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 31 

Abstract 32 

One of the most important factors in decision making is estimating the value of available options. 33 
Subregions of the prefrontal cortex, including the orbitofrontal cortex (OFC), have been deemed essential 34 
for this process. Value computations require a complex integration across numerous dimensions, including, 35 
reward magnitude, effort, internal state, and time. The importance of the temporal dimension is well-36 
illustrated by temporal discounting tasks, in which subjects select between smaller-sooner versus larger-37 
later rewards. The specific role of OFC in telling time and integrating temporal information into decision 38 
making remains unclear. Based on the current literature, in this review we reevaluate current theories of 39 
OFC function, accounting for the influence of time. Incorporating temporal information into value 40 
estimation and decision making requires distinct, yet interrelated, forms of temporal information including 41 
the ability to tell time, represent time, create temporal expectations, and the ability to use this information 42 
for optimal decision making in a wide range of tasks, including temporal discounting and wagering. We 43 
use the term ‘temporal cognition’ to refer to the integrated use of these different aspects of temporal 44 
information. We suggest that the OFC may be a critical site for the integration of reward magnitude and 45 
delay, and thus important for temporal cognition. 46 

 47 
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Role of OFC in Learning and Decision making  53 

 The Orbitofrontal Cortex (OFC) has long been associated with the updating of stimulus–reward 54 

associations (Jones & Mishkin, 1972; Klein-Flügge, Barron, Brodersen, Dolan, & Behrens, 2013; Ostlund 55 

& Balleine, 2007) and with encoding the current value of rewards (Gottfried, Doherty, & Dolan, 2003; 56 

Roesch, Taylor, & Schoenbaum, 2006; Tremblay & Schultz, 1999). Historically, one of the earliest 57 

employed tasks that demonstrated the involvement of OFC in flexible learning and decision making was 58 

the stimulus-reward reversal task (Mishkin, 1964). In this task, monkeys were trained to associate a specific 59 

stimulus with a reward, over another stimulus that yielded no reward. After monkeys learned these 60 

associations, reinforcement contingencies were reversed such that selecting the previously unrewarded 61 

stimulus would now yield reward and vice versa. Monkeys with an intact OFC were able to quickly adapt 62 

to the new reinforcement contingencies, whereas monkeys with aspiration lesions of OFC were impaired. 63 

More recent investigations have resulted in the determination that primate posterior-lateral OFC (and its 64 

widespread cortico-cortical connections with anterior insula, and lateral OFC) is a critical substrate of 65 

reversal learning (Peter H. Rudebeck, Saunders, Prescott, Chau, & Murray, 2013; Sallet et al., 2020). Indeed 66 

there is now also evidence of functional heterogeneity in rodent OFC in supporting reversal learning 67 

(Hervig et al., 2019; Alicia Izquierdo, 2017; Verharen, den Ouden, Adan, & Vanderschuren, 2020), and 68 

value updating (Bradfield, Dezfouli, van Holstein, Chieng, & Balleine, 2015; Gourley, Zimmermann, 69 

Allen, & Taylor, 2016; Malvaez, Shieh, Murphy, Greenfield, & Wassum, 2019).  70 

 Another early seminal experiment introduced a phenomenon closely related to reversal learning: 71 

“perseveration,” or a failure to disengage from responding to previously rewarded stimuli (Rosenkilde, 72 

Rosvold, & Mishkin, 1981). Perseveration has been a focal topic of many psychiatric and translational 73 

studies because several human clinical disorders (substance use disorder, anxiety disorders, obsessive-74 

compulsive disorder, etc.) are characterized by “sticky” stimulus-reward associations (Ersche, Roiser, 75 

Robbins, & Sahakian, 2008; Remijnse et al., 2006; Ruscio, Seitchik, Gentes, Jones, & Hallion, 2011). An 76 

important factor related to both reversal learning and a perseverative phenotype is the causality assigned to 77 

a stimulus as predictive of the reward, and indeed there is evidence that lateral OFC plays a crucial role in 78 

such credit assignment (Akaishi, Kolling, Brown, & Rushworth, 2016; Noonan et al., 2010; Alexandra 79 

Stolyarova, 2018; Walton, Behrens, Noonan, & Rushworth, 2011). OFC supports flexible solving of the 80 

structural credit assignment problem, i.e., in determining which stimuli reliably predict reward (Akaishi et 81 

al., 2016; Noonan et al., 2010). Yet it is also essential to consider how OFC may be involved in learning 82 

conditions where there is a delay between the stimulus and the outcome, referred to as the temporal credit 83 

assignment problem (Walsh & Anderson, 2011). Recently it has been proposed that OFC may contribute 84 

to establishing causal relationships by signaling desirability of the outcome (Grossberg, 2018; P. H. 85 
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Rudebeck, Saunders, Lundgren, & Murray, 2017) likely via its connections to areas important in incentive 86 

value in both rodent and primate species, such as the basolateral amygdala (Gallagher et al. 1999; Baxter 87 

et al. 2000; Schoenbaum et al. 2003), ventral striatum (McDannald et al., 2012), and hypothalamus 88 

(Petrovich & Gallagher, 2007). Thus, maintaining a causal stimulus-outcome relationship is necessary when 89 

a delay between these two events is introduced. Still, it is not well-understood precisely how OFC, or 90 

prefrontal cortex generally, supports this ability. Eligibility traces have been proposed as ways to encode 91 

delays in reinforcement learning (Sutton & Barto, 1998) and are thought to decay exponentially. OFC could 92 

contribute this eligibility trace, although as we note later detail, most discounting models rely on hyperbolic, 93 

not exponential, functions in their descriptions. Below we will discuss the possibility that OFC is critical in 94 

providing a combined statistic that incorporates both value and time into learning and decision making. As 95 

such, it is predicted to be critical in solving the temporal credit assignment problem as well. 96 

 Other studies that demonstrate the involvement of OFC in value-based decision making employ 97 

reinforcer devaluation procedures (A. Izquierdo, Suda, & Murray, 2004; Pickens et al., 2003; West, 98 

DesJardin, Gale, & Malkova, 2011). Such methods usually involve degrading the value of a specific reward 99 

by overfeeding the animal to satiety with it (or pairing the reward with an aversive outcome, like illness), 100 

and then testing if the subject can update the value of the cue(s) or stimuli associated with that reward. In 101 

these experiments, OFC (and amygdala) must be online to encode the new value via experience of the 102 

overfeeding, and respond appropriately during testing (West et al., 2011; Zeeb & Winstanley, 2013), c.f. 103 

(Fisher, Pajser, & Pickens, 2020). Relevant to our discussion here, for devaluation of a specific reward to 104 

occur via satiety, the integration of a largely disproportionate reward magnitude over time is needed.   105 

 Another prominent observation is the recruitment of OFC in economic decisions, e.g., value 106 

computation depends on other options available for choice, which is correlated with OFC signaling. Early 107 

single-unit recording experiments conducted in primate OFC resulted in the demonstration that a subset of 108 

neurons fired selectively to different rewards (Rosenkilde, Bauer, & Fuster, 1981), as well as their relative 109 

value (i.e., preference), associated with their sensory specificity or unique identities (Thorpe, Rolls, & 110 

Maddison, 1983; Tremblay & Schultz, 1999). Padoa-Schioppa and Assad (2006) later showed that the firing 111 

rate of OFC neurons corresponds to the economic value of offered and chosen rewards in monkeys, with a 112 

similar relationship recently reported in mouse OFC (Kuwabara, Kang, Holy, & Padoa-Schioppa, 2020). 113 

Importantly, unlike primates (Rushworth, Noonan, Boorman, Walton, & Behrens, 2011), in rats a choice 114 

between offers does not rely on either medial or lateral OFC (M. P. Gardner et al., 2018; M. P. H. Gardner, 115 

Conroy, Shaham, Styer, & Schoenbaum, 2017) unless there is a need for a value update or new information 116 

about outcome value, assessed by pre-feeding rats to devalue the outcome (M. P. H. Gardner, Conroy, 117 

Sanchez, Zhou, & Schoenbaum, 2019).  118 
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 Collectively, these lines of research demonstrate the importance of OFC in encoding and updating 119 

reward but do not explicitly address the contribution of time to decision making. Next, we review the 120 

importance of the temporal dimension in decision making and examine the role of OFC in integrating 121 

temporal information into value-based decisions.   122 

 123 

Importance of Timing in Naturalistic Decision Making 124 

 A fundamental dimension of decision making pertains to time. Humans and other animals prefer 125 

earlier rewards over later rewards of the same magnitude, and often smaller-immediate rewards over larger-126 

later rewards. This phenomenon is known as temporal or delay discounting. In the human literature, 127 

temporal discounting is often exemplified by the observation that people tend to choose an immediate 128 

reward of $100 over a reward of $120 in one month. Interestingly, however, when the same values are 129 

placed in the distant future, there is a shift towards more patient preferences: more people choose a $120 130 

option in 13 months versus $100 in 12 months (Frederick, Loewenstein, & O'Donoghue, 2002). These time-131 

dependent decisions are presumably rooted in millions of years of evolutionary pressures for animals to 132 

adapt to unique foraging and ecological niches (Murray, Wise, & Rhodes, 2011). Time is a unique resource 133 

to all animals as optimal behavior is guided by species- and niche-specific temporal contingencies (Stevens, 134 

Hallinan, & Hauser, 2005; Stevens, Rosati, Ross, & Hauser, 2005). For example, brief bouts of foraging 135 

for small rewards may decrease the time an animal is exposed to predators, and the amount of energy spent. 136 

Similarly, predators must balance the time invested in waiting for prey in a given location and when to “cut 137 

its losses.” These processes have been studied by many groups as the explore-exploit tradeoff, for example, 138 

in the context of balancing the maximization of information (i.e., knowing where the reward patches are; 139 

explore) versus maximizing reward at known patches (i.e., exploit) (Addicott, Pearson, Sweitzer, Barack, 140 

& Platt, 2017; Costa & Averbeck, 2020; Gonzalez & Dutt, 2011).  141 

 The importance of time as both a resource and a modulator of value implies that decision making 142 

must take place in the context of numerous time-dependent factors, including the overall temporal structure 143 

of expected reward delays, reinforcement history, replenishment time, and urgency (e.g., current internal 144 

states such as hunger or fear of predators). Thus, the brain must first be able to tell time across multiple 145 

time scales, store this information, and then integrate it into value computations and decision making. 146 

Together we will refer to this array of time-dependent computations as temporal cognition. And we propose 147 

that circuits involved in decision making, including various areas of the prefrontal cortex, including the 148 

OFC, must have access to timing information and perform computations based on the interaction of 149 

nontemporal and temporal dimensions, such as the ratio of reward magnitude over delay-to-reward.   150 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 17, 2020. ; https://doi.org/10.1101/2020.10.16.343178doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.343178


OFC IN TEMPORAL COGNITION 

 

 6 

Keeping Time vs. Using Temporal Information  151 

 The importance of time to sensory processing, animal behavior, and decision making involve many 152 

distinct but interrelated temporal computations, including, telling time (i.e., measuring elapsed time), 153 

generating well-timed motor responses, and creating temporal expectations, as well as learning, 154 

representing, and storing temporal relationships (Paton & Buonomano, 2018). Together all these 155 

components are important for cognitive tasks such as temporal discounting or deciding to stay in, or leave, 156 

a reward patch (temporal wagering).  157 

At the first level, temporal cognition requires that the brain have mechanisms to tell time, that is, 158 

“clocks” or “timers” that allow animals to distinguish between short and long reward delays, anticipate the 159 

arrival of a reward, and decide when to abandon a reward patch. The ability to tell time, and the underlying 160 

neural underpinnings, are often studied in the context of explicit and implicit timing tasks (Ameqrane, 161 

Pouget, Wattiez, Carpenter, & Missal, 2014; J. T. Coull & Nobre, 2008; A. C. Nobre, Correa, & Coull, 162 

2007). Explicit timing (Figure 1A) refers to tasks in which timing is explicitly required for completion of 163 

a task, such as discriminating auditory tones of an 800 ms versus a 1000 ms stimulus, generating 164 

differentially delayed motor responses in response to two different sensory cues, or producing intricate 165 

temporal motor patterns (Slayton, Romero-Sosa, Shore, Buonomano, & Viskontas, 2020; Wang, Narain, 166 

Hosseini, & Jazayeri, 2018; Wright, Buonomano, Mahncke, & Merzenich, 1997). Implicit timing tasks 167 

(Figure 1B) refer to those for which in principle it is not necessary to track time to perform the task but 168 

rather learning the temporal structure of the task can improve performance (J. T. Coull & Nobre, 2008; 169 

Anna C. Nobre & van Ede, 2018). For example, in a simple foreperiod reaction time task, humans learn the 170 

interval between the “ready” and “go” cues, even though they simply need to respond to the go cue (Niemi 171 

& Näätänen, 1981). Indeed, humans and animals create a temporal expectation based on the history of the 172 

task structure that is built-up across trials, and when target stimuli appear at the expected time, performance 173 

is improved and reaction time decreased (Cravo, Rohenkohl, Santos, & Nobre, 2017; Janssen & Shadlen, 174 

2005; van Ede, Niklaus, & Nobre, 2017). 175 

A long-standing challenge has been to identify which parts of the brain are involved in both explicit 176 

and implicit timing, along with the neural mechanisms by which neural circuits tell time. One hypothesis 177 

is that most neural circuits have the ability to tell time if the computations those areas are involved in are 178 

time-dependent or require temporal information (Paton & Buonomano, 2018). Consistent with this 179 

hypothesis, a large number of different brain areas have been implicated in timing across a wide range of 180 

explicit and implicit tasks, including the cerebellum, striatum, parietal cortex, hippocampus, motor cortex, 181 

sensory cortex, and prefrontal cortex (Buhusi & Meck, 2005; Jennifer T. Coull, Cheng, & Meck, 2011; Issa, 182 
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Tocker, Hasselmo, Heys, & Dombeck, 2020; Mauk & Buonomano, 2004; Merchant, Harrington, & Meck, 183 

2013; Paton & Buonomano, 2018). 184 

While it remains an open question which areas are causally responsible for timing in different tasks, 185 

there is significant evidence that different subregions of the PFC contribute to explicit timing (Bakhurin et 186 

al., 2017; Emmons et al., 2017; Kim, Ghim, Lee, & Jung, 2013; Kim, Jung, Byun, Jo, & Jung, 2009; Xu, 187 

Zhang, Dan, & Poo, 2014). For example, mPFC inactivation significantly impaired performance on a 188 

bisection task in which rats had to classify intervals as short or long (Kim et al., 2009). Additionally, large-189 

scale extracellular recordings in OFC during a reward anticipation task, revealed a robust neural code for 190 

elapsed time from cue onset to reward (Bakhurin et al., 2017).  191 

Figure 1. Examples of timing and temporal cognition tasks. A. In an explicit timing task, a mouse learns 192 
the reward delay associated with each cue and produces anticipatory licking during the appropriate cue-193 
specific interval. B. In an implicit timing task each trial may be initiated by a cue (green or red), and humans 194 
are asked to respond to a white square. In valid trials each cue is associated with a short or long delay, but 195 
in a small number of invalid trials the relationship is reversed. Reaction times are faster in the valid trials 196 
even though the task simply requires responding to the target. C. Temporal discounting tasks require 197 
animals to select between a smaller-sooner reward versus a larger-later reward. Whereas the delay to the 198 
small reward remains at 10 s, typically the delays to the larger reward increase in trial blocks from 10s, 20s, 199 
40s, up to 60s. D. Temporal wagering tasks require animals to wait for variable delay reward following 200 
discrimination (i.e., categorization) of an uncertain stimulus. Longer wait times are generally associated 201 
with certainty, a proxy for confidence. Importantly, animals can abort the trial at any time during the delay, 202 
an outcome generally associated with uncertainty. E. Temporal distribution tasks require animals to 203 
discriminate between options with different distributions of reward delays. In this example, animals initiate 204 
a trial (central white square), then choose between stimuli associated with the same mean wait time (=10s) 205 
but different standard deviation of delays ( either 1s or 4s). 206 
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Overall, these findings are consistent with the notion that the PFC in general, and OFC in particular, 207 

contribute to telling time. But here we suggest that decision making requires temporal computations that 208 

extend beyond the traditional dichotomy of explicit vs. implicit timing. While standard decision making 209 

tasks often clearly include explicit and implicit timing components, decision making also requires 210 

integration of numerous time-dependent parameters. Next, we review evidence that OFC plays a crucial 211 

role in this temporal cognition. 212 

 213 

OFC and Temporal Discounting 214 

 Temporal discounting tasks (Figure 1C) typically involve offering subjects two options, one that 215 

yields a large magnitude reward and another a smaller reward (Mazur, 1987, 2007; Mazur & Biondi, 2009; 216 

Rodriguez & Logue, 1988). Generally, in animal studies, both options are initially associated with the same 217 

short reward delay, and as the task continues, the delay to the larger reward increases until the subject 218 

consistently chooses the smaller reward over the larger reward. The point at which the value of the larger-219 

later reward is chosen equivalently to the smaller-sooner option is referred to as the indifference point in 220 

which the increased value based on reward magnitude is counterbalanced by the negative impact of 221 

increased wait time. The study of delay discounting dates back to behavioral studies in pigeons conducted 222 

in the late 1960s and early 1970s (Ainslie, 1974; Chung, 1965; Mazur, 1987; Rachlin & Green, 1972; 223 

Rodriguez & Logue, 1988). The temporal discounting rate was often modeled by adjusting the delay, but 224 

some groups also varied the amount of reward at specific delays (Mitchell, 1999; Richards, Mitchell, de 225 

Wit, & Seiden, 1997; Richards, Zhang, Mitchell, & de Wit, 1999). Temporal discounting is generally best 226 

fit by the so-called hyperbolic model of temporal discounting (K Namboodiri, Mihalas, Marton, & Hussain 227 

Shuler, 2014; Kirby, 1997; Madden, Begotka, Raiff, & Kastern, 2003; Mazur, 1987; Rachlin, Raineri, & 228 

Cross, 1991; Reynolds & Schiffbauer, 2004; Richards et al., 1997; Richards et al., 1999; Rodriguez & 229 

Logue, 1988). Specifically, the subjective value (𝑉) of a reward is defined both by its magnitude (𝑞) and 230 

reward delay (𝑑): 𝑉 =
𝑞

(1+𝐾𝑑)
, where K is the rate of temporal discounting. Note that according to this 231 

standard formulation, animals must 1) have an internal neural timer that allows them to measure the delay 232 

𝑑; and 2) perform a computation that involves the ratio between magnitude and delay.   233 

 Since it has been established that OFC is involved in encoding the current value of reward, we 234 

further propose that OFC is embedded in a network that has access to elapsed time and can utilize this 235 

information to integrate magnitude and delay information dynamically. Indeed there is significant evidence 236 

that OFC is involved in temporal discounting in humans (Sellitto, Ciaramelli, & di Pellegrino, 2010), 237 

monkeys (Hosokawa, Kennerley, Sloan, & Wallis, 2013), and rats (Mar, Walker, Theobald, Eagle, & 238 
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Robbins, 2011; Mobini et al., 2002; Peter H. Rudebeck, Walton, Smyth, Bannerman, & Rushworth, 2006). 239 

OFC lesions in both primates and rodents lead to an increase in impulsive responses in delay discounting 240 

tasks, i.e., a preference for smaller-sooner over larger-later rewards (Hosokawa et al., 2013; Kheramin et 241 

al., 2003; Mobini et al., 2002; Peter H. Rudebeck et al., 2006; Sellitto et al., 2010). However, some studies 242 

have reported that lesions of OFC lead to either no effect on choice (Abela & Chudasama, 2013; Mariano 243 

et al., 2009) or even increases in patient responses, i.e., an increase in larger-later choices (Winstanley, 244 

Theobald, Cardinal, & Robbins, 2004), with a special role for medial OFC (Mar et al., 2011). 245 

Overall these studies suggest OFC lesions often result in more impulsive behavior. Factors 246 

contributing to this phenotype could indicate that: 1) OFC is involved in the inhibitory control necessary 247 

for delaying short-term gratification; 2) value calculations in the absence of OFC result in very strong 248 

temporal discounting because delays are overweighted; and 3) although less likely, it is possible that in the 249 

absence of OFC, the neural timers could be accelerated leading to overestimates of the actual delay—again, 250 

effectively overweighting delays. However, as mentioned above, at least two studies have reported that 251 

OFC lesions (medial OFC lesions, in particular) can shift behavior towards more patient choices. We next 252 

examine the potential methodological differences that might contribute to these discrepancies and further 253 

elucidate the role of OFC in temporal discounting and temporal cognition.  254 

 255 

Methodological differences in probing OFC in temporal discounting 256 

 Comparing several studies conducted on this topic in rat OFC, there appear to be no systematic 257 

differences in pre- versus post-training lesion methods that fully account for the pattern of mixed behavioral 258 

effects summarized above. Some groups administered pre-lesion training (Mar et al., 2011; Mariano et al., 259 

2009; Peter H. Rudebeck et al., 2006; Winstanley et al., 2004), while in other studies all learning and testing 260 

phases were performed following OFC lesions (Abela & Chudasama, 2013; Kheramin et al., 2003; Mobini 261 

et al., 2002). Additionally, some groups investigated temporal discounting in mazes (Mariano et al., 2009; 262 

Peter H. Rudebeck et al., 2006), others in operant chambers with levers (Kheramin et al., 2003; Mar et al., 263 

2011; Mobini et al., 2002; Winstanley et al., 2004) or stimuli on touchscreens (Abela & Chudasama, 2013). 264 

All but one study segregated the options spatially, instead requiring animals to associate visual cues with 265 

smaller-sooner versus larger-later rewards (Mariano et al., 2009). The results from Mariano et al. (2009) 266 

are intriguing for this reason: when rats are provided with cues during the delay period, OFC lesions do not 267 

result in an impairment in temporal discounting. This suggests that OFC may not be needed for decisions 268 

when there is a constant, salient reminder of cue-delay (or cue-outcome) associations. We discuss the 269 

importance of cues in delay-based decisions in the next section. Finally, most studies report near-identical 270 
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stereotaxic coordinates for targeting whole OFC, and judging by the estimates of damage in many of these 271 

reports, there do not appear to be clear-cut differences in medial versus lateral OFC reconstructions that 272 

could explain the discordant behavioral effects. Notably, one group systematically compared medial and 273 

lateral OFC in temporal discounting and found that whole OFC lesions transiently rendered animals delay-274 

averse (yet recovered with training), medial OFC lesions made animals delay tolerant, and lateral OFC 275 

lesions produced a delay-averse, impulsive phenotype (Mar et al., 2011), indicating there is functional 276 

heterogeneity in rat OFC for temporal discounting, as with other domains like reversal learning (Alicia 277 

Izquierdo, 2017).  278 

 In the only experiment reporting a more patient phenotype following whole OFC lesions 279 

(Winstanley et al., 2004), the lesions occurred after extensive pretraining on a temporal discounting task; 280 

the most of any study we reviewed. Additionally, a very long delay to the larger-later option was 281 

administered in this study: a maximum of 60 sec, compared to delays in the range of 10-30 sec in most 282 

other reports. And finally, this was one of the few studies where rats were (pre)trained on an integrated 283 

magnitude and delay experience within the same session. The majority of other studies (whether pre- or 284 

post-training lesions were administered) usually imposed far less training, fewer trials within each session, 285 

and trained rats to discriminate reward magnitudes before delays; separately not concurrently (Abela & 286 

Chudasama, 2013; Mariano et al., 2009; Peter H. Rudebeck et al., 2006).  Whether animals are trained 287 

separately on magnitude versus delay (and the degree to which they have this experience with OFC online) 288 

may fundamentally change performance on temporal discounting. Indeed, Kheramin et al. (2003) derived 289 

linear functions based on choice of dA  (the unchanging, low magnitude reward option) versus dB (the 290 

increasing delay, higher magnitude reward option), and found that their slopes were significantly steeper 291 

following OFC lesions, yet the intercept did not differ significantly between the groups. A later 292 

investigation (Kheramin et al., 2005) surmised that the parameter specifying absolute reward value was 293 

lower in OFC-lesioned animals, potentially decreasing the ability to discriminate relative reward value. One 294 

explanation for the effects observed by Winstanley et al. (2004) is that delay tolerance occurs because rats 295 

have already robustly learned to integrate delay time into the value calculation, and that after OFC lesions 296 

value estimates in downstream areas underweigh the delay because of the absence of properly integrated 297 

magnitude/delay input from OFC as it changes. OFC lesioned animals have, in effect, a deficit in updating 298 

values as the large reward delays are increased from zero to longer delays—i.e., animals essentially 299 

perseverate at the cues associated with larger rewards. 300 

 As further evidence of a role for OFC in integrating reward magnitude and delay, a modified model 301 

by Ho, Mobini, Chiang, Bradshaw, and Szabadi (1999) was used to analyze temporal discounting data 302 

following OFC lesions by (Kheramin et al., 2003). These groups proposed that the value of the reward (𝑉) 303 
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can be determined by the multiplicative combination of hyperbolic discounting functions for all the salient 304 

features of the reward. For the experiments described above this would be magnitude (q) and delay (d), 305 

(this was also extended to include probability or uncertainty in the original formulation): 𝑉 =
1

(1+𝑄/𝑞)
∗306 

1

(1+𝐾𝑑)
, where the discounting parameters Q and K refer to the rat’s sensitivity to reward magnitude and 307 

delay, respectively. This model can explain how lesions to OFC can produce a combined effect on two 308 

discounting parameters that work in opposition, when for example there is a tradeoff between magnitude 309 

versus delay. Collectively, the data and theory point to an integration of these parameters in OFC where 310 

delay aversion or tolerance phenotypes largely depend on whether and how much animals had experience 311 

with integration of these features before OFC was taken offline. This is consistent with neural recording 312 

studies where both the encoding of time-discounted rewards and encoding of absolute reward value are 313 

found in OFC (Roesch et al., 2006). 314 

Neural responses in OFC to reward magnitude and time 315 

 As described earlier, several electrophysiological studies in primates point to reward (outcome) 316 

value encoding in OFC. In these studies, neuronal activity in OFC is found to be high during presentation 317 

of a particular taste-odor pairing when the animal is hungry, but is decreased once the animal is fed to 318 

satiety (Critchley & Rolls, 1996; Rolls, Sienkiewicz, & Yaxley, 1989). Neuroimaging studies in human 319 

subjects support the idea that neurons in OFC signal sensory-specific satiety (Kringelbach, O’Doherty, 320 

Rolls, & Andrews, 2003; O'Doherty et al., 2000): OFC activity only decreases when subjects are shown 321 

stimuli associated with the devalued food. Though there appears to be a dynamic value coding in OFC, is 322 

this represented at the single-cell level or the population level? 323 

 There are different explanations for how value may be represented in OFC, and we provide only a 324 

brief discussion here focused on its relevance to the representation of time. One possibility is that there is 325 

a “common scale” in OFC (a combined or multiplexed representation of value), coded as single unit activity 326 

(Montague & Berns, 2002). There is some evidence suggesting that single-cell activity does encode reward 327 

value in this way in OFC in primate (Roesch & Olson, 2005), rat (Hirokawa, Vaughan, Masset, Ott, & 328 

Kepecs, 2019; Simon, Wood, & Moghaddam, 2015) and in a pigeon functional analog of mammalian 329 

prefrontal cortex (Kalenscher et al., 2005). There is other evidence that value is stored as a population code 330 

based on electrophysiological studies in in rodents (Roesch et al., 2006; van Duuren, Lankelma, & Pennartz, 331 

2008) and primates (Martin O'Neill & Schultz, 2010). This explanation falls in line with recent theoretical 332 

work (Buonomano & Maass, 2009; Fusi, Miller, & Rigotti, 2016) suggesting that single cell activity may 333 

appear to code certain attributes (i.e., time, magnitude), but that in effect it is the population activity as a 334 

whole coding such value. This is supported by studies that have conducted single cell recordings and then 335 
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used population analyses to find that both instances code for reward value (Stott & Redish, 2014; van 336 

Duuren et al., 2009). Indeed, a recent study of both population and single unit activity in various PFC 337 

regions in nonhuman primate brain showed stimulus identity and current value codes in OFC at the 338 

population level and similar selectivity at the single-unit level (Hunt et al., 2018). 339 

 There are a handful of neural recording studies that demonstrate a correlation of elapsed time and 340 

both single cell and population activity in OFC. For example Hosokawa et al. (2013) demonstrated that 341 

single cell activity in primates undergoes larger changes in firing rate for delay-based tasks than for effort 342 

based tasks, indicating selectivity for this cost type that parallels the interference/lesion studies (Bailey, 343 

Simpson, & Balsam, 2016; Peter H. Rudebeck et al., 2006). Additionally, Roesch et al. (2006) showed that 344 

single units in rat OFC signal reward magnitude (large vs. small) and delay (short vs. long), but found no 345 

correlation between these signals. On this basis, authors concluded OFC does not integrate both magnitude 346 

and delay into a single representation (or ‘common currency’) of value, yet the task in this study did not 347 

explicitly require animals to integrate them, but rather separately presented delay and magnitude options in 348 

different blocks of trials. It should be noted that OFC may be especially important when there are discrete 349 

stimuli or cues associated with time and magnitude options, and it is perhaps in these situations where there 350 

is needed integration. In support of this, Roesch and Olson (2005) showed that activity in primate OFC 351 

does reflect the value of time (i.e. demonstrates integration) when cue-outcome associations are strong. 352 

Collectively, the evidence reviewed above affirm the importance of cues/stimuli in the ability of OFC to 353 

integrate magnitude and time. As reviewed above, and following results from Mariano et al. (2009), this 354 

suggests that OFC is not needed when cues are always present to signal delays or changes in delays. OFC 355 

may provide an eligibility trace to link the appearance of cues with their associated outcomes through delay 356 

periods during which cues must be represented in memory. 357 

OFC and Temporal Wagering 358 

 Another example of a decision making task that relies heavily on temporal cognition is the temporal 359 

wagering task (Fig 1D), which are often conducted in rodents, humans, and nonhuman primates (De 360 

Martino, Fleming, Garrett, & Dolan, 2013; Kepecs, Uchida, Zariwala, & Mainen, 2008; Middlebrooks & 361 

Sommer, 2012; Rolls, Grabenhorst, & Deco, 2010). In rodent temporal wagering tasks, animals are 362 

presented with perceptually ambiguous stimuli that they must categorize and report through a motor 363 

response. Following this response, a measure of confidence is estimated by how long they are willing to 364 

wait for the reward before they abort the current trial and reinitiate another. In these so-called post-decision 365 

wagering tasks, not surprisingly, animals wait longer for reward on trials with easier sensory discrimination 366 

stimuli—i.e., where they are more certain of their decision, and they are quicker to abort/reinitiate a trial 367 

when the stimuli are more uncertain. In rat studies, these stimuli can be visual (A. Stolyarova et al., 2019), 368 
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olfactory (Lak et al., 2014), or auditory (Brunton, Botvinick, & Brody, 2013). In a study by Lak et al. 369 

(2014), rats received a mixture of two distinct odors at different ratios and were required to enter a nose 370 

port representing the odor that was present at a higher concentration (Figure 1D). Highest uncertainty in 371 

the task corresponded to trials in which odors were mixed in nearly equal proportions (48%-52%). Once 372 

rats made their response by entering the nose port, they were to stay there for a variable delay between 0.5 373 

and 8 seconds. At any point, the rat could leave the nose port to end the trial and start a new one (indicating 374 

low confidence). In this manner, the amount of time the rat persisted in the port is a read-out of their 375 

confidence. After a high level of performance was established, investigators inactivated OFC with a 376 

GABAA agonist and found no effect on decision accuracy, but found a selective decrease in rats’ willingness 377 

to wait (measured by the normalized waiting time), i.e., the proxy of decision confidence. There is now 378 

evidence that both OFC and anterior cingulate cortex mediate decision confidence reports in rats. 379 

Interestingly, a recent study by our group (A. Stolyarova et al., 2019) found that both time wagering and 380 

reaction times to report/categorize the stimulus, though anticorrelated, reflect the certainty of the stimuli. 381 

Yet only the post-decision wagering time, not reaction time to report, is disrupted by inactivation of anterior 382 

cingulate cortex. It would be interesting to determine if OFC similarly participates in this specific way.  383 

 Temporal wagering tasks provide an interesting example of temporal cognition because it requires 384 

that animals not only maintain a running estimate of elapsed wait time, but integrate this time with the 385 

certainty of their decision. Many interesting questions arise regarding this process. For example, does 386 

integration happen right after the decision is made by setting a wait threshold that is a function of certainty, 387 

and animals abort the trial when this threshold is reached? Or rather, is there an ongoing evaluation of 388 

certainty and elapsed time, and perhaps other factors such as hunger and motivation, during the wait period? 389 

These are questions for future inquiry. 390 

OFC and Temporal Distributions 391 

 A final example of a temporal cognition task relates to the ability to not simply measure and 392 

represent the mean reward delays, but to encode the distribution those delays. Li and Dudman (2013) 393 

developed a novel learning task in which mice were required to approach the reward port for a water reward; 394 

the time delay between lever press and water delivery was drawn from a Gaussian probability function, and 395 

the SD selected to be narrow-to-wide (SD= 50, 750, and 2,000 ms), each with the same mean reward delay 396 

of 3 s. Interestingly, the authors found that mice use recent reward trials to infer a model of reward delay, 397 

and accumulate timing information over tens of trials to do so. In a rat study by Alexandra Stolyarova and 398 

Izquierdo (2017), subjects were given hundreds of trials of experience discriminating freely between two 399 

visual stimuli: choice of SA resulted in delay-to-reward intervals with a narrow wait time distribution (10 400 

sec ± 1 SD) and choice of SB resulted in the same mean wait time on average, but a wider wait time 401 
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distribution (10 sec ± 4 SD) (Figure 1E). Aside from recording SA and SB subjective values (i.e. rats’ 402 

choices as nosepokes on the stimuli) over time, given longitudinal experience with these stimulus-delay 403 

associations, animals were also able to indicate their expectations about reward delivery, tracked 404 

experimentally by their reward port entries (i.e., the time at which, at any point in the trial, rats checked for 405 

reward). An analysis of reward port entry times revealed that rats, similar to mice, could reproduce the 406 

variance of wait times associated with individual stimuli. However, rats with ventral OFC lesions instead 407 

concentrated their reward port collection around the mean delay, indicating they lost an accurate 408 

representation of the SD, though importantly SHAM-operated rats were able to match the true distributions 409 

of those delays. The fact that rats retained a representation of the mean suggests that OFC is not needed to 410 

form simple outcome expectations based on long-term experience, but that instead it is required to 411 

accurately learn and/or represent the full temporal structure of the task over many trials (Alexandra 412 

Stolyarova & Izquierdo, 2017). Since rats received lesions of OFC prior to any training on delays, it may 413 

be of interest in future work to understand if OFC perturbation would similarly produce these changes in 414 

performance if delays were learned beforehand.  415 

 Since OFC is implicated in supporting appropriate response to changes in reward, we also sought 416 

to test how animals would respond to changes in those delay distributions (waiting less time than expected, 417 

or “upshifts” vs. waiting longer than expected, or “downshifts”). Following these manipulations, we found 418 

that experience with wider delay distributions facilitated rats’ learning for upshifts, whereas the narrower 419 

distributions facilitated rats’ learning the downshifts. This is likely accounted for by the hyperbolic shape 420 

of delay discounting, discussed above. We also surmised that positive, surprising events (i.e. near-421 

immediate rewards when unexpected) could boost learning more strongly than negative ones. Collectively, 422 

our results provide further evidence that the representations of expected outcomes in (ventral) OFC contain 423 

information about variability in outcomes. This, we think, would allow an animal to detect changes if the 424 

events violate expectations, and indeed if these changes are meaningful and require behavioral updates 425 

(Alexandra Stolyarova & Izquierdo, 2017). These findings also fit within the broader literature implicating 426 

both ventral and lateral sectors of rat OFC in delay discounting, outcome prediction, and decision 427 

confidence (reviewed in (Alicia Izquierdo, 2017)). Learning the temporal structure of a task or temporal 428 

distributions also allows for preparation of the motor system, which manifests into faster or more consistent 429 

reaction times (MÜller-Gethmann, Ulrich, & Rinkenauer, 2003), and also allows adaptation to changing 430 

environments (Li & Dudman, 2013). Like the involvement of OFC in temporal discounting and wagering, 431 

it is less likely that OFC is involved in timing per se but rather the integration of timing and expected 432 

reward. 433 

 A potentially interesting parallel is the proposal that midbrain dopamine drives and enhances 434 

"anticipatory value” during reward delay periods, and areas of MFC track this value (Iigaya, Story, Kurth-435 
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Nelson, Dolan, & Dayan, 2016). Others have similarly theorized that while reward prediction errors (RPEs) 436 

are signaled clearly by dopamine transients (Schultz, 1986; Schultz, Apicella, & Ljungberg, 1993; Sharpe 437 

et al., 2017; Y. K. Takahashi et al., 2017), OFC does not itself signal RPEs (Stalnaker, Cooch, & 438 

Schoenbaum, 2015; Stalnaker, Liu, Takahashi, & Schoenbaum, 2018; Yuji K. Takahashi, Langdon, Niv, & 439 

Schoenbaum, 2016). OFC may instead be critical in constructing expected uncertainty, or the variance of 440 

value over repeated trials, as demonstrated by interference techniques (Soltani & Izquierdo, 2019; 441 

Alexandra Stolyarova & Izquierdo, 2017). Formally, we have defined this as the absolute value of an option, 442 

sampled over many trials (Soltani & Izquierdo, 2019). Instead of RPEs signaled on a trial-by-trial basis, 443 

OFC may be causally involved in representing the variance of time-to-reward over the entire session, or 444 

longer (i.e. across sessions). Previous versions of this argument have been put forward for OFC’s 445 

involvement in risk, or expected probabilities (M. O'Neill & Schultz, 2015).   446 

 447 

Conclusion 448 

 In this review, we highlight that decision making and value determination require a complex 449 

integration of information across many dimensions, and that the temporal dimension is of particular 450 

relevance because time itself is a valuable resource. Thus it is important to consider the need to measure 451 

elapsed time, generate anticipatory responses, create temporal expectations, encode previously experienced 452 

reward delays, and evaluate urgency, in decision making—we refer to the integration of these time-453 

dependent factors as temporal cognition. We review evidence for the involvement of OFC in temporal 454 

cognition, and more specifically propose that the OFC contributes to the dynamic integration of reward 455 

magnitude and delay. Additionally, we note that the representation of time used to calculate value may be 456 

distinct to that of traditional timing tasks (i.e., explicit and implicit timing). The main difference is that time 457 

is not being used to simply measure a delay or generate an expectation, but rather to learn and respond to 458 

changes in the reward environment, and build a dynamic representation of value. Examples of tasks that 459 

require temporal cognition include temporal discounting, temporal wagering, and temporal distribution 460 

learning, all of which we show here depend, to some degree, on the OFC, as summarized in Table 1.  461 

 We emphasize the need for future studies that systematically manipulate the level of integration of 462 

magnitude and delay and probe OFC involvement. For example, if delays are discriminated separately from 463 

magnitude, is OFC similarly important as when delays and magnitude are learned in combination? 464 

Additionally, what systems support this multiplexing of magnitude and delay for a ‘common currency’ in 465 

OFC? Amygdala and striatum are excellent candidates, yet circuit mapping is needed to determine this. 466 

Another area of research that may prove worthwhile would be to determine the functional heterogeneity of 467 
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temporal cognition in OFC, as several groups have discovered rich differences in medial versus lateral OFC 468 

in other forms of cognition. 469 

Table 1. Orbitofrontal Cortex in Temporal Cognition  470 

Process/Task Description Species Method  

 

Finding 

Explicit  

Timing 

Discriminating 

between time 

intervals of 

different lengths 

Humans 

Rodents 

Optogenetic 

inhibition, 

electrophysiological 

recordings 

Inhibition of OFC 

impairs the ability to 

discriminate between 

two intervals. 

Population 

recordings in OFC 

show neural code for 

elapsed time  

Implicit  

Timing* 

Learning the 

temporal structure 

of a task improves 

subsequent 

performance 

Humans Psychophysics Enhanced 

performance when 

the stimulus-target 

interval matches the 

expected interval 

Temporal 

Discounting 

Choosing between 

a smaller, sooner 

vs. larger, later 

reward 

Humans 

Monkeys 

Rodents 

Lesions,  

transient 

inactivations, 

and 

electrophysiological 

recordings 

OFC lesions mostly 

result in delay-

aversion; mixed 

results depend on 

experience 

integrating reward 

magnitude and time, 

and presence of cues 

Temporal 
Wagering 

Post-decision 
waiting for reward 

vs. 

aborting/reinitiating 

the trial 

Humans 
Monkeys 

Rodents 

Lesions, 
transient 

inactivations, 

and 

electrophysiological 

recordings  

OFC inactivation 
impairs willingness-

to-wait (decision 

confidence) without 

affecting decision 

accuracy 

Temporal 

Distributions 

Discriminating 

different delay 

distributions 

Rodents Lesions OFC lesions produce  

a decreased ability to 

accurately represent 

variability in reward 

outcomes 

*No known experiments specifically testing the role of OFC in implicit timing.  471 
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