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Distal CA1 maintains a more coherent spatial representation 

than proximal CA1 when local and global cues conflict 

Abstract 

Entorhinal cortical projections show segregation along the transverse axis of CA1, with the medial 

entorhinal cortex (MEC) sending denser projections to proximal CA1 and the lateral entorhinal cortex 

(LEC) sending denser projections to distal CA1. Previous studies have reported functional segregation 

along the transverse axis of CA1 correlated with the functional differences in MEC and LEC. Proximal CA1 

shows higher spatial selectivity than distal CA1 in these studies. We employ a double rotation paradigm, 

which creates an explicit conflict between local and global cues, to understand differential contributions 

of these reference frames to the spatial code in proximal and distal CA1. We show that proximal and 

distal CA1 respond differently to this local-global cue conflict. Proximal CA1 shows incoherent response 

consistent with the strong conflicting inputs it receives from MEC and distal CA3. In contrast, distal CA1 

shows a more coherent rotation with global cues. In addition, our study fails to show the difference in 

spatial selectivity between proximal and distal CA1 seen in the previous studies, perhaps due to richer 

sensory information available in our behavior arena. Together these observations indicate that the 

functional segregation along proximodistal axis of CA1 is not merely of more or less spatial selectivity 

but that of the nature of the different inputs utilized to create and anchor spatial representations. 

Introduction 

The hippocampus is involved in spatial navigation and episodic memory (O’keefe and Nadel 1978; Squire 

et al. 2004). To understand the computations involved in these processes, it is critical to understand 

information transformation in the sub-regions of the entorhinal-hippocampal network. Cortical 

information to the hippocampus gets channeled through the medial and the lateral entorhinal cortex 

(MEC and LEC) (Burwell 2000; Witter and Amaral 2004). MEC and LEC are thought to convey 

complementary information to the hippocampus - path integration derived spatial information from 

MEC and sensory derived spatial and nonspatial information from LEC (Deshmukh and Knierim 2011; 

Hafting et al. 2005; Knierim et al. 2014; Manns and Eichenbaum 2009; Suzuki et al. 1997). While LEC and 

MEC layer II inputs to the dentate gyrus and CA3 are not segregated along the transverse axis of the 

hippocampus, layer III inputs to CA1 are. MEC projects preferentially to proximal CA1 (close to CA2), 

while LEC projects preferentially to distal CA1 (close to the subiculum) (Naber et al. 2001; Steward and 
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Scoville 1976; Witter and Amaral 2004). CA3 to CA1 projections also show segregation along the 

transverse axis, with proximal CA3 projecting preferentially to distal CA1 and distal CA3 projecting 

preferentially to proximal CA1 (Figure 1A) (Ishizuka et al. 1990; Witter and Amaral 2004).  

As predicted by these anatomical differences, CA1 shows functional segregation along its transverse 

axis. In two-dimensional open fields and linear tracks, proximal CA1 is spatially more selective than distal 

CA1 (Henriksen et al. 2010; Ng et al. 2018; Oliva et al. 2016). Consistent with the predictions, distal CA1 

neurons respond to objects and rewards (Burke et al. 2011; Xiao et al. 2020; these studies did not record 

from proximal CA1, so we do not know if there was a functional dissociation along the transverse axis). 

LEC and distal CA1 show enhanced oscillatory synchronization during olfactory-spatial associative 

memory, while LEC and proximal CA1 do not (Igarashi et al. 2014). Immediate early gene expression and 

lesion studies lend further support to spatial vs sensory double dissociation between proximal and distal 

CA1 (Ito and Schuman 2012; Nakamura et al. 2013; Nakazawa et al. 2016). However, the relative 

contributions of different inputs to the neural representations along the transverse axis of CA1 are not 

well understood. 

A “double rotation” protocol (Knierim 2002; Shapiro et al. 1997) has been used extensively to study 

influence of local and global cues on spatial representations in different parts of the hippocampal 

formation. In this experimental protocol, prominent “local” on-track cues and “global” off-track cues are 

put in conflict by rotating them in the opposite directions. These experiments have revealed that CA1 

responds to double rotation in an incoherent manner, while the CA3 rotates coherently with the local 

cues (Lee et al. 2004; Neunuebel and Knierim 2014). Along the transverse axis of CA3, proximal CA3 

shows incoherent response while intermediate and distal CA3 shows coherent rotation with the local 

cues (Lee et al. 2015). In the same paradigm, MEC shows coherent rotation with the global cues. LEC, 

which shows very weak spatial tuning during the sessions with standard cue configuration, shows an 

extremely weak rotation with the local cues (Neunuebel et al. 2013). Thus, proximal CA1 gets strongly 

coherent but conflicting inputs from MEC (global) and distal CA3 (local), while distal CA1 gets incoherent 

inputs from proximal CA3 and weakly local inputs from LEC. The present study examines responses of 

CA1 neurons along the transverse axis to the double rotation manipulation to study how the entorhinal 

and CA3 input patterns affect CA1 representation along its transverse axis during local-global cue 

conflict.  

Methods 
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Subjects and surgery 

Eleven Long Evans rats aged 5-6 months were housed individually in 12:12 hour reversed day-night 

cycle. All experiments were performed during the night portion of the cycle. Animal care, surgical 

procedures and euthanasia procedures followed were in accordance with the National Institutes of 

Health guidelines and protocols approved by institutional animal care and use committee of the Johns 

Hopkins University. Custom built hyperdrives with independently moving 15 tetrodes and 2 references 

were implanted over the right hemisphere. Rats were implanted with 3D printed hyperdrives with 

linearly distributed bundle canulae angled at 35° to the ML axis to target the entire proximodistal extent 

of CA1 at the same septotemporal level. Data recorded during resting sessions from 8 of these rats was 

previously used for studying propagation of ripples in CA1 (Kumar and Deshmukh 2020). 

Behavioral training and experimental protocol 

Following recovery for about one week after surgery, rats were maintained at 80-90% of their free 

feeding weight in order to incentivize them to run on a circular track for food, during the training and 

the recording sessions. The circular track (56 cm inner diameter, 76 cm outer diameter) had 4 easily 

distinguishable sections, and was placed in a room with a 2.75 m diameter circular curtain with 6 large, 

distinct cues either hanging on the curtain or on the floor along the curtain (Knierim 2002). Once the 

rats learned to run in clockwise (CW) direction for food pellets randomly placed on the track, and the 

electrodes were deemed to be in optimal recording locations, the experimental sessions commenced. 

Each experimental day had 5-6 sessions of 15 laps each. The experimental sequence for one rat was 

STD-MIS-STD-MIS-STD, while that for all other rats was STD-STD-MIS-STD-MIS-STD. STD stands for 

standard configuration, and MIS stands for mismatch configuration with one out of the following 

mismatch angles selected in a pseudorandom order: 45°, 90°, 135°, and 180°. For a given mismatch 

angle, the local cues on the track were rotated counterclockwise (CCW) by half the amount and the 

global cues along the curtain were rotated CW by the other half. For example, the local cues were 

rotated by 22.5° CCW and the global cues were rotated by 22.5° CW for a 45° MIS session (Figure 1B). 

These manipulations were performed for 4 days, such that each mismatch angle was sampled twice. 

Recording electronics 

Neuronal data was collected using an analog wireless transmitter (Triangle Biosystems International, 

Durham, NC). Data from the wireless receiver was processed and stored using cheetah data acquisition 

system (Neuralynx Inc., Bozeman, MT). The signals were amplified 1000-10000 fold, bandpass filtered 
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between 600-6000 Hz, and digitized at 32000 Hz for single unit recordings. Any time one of the channels 

on a tetrode crossed a preset threshold, data from all 4 channels on the tetrode were recorded for 1ms 

(8 samples before and 24 samples after the threshold). Signals from one of the channels on each of the 

tetrodes were also amplified 500-2000 fold, bandpass filtered between 1-475 Hz, digitized at 1 KHz and 

stored continuously for local field potential (LFP) recordings.  

Data analysis 

Unit isolation 

Single units were isolated using WinClust, a custom manual cluster cutting software (J. J. Knierim, Johns 

Hopkins University). For every threshold crossing, waveform characteristics such as peak, valley and 

energy on all 4 channels on a tetrode were used for clustering spikes. Only units with fair or better 

isolation as estimated by cluster separation, waveform and clean inter-spike interval histogram were 

included in subsequent analysis. Putative interneurons firing at ≥ 10 Hz mean firing rate were excluded.  

Firing rate maps 

Rat's position as well as heading direction was tracked using colored LEDs and a camera recording at 30 

frames per second. Off track firing and intervals during which the rats ran slower than 2 cm/s or ran in 

the wrong direction (CCW) were excluded from the analysis in order to minimize firing rate variability 

introduced by non-spatial activity. Linearized rate maps were created at 1° resolution (which gives 360 

bins for the circular track) by dividing the number of spikes when the rat was in each bin by the amount 

of time the rat spent in each bin. Linearized rate maps were smoothed using adaptive binning for 

computing spatial information scores (bits/spike; Skaggs et al. 1996) and gaussian filtered (σ = 3°) for 

other quantitative analyses. A shuffling procedure was used to determine the probability of obtaining 

the observed spatial information score by chance. Neuronal spike train was shifted by a random lag 

(minimum 30 s) with respect to the trajectory of the rat. Spatial information score was computed from 

adaptive binned, linearized rate map created from this shifted spike train. This procedure was repeated 

1000 times to estimate the chance distribution of spatial information scores, and determine the number 

of randomly time shifted trials having spatial information scores greater than or equal to the observed 

spatial information scores. Only putative place cells that fired ≥ 20 spikes, and had statistically significant 

(p < 0.01) spatial information scores of ≥ 0.5 bits/spike in at least one of the MIS and preceding STD 

session were used in population vector correlation analysis and single unit responses. 
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Classification of single unit responses 

Angle of rotation giving the highest Pearson correlation between STD and MIS was used as an estimate 

of rotation of the neuron. We categorized responses of putative place cells as "appear" (<20 spikes in 

STD but > 20 spikes in MIS), "disappear" (< 20 spikes in MIS but > 20 spikes in STD), "local" (highest 

Pearson correlation between STD and MIS after CCW rotation), "global" (highest Pearson correlation 

between STD and MIS after CW rotation), or "ambiguous" (Pearson correlation coefficient between STD 

and MIS not crossing a threshold of 0.6 after  rotation, or the neuron not meeting the spatial 

information criteria in one of the sessions).  

Population vector correlation analysis 

Linearized rate maps were normalized by their peak firing rate before being used for constructing 

population vector. Normalized firing rates of all cells for each 1° bin in each MIS or STD session 

constituted the population vector for that bin for that session. STD vs MIS population vector correlation 

matrices were constructed by computing Pearson correlation coefficients of the 360 population vectors 

of each STD and MIS session with each other at all possible relative displacements (0-359°). Similarly, 

STD vs STD population vector correlation matrices were constructed from STD sessions before and after 

MIS (Lee et al. 2004). Mean population vector correlation at each relative displacement (0-359°) was 

computed from each population vector correlation matrix. Peaks (polar (length, angle) pairs converted 

to cartesian (x, y) pairs), as well as full width at half maximum (FWHM) were estimated from the mean 

population vector correlation. Normalized bias was defined as the difference between the mean 

population vector correlations for all displacements in the direction of local cue rotation (1-179°) and 

mean population vector correlations for all displacements in the direction of global cue rotation (181-

359°) normalized by the mean population vector correlation for all displacements (0-359°). We 

performed bootstrap analysis by random sampling with replacement of neurons in the dataset to 

generate 1000 resampled datasets with the number of samples matching the number of samples in the 

actual dataset. Peaks of mean population vector correlations (x,y), FWHM, and normalized bias were 

calculated for each of the bootstrap iterations. Because these different parameters have different units 

and different magnitudes, they were normalized by subtracting their minima and dividing by the 

difference between their maxima and their minima. This led to all parameters having a range of 0 to 1. 

K-means clustering was used to partition the bootstrap distributions from proximal and distal CA1 into 2 

clusters. Principal component analysis (PCA) was used to reduce dimensionality for display purpose. 
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Statistical analysis 

MATLAB (Mathworks, Natick, MA) was used to perform statistical analysis. Circular statistics toolbox was 

used for statistical analysis of circular data. Units were tracked through a recording day, which typically 

had two MIS sessions with different mismatch angles. Tetrodes with multiple units were left 

undisturbed from one day to another, while those without units were moved ~16-32 µm in an attempt 

to increase the yield. For tetrodes with units on multiple days, no attempt was made to track units from 

one recording day to another. Therefore, while a number of units could be shared between sessions 

with different mismatch angles, we do not know the exact number of shared units. This partial overlap 

in number of units violates the assumption of independence made while correcting for multiple 

comparisons, such as Bonferroni or Holm-Bonferroni correction(Holm, 1979). Thus, rather than using 

corrections for multiple comparisons, patterns of low p values (p < 0.05) across multiple tests were used 

to draw conclusions. No conclusions were drawn based on single comparisons where multiple 

comparisons were performed simultaneously. 

Histology 

On the final day of recording, locations of a small subset of tetrodes was marked by passing 10 µA 

current for 10 s. Tetrode tracks were reconstructed from coronal sections and confirmed using marker 

lesion (Figure 1C; Deshmukh et al. 2010).  

Results 

Hyperdrives with 15 tetrodes and 2 references targeting the entire proximodistal extent of dorsal CA1 

were implanted on 11 rats to record the activity of putative pyramidal cells as the rats ran CW on a 

circular track with 4 distinct textures (local cues) in a circular curtained room with 6 large global cues 

along the curtain. Cue manipulation sessions with global cues moving CW and local cues moving CCW by 

equal amounts creating 45°, 90°, 135°, or 180° mismatch (MIS) between the two were interleaved with 

sessions with cues in their standard configuration (STD) (Figure 1B). 

Putative interneurons with mean firing rates > 10 Hz (Deshmukh and Knierim 2013; Fox and Ranck 1981; 

Frank et al. 2001; Ranck 1973) were excluded from analyses. Based on their locations, tetrodes were 

assigned to equally broad proximal, intermediate, and distal CA1 bands (Henriksen et al. 2010). Nine rats 

had putative pyramidal neurons recorded from in each of the three bands; one rat had units recorded 

from proximal and intermediate CA1; one rat had units recorded from proximal and distal CA1. Since 
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intermediate CA1 is expected to have overlapping entorhinal projections (Naber et al. 2001; Steward 

and Scoville 1976), although data from all three regions is displayed, quantitative statistical comparisons 

between regions were limited to proximal and distal CA1 by prior design. 

Properties of single units along the proximodistal axis of CA1 

In the first STD session, 156 well isolated putative pyramidal cells in proximal CA1 fired at least 20 spikes 

while the rat was running on the track; 131 neurons in intermediate CA1 and 180 neurons in distal CA1 

met the same criteria. Mean and peak firing rates in proximal and distal CA1 were statistically 

indistinguishable from each other.  Spatial correlates of neural activity were estimated using a variety of 

measures. Spatial information scores (bits/spike; Skaggs et al. 1996) in proximal and distal CA1 neurons 

were statistically indistinguishable from one another. Number of place fields/cell of 139 proximal and 

140 distal CA1 place cells with statistically significant spatial information scores > 0.5 bits/spike were 

similarly indistinguishable, and so were the fraction of place cells with a single place field. Furthermore, 

sizes of 181 proximal and 176 distal CA1 place fields were statistically indistinguishable, and so was the 

fraction of track occupied by all the place fields of proximal and distal CA1 place cells (Figure 2, Table 1). 

This lack of difference in spatial correlates of proximal and distal CA1 persisted in MIS sessions 

irrespective of MIS angle. Spatial correlates showed a general decline from STD to MIS session in both 

regions (Supplementary Figure 1, Supplementary Table 1). 

Single unit responses to cue manipulation 

Responses to cue manipulation of putative place cells (≥ 20 spikes and spatial information score > 0.5 

bits/spike in at least one of the STD or MIS session) were  grouped into 5 classes as described previously 

from animals performing the same behavioral task (Lee et al. 2004; Neunuebel et al. 2013). Units that 

remained spatially selective in both STD and MIS sessions and showed maximum Pearson correlation 

after rotating the rate maps > 0.6 were classified as rotating neurons – those rotating CW were classified 

as rotating with global cues, while those rotating CCW were classified as rotating with local cues. Units 

that dropped below the 20 spikes threshold in MIS session were classified as disappearing units, while 

those that started firing more than 20 spikes in MIS after firing less than that in STD were classified as 

appearing units. Units that failed to meet the maximum Pearson correlation coefficient criterion as well 

as those which failed the spatial information score criteria in at least one of the sessions while firing 

more than 20 spikes in both sessions were classified as being ambiguous (Figure 3A). After pooling 

across all mismatch angles, proportions of appearing, disappearing, and ambiguous units were similar in 
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proximal and distal CA1, but proximal CA1 showed more units with CCW rotations in the direction of 

local cues while distal CA1 showed more units with CW rotations in the direction of global cues (Figure 

3B). Many neurons are likely to have been recorded in more than one mismatch angles. In addition, 

classification of neurons into response classes creates arbitrary distinctions. For these two reasons, we 

did not perform quantitative statistical analysis on the distributions of neurons in these classes. 

Nonetheless, this classification provides a useful qualitative description of single unit responses that 

underlie the quantitative differences in populations of neurons across the transverse axis of CA1 

discussed below. 

Rotating cells showed clustering of rotation angles near the rotation angles of local or global cues in MIS 

sessions (Figure 4). These rotation angles were not distributed uniformly in 0-360° range for any of the 

mismatch angles for any of the CA1 subregions (Rao’s spacing test, Table 2), confirming that they were 

not distributed by a random process with uniform distribution. Coherence of rotation of the rotating 

cells was estimated using mean vectors (Rayleigh test, Table 3). Proximal CA1 single units showed 

statistically significant coherent rotations at all mismatch angles. While the mean vectors (blue arrows in 

figure 4A) were rotated CCW towards local cues for 90°, 135° and 180°, the mean vector for 45° was 

rotated CW towards global cues. In contrast, mean vectors of distal CA1 single units showed CW 

rotations towards global cues for all mismatch angles. The mean vectors were statistically significant for 

all mismatch angles except 180°. There was no discernible pattern in the angles of rotation of mean 

vectors of single units in intermediate CA1, and the mean vectors were statistically significant only at 

45°and 90°. Across all mismatch angles, proximal CA1 showed similar proportion of units rotating CW 

towards global cues (47%) and CCW towards local cues (53%). In contrast, both distal and intermediate 

CA1 showed a preference for CW rotation towards global cues (60% vs 40% CCW) (Figure 4B). 

Population responses to cue manipulation 

While the rotating single units in proximal and distal CA1 demonstrate clear differences, single unit 

rotation analysis misses out on contributions of other neurons in the ensemble excluded by the criteria 

used for classifying single unit responses to cue manipulations as rotating. Population vector 

correlations (Lee et al. 2015, Lee et al. 2004; Neunuebel et al. 2013) between sessions using all neurons 

meeting inclusion criteria (statistically significant spatial information scores > = 0.5 bits/spike, minimum 

20 spikes, mean firing rate < 10 Hz) in either MIS or preceding STD session help overcome this limitation. 

Population vector correlations between STD sessions preceding and following MIS sessions (labelled 

STD1 and STD2) were used as control.  
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Figure 5 shows population vector correlations for STD1 vs STD2 and STD1 vs MIS for all MIS angles for 

proximal, intermediate, and distal CA1. Strength of correlation between the population vectors as 

estimated by Pearson correlation coefficients at all combinations of relative displacements is 

represented in pseudocolor, with black corresponding to <= 0 and white corresponding to 1. If the 

population representation is unchanged between the two sessions being compared (STD1 vs STD2 or 

STD1 vs MIS), the population vectors are expected to show highest correlation at 0° displacement from 

one another. This generates a line of highest correlation at the diagonal going from bottom left to top 

right of the population vector correlation matrix (black line). If, on the other hand the population 

representation coherently rotates between the two sessions being compared, the line of highest 

correlation (running at 45° angle, parallel to the diagonal) in the population vector correlation matrix is 

expected to get displaced by corresponding angle. Colored lines in each population vector correlation 

matrix show the expected displacement for the given MIS angle for local (red) and global (green) 

rotation. STD1 vs STD2 population vector correlation matrices for all MIS angles and CA1 subregions 

show a strong band of high correlation at the diagonal overlapping with the black line. This indicates 

that the population representations along the entire extent of CA1 transverse axis remained stable 

between STD sessions before and after the intervening MIS session regardless of the mismatch angle.  In 

the 45° MIS session, all three regions showed strong population vector correlation bands, which were 

slightly displaced towards the green line corresponding to global cue rotation. In 90°, 135° and 180° MIS 

sessions, proximal CA1 did not show a single coherent band of high correlation parallel to the diagonal. 

Instead, patches of high correlations were seen overlapping with the local (red line) as well as global 

(green line) cue rotations. Intermediate CA1 showed a more coherent band of high correlation in 90° 

MIS session, which was biased towards the global cue rotation (green line) but showed a patchy 

distribution of high correlations similar to proximal CA1 in 135° and 180° MIS.  In contrast to these two 

regions, distal CA1 showed a fairly coherent band of high correlation biased towards global cue rotation 

(green line) at all mismatch angles with occasional patches of high correlation near local cue rotations 

(red line).  

To quantify the strength of the correlation bands, mean population vector correlation for each relative 

displacement (0°-359°) was calculated from 360 correlation bins along a line running parallel to the 

bottom left to top right diagonal. Displacement of the line from the diagonal corresponded to the 

relative displacement between the two sessions (STD1 vs STD2 or STD1 vs MIS). Mean population vector 

correlations (plotted on polar plots below each population vector correlation matrix in Figure 5) show a 

narrow distribution with large peaks at or near 0° displacement for STD1 vs STD2 comparisons for all 
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CA1 subregions, as expected when the representations remain stable between sessions being 

compared.  Peaks in the polar plots of all STD1 vs MIS comparisons were smaller than the corresponding 

STD1 vs STD2 comparisons for all CA1 subregions. For STD1 vs MIS comparison for 45° mismatch angle, 

the distribution of mean population vector correlations widened and showed a bias towards CW 

rotations (in the direction of global cue rotation) in all CA1 subregions. As expected from the population 

vector correlation matrices, the polar plot for higher mismatch angles showed different patterns in 

different subregions of CA1. Proximal CA1 showed two comparable peaks of substantially reduced 

magnitude following local as well as global cue rotations in 90° and 135° MIS sessions, and a prominent 

but small peak rotating CCW (following local cue rotation) in 180° MIS session. Intermediate CA1 

showed peaks rotating CW (following global cue rotation) in 90° and 180° MIS sessions, and a two 

peaked distribution in 135° MIS session. Distal CA1, in contrast to these two regions, showed consistent 

CW rotation with global cues in 90°, 135° and 180° MIS sessions, although very small peaks 

corresponding to local cue rotations could also be seen. 

To compare proximal and distal CA1 population vector correlations explicitly, repeated sampling with 

replacement was performed 1000 times to generate bootstrapped distributions for the two regions. 

Number of samples in each iteration matched the number of samples in the real dataset for each 

subregion. For each of the iterations, population vector correlation matrices were generated and mean 

population vector correlation polar plots for each relative displacement were computed from those 

matrices. Following parameters were estimated from the polar plots to facilitate comparison between 

proximal and distal CA1: Peak vectors (x,y pairs), FWHM, and normalized bias (see methods for 

definitions of and calculations of these parameters). PCA was performed on this 4-dimensional space for 

reducing dimensionality for display purposes. Figure 6 shows the projection of the bootstrapped data for 

the two regions on the first two principal components for the different mismatch angles. Proximal CA1 

bootstraps are shown in red while distal CA1 bootstraps are shown in blue. Three very clear patterns 

stand out in all four plots. First, the two distributions are well segregated along the two principal 

components, with the first principal component showing a clear segregation between the two at all 

mismatch angles other than 135°. Second, the distal CA1 bootstrap distribution is much more compact 

at all mismatch angles than the proximal CA1 bootstrap distribution. Third, the proximal CA1 bootstrap 

distribution often shows multiple clusters, while almost all distal CA1 boostraps stay together in a single 

compact cluster. In fact, the proximal CA1 bootstrap distribution for 135° mismatch shows 3 clusters 

with two clusters clearly segregated from the distal CA1 cluster and the third cluster overlapping with 

the distal CA1 cluster. All these patterns are consistent with the distal CA1 population maintaining more 
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a coherent representation across mismatch angles than the proximal CA1 population, in agreement with 

Figure 5. 

To test whether these distributions of proximal and distal CA1 bootstraps are indeed different from one 

another in an unbiased manner, k-means clustering with k = 2 was employed. Figure 6 shows black and 

cyan circles for points classified into two clusters. Table 4 shows numbers of points from proximal and 

distal CA1 that were included in the two clusters. At 135° mismatch, all the distal CA1 points and a group 

of proximal CA1 points clustered together, while the remaining proximal CA1 points formed the other 

cluster. For all other mismatch angles, the clusters include more than 95% of the points from one region 

while including less than 5% of the points from the other region, as expected. These clustering patterns 

prove that proximal and distal CA1 respond differentially to the double rotation cue manipulation, and 

that distal CA1 population rotates more coherently than the proximal CA1 population. 

Discussion 

Spatial selectivity in proximal and distal CA1 

In this study, putative pyramidal cells in proximal and distal CA1 show comparable spatial selectivity as 

estimated using spatial information score, number of place fields per cell, field size, and fraction of the 

track occupied by fields. This lack of difference in spatial selectivity along the transverse axis observed in 

STD as well as MIS sessions is in apparent conflict with higher spatial selectivity in proximal CA1 

compared to distal CA1 in multiple earlier studies (Henriksen et al. 2010; Ng et al. 2018; Oliva et al. 

2016). The behavioral arenas used in the earlier studies had single uniform texture, while the circular 

track in the present study had 4 easily discernible sections with distinct textures, visual appearances, 

and odors. Thus, the apparent elimination of differences in spatial selectivity between proximal and 

distal CA1 could possibly be caused by richer sensory information available from the behavioral arena. 

This observation adds a nuance to the established notion that distal CA1, which receives preferential 

projections from LEC (Naber et al. 2001; Steward and Scoville 1976; Witter and Amaral 2004), has lesser 

spatial selectivity.  

LEC shows extremely weak spatial selectivity on the circular track used here, similar to that in a square 

box in simple and complex environments (Hargreaves et al. 2005; Neunuebel et al. 2013; Yoganarasimha 

et al. 2011). Hence, spatial selectivity of the inputs from LEC on the circular track is insufficient to explain 

higher spatial selectivity in distal CA1 in the present study. Plausible mechanisms for global cue control 

of distal CA1 during double rotation are discussed below. However, these projections from MEC 
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(Masurkar et al. 2017), nucleus reuniens (Dolleman-van der Weel et al. 2019; Dolleman-Van Der Weel 

and Witter 1996; Vertes et al. 2006), and the subiculum (Ding 2013; Xu et al. 2016) may not be sufficient 

on their own to explain why the spatial selectivity differences along the transverse axis of CA1 seen in 

the previous studies (Henriksen et al. 2010; Ng et al. 2018; Oliva et al. 2016) disappear in the present 

study in the presence of distinct sensory cues on track. Increased complexity of the environment and/or 

availability of the on-track sensory cues increasing spatial selectivity of existing non-LEC inputs or 

altering responsiveness of distal CA1 to these inputs are different mechanisms by which this can be 

achieved. Further studies are required to test if one or both of these mechanisms contribute to 

increased spatial selectivity in distal CA1, including the role of LEC as the possible modulator of 

contributions of non-LEC inputs to CA1 spatial code (Lu et al. 2013).  

Dissociation of responses to double rotation manipulation between proximal and distal CA1 

EC and CA3 inputs to proximal and distal CA1 respond very differently to double rotation, leading to an 

expectation that the responses to this manipulation will differ along the transverse axis of CA1. Proximal 

CA1 receives strong competing inputs from CA3 and MEC during MIS sessions. Distal CA3 rotates 

coherently with local cues (Lee et al. 2015), while MEC rotates coherently with global cues (Neunuebel 

et al. 2013). In contrast, distal CA1 does not receive a strong, coherently rotating signal from either CA3 

or LEC. Proximal CA3 responds incoherently to double rotation, with sporadic hotspots of high 

correlation in the population vector correlation matrices of MIS angles larger than 45° rather than a 

band of high correlation following either the local or the global cues (Lee et al. 2015). The sporadic 

hotspots of high correlation are sometimes seen rotating with local cues while rotating with global cues 

at other times. LEC neurons show a very weak spatial selectivity on the circular track in STD sessions 

(Yoganarasimha et al. 2011).  Neither the STD1 vs STD2 nor STD1 vs MIS population vector correlation 

matrices for LEC show a narrow band of high correlation, but polar plots of mean population vector 

correlations reveal a weak but statistically significant preference for rotating with local cues (Neunuebel 

et al. 2013). LEC encodes external items in egocentric coordinates (Wang et al. 2018), but in the present 

task, the allocentric and the  egocentric reference frames are confounded, since the rat typically faces in 

a certain direction at each position on track. This translates into distances and directions to different 

cues being practically fixed at each position. Hence, we do not expect the response of the LEC neurons 

to double rotation manipulation to appear different between the two reference frames and expect the 

local cues to weakly dominate over global cues (Neunuebel et al. 2013) even in the egocentric reference 

frame. 
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These weakly local and incoherent inputs from LEC and proximal CA1 would predict either incoherent or 

weakly local response in distal CA1. Surprisingly, distal CA1 shows coherent rotation with global cues in 

this study. Alternative sources of spatial information anchored to global cues need to be considered to 

explain these results. One possibility is that in absence of strong competing inputs, even sparse 

projections from MEC (Masurkar et al. 2017) might be sufficient to cause distal CA1 neurons to rotate 

with global cues. In addition to EC inputs, CA1 receives other inputs which could potentially influence 

spatial representation in distal CA1 in this task. Nucleus reuniens, which connects to the medial 

prefrontal cortex and the hippocampus (Dolleman-van der Weel et al. 2019; Dolleman-Van Der Weel 

and Witter 1996; Vertes et al. 2006), sends direct projections to CA1 and shows head direction cells 

(Jankowski et al. 2014), place cells, and border cells (Jankowski et al. 2015). While nucleus reuniens 

neurons have not been recorded in the double rotation task, head direction cells recorded in other 

thalamic nuclei (ADN, AVN, LDN, VAN and RT) rotate with the global cues in the double rotation task 

(Yoganarasimha et al. 2006). Anecdotally, we as well as others (Peyrache and Buzsaki, 

https://www.youtube.com/watch?v=2da6gzF9eo0&t=24m13s) have recorded putative axons with head 

direction tuning outside pyramidal cell layer in distal CA1. Notwithstanding the source of these head 

direction projections, this anecdotal observation further supports the hypothesis that head direction 

inputs may be involved in coherent rotation of distal CA1 with global cues. Subiculum, which receives 

direct projections from the head direction system as well as MEC (Ding 2013), sends feedback 

projections to CA1 (Xu et al. 2016), and rotates coherently with global cues in the double rotation task 

(Sharma et al. 2020). While these inputs from MEC, nucleus reuniens, and the subiculum to distal CA1 

may be less numerous than LEC and proximal CA3, they may be strong enough to drive distal CA1 to 

rotate with global cues in absence of competing strong inputs rotating with local cues.  

In contrast to distal CA1, proximal CA1 gets strong, conflicting inputs from distal CA3 (Lee et al. 2015) 

and MEC (Neunuebel et al. 2013) rotating with local and global cues respectively during double rotation. 

CA1 is hypothesized to be a mismatch detector that compares recalled/predictive information from CA3 

with the current status information from EC layer III (Duncan et al. 2009; Fyhn et al. 2002; Hasselmo et 

al. 1995; Hasselmo and Schnell 1994; Kumaran and Maguire 2006; Lisman and Grace 2005; Lörincz and 

Buzsáki 2000; Vinogradova 2001). Strong conflicting inputs from CA3 and MEC to proximal CA1 during 

double rotation create ideal conditions to test the performance of proximal CA1 as mismatch detector. If 

proximal CA1 performs as a mismatch detector during double rotation, it should show enhanced activity 

with coherent rotation with MEC input. Instead, proximal CA1 shows incoherent response to double 

rotation and lack of increased mean or peak firing rate in the MIS sessions (Supplementary Figure 1 and 
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Supplementary Table 1). The incoherent response of the present study may, instead, be explained by 

differential strengths of CA3 and MEC inputs to individual proximal CA1 neurons driving the variety of 

responses observed there. Neurons with predominant inputs from either CA3 or MEC may follow that 

input, while those without a clearly dominant input from CA3 and MEC may give ambiguous or 

remapping responses. These results, however, do not eliminate the possibility that the individual CA1 

neurons that appear during MIS sessions act as mismatch detectors. 

Spatial representation in CA1 

Since the discovery of place cells (O’Keefe 1976; O’Keefe and Dostrovsky 1971), spatial representation in 

the hippocampus is thought to be a unitary representation of absolute space (O’keefe and Nadel 1978). 

This unitary representation requires a single reference frame with a single origin with respect to which 

every point of space is encoded. However, it is possible that the hippocampal spatial representation 

might appear to be unitary, without there being an explicitly unitary representation of space. A number 

of independent reference frames/spatial representations may coexist, and may generally agree with one 

another, giving an appearance of a unitary code for space. Thus, different neurons firing at a specific 

location may be encoding that location as different distances and directions from different origins. Some 

experimental conditions demonstrate existence of such coexisting reference frames in CA1. 

Representations of proximity to barriers (Rivard et al. 2004), goal location (Fyhn et al. 2002; Gothard et 

al. 1996b), distance and direction to goal (Gothard et al. 1996a; Sarel et al. 2017), distance and direction 

to landmarks (Deshmukh and Knierim 2013; McNaughton et al. 1995) may coexist with classic place cells 

representing space in allocentric coordinates. These place fields in allocentric coordinates themselves 

may be formed by combining inputs from two or more boundary vector cells (Hartley et al. 2000; 

O’Keefe and Burgess 1996) or grid cells (de Almeida et al. 2009; Monaco et al. 2011; Savelli and Knierim 

2010; Solstad et al. 2006), or a combination of sensory and self-generated inputs (Deshmukh and 

Knierim 2013). Thus, they may be encoding space in different reference frames. 

Creating an explicit conflict between reference frames reveals their influence on hippocampal 

representation of space (Gothard et al. 1996a, 1996b; Knierim 2002; Lee et al. 2004; Zinyuk et al. 2000).  

In the double rotation paradigm used in this paper, some regions involved in spatial encoding show 

coherent rotations while the others show weak to no coherence in rotation (Lee et al. 2015, 2004; 

Neunuebel et al. 2013; Neunuebel and Knierim 2014; Sharma et al. 2020). The dissociation of responses 

to double rotation manipulation along the proximodistal axis of CA1 shown here demonstrates that the 

non-unitary representation of space in the hippocampal output (via CA1) reflects strong conflict 
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apparent in its inputs (in proximal CA1) or lack thereof (in distal CA1). Regions of the brain differentially 

targeted (directly or indirectly) by proximal and distal CA1 (Naber et al. 2001; Witter and Amaral 2004), 

thus, receive spatial inputs that have differential influence of different spatial reference frames. Further 

studies are required to elaborate the role of this difference of spatial inputs in functioning of these 

target regions. 
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Tables 

Statistical 
test Quantities 

compared p Z 
Wilcoxon 
ranksum χ2 

# of 
samples in 
Prox CA1 

# of samples 
in Dist CA1 

 
Wilcoxon 
rank sum  Mean firing rate 0.37 0.89 27079  156 neurons 180 neurons 

Wilcoxon 
rank sum  Peak firing rate 0.34 0.95 27128  156 neurons 180 neurons 

Wilcoxon 
rank sum 

Spatial 
information score 0.15 -1.45 24997  156 neurons 180 neurons 

Wilcoxon 
rank sum  

Number of place 
fields/cell 

0.28 
1.07 19968  

139 place 
cells 

140 place 
cells 

Wilcoxon 
rank sum  Field size 

0.13 
-1.52 30915  

181 place 
fields 

176 place 
fields 

Wilcoxon 
rank sum  

Fraction of area 
occupied by place 
fields 0.78 -0.28 19272  

139 place 
cells 

140 place 
cells 

 
 
 
χ2 

Fraction of place 
cells with 1 place 
field/cell 

 
 
 
0.36 

  0.85 

107 place 
cells with 1 
field out of 
139 place 
cells 

115 place 
cells with 1 
field out of 
140 place 
cells 

 

Table 1. Statistical comparison of properties of proximal and distal CA1 neurons in the first standard 

session of the day. 

 

Mismatch 
angle Prox CA1   Int CA1   Dist CA1    

 U 

Critical 
value of 
U for  p 
< 0.001 n U 

Critical 
value of 
U for  p 
< 0.001 n U 

Critical 
value of 
U for  p < 
0.001 n 

45o 20333.32 163.60 58 20298.83 170.54 49 20360.76 163.60 57 

90o 19622.83 172.58 41 19918.09 172.58 41 19408.52 170.54 49 

135o 20010.00 170.54 48 19098.39 172.58 41 18588.52 172.58 44 

180o 17530.99 177.88 35 18459.68 184.05 27 16786.14 163.60 55 

 

Table 2. Rao’s spacing test statistics (Rao 1976; Russell and Levitin 1995) for single unit rotation data 

shown in Figure 4. All tests were significant with p < 0.001. 
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Table 3. Rayleigh test for uniformity for single unit rotation data shown in Figure 4. MVA and MVL 

denote mean vector angles and lengths, z denotes Rayleigh’s z. Negative MVAs denote CW rotation in 

the direction of the global cues, while positive MVAs denote CCW rotation in the direction of the local 

cues. 

 

Mismatch 
angle 

Region Number of points 
in cluster 1 

Number of points 
in cluster 2 

45 o Prox CA1 991 9 

 Dist CA1 1 999 

90 o Prox CA1 963 37 

 Dist CA1 4 996 

135 o Prox CA1 534 466 

 Dist CA1 0 1000 

180 o Prox CA1 995 5 

 Dist CA1 2 998 

 

Table 4. Number of points from proximal and distal CA1 assigned to clusters 1 and 2 by k-means 

clustering (k = 2). For ease of visualization, after running the k-means clustering algorithm, the cluster 

with higher number of points from proximal CA1 was named cluster 1, while the other cluster with 

higher number of points from distal CA1 was named cluster 2. 

Figure Legends 

Figure 1. CA1 circuitry and experimental paradigm.  (A) Schematic showing anatomical connectivity of  

CA1 along its transverse axis. Bidirectional arrows indicate reciprocal connections between the two 

connected areas; unidirectional arrows indicate direction of information flow. (B) Recording sessions 

included two mismatch sessions interleaved between standard sessions. All but one rat encountered 2 

standard sessions before manipulations began for a total of 6 sessions each day, while one rat 

encountered only one standard session before manipulations began for a total of 5 sessions each day. 

Standard sessions had local as well as global cues in the configuration the rats were trained on, while 

mismatch sessions had local cues rotated CCW and global cues rotated CW by equal amounts to get a 

net cue mismatch of 45°, 90°, 135°, or 180°. (C) Examples of tetrodes recording along the transverse axis 

Mis 
ang 

Prox 
CA1 

 

   

Int 
CA1 

 

  

 Dist 
CA1 

 

   

 MVA MVL p  z n MVA MVL p  z n MVA MVL p  z n 

45o 
-7 o 0.83 

 < 10-5 40.2 58 
2 o 0.82 

< 10-5 33.5 
49 -5 o 0.91 

< 10-5 46.9 57 

90o 35 o 0.41 0.0009 6.8 41 -13 o 0.67 < 10-5 18.3 41 -14 o 0.56 < 10-5 15.3 49 

135o 16 o 0.25 0.0486 3.0 48 -1 o 0.22 0.1331 2.1 41 -45 o 0.29 0.0268 3.6 44 

180o 107 o 0.39 0.0131 4.3 35 -80 o 0.15 0.5674 0.6 27 -84 o 0.15 0.3085 1.2 55 
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of CA1 from one rat. The drive canulae were linearly organized in ~ 3 rows oriented at 35° to the ML axis 

to target the entire extent of the transverse axis at the same septotemporal level. 

Figure 2. Properties of putative pyramidal cells along the transverse axis of CA1. Mean firing rates, 

peak firing rates, spatial information scores, number of place fields per cell, place field sizes, and fraction 

of the track occupied by place fields in the proximal, intermediate, and distal CA1 during the first 

standard session of the day. 

Figure 3. Single unit responses to cue manipulation. (A) Examples of units showing different types of 

responses to cue manipulations. Responses were categorized into 5 types: CW rotation in the direction 

of the global cues, CCW rotation in the direction of the local cues, ambiguous rotation, appear in MIS 

session and disappear in MIS session. Peak firing rates and spatial information scores are shown under 

each rate map. Asterisks mark statistically significant spatial information scores. (B) Proportion of 

different classes of responses in proximal, intermediate, and distal CA1 pooled across the 4 mismatch 

angles. 

Figure 4. Distribution of single cell rotation angles in response to increasing mismatch angles. Angle of 

rotation of each rotating unit between STD and MIS sessions is represented by a dot around a circle. 

Mean vector computed from the rotation angles of all units for the given MIS angle is represented by a 

blue arrow in the center. Angles of rotations of cues between STD and MIS sessions are represented by 

dotted lines; local and global cue rotations are marked by the letters L and G. (B) Pie charts showing 

proportions of rotating units summed across all mismatch angles. 

Figure 5. Population vector correlations. Population vector correlation matrices for STD1 vs STD2 

sessions (STD sessions preceding and following MIS session) and STD1 vs MIS session show magnitude of 

correlation between population vectors for each 1° position bin on the track as a function of relative 

displacement between the two sessions being compared. STD1 vs STD2 matrices show a strong band of 

high correlation around 0° displacement (black line) for all mismatch angles and all subregions of CA1. 

Red and green lines show the expected displacement of high coherence band corresponding to local and 

global cue rotations in the different mismatch sessions, respectively. STD1 vs MIS matrices show 

different responses at different mismatch angles for different regions. While distal CA1 STD1 vs MIS 

matrices show a distinct band of high correlation following global cue rotation (green line) at all 

mismatch angles, proximal and intermediate CA1 STD1 vs MIS matrices show patchy distribution of high 

correlation at multiple mismatch angles. Polar plots below the population vector correlation matrices 

show mean of population vector correlations over all positions at each relative displacement (0°-359°). 

Magnitudes of positive mean correlations are shown in blue while magnitudes of negative mean 

correlations are shown in green. Black line in the center shows mean vectors computed from the polar 

plots. Notice the reduced peak correlations at higher mismatch angles for all regions compared to STD1 

vs STD2 correlations and STD1 vs MIS correlations at 45°. Contrast the butterfly wings like structure of 

positive correlations for proximal CA1 at 90° and 135° with the larger peak following the global cues for 

distal CA1. The outermost circle in the polar plot corresponds to Pearson correlation coefficient of 1 

with each concentric circle being spaced at 0.2. 
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Figure 6. Bootstrap analysis. Bootstrapped distributions were created for proximal and distal CA1 by 

resampling, with replacement, neurons in the two regions 1000 times. Number of samples in each 

iteration matched the number of neurons in the actual dataset. Peak vectors (x,y pairs), FWHM, and 

normalized bias were measured from the mean population vector correlations for all iterations. For each 

mismatch angle, PCA was run on this 4-dimensional space and the first two principal components were 

plotted to enable visualization of the bootstrapped distribution for proximal (red dots) and distal (blue 

dots) CA1. Notice tighter clustering of distal CA1 points compared to proximal CA1 points, which often 

form multiple clusters. k-means clustering (k = 2) was performed on the 4-dimensional data to classify 

the bootstrapped distributions into two clusters (black and cyan circles around the points). Notice how 

almost all of the distal CA1 points belong to one cluster while almost all of the proximal CA1 points 

belong to the other cluster  for all mismatch angles other than 135° (see Table 4 for the numbers of 

points from each region belonging to each cluster). At 135°, proximal CA1 points almost evenly divide 

into the two clusters. 
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Figure 3
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Figure 4
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Figure 5

Distal CA1

STD1
vs

STD2

STD1
vs

MIS

STD1
vs

STD2

STD1
vs

MIS

Intermediate CA1Proximal CA1

STD1
vs

MIS

STD1
vs

STD2

0 1

4
5
�

9
0
�

1
3

5
�

1
8

0
�

M
is

m
at

ch
 a

n
gl

e
.CC-BY-NC-ND 4.0 International licenseavailable under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 
The copyright holder for this preprintthis version posted October 17, 2020. ; https://doi.org/10.1101/2020.10.17.343558doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.17.343558
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6
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