories of the WMH volumes 752 

extracted by BIANCA – which were mostly evident in subjects with low to medium WMH load – 753 

are driven by erroneous segmentation of the algorithm. Since our knowledge of WMH volume 754 

changes (Shi & Wardlaw, 2016)is insufficient with inconsistent findings (Ramirez, McNeely, 755 

Berezuk, Gao, & Black, 2016), our aim was to estimate plausible ranges, in which WMH volume 756 

increases and decreases can occur, based on the WMH volumes outputted by the different 757 

algorithms in our study.  758 

In a first step, we determined in the entire dataset, how many comparisons between two 759 

measurement points can be made for a given subject. We differentiate between 1-year intervals 760 

(baseline – 1-year follow-up / 1-year follow-up – 2-year follow-up), 2-year-intervals (baseline – 761 

2-year follow-up, 2-year follow-up – 4-year follow-up), 3-year-intervals (1-year follow-up – 4-762 

year follow-up),  and 4-year-intervals (baseline-4-year follow-up). For BIANCA 2D FLAIR, for 763 

example, N = 209 subjects provide longitudinal imaging data (at least two time points of data). 764 

These 2D FLAIR images (762 images) enable 531 intervals between two measurement points (1-765 

year intervals: N = 369, 2-year intervals: N = 145 etc.). Importantly, overlapping intervals were 766 

not included. If a subject had data for baseline, 1-year and 2-year follow-up, only the 767 

comparisons «baseline vs. 1-year follow-up» and «1-year follow-up vs. 2-year follow-up» were 768 

considered. The comparison «baseline vs. 2-year follow-up» was only considered if a subject 769 

missed 1-year follow-up data.     770 

Secondly, for each subject, algorithm-by-modality combination (e.g. BIANCA 2D FLAIR) and 771 

available time interval (1-year interval), we calculated the percent WMH volume change from the 772 

prior to the subsequent measurement point. Then, for each algorithm-by-modality combination 773 

and available time interval, the mean percent change was determined as well as the standard 774 

deviation. These metrics (mean WMH volume change, SD) were averaged across the five 775 

algorithm-by-modality combinations. These general volume changes metrics were then used to 776 

calculate a general «range of tolerance», in which WMH volume increase and decrease for a 777 

given time interval were considered representing true change as compared to segmentation errors. 778 
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The upper limit of the increases (average across algorithm-by-modality + 1SD) and the lower 779 

limit of the decreases (average across algorithm-by-modality - 1SD) were used to identify the 780 

conspicuous cases. Supplementary Table 9 lists, for all time intervals, the algorithm and 781 

modality-specific WMH volume changes as well as the average WMH volume change over all 782 

algorithms and the associated «ranges of tolerance». WMH volume increases and decreases 783 

outside of these «ranges of tolerance» were considered as conspicuous. Table 10 provides 784 

information on the number of conspicuous changes per algorithm-by-modality combination in 785 

comparison to the number of possible comparisons between two measurement occasions. This 786 

table also contains information on the distribution of conspicuous changes in dependence of 787 

WMH load and informs about the percentage of subjects, in which conspicuous changes 788 

occurred. To identify whether there is a relation between the WMH load and the conspicuously 789 

segmented images, we divided them into low, medium and high WMH load using the Fazekas 790 

scale. In each case, the previous measurement point in the individual change trajectories over 791 

time served as the basis for the classification. The categories were divided into the following 792 

categories: Fazekas score 0 – 2 = low WMH load, Fazekas score 3 and 4 = medium WMH load, 793 

and Fazekas score 5 and 6 = high WMH load.  794 

Compared to the other algorithms, BIANCA (2D and 3D FLAIR) clearly shows the most 795 

«subjects with conspicuous longitudinal data» (2D FLAIR: N = 109, 52.15%; 3D FLAIR: N = 7, 796 

17.95%) and «conspicuous intervals between two measurement points» (2D FLAIR: N = 161, 797 

30.32%; 3D FLAIR: N = 8, 16.67%), see Table 10. Furthermore, BIANCA (2D and 3D FLAIR) 798 

is the only algorithm that provides more «conspicuous intervals between two measurement 799 

points» than «subjects with conspicuous longitudinal data», which indicates a zigzag pattern 800 

within the subjects. Considering the WMH volume increases and decreases in all intervals, 801 

BIANCA shows the highest values: In the 1-year intervals, for example, the 3D FLAIR image 802 

output shows mean increase of 76.82% (SD = +174.65%; N = 9) and an average decrease of -803 

30.63% (SD = - 33.06%; N = 3), the 2D FLAIR image output shows an average increase of 804 

64.80% (SD = +76.92%; N = 236) and an average decrease of -26.61% (SD = -19.41%; N = 805 
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133), see Supplementary Table 9 for comparisons with the other algorithms. Regarding the 806 

WMH load, no clear pattern could be seen within BIANCA. However, in BIANCA 2D FLAIR 807 

55.90% of the «conspicuous intervals between two measurement points» were images with a low 808 

WMH load, and 40.99% with a medium WMH load. With the 3D FLAIR data, more images with 809 

a medium WMH load were conspicuous – but there was less data available (BIANCA: N = 8; 810 

UBO: N = 2; FreeSurfer: N = 0).  811 

 812 

Table 10 813 

Display per algorithm with the respective input modality according the WMH load of the total 814 

number (N) of output images, number of subjects with longitudinal data (at least 2 time points), 815 

number and percentage (in brackets) of subjects with conspicuous longitudinal data, number 816 

intervals between two measurement points, and number and percentage (in brackets) of 817 

conspicuous intervals between two measurement points. 818 

Algorithm 
Modality N of 

images 

N of subjects 
with 
longitudinal 
data 

N (and %) of subjects 
with conspicuous 
longitudinal data  

N	of intervalsa	
between	two	
measurement	
points 

N (and %) of 
conspicuous intervalsa 
between two 
measurement points WMH load	

BIANCA  
2D FLAIR 762 209 109 	 (52.15%) 531 161 	 (30.32%) 

low      90 	 (55.90%) 
medium     66 	 (40.99%) 

high     5 	 (3.11%) 
BIANCA  
3D FLAIR 166 39 7 	 (17.95%) 48 8 	 (16.67%) 

low     3 	 (37.50%) 
medium     5 	 (62.50%) 

high     0 	 (0%) 
UBO  
2D FLAIR* 757* 209 7 	 (3.35%) 523 7 	 (1.34%) 

low     4 	 (57.14%) 
medium     1 	 (14.29%) 

high     2 	 (28.57%) 
UBO  
3D FLAIR 166 39 2 	 (5.13%) 48 2 	 (4.17%) 

low     0 	 (0%) 
medium     2 	 (100.00%) 

high     0 	 (0%) 
FreeSurfer 
T1w 800 213 0 	 (0%) 569 0 	 (0%) 

low     0 	 (0%) 
medium     0 	 (0%) 

high     0 	 (0%) 
Notes: WMH loads are divided into low (< 5cm3), medium (5 – 15 cm3), and high (> 15 cm3). 819 
a Explanation «intervals between two measurement points»: If a subject had 3 time points (Tp1, Tp2 and Tp5) this 820 

would result in two existing intervals. 821 

* The data point with the segmentation error (segmented eyeballs) is included (see 2.7.2 UBO Detector) 822 
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4 Discussion 823 

In this study we validated and compared the performance of three freely available automated 824 

methods for WMH extraction: FreeSurfer, UBO Detector, and BIANCA by applying a 825 

standardized protocol on a large longitudinal dataset of T1w, 3D FLAIR and 2D FLAIR images 826 

from cognitively healthy older adults with a relatively low WMH load. We discovered that all 827 

algorithms have certain strengths and limitations. FreeSurfer shows deficiencies particularly with 828 

respect to segmentation accuracy (i.e, DSC) and clearly underestimates the WMH volumes. We 829 

therefore argue that it cannot be considered as a valid substitution for the gold standard. BIANCA 830 

and UBO Detector show a higher segmentation accuracy compared to FreeSurfer. When using 831 

3D FLAIR images as input, BIANCA performed significantly better than UBO Detector 832 

regarding the accuracy metrics DCS, DER and H95. However, we identified a significant amount 833 

of outlier WMH volumes in the within-person change trajectories of the BIANCA volume 834 

outputs. Exploratory analyses of these conspicuous fluctuations indicate random false positive 835 

segmentations which contribute to the erroneous volume estimations. UBO Detector – as a fully 836 

automated algorithm – has the best cost-benefit ratio in our study. Although there is room for 837 

optimization regarding segmentation accuracy, it distinguishes itself through its excellent 838 

volumetric agreement with the gold standard in both modalities (as reflected by the ICCs) and its 839 

high correlations with the Fazekas scores. In addition, it proves to be a robust estimator of WMH 840 

volumes over time.  841 

 842 

4.1 Validating the algorithms 843 

FreeSurfer. The total WMH volumes from FreeSurfer correlated strongly with the Fazekas 844 

scores, between the time points and moderately with chronological age. It showed no 845 

conspicuous WMH volume increases and decreases between measurement points in the 846 

longitudinal data. These results show that FreeSurfer outputs reliable data over time. However, 847 

we also observed that the WMH volume validity of FreeSurfer’s output is not given due to the 848 
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fundamental underestimation of WMH volume compared to the corresponding T1w gold 849 

standard. This can be attributed to the fact that WMH often appear isointense in T1w sequences 850 

and is herefore not detected (Wardlaw et al., 2013). Furthermore, the lower contrast of the 851 

DWMH compared to the PVWMH, which is due to the lower water content in the DWMH as a 852 

result of the longer distance to the ventricles, might contribute to the WMH volume 853 

underestimation. FreeSurfer often omitted DWMH, a finding also reported by Olsson et al. 854 

(2013). In addition, our analyses showed that FreeSurfers’ underestimation of the WMH volume 855 

was even more pronounced in high WMH load images (see Bland-Altmann Plot (Bland & 856 

Altman, 1986) in Figure 6, panel C).  The same bias was shown by Olsson et al. (2013) when 857 

comparing the volumes of the semi-manually segmented WMH (2D FLAIR) and the FreeSurfer 858 

(T1w) output. The spatial overlap performance of FreeSurfer in our study is comparable to the 859 

findings in the validation study reported by Samaille and colleagues (2012) with a cohort of mild 860 

cognitive impairment and CADASIL patients. Smith and colleagues (2011) reported an Intraclass 861 

Correlation Coefficient (ICC) of 0.91 between Freesurfer’s output and the 10 manually 862 

segmented images from one operator. Other accuracy metrics were not calculated. Ajilore et al. 863 

(2014) reported a high correlation of r = 0.91 between the WMH volume of FreeSurfer and the 864 

WMH volume of their manual segmentation in T1w and T2w images, including 20 subjects with 865 

late-life major depression. However, they have not described the manual segmentation procedure 866 

in detail. Nevertheless, this WMH volume underestimations between T1w and both FLAIR 867 

modalities, is in line with the STandards for ReportIng Vascular changes on nEuroimaging 868 

(STRIVE), stating that FLAIR images tend to be more sensitive to WMH and therefore are 869 

considered more suitable for WMH detection than T1w images (Dadar et al., 2018; Wardlaw et 870 

al., 2013). However, comparisons to previous studies are difficult because (a) for most studies it 871 

is not indicated whether they used fully manual gold standards or a gold standard generated by a 872 

semi-automated method, (b) sample sizes have been small, (c) there is very little information on 873 

sensitivity, H95, FPR, DER, OER and (d) FreeSurfer has not been applied to longitudinal data. 874 

Moreover, to our knowledge, previous studies have not compared FreeSurfer’s WMH volumes 875 
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with manual segmentations on T1w structural images or with visual rating scales such as the 876 

Fazekas scale. Although, in our study, FreeSurfer's WMH volumes correlated highly with the 877 

Fazekas scores and showed reliable WMH volume increases and decreases over time, FreeSurfer 878 

cannot be considered as a valid substitute for manual segmentation due to the weak outcomes in 879 

the accuracy measures (DSC, OER, ICC) and especially due to its massive WMH volume 880 

underestimation. 881 

UBO Detector. The total WMH, PVWMH and DWMH volumes from UBO Detector (N = 756) 882 

correlated strongly with the Fazekas scores and moderately with age. This is in line with a recent 883 

paper published by the developers of the UBO Detector (Jiang et al., 2018), in which they 884 

reported significant associations between UBO Detector derived PVWMH and DWMH volumes 885 

and Fazekas scale ratings. Also, the results of the volumetric agreements – calculated with ICCs – 886 

were similar to our results, especially for the 2D FLAIR images. In our analysis, we found 887 

slightly higher correlations between the time points of our longitudinal dataset than Jiang et al. 888 

(2018) and a better false positive ratio. On the other hand, we were not able to replicate their high 889 

values based on 2D FLAIR images in sensitivity and the overlap measurements (DSC, DER, and 890 

OER). In their study based on their 2D FLAIR datasets – the H95 was not calculated, and no 3D 891 

FLAIR data was available for comparison. The difference regarding the sensitivity and overlap 892 

measurements may be due to the fact that, in contrast to Jiang et al. (2018), we did not use a 893 

customized training dataset but the 2D FLAIR built-in training dataset. UBO Detector is also 894 

declared as a fully automated method but no previously segmented gold standard can be inserted 895 

in the pipeline. Hence, whether a 2D or a 3D FLAIR input is used for UBO Detector may 896 

influence the estimated WMH volume. Our analysis indicates that the WMH volume estimated 897 

by UBO Detector depends on the modality of the FLAIR input (2D vs. 3D FLAIR). Volumes 898 

extracted from 2D FLAIR images tend to be more similar to the WMH volume of the respective 899 

gold standard while volumes extracted from 3D FLAIR images tend to underestimate the WMH 900 

volume of the respective gold standard (see “insert Supplementary Table 6 here”, and Bland-901 

Altmann Plot in Figure 6, panel A and B).  For several reasons UBO’s longitudinal pipeline was 902 
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not used in our study. First, UBO Detector requires an equal number of sessions for all subjects, 903 

which would have resulted in a reduction of our sample size. Secondly, it registers all sessions to 904 

the first time point, an approach which has been shown to lead to biased registration (Reuter, 905 

Schmansky, Rosas, & Fischl, 2012). Lastly, comparing the two pipelines, Jiang et al. (2018) did 906 

not find significant differences regarding the extracted WMH volumes. Importantly, up to now, 907 

we have not found any other study that validated UBO Detector and/or compared it with other 908 

WMH extraction methods and no study validated UBO Detector with 3D FLAIR sequences. 909 

BIANCA. In order to properly compare our output data from BIANCA (Griffanti et al., 2016) 910 

with the results of the original study from BIANCA we additionally run BIANCA’s evaluation 911 

script to calculate the same metrics (“insert Supplementary Table 7 here”). Our overall results 912 

for the different accuracy metrics correspond more to those of their vascular cohort than to those 913 

of their neurodegenerative cohort. We received quite similar results for the 2D FLAIR sequences 914 

with respect to the correlations between the BIANCA WMH volumes and our gold standard 915 

WMH volumes. We also obtained similarly moderate correlations for WMH volume and age as 916 

they did for their neurodegenerative cohort (Griffanti et al., 2016). However, we were not able to 917 

replicate the high ICCs for the volumetric agreement and the high correlations between WMH 918 

volume and the Fazekas scores they received in both cohorts, neither for 2D nor for 3D FLAIR. 919 

We suspect that this might be due to the false positives in our BIANCA outputs. While the effect 920 

of false positives was less obvious in the cross-sectional analyses, it was uncovered because of 921 

massive fluctuations in the longitudinal analyses. The developers of UBO Detector compared 922 

their algorithm to BIANCA based on a sample of 40 subjects (Jiang et al., 2018). They noticed 923 

that BIANCA tended to overestimate the WMH in «milky» regions, whereas the sensitivity for 924 

WMH detection was higher in BIANCA than in UBO, which is in line with our findings. We 925 

generally used the settings which, in the original description of the BIANCA pipeline (Griffanti 926 

et al., 2016), were reported to produce the best results in terms of DSC and cluster-level false 927 

positive ratio (also referred as false discovery rate (FDR)). To represent our entire dataset 928 

adequately, we selected our training dataset in terms of the WMH loads based on the median 929 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 17, 2020. ; https://doi.org/10.1101/2020.10.17.343574doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.17.343574
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

     41 

values of the Fazekas scores. Ling and colleagues (2018) showed better results with a mixed 930 

WMH load training dataset than with a training dataset with only high WMH load as Griffanti 931 

and colleagues (2016) suggested in their paper.  932 

BIANCA features LOCATE as a method to determine spatially adaptive thresholds in different 933 

regions in the lesion probability map. Sundaresan et al. (2018) showed that LOCATE is 934 

beneficial when the BIANCA algorithm is trained with dataset-specific images or when the 935 

training dataset was acquired with the same sequence and the same scanner. For the group of 936 

healthy controls, they achieved similar visual outputs with LOCATE as compared to those with 937 

global thresholding. However, since no manual gold standard was available for the healthy 938 

controls in their study, a quantitative comparison between gold standard and LOCATE output 939 

was not possible. In our analysis, LOCATE, as compared to BIANCA’s global thresholding (with 940 

a global threshold of 0.99), did perform significantly worse at processing images with a low 941 

WMH load (see Table 8). Although having more true positives, which led to a very high 942 

sensitivity, LOCATE showed a 3-times higher FPR than BIANCA’s global thresholding. Hence, 943 

all other metrics (DSC, OER, DER, H95 and FPR) showed worse outcomes for LOCATE 944 

compared to BIANCA’s global thresholding. In addition, the WMH volumes received from 945 

LOCATE deviated significantly from the WMH volumes of the gold standards which is due to 946 

the massive number of false positives in LOCATE. With the global threshold in BIANCA this 947 

was not the case. Ling and colleagues (2018) validated BIANCA with different input modalities 948 

(FLAIR or FLAIR + T1w), with a cohort of patients with CADASIL using a semi-manually 949 

generated gold standard of 10 images per sequence. In their dataset, which contained an 950 

extremely high WMH load, they received a median DSC of 0.79 (our median 2D FLAIR = 951 

0.560) for the 2D FLAIR + T1w images and a median DSC of 0.78 (our median DSC 3D FLAIR 952 

= 0.615) for the 3D FLAIR + T1w images. It was to be expected that the DSC in a dataset with a 953 

very high WMH load is higher than in a dataset with a low WMH load, as already described by 954 

several authors (Admiraal-Behloul et al., 2005; Anbeek et al., 2004; Khayati, Vafadust, 955 

Towhidkhah, & Nabavi, 2008; Sajja et al., 2006; P. Schmidt et al., 2012; Wack et al., 2012). 956 
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Importantly, the volumetric agreement for their 3D FLAIR + T1w, measured by the ICC, was 957 

very similar to ours with a single global threshold. However, we obtained higher values for the 958 

2D FLAIR + T1w images. Ling et al. (2018) found that BIANCA tended to overestimate the 959 

WMH volumes in subjects with a low WMH load and underestimate it in subjects with a high 960 

WMH load. According to them, in a group of healthy elderly people with a low WMH exposure, 961 

such a bias would be unlikely to be identified. In both BIANCA subsets we did not detect 962 

systematic biases, but revealed one clear underestimation in the subject with the highest WMH 963 

load in the 2D FLAIR images, and one pronounced overestimation in a subject with medium 964 

WMH load in the 3D FLAIR images (see Bland-Altman Plot Figure 6, panel A and B). With a 965 

similar approach using the mean absolute WMH volume differences to the gold standard 966 

(FreeSurfer = 4.35, UBO 2D FLAIR = 2.00, BIANCA 2D FLAIR = 3.20), we were able to show 967 

that the mean WMH volume differences of the WMH volumes of BIANCA are the results of 968 

random averaging over inaccurately estimated WMH volumes see (“insert Supplementary 969 

Table 8 here”).  970 

Given that the focus of our study was to compare different algorithms in terms of costs and 971 

benefits, we did not test other settings for BIANCA but adhered to the default settings suggested 972 

in the original BIANCA validation (Griffanti et al., 2016). To our knowledge, BIANCA and 973 

LOCATE have not been validated with a longitudinal dataset so far. 974 

 975 

 976 

 977 

 978 

 979 

 980 

 981 

 982 

 983 
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Figure 6 984 

Bland-Altman (Bland & Altman, 1986) plots for WMH volume for the different algorithms (total 985 

WMH volume gold standard minus total WMH volume algorithm in mm3). The x-axes contain 986 

mean WMH volumes, the y-axes contain absolute differences. 987 

 988 

 989 

 990 

4.2 Comparing the algorithms 991 

The quality assessment of the algorithms is critically based on the gold standards. In order to 992 

prove construct validity, the different gold standards (T1w, 2D FLAIR, 3D FLAIR) were 993 

correlated amongst each other and with the respective outcomes of the algorithms (“insert 994 

Supplementary Figure 2 here”). The WMH volumes of the three gold standards correlated very 995 

strongly (all combinations: r = 0.97, p < 0.05) indicating a very high validity for our gold 996 

standards. However, evaluating how strong the different algorithm outputs correlated with the 997 
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gold standard WMH volumes, we found differences between the algorithms. UBO 3D FLAIR 998 

showed the highest correlations with the gold standard WMH volumes, followed by UBO 2D 999 

FLAIR, FreeSurfer, BIANCA 2D FLAIR, and – with the lowest correlations – BIANCA 3D 1000 

FLAIR. This correlation pattern is interesting and partly unexpected, especially when considering 1001 

that BIANCA was the only algorithm that was fed with a customized training dataset for every 1002 

modality. UBO Detector, on the other hand, has a built-in training dataset comprising ten 2D 1003 

FLAIR images, which is used for analyses of both input modalities. Remarkably, the 2D and 3D 1004 

FLAIR based WMH volumes of UBO Detector correlated strongly with the respective gold 1005 

standard. Across modalities, the correlation of the algorithm outputs was very high between UBO 1006 

2D and 3D FLAIR (r = 0.99), while the correlation between BIANCA 2D and 3D FLAIR was 1007 

clearly smaller (r = 0.68). Interestingly, the WMH volumes of FreeSurfer correlated also very 1008 

high with the two UBO Detector outputs (2D FLAIR: r = 0.92, 3D: r = 0.949), but less strong 1009 

with the two BIANCA outputs (2D FLAIR: r = 0.75, 3D: r = 0.86). In summary, these 1010 

correlations indicate that the WMH volume segmentations by UBO Detector and FreeSurfer are 1011 

better aligned as opposed to the BIANCA volume segmentation, which may be suggestive of 1012 

segmentation errors.  1013 

Having a closer look on the validation metrics, we found that UBO Detector and BIANCA 1014 

performed better than FreeSurfer in terms of volumetric agreement with the gold standard (ICC, 1015 

OER). The WMH volumes extracted from FreeSurfer were generally smaller than the outputs of 1016 

UBO Detector and BIANCA, and underestimated all gold standards (2D FLAIR, 3D FLAIR, 1017 

T1w). We would like to emphasize that FreeSurfer is the only algorithm that has even 1018 

underestimated its own gold standard. This clear volume underestimation is likely due to the fact 1019 

that, sometimes, WMH appear isointense on T1w images, which also explains FreeSurfer’s low 1020 

false positive ratio and the high number of true negatives. The underestimation also affected other 1021 

metrics (DSC, Sensitivity, OER and ICC), which were significantly worse for FreeSurfer 1022 

compared to the other algorithms. Regarding overlap and resemblance agreement (DSC, DER, 1023 

H95), BIANCA 3D FLAIR performed best. It scored significantly better than UBO Detector 1024 
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regarding the H95, meaning that BIANCA matched the shape of the gold standards better. This 1025 

can be an important advantage for research questions that regard lesion shape. A recent study, for 1026 

example, has identified WMH shape as a marker to distinguish between patients with type-2 1027 

diabetes mellitus and a control group (de Bresser et al., 2018). Furthermore, BIANCA 3D but 1028 

also BIANCA 2D FLAIR performed very accurate in terms of segmented percentage WMH 1029 

voxels (confusion matrix) and average WMH volume compared to the other algorithms. On the 1030 

flip side, both – BIANCA 3D and 2D FLAIR – showed the lowest correlations of WMH volume 1031 

(a) with the Fazekas scores and (b) between the time points. In line with the latter, BIANCA 2D 1032 

and 3D FLAIR showed the most «conspicuous intervals between two measurement points» and 1033 

«subjects with conspicuous longitudinal data» compared to the other algorithms, and also as the 1034 

only algorithm more «conspicuous intervals between two measurement points» than «subjects 1035 

with conspicuous longitudinal data». This difference between intervals and subjects indicate that 1036 

e.g. in BIANCA 2D FLAIR in 52 subjects at least two intervals between two measurement points 1037 

were conspicuous, which in turn reflect the discovered visual zigzag pattern. The strongest WMH 1038 

increases over time in literature were observed in subjects with a high WMH at baseline (Duering 1039 

et al., 2013; Gouw et al., 2008; R. Schmidt et al., 2003). Little progression in punctate WMH but 1040 

rapid progression in confluent WMH are reported (R. Schmidt, Seiler, & Loitfelder, 2016). 1041 

However WMH can also cavitate to take on the appearance of lacunes and so they can also 1042 

disappear (Shi & Wardlaw, 2016) for example after therapeutic intervention (Ramirez et al., 1043 

2016). Some studies report annual percentage increases in WMH volumes in the range between 1044 

12.5% and 14.4% in subjects with early confluent lesions, and 17.3% and 25.0% in subjects with 1045 

confluent abnormalities (Duering et al., 2013; Sachdev, Wen, Chen, & Brodaty, 2007; R. 1046 

Schmidt et al., 2003; van Dijk et al., 2008). Ramirez et al. (2016) summarized the progression 1047 

rates of WMH volume in serial MRI studies in their Table 2, showing a wide variability of 1048 

ranges. BIANCA 3D FLAIR showed a WMH volume increase range of 76.8% (mean) to 251.5% 1049 

(mean + 1SD), and in 2D FLAIR images a range of 64.8% to 141.7% for 2D FLAIR images in 1050 

one year. Comparing this progression of WMH volume growth with those described in the 1051 
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literature, and also considering that the WMH in this data set should increase only slightly, then 1052 

these results again may point to segmentation errors, that influenced segmentation reliability. 1053 

Having a closer look on the segmentation variability of the algorithms by means of the Bland-1054 

Altman plots (see Figure 6), we observed that the limits of agreement are wider in BIANCA than 1055 

in UBO Detector. Moreover, the 2D and 3D FLAIR plots show strong outliers (under- and 1056 

overestimations). Interestingly, however, the single deviations in BIANCA seem to cancel each 1057 

other out and result in a mean WMH volume that is very similar to the gold standard (see “insert 1058 

Supplementary Table 8 here). Regardless of the WMH load, UBO Detector systematically 1059 

underestimated the WMH volume in the 3D FLAIR images compared to the gold standard but 1060 

BIANCA also showed a slight tendency to do so (see Figure 6, panel B). This effect, however, 1061 

was not significant (see Table 7).  From analyzing the validation metrics, we can conclude that 1062 

with our dataset UBO Detector and FreeSurfer, as compared to BIANCA, performed more robust 1063 

and consistent across time. Future research needs to evaluate if the segmentation errors, BIANCA 1064 

produced with our dataset, occur also in the context of other datasets.  1065 

Besides performance differences between algorithms, we also looked at an influence of input 1066 

modality. Considering the findings, we obtained with our subset «n162», for both algorithms – 1067 

UBO Detector and BIANCA – that the segmented WMH volumes were significantly smaller 1068 

when using 3D FLAIR compared to 2D FLAIR images. No such modality difference was 1069 

apparent when comparing the 16 3D FLAIR and 2D FLAIR images between the gold standards 1070 

within UBO Detector and within BIANCA (see “insert Supplementary Table 6 here”). 1071 

It may be that this is specific to the subsample selected for the gold standard, and that differences 1072 

would become apparent if we had manually segmented the 486 images from the «n162» subset. 1073 

Findings with multiple sclerosis (MS) patients found that the number of lesions – manually 1074 

segmented by radiologists – detected in 3D FLAIR compared to 2D FLAIR images were higher 1075 

and therefore more WMH volume was detected (Paniagua Bravo et al., 2014; Polak, Magnano, 1076 

Zivadinov, & Poloni, 2012; Tan et al., 2002). This aspect seems to be particularly obvious for 1077 

brains with small WMH lesions, as they are more visible on 3D FLAIR images and especially in 1078 
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images with small slice thickness. Due to the statistically small sample, differences between 1079 

modalities may be due to MRI acquisition. Furthermore, the KNN algorithm could also have an 1080 

influence on the WMH volume output – or the interaction of acquisition and KNN algorithm. 1081 

Hence, the potential effect of input modality in non-clinical samples needs to be further assessed 1082 

in future studies. 1083 

One general problem in the context of automated WMH lesion segmentation using FLAIR 1084 

images is the incorrect inclusion of the septum pellucidum, the area separating the two lateral 1085 

ventricles, in the output mask. This area appears hyperintense on FLAIR sequences, and 1086 

therefore, looks very similar to WMH. When erroneously detected as WMH, the septum 1087 

pellucidum enters the output volume as false positive region, which leads to an overestimation of 1088 

the WMH volume. The UBO Detector developers (Jiang et al., 2018) also segmented the septum 1089 

pellucidum in their gold standard (see their supplementary Figure 1b). Since they already fed 1090 

their algorithm with this false positive information, it was to be expected that UBO Detector 1091 

would also segment the septum pellucidum in our data, which may have caused the worse DER 1092 

compared to FreeSurfer and BIANCA. Interestingly, however, also the BIANCA and LOCATE 1093 

outputs included some false positives in the septum pellucidum although the algorithm was 1094 

trained with a customized training dataset in which this area was not segmented.  1095 

 1096 

4.3 Strength and limitations 1097 

The main strengths of this study are the validation and comparison of three freely available 1098 

algorithms using a large longitudinal dataset of cognitively healthy subjects with a low WMH 1099 

load. Furthermore, we used fully manually segmented WMH as references for all three MRI 1100 

sequences. For the 3D and 2D FLAIR modalities, all three operators segmented the same images 1101 

in order to determine the inter-operator agreement. Scans with smaller WMH load lead to a lower 1102 

DSC than scans with a high WMH load (Wack et al., 2012). This is because images with high 1103 

lesion loads are «easier» for operators to achieve high DSC values than images with low lesion 1104 
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loads since images with high lesion loads usually show large lesions that the operators can easily 1105 

agree on. Moreover, the volume to lesion ratio in brains with high WMH load is smaller 1106 

compared to brains with low WMH load. We achieved good to excellent inter-operator 1107 

agreements (Caligiuri et al., 2015; Dadar et al., 2017) among the three operators, regardless of the 1108 

low WMH load. Our results on the OER and DER further indicate that the errors were mainly 1109 

due to edges rather than to missing voxels. So far, there is no general convention for interpreting 1110 

these measures, but our results are well in line with the study of Wack et al. (2012), who reported 1111 

similar values based on two operators (OER = 0.41, DER = 0.15). Supporting the high quality of 1112 

our manual segmentations, we found an excellent (Cicchetti, 1994) reliability for the total 1113 

volumetric agreement between the measurements of the 3D and 2D FLAIR images (ICC: 3D 1114 

FLAIR mean = 0.96; 2D FLAIR = 0.82). There were no significant mean WMH volume 1115 

differences between the three gold standards in all sequences (“insert Supplementary Table 6 1116 

here”). Besides the manual segmentations, the whole dataset (N = 800) was rated by the three 1117 

operators using the Fazekas scale, so that inter-operator reliability overall and between operators 1118 

could be calculated. The rating comparisons of all three operators resulted in substantial to almost 1119 

perfect agreement (Landis & Koch, 1977). Thus, the Fazekas scores can be considered as a 1120 

reliable gold standard to cross-validate WMH volumes extracted with the automated algorithms.   1121 

Finally, a longitudinal subset with 162 data points containing all three modalities was created. 1122 

The limitation of this study is that it is only one sample with homogeneous participants, which on 1123 

the other hand makes the data comparable. Future studies will determine how well these results 1124 

generalize to other studies, scanners, sequences, heterogeneous datasets with clinical participants. 1125 

 1126 

4.4 Usability of the algorithms 1127 

Given that the algorithms for WMH extraction are usually not implemented by trained 1128 

programmers, usability is an important issue to also mention here.   1129 
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FreeSurfer has not been specifically programmed for WMH detection, but is a tool for extensive 1130 

analysis of brain imaging data. Because of all the other parameters FreeSurfer outputs besides 1131 

WMH volume, the processing time is very long (many hours per session). The FreeSurfer output 1132 

comprises the total WMH volume and the total non-WMH volumes (grey matter). 1133 

UBO Detector has been specifically programmed for WMH detection. The UBO Detector 1134 

algorithm has been trained with a «built-in» training dataset. Theoretically, it is possible to train 1135 

the algorithm using a previously manually segmented gold standard. However, this procedure 1136 

does only work within the Graphic User Interface (GUI) in DARTEL space, and is very time-1137 

consuming. The output from UBO Detector is well structured and contains among others the 1138 

WMH volume and the number of clusters for total WMH, PVWMH, DWMH as well as WMH 1139 

volumes per cerebral lobe. For subset 2 the WMH extraction for the whole process incl. pre- and 1140 

postprocessing, took approx. 14 min per brain with the computing environment specified in the 1141 

methods section. For subset 3 the WMH extraction took approx. 32 min per brain.  1142 

BIANCA is a tool integrated in FSL (FMRIB's Software Library) with no need of any other 1143 

program. It is very flexible in terms of MRI input modalities that can be used and offers many 1144 

different options for optimization. The output of BIANCA comprises the total WMH. If required, 1145 

a distance from the ventricles can be selected to PVWMH and DWMH. In a longitudinally study 1146 

with many subjects and time points, or also in a study with a big sample size, the aggregation of 1147 

the algorithm output files seemed to be very time-consuming because of the many output files. 1148 

Our preprocessing steps for BIANCA took about 2:40 h per subject for the preparation of the 1149 

templates, about 1:10 h per session for the preparation of the T1w, 2D and 3D FLAIR images. 1150 

BIANCA required about 1:20 h per session for setting the threshold for both FLAIR images, and 1151 

the WMH segmentation took about 4 min and 8 min per session for the 2D FLAIR and 3D 1152 

FLAIR images, respectively. 1153 

 1154 

 1155 
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5 Conclusions 1156 

The main aim of the current study has been the validation and comparison of three freely available 1157 

methods for automated WMH segmentation using a large longitudinal dataset of cognitively healthy 1158 

subjects with a low WMH load. Our results indicate that FreeSurfer underestimates the total WMH 1159 

volumes significantly and misses some DWMH completely. Therefore, this algorithm seems not 1160 

suitable for research specifically focusing on WMH and its associated pathologies. However, since it 1161 

provides good agreement with the Fazekas scores and delivers robust and constant data in terms of 1162 

WMH volume over time, its use as a control variable is conceivable. BIANCA received in general 1163 

very good cross-sectional accuracy metrics but the longitudinal data suggest that it generates false 1164 

positive WMH volumes in certain areas of the brain. Hence, about 30% of the automatically 1165 

generated segmentations are not usable without great manual effort. The random false positives, 1166 

which frequently occurred in frontal brain areas, could thus also lead to random results in e.g. 1167 

correlations of WMH and cognitive functions. UBO Detector, as a completely automated algorithm, 1168 

has scored best regarding the costs and benefits due to its fully generalizable performance. Although 1169 

UBO Detector performed best in this study in summary, improvements in accuracy metrics, such as 1170 

DSC, DER and H95, would be desirable to be considered as a true replacement for manual 1171 

segmentation of WMH. 1172 
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8 Information Sharing Statement 1181 

The following openly available software were used:  1182 

FreeSurfer (https://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall) 1183 

UBO Detector (https://cheba.unsw.edu.au/research-groups/neuroimaging/pipeline)  1184 

BIANCA (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BIANCA/Userguide), part of FSL software (RRID: 1185 

SCR_002823, https://fsl.fmrib.ox.ac.uk) and the MATLAB implementation of LOCATE 1186 

(https://git.fmrib.ox.ac.uk/vaanathi/LOCATE-BIANCA)  1187 
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