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 2 

Abstract  1 

 2 

In presymptomatic Alzheimer’s disease (AD), beta-amyloid plaques (Aβ) and tau tangles 3 

accumulate in distinct spatiotemporal patterns within the brain, tracking closely with episodic 4 

memory decline. Here, we tested whether age-related changes in the segregation of the brain’s 5 

functional episodic memory networks - anterior-temporal (AT) and posterior-medial (PM) 6 

networks - are associated with the accumulation of Aβ, tau and memory decline using fMRI and 7 

PET. We found that AT and PM networks were less segregated in older than younger adults and 8 

this reduced specialization was associated with more tau and Aβ in the same regions. The effect 9 

of network dedifferentiation on memory depended on the amount of Aβ and tau, with low 10 

segregation and pathology associated with better performance at baseline and low segregation and 11 

high pathology related to worse performance over time. This pattern suggests a compensation 12 

phase followed by a degenerative phase in the early, preclinical phase of AD. 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 
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 3 

Introduction 1 

 2 

The accumulation of beta amyloid (Aβ) plaques and neurofibrillary tau tangles is 3 

associated with episodic memory loss in both normal and pathological aging1,2, but the 4 

mechanisms underlying this association are not understood. Molecular and animal studies 5 

suggest that these pathologies spread through structurally and functionally connected brain 6 

regions3–6, with human neuroimaging studies indicating that patterns of tau deposition conform to 7 

large-scale brain networks in older adults (OA)7–9. Given that AD pathology starts to deposit in 8 

episodic memory networks, we investigated whether age-related changes in functional 9 

connectivity in these networks were associated with the accumulation of Aβ and tau.  10 

Functional connectivity (FC) – the co-activation of brain regions within brain networks – 11 

reflects the brain’s large-scale network architecture. Brain networks specialized for different 12 

cognitive functions become dedifferentiated, or less segregated from each other, with older age10. 13 

In task-free functional magnetic resonance imaging (fMRI) studies, this progression is typically 14 

characterized by decreased within- and increased between-network FC at rest11–15. This decrease 15 

in network segregation leads to reduced specialization of neural networks and has been linked to 16 

OA’s worse performance relative to younger adults (YA) in several behavioral domains11,13,16,17. 17 

In contrast, other studies have found that less segregated networks are associated with better 18 

performance, suggesting that dedifferentiation may reflect greater plasticity or compensatory 19 

processes that occur during normal aging and neurodegeneration18–24. One potential reason for 20 

this discrepancy may be uncertainty about the molecular and pathological processes that drive 21 

network reconfiguration.  22 
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 4 

During the early stages of neurodegeneration, normal cognitive performance is often 1 

maintained despite neuronal loss, changes in network function, or the accumulation of 2 

neurodegenerative pathologies25–27. Such compensation is typically only evident in preclinical or 3 

mild cases of neurodegeneration, diminishing once the neurodegenerative pathology becomes 4 

too severe. There is also evidence that greater FC can be associated with either better or worse 5 

memory performance depending on disease severity. For instance, Van Hooren and colleagues 6 

found that greater FC between the default mode network and the dorsal attention network was 7 

associated with better memory in a cognitively normal group, but with worse memory in an MCI 8 

group28. One potential interpretation of these results is that although connectivity between 9 

different networks is beneficial early, it may fail to support compensation as pathology increases. 10 

In addition, it could provide a means for that pathology to spread.  11 

Events encoded as episodic memories usually combine information about objects/items 12 

and scenes/context. Processing of these two types of information depends on distinct cortical 13 

pathways in the neocortex and medial temporal lobe (MTL) that converge in the hippocampus29–14 

31. Object processing involves an anterior-temporal (AT) system that includes fusiform gyrus 15 

(FuG)/perirhinal cortex, inferior temporal gyrus (ITG), and amygdala. In contrast, scene 16 

processing relies on a posterior-medial system (PM) that includes retrosplenial cortex (RSC), 17 

precuneus, and parahippocampal cortex (PHC).  18 

In vivo positron emission tomography (PET) studies have demonstrated that Aβ and tau 19 

accumulate in distinct regions within these two subnetworks in the aging brain32. Specifically, tau 20 

initially deposits in the transentorhinal region33,34 and appears to spread throughout the AT system 21 

in both healthy aging and AD, although it eventually affects the PM system as well. In contrast, 22 

Aβ deposition preferentially affects the PM system32. Previous work has shown that the AT and 23 
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 5 

PM functional networks have distinct patterns of resting state FC with entorhinal cortex subregions 1 

in YA, and that such patterns predict the spatial topography and level of cortical tau deposition in 2 

cognitively normal OA35,36. However, it remains largely unknown whether these networks change 3 

with age and whether the accumulation of Aβ and tau is associated with changes in their modular 4 

organization and, consequently, memory decline. 5 

There were two mains goals of this study: first, to investigate the effects of age, Aβ and 6 

tau on the intrinsic functional architecture of the AT and PM memory networks and second, to 7 

examine how relationships between pathology and network segregation affect episodic memory 8 

performance. To that end, we use resting state fMRI (rsfMRI) to measure the segregation of the 9 

AT and PM networks in cognitively healthy YA and OA. After examining the effect of age on 10 

network segregation, we then use PET measures of Aβ and tau deposition in OA to explore the 11 

relationship between these pathologies and segregation in the AT and PM networks. Finally, we 12 

assess the relationship between Aβ and tau, segregation, and episodic memory performance at 13 

baseline as well as change in performance over an average of 6 years in OA. We test three 14 

hypotheses: 1) AT and PM networks will be less segregated in OA compared to YA; 2) Given 15 

their distinct spatial topographies, increased tau in OA will be associated with less segregated AT 16 

networks whereas increased Aβ will be associated with less segregated PM networks, and 3) 17 

Network segregation in OA will interact with Aβ and tau pathology to predict episodic memory 18 

performance at baseline as well as change in performance over time.  19 

 20 

Results 21 

 22 

Study participants 23 
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 6 

 Fifty-five YA (ages 18-35) and 97 cognitively normal OA (ages 60-93) were included in 1 

this study. All YA and OA participants underwent structural and resting state functional MRI. All 2 

OA additionally underwent tau-PET imaging with 18F-Flortaucipir (FTP), Aβ-PET with 11C-3 

Pittsburgh compound-B (PiB), and standard neuropsychological assessments. All OA participants 4 

had a baseline MMSE score of ≥ 26 and no history of significant medial illnesses or medications 5 

that affect cognition. Demographic information for each age group is presented in Table 1.  6 

 7 

Table 1. Cohort demographics 8 

    
  YA (n = 55) OA (n = 97) 
Age 24.9 ± 4.4 (18-35) 76.4 ± 6.1 (60-93) 
Sex (M/F) 28/27 36/61 
Education (Yrs) 16.3 ± 2.0 16.8 ± 1.9 
APOE ε4 (C/NC) N/A 28/66 (3 N/A) 
Global PiB DVR N/A 1.17 ± 0.24 (0.92-1.89) 
AT FTP SUVR N/A 1.28 ± 0.20 (0.98-2.3) 
PM FTP SUVR N/A 1.18 ± 0.12 (0.94-1.63) 
Aβ +/- N/A 42/54 (1 N/A) 
Tau +/- N/A 30/66 (1 N/A) 

   
 9 

AT and PM networks are less segregated with older age 10 

 Using rsfMRI, we measured functional network segregation in the AT and PM networks 11 

in YA and OA. First-level ROI-to-ROI functional connectivity analysis was performed using the 12 

CONN toolbox37. For this analysis, we used 12 unilateral FreeSurfer ROIs that included amygdala, 13 

FuG and ITG as part of the AT network and RSC, PHC, and precuneus as part of the PM network 14 

(Figure 1). Semi-partial correlations were used for these first-level analyses to determine the 15 

unique variance explained by each ROI, controlling for the variance explained by all other ROIs 16 
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 7 

entered into the same model. For each participant, the mean rsfMRI time series for each ROI was 1 

extracted/computed. Then, the cross-correlation of each ROI’s time course with every other ROI’s 2 

time course was computed, creating a 12 x 12 correlation matrix for each subject. Correlation 3 

coefficients were converted to z-values using Fisher’s r-to-z transformation38. The diagonal of the 4 

matrix was removed and negative correlations were set to zero39. Network segregation values were 5 

calculated as the difference in mean within-network FC and mean between-network FC divided 6 

by mean within-network FC: 7 

Network segregation = !
"!#	!""
!"!

					 8 

where �̅�% is the mean Fisher z-transformed correlation between ROIs within the same network 9 

and �̅�& is the mean Fisher z-transformed correlation between ROIs of one network with all ROIs 10 

in the other network13. Thus, larger positive values for network segregation indicate that regions 11 

within a network (e.g. AT) have higher connectivity with each other compared to their connectivity 12 

with regions outside of the network (e.g. PM).   13 

 14 

 15 
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 8 

Figure 1. A priori defined regions of interest in anterior-temporal (AT; red) and posterior-1 

medial (PM; blue) networks. AT regions include bilateral amygdala, fusiform gyrus 2 

(FuG)/perirhinal cortex, and inferior temporal gyrus (ITG). PM regions include bilateral 3 

retrosplenial cortex (RSC), parahippocampal cortex (PHC) and precuneus.  4 

 5 

As hypothesized, OA exhibited decreased within-network (AT: Fig 2A, t = 6.7, p < 0.001; 6 

PM: Fig 2B, t = 3.1, p = 0.002) and increased between-network (AT: Fig 2C, t = 2.5, p = 0.01; 7 

PM: Fig 2D, t = 3, p = 0.003) functional connectivity and decreased segregation (AT: Fig2E,  t = 8 

4.9, p < 0.001; PM: Fig 2F, t = 4.3, p < 0.001) in the AT and PM networks compared to YA. Of 9 

particular importance, the relationship between age group and segregation was assessed across 10 

multiple analysis approaches related to matrix thresholding (i.e., inclusion of positive only vs. 11 

negative correlations), bivariate vs. semi-partial correlations, various network metrics of 12 

intersystem relationships (i.e., segregation, participation coefficient, and modularity), and network 13 

labeling (i.e., the regions included to define AT and PM networks). The age group differences in 14 

segregation were found to be robust in all instances (See Supplemental Figure S1).  15 

 16 
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 9 

 1 

Figure 2. Anterior-temporal (AT; left) and posterior-medial (PM; right) networks are less 2 

segregated in older (red) relative to younger (blue) adults. OA show decreased within-network 3 

(A and B) and increased between-network (C and D) functional connectivity (FC), and decreased 4 

network segregation (E and F) compared to YA. *p < 0.05, **p < 0.01, and ***p < 0.001. 5 

 6 

Tau relates to AT segregation and Aβ relates to PM segregation 7 
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 10 

 Next, we examined the relationship between tau and Aβ pathology and network 1 

segregation in OA. Tau was quantified using the FTP tracer and data acquired at 80-100 minutes 2 

post-injection. The standardized uptake value ratio (SUVR) was calculated, and the weighted mean 3 

SUVRs for FreeSurfer-defined AT and PM ROIs (the same ROIs used for calculating segregation 4 

above) were calculated after partial volume correction (PVC)40. Aβ was quantified using the PiB 5 

tracer, and distribution volume ratio (DVR) was calculated. A global measure of PiB DVR was 6 

calculated across cortical FreeSurfer ROIs as described previously41, and a threshold of 1.065 was 7 

used to classify participants into Aβ- and Aβ+ groups42. APOE was not related to segregation (ps 8 

> 0.63); therefore, we did not control for APOE in these analyses.  9 

To assess the relationship between tau and segregation, we first examined the relationship 10 

across all OA. We then split the group into Aβ- and Aβ+ subgroups to determine whether this 11 

relationship differed between OA with and without Aβ pathology. Increased FTP SUVR in AT 12 

regions was associated with decreased segregation in the AT network across all OA (Fig 3A, r = -13 

0.25, p = 0.014). Splitting the group into Aβ- and Aβ+ subgroups, we observed the same 14 

relationship in the Aβ+ group (Fig 3B, r = -0.48, p = 0.002), but no significant relationship was 15 

observed in the Aβ- group (r = 0.10, p = 0.45). We did not find a significant relationship between 16 

global PiB DVR and AT network segregation across all OA (Fig 3C, r = -0.13, p = 0.23). Because 17 

the relationship between AT-tau and AT segregation appeared to be influenced by a few high-tau 18 

individuals, we performed a follow-up robust regression which is less affected by more extreme 19 

data points43. This analysis was performed using the ‘fitlm’ function with the ‘RobustOpts’ name-20 

value pair in Matlab to create a model that limits the influence of outliers and heteroscedasticity. 21 

The relationship between tau and AT segregation was no longer significant across the whole group 22 

(t = 0.95, p = 0.34), but remained significant in the Aβ+ group (t = 3.1, p = 0.004). 23 
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 11 

We next examined the relationship between global PiB and network segregation. Increased 1 

global PiB DVR was associated with decreased segregation in the PM network (Fig 3D, r = -0.21, 2 

p = 0.036). Splitting the group into Aβ- and Aβ+ subgroups, we observed the same relationship in 3 

the Aβ+ group (Fig 3E, r = -0.33, p = 0.035) but no significant relationship in the Aβ- group (r = 4 

0.014, p = 0.92). We did not observe a significant relationship between FTP SUVR in PM regions 5 

and PM network segregation (Fig 3F, r = 0.02, p = 0.86).  6 

 7 

 8 

Figure 3. Tau and beta amyloid (Aβ) deposition are related to the segregation of anterior-9 

temporal (AT; first row) and posterior-medial (PM; second row) networks, respectively. Less 10 

segregated AT networks are associated with increased tau in AT regions (A), particularly in Aβ+ 11 

OA (B), but are not associated with global Aβ (C). Less segregated PM networks are associated 12 

with increased global Aβ (D), particularly in Aβ+ OA (E), but are not associated with tau in PM 13 
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regions (F). All regressions account for age and sex differences; The x and y axes reflect the 1 

residuals from the model.  2 

 3 

AD pathology moderates the association between segregation and episodic memory  4 

 Cognitive performance was measured as a z-score of standardized neuropsychological tests 5 

in three different domains: episodic memory, executive function, and working memory. We then 6 

examined the relationship between network segregation and cognitive performance at baseline. 7 

Because our episodic memory composite measure included both object- and spatial-related 8 

memory domains, we computed a single segregation measure by averaging the AT and PM 9 

segregation values (follow-up analyses showed essentially the same results for AT and PM 10 

networks; See Supplemental Figure S2).  11 

We performed a multiple regression to assess the effects of segregation and Aβ-status on 12 

episodic memory performance in OA, controlling for age, sex, and education. We observed main 13 

effects of segregation (t = 2.9, p = 0.005), Aβ-status (t = 2.5, p = 0.013), and age (t = 2.7, p = 14 

0.008) on episodic memory. This analysis also revealed a significant interaction between Aβ-status 15 

and segregation on episodic memory performance (t = 2.5, p = 0.014). Specifically, less segregated 16 

networks were associated with better performance in Aβ- OA (Fig 4A, r = -0.40, p = 0.004) 17 

whereas segregation was not associated with performance in Aβ+ OA (Fig 4B, r = 0.14, p = 0.40). 18 

Table 2 reports the results of this regression. 19 

To additionally explore the effects of segregation and tau-status on episodic memory 20 

performance, we calculated “tau positivity” as the mean SUVR in a BraakIII-IV composite ROI (cut-21 

off of 1.26) that included regions from both AT (amygdala, FuG, and ITG) and PM (PHC and 22 

RSC) systems32,44 as well as other regions that accumulate tau in the progression from aging to AD. 23 
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We again found main effects of segregation (t = 2.1 p = 0.043) and age (t = 2.5, p = 0.014), but not 1 

tau-status (t = 1.4, p = 0.16) on episodic memory. Although there was not a significant interaction 2 

between tau-status and mean segregation on performance, (t = 1.5, p = 0.14) we did find that less 3 

segregated networks were associated with better performance in tau- OA (Fig 4C, r = -0.27, p = 4 

0.03) whereas segregation was not associated with performance in tau+ OA (Fig 4D, r = 0.071, p 5 

= 0.73). Table 3 reports the results of this follow-up regression.  6 

As control analyses, we also examined the relationships between segregation, Aβ-status, 7 

and baseline working memory and executive function. We again observed a significant interaction 8 

between Aβ-status and mean segregation on executive function (t = 2.21, p = 0.03) such that less 9 

segregated networks were associated with better executive function in the Aβ- OA (r = -0.35, p = 10 

0.011) whereas there was no significant association in the Aβ+ OA (r = 0.08, p = 0.63). There 11 

were no significant relationships between segregation and working memory performance, nor was 12 

there an interaction between Aβ-status and segregation on performance (ps>.41).  13 

Including tau-status in place of Aβ-status, we did not observe a significant interaction 14 

between tau-status and mean segregation on executive function, t = 1.5, p = 0.13. However, we 15 

did find that less segregated networks were associated with better executive function in the tau- 16 

OA (r = -0.28, p = 0.03) whereas there was no significant association in the tau+ OA (r = 0.08, p 17 

= 0.71). There were no significant relationships between segregation and working memory 18 

performance in either group, nor was there an interaction between tau-status and segregation on 19 

performance (ps>.67). 20 

 21 
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 1 

Figure 4. Alzheimer’s disease pathology moderates the association between mean network 2 

segregation and episodic memory performance. (A) Less segregated networks are associated 3 

with better performance in Aβ- OA whereas (B) segregation is not associated with performance in 4 

Aβ+ OA. (C) Similarly, less segregated networks are associated with better performance in Tau- 5 

OA whereas (D) segregation is not associated with performance in Tau+ OA. 6 

 7 

Table 2. Multiple regression results for mean segregation and its interaction with Aβ-status 8 

predicting episodic memory at baseline.  9 

   
Predictor t p 
Age -2.7 0.008 
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Aβ-status -2.5 0.013 
Sex 0.86 0.39 
Education 1.3 0.2 
Segregation -2.9 0.005 
Aβ-status x Seg 2.5 0.014 

  
 

 1 

Table 3. Multiple regression results for mean segregation and its interaction with Tau-status 2 

predicting episodic memory at baseline.  3 

   
Predictor t p 
Age -2.5 0.014 
Tau-status -1.4 0.16 
Sex 0.75 0.45 
Education 1.2 0.22 
Segregation -2.9 0.043 
Tau-status x Seg 2.5 0.14 

  
 

 4 

Baseline segregation predicts longitudinal memory decline 5 

 To examine the effect of segregation and Aβ and tau on change in memory performance 6 

over time, our longitudinal analyses included participants that had at least two neuropsychological 7 

testing sessions (one of which was near the time of the resting state scan). Importantly, all 8 

participants had resting state fMRI, PET, and neuropsychological data at the same time point (i.e., 9 

“baseline”), which is the time point we used to assess all cross-sectional relationships. Eighty-six 10 

of 97 OA participants had longitudinal cognitive data (≥ 2 testing sessions. These participants had 11 

between 2 and 13 testing sessions (mean, 6.1 ± 3.1) over a period of 1 to 13 years (mean, 6.1 ± 12 

3.5) with an average interval of 1.3 ± 0.6 years between sessions. Sixteen participants had only 13 
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retrospective data. Figure 5A displays each participant’s trajectory in longitudinal episodic 1 

memory performance over time.  2 

Longitudinal cognitive measures were modelled using linear mixed-effects regression with 3 

a random intercept and slope using the lme4 package in R v3.6.3 (www.r-project.org). In order to 4 

examine the relationship between baseline segregation, baseline Aβ and tau, and change in 5 

cognitive performance in one model, the model included two-way interactions between baseline 6 

segregation and time, global Aβ and time, and tau and time. We report the results using continuous 7 

measures of global Aβ and BraakIII-IV tau as they retain more statistical power in the model. The 8 

results were very similar whether we used BraakIII-IV tau, AT-tau (Table S1) or PM tau (Table S2) 9 

and whether we used dichotomous (Table S3) or continuous Aβ and tau in the model. All models 10 

were adjusted for age, sex, and education. Segregation was a continuous variable in the model but 11 

is displayed graphically using tertiles.  12 

We found that individuals with lower segregation at baseline showed a steeper decline rate 13 

in episodic memory over time (β = 0.08, SE = 0.03, p = 0.02; Figure 5B; Table 3). We also found 14 

that more tau at baseline was associated with a steeper decline rate in memory over time (β = -15 

0.15, SE = 0.04, p = 0.002). There was no interaction of Aβ and time predicting memory change 16 

(β = -0.003, SE = 0.04, p = 0.94). To examine whether Aβ or tau moderated the effect of 17 

segregation on cognitive change, follow-up analyses included the same factors in addition to three-18 

way interactions between baseline segregation, baseline Aβ and tau, and time. These analyses did 19 

not show a significant three-way interaction between segregation, tau and time (β = 0.03, SE = 20 

0.05, p = 0.58) nor between segregation, Aβ, and time (β = -0.04, SE = 0.04, p = 0.34) on memory 21 

change. As a control analysis, we also examined change in working memory and executive 22 

function performance over time using the same model (not including three-way interactions). 23 
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Baseline segregation was neither associated with longitudinal change in working memory (β = -1 

0.02, SE = 0.04, p = 0.57) nor executive function (β = 0.02, SE = 0.03, p = 0.66). 2 

 3 

 4 

Figure 5. Relationship between network segregation and longitudinal episodic memory 5 

change. (A) Individual participant trajectories in longitudinal episodic memory change over time. 6 

Each black line represents one participant. The blue trendline reflects the participant average 7 

change in memory over time. The dotted gray line (at X = 0) represents the “baseline” time point 8 

in each plot. (B) Plot of estimated curves for three groups with different baseline network 9 

segregation (low, medium, and high) and episodic memory outcomes over time. Note that 10 

segregation was modeled as a continuous variable but is shown as a categorical variable for 11 

illustration purposes only. Lower baseline segregation was associated with a steeper decline rate 12 

in episodic memory over time.  13 

 14 

Table 3. Linear mixed model results for segregation and pathology predicting longitudinal 15 

episodic memory change. 16 
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Predictor Estimate p 
Age -0.19 0.03 
Sex -0.01 0.93 
Education 0.13 0.13 
Segregation -0.20 0.02 
Time  -0.07 0.06 
Tau -0.13 0.17 
Aβ 0.03 0.8 
Tau x Time -0.15 0.002 
Aβ x Time -0.003 0.94 
Segregation x Time 0.08 0.02 

   
 1 

Discussion 2 

 3 

 The goal of this study was to investigate the effects of Aβ and tau on the intrinsic functional 4 

architecture of episodic memory networks and episodic memory ability in cognitively normal OA. 5 

OA showed reduced segregation of AT and PM networks compared to YA. This effect was driven 6 

by reduced within-network FC and increased between-network FC between the two systems. 7 

Increased tau in AT regions was associated with a less segregated AT network, whereas increased 8 

global Aβ was associated with a less segregated PM network, demonstrating a regional 9 

dissociation of these AD pathologies to the large-scale organization of the AT and PM systems. 10 

Finally, less segregated networks were associated with better memory ability at baseline in OA 11 

with low levels of AD pathology but with a steeper decline in memory performance over time, 12 

independent of baseline pathology. These findings suggest there may be different phases in the 13 

association of brain network integrity and memory ability that depend on the degree of AD 14 

pathology. 15 
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We interpreted our findings based on a model that includes both age- and AD pathology-1 

related effects. We found that age was associated with changes in the functional segregation of the 2 

AT and PM resting state networks. This finding is consistent with studies of age-related neural 3 

dedifferentiation demonstrating that older age is associated with less distinct neural activation 4 

patterns10,11,45–48 and, more recently, with less distinct large-scale resting state networks11–15,49,50. 5 

While a majority of these prior studies explored the organization of the brain’s canonical resting 6 

state networks (e.g., the default mode, fronto-parietal and cingulo-opercular networks), we 7 

demonstrated a robust age effect in two neural networks that are associated with episodic memory 8 

and AD pathology. Recent work from our laboratory also showed that less differentiated activation 9 

in AT and PM regions during an object/scene discrimination task was associated with more tau 10 

deposition32. These findings, in conjunction with the present results, suggest a neuropathological 11 

correlate of dedifferentiation in the episodic memory system.  12 

We found that the modular organization of the AT and PM brain networks was selectively 13 

vulnerable to tau and Aβ deposition. Specifically, increased tau in AT regions was associated with 14 

less segregated AT networks, but was not associated with PM network segregation. In contrast, 15 

increased cortical Aβ was associated with less segregated PM networks, but was not associated 16 

with AT network segregation. Since between-network FC was the same in the AT and PM 17 

networks, these results indicate that this relationship was driven by within-network FC. This is 18 

consistent with previous investigations that have demonstrated relationships between within-19 

network FC and AD pathology8,35,51. The findings of a double dissociation between AD pathology 20 

and network segregation are in accordance with previous work from our lab demonstrating 21 

differential selective vulnerability to these two networks participating in episodic memory 22 

function. Specifically, Maass et al. (2019) showed that tau deposits mainly in AT regions, resulting 23 
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in object discrimination deficits, whereas Aβ deposits preferentially in PM regions, resulting in 1 

impaired scene discrimination32.  2 

There is no agreement on a precise region where Aβ deposition begins, and existing data 3 

suggest that this pathology appears multifocally and quickly accumulates throughout most of 4 

association cortex52–55. For example, while we used a global measure of cortical Aβ to define 5 

positivity, Aβ in the PM network is highly correlated with this measure as are most regions 6 

throughout the brain56. In contrast, tau initially deposits in the entorhinal cortex and then progresses 7 

in a distinct spatiotemporal pattern first to anterior temporal and limbic regions and then 8 

throughout association cortex52,57,58. Cellular and molecular data reveal that tau can spread trans-9 

synaptically and in relation to neural activity5,6,59,60, suggesting that this specific AD pathology 10 

accumulates through the brain along neural connections. The idea that large-scale brain network 11 

connectivity may underlie the spatiotemporal patterns of AD pathology has support from other 12 

laboratories. For instance, Franzmeier et al. found that canonical network regions with higher FC 13 

showed higher covariance of tau deposition7. In addition, Jacobs et al. found that Aβ facilitated the 14 

spread of tau from the hippocampus to the posterior cingulate via structural connectivity61, and 15 

Adams et al. reported that FC of the entorhinal cortex was related to Aβ-facilitated neocortical tau 16 

deposition31. Previous data suggesting preferential involvement of the AT network by tau32, along 17 

with these results showing dedifferentiation, raise the possibility that tau may spread from the AT 18 

to the PM network as these networks become less segregated.  19 

Our results revealed complex interactions between segregation, Aβ and tau pathology, and 20 

memory performance. Our cross-sectional data showed that AD pathology moderated the 21 

relationship between segregation and baseline performance. Specifically, less segregated networks 22 

were associated with better performance in OA with low levels of pathology but not in those with 23 
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high levels of pathology. Additionally, our longitudinal results revealed that less segregated 1 

networks and more tau at baseline independently predicted a steeper decline in memory 2 

performance over time. These findings are consistent with previous studies demonstrating that 3 

neurodegenerative pathology interacts with FC to influence performance28,62. For instance, Lin et 4 

al. (2020) showed an interactive effect of Aβ deposition and FC on cognition such that increased 5 

FC between left middle frontal gyrus and a memory encoding network was associated with better 6 

attention/processing speed and executive function in those with low levels of Aβ but with worse 7 

function in those with high levels of Aβ62.   8 

Overall, our findings may suggest different phases in the long-term interaction of network 9 

segregation and AD pathology on episodic memory ability. OA with low pathology may 10 

compensate, either for normal aging processes or for the start of AD pathology, by increasing 11 

communication between AT and PM networks. As functionality in one system declines, recruiting 12 

the other system may help performance. Over time, however, this increased between-network FC 13 

in the context of increasing pathology could become detrimental, as well as providing a route for 14 

AD disease pathology to spread from one network to the other, leading to more decline in memory 15 

ability. Based on this model, it is likely that AT and PM networks continue to de-differentiate over 16 

time, especially in the transition phase from cognitively normal to cognitively impaired. This 17 

would further the spread of AD pathology, eventually resulting in the hallmark episodic memory 18 

impairments observed in MCI and AD. Future studies that include patient data as well as 19 

longitudinal measures of FC, AD pathology, and memory function are crucial in testing this 20 

hypothesis.  21 

The cross-sectional PET and MRI data limit our interpretations of causality as well as long-22 

term changes in this study. Although it is possible that Aβ and tau spread lead to disruptions in 23 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 15, 2020. ; https://doi.org/10.1101/2020.10.14.340075doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.14.340075


 22 

large-scale network FC (rather than the reverse), several studies suggest that Aβ and tau 1 

propagation is a multifactorial process that depends on both neural connectivity and regional 2 

vulnerability6,8,60. Hence, the relationship between Aβ and tau and FC is likely bidirectional such 3 

that age-related disruptions in network FC guide pathology spread and this, in turn, leads to further 4 

changes in the network architecture. Longitudinal designs are critical in determining the order of 5 

age-related changes as well as elucidating the sequence of neural events leading to episodic 6 

memory decline. Another limitation of this study was that the longitudinal cognitive data included 7 

different numbers of timepoints before and after the “baseline” timepoint for different participants. 8 

This design feature complicates our interpretation of the longitudinal effects of segregation and 9 

Aβ and tau on performance because our analyses were both retrospective and prospective. 10 

However, this design feature allowed us to examine memory change over a longer period of time 11 

(average of ~6 years) compared to many previous studies63–65. Furthermore, we were able to include 12 

more participants from our sample with longitudinal data using this design. Longitudinal studies 13 

are often unable to observe any significant change in cognition in OA given the relatively short 14 

time periods of observation66,67. We believe that having a greater number of timepoints for more 15 

participants outweighs the disadvantage of this design feature.  16 

Taken together, our data support a model whereby network dedifferentiation performs a 17 

neural compensatory function which fails over time as AD pathology accumulates. The effect of 18 

network dedifferentiation on episodic memory ability is helpful to performance when pathology 19 

levels are low but is harmful to performance over time as pathology presumably spreads. This 20 

research provides an important step in elucidating the neural mechanisms associated with episodic 21 

memory decline in healthy and pathological aging. By studying this episodic memory system in 22 

healthy OA, we can advance our understanding of healthy aging and its similarities to and 23 
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differences from pathological aging, which could serve as a crucial building block for the early 1 

detection of AD. 2 

 3 

Methods 4 

 5 

Participants 6 

Fifty-five YA (age 18-35) and 97 cognitively normal OA (age 60+) enrolled in the 7 

Berkeley Aging Cohort Study (BACS) were included in this study. All YA and OA participants 8 

underwent structural and resting state functional MRI. All OA additionally underwent tau-PET 9 

imaging with 18F-Flortaucipir (FTP), Aβ-PET with C-Pittsburgh 11Compound-B (PiB), and a 10 

standard neuropsychological assessment. Eligibility requirements included that all participants had 11 

a baseline MMSE score of ≥ 26. We also excluded any participants with a history of significant 12 

neurological disease (e.g., stroke, seizure, loss of consciousness ≥ 10 minutes), or any medical 13 

illness that could affect cognition, history of substance abuse, depression, or contraindications to 14 

MRI or PET. All study procedures were reviewed and approved by the Institutional Review Boards 15 

of the University of California Berkeley and Lawrence Berkeley National Laboratory (LBNL). All 16 

participants provided written informed consent for their involvement in this study.  17 

 18 

Neuropsychological assessment 19 

 All OA participants in the BACS undergo neuropsychological testing to measure cognitive 20 

performance related to verbal and visual memory, working memory, processing speed, executive 21 

function, language, and attention. In this study, composite scores were calculated to measure three 22 

specific cognitive domains: episodic memory, working memory, and executive functioning. The 23 
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tests for episodic memory included the California Verbal Learning Test (CVLT) immediate and 1 

long delay free recall totals as well as the Visual Reproduction (VR) immediate and delay recall 2 

totals. Working memory was assessed with the Digit Span total score. Tests for executive function 3 

included Trail Making test B minus A, Stroop number correct in 1 min, and Digit Symbol total. 4 

For episodic memory and executive function, the composite scores were produced by calculating 5 

the average z-score of the tests included in each domain. Please refer to Harrison et al. (2019) for 6 

more details of the procedure44.  7 

 To examine change in memory performance over time, our longitudinal analyses included 8 

participants (from the 97 OA sample) that had (1) at least one resting state fMRI scan, (2) at least 9 

one Aβ and one tau PET scan (both near the time of the resting state scan), and (3) at least two 10 

neuropsychological testing sessions (one of which was near the time of the resting state scan). 11 

Critically, all participants had resting state fMRI, PET, and neuropsychological data at the same 12 

time point, which is the time point we used to assess all cross-sectional relationships (i.e., 13 

“baseline” time point). The additional neuropsychological session(s) could be either before or after 14 

the baseline time point (or both), depending on the participant. Eighty-six of 97 OA participants 15 

had longitudinal cognitive data (≥ 2 testing sessions. These participants had between 2 and 13 16 

testing sessions (mean, 6.1 ± 3.1) over a period of 1 to 13 years (mean, 6.1 ± 3.5) with an average 17 

delay of 1.3 ± 0.6 years between sessions.  18 

 19 

MRI data acquisition 20 

 All YA and OA participants underwent structural and functional MRI acquired on a 3T 21 

TIM/Trio scanner (Siemens Medical System, software version B17A) using a 32-channel head 22 

coil. First, a whole-brain high resolution T1-weighted volumetric magnetization prepared rapid 23 
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gradient echo image (MPRAGE) structural MRI scan was acquired with the following parameters: 1 

voxel size = 1 mm isotropic, TR = 2300 ms, TE = 2.98 ms, matrix = 256 x 240 x 160, FOV = 256 2 

x 240 x 160 mm3, sagittal plane, 160 slices, 5 minute acquisition time. This was followed by a 3 

rsfMRI scan that was acquired using T2*-weighted echo planar imaging (EPI) with the following 4 

parameters: voxel size = 2.6 mm isotropic, TR = 1067 ms, TE = 31.2 ms, FA = 45, matrix = 80 x 5 

80, FOV = 210 mm, sagittal plane, 300 volumes, anterior to posterior phase encoding, ascending 6 

acquisition, 5 minute acquisition time. A multiband acceleration factor of 4 was used to acquire 7 

whole-brain coverage at high spatial resolution by acquiring 4 slices at the same time68,69. During 8 

the rsfMRI scan, participants were instructed to remain awake with their eyes open and focused 9 

on the screen, which displayed a white asterisk on a black background.  10 

 As part of the standard PET processing pipeline, a whole-brain high resolution T1-11 

weighted volumetric MPRAGE scan was acquired for each participant on a Siemens Magnetom 12 

Avanto scanner at LBNL with the following parameters: voxel size = 1 mm isotropic, TR = 2110 13 

ms, TE = 3.58 ms, flip angle = 15°, sagittal slice orientation. These data were used for PET 14 

coregistration and to parcellate the brain for PET data analysis. 15 

 16 

PET data acquisition 17 

 All OA participants underwent PET scanning at LBNL using a Biograph PET/CT 18 

Truepoint 6 scanner (Siemens, Inc.) with CT scans performed for attenuation correction prior to 19 

each emission acquisition and radiotracers synthesized at the LBNL Biomedical Isotope Facility. 20 

Tau deposition was measured using 18F-Flortacipir (FTP) with data binned into 4 x 5 minute frames 21 

from 80-100 minute post-injection35,44,70. Aβ was measured using 11C-Pittsburgh Compound B 22 

(PiB), with data acquired across 35 dynamic frames for 90 minutes post-injection (4 x 15, 8 x 30, 23 
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9 x 60, 2 x 180, 10 x 300, and 2 x 600 seconds). All PET images were reconstructed using an 1 

ordered subset expectation maximization algorithm, with attenuation correction, scatter correction, 2 

and smoothing using a Gaussian kernel of 4 mm.  3 

 4 

MRI processing 5 

Structural scans (3T) were processed with FreeSurfer to derive regions of interest (ROIs) 6 

in each subject’s native space using the Desikan-Killany atlas. The structural images were also 7 

segmented into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) using 8 

Statistical Parametric Mapping software (SPM12; Wellcome Trust Centre for Neuroimaging, 9 

London, UK) (default parameters). RsfMRI data were preprocessed using SPM12 and FreeSurfer 10 

(v5.3.0). Preprocessing included slice time correction, realignment, coregistration to the T1 image, 11 

and outlier volume detection. All functional images were first corrected for differences in slice 12 

time acquisition using SPM12. Functional images were then realigned to the first volume, and 13 

coregistered to the T1 image. Outliers in average intensity and/or scan-to-scan motion were 14 

identified using the artifact detection toolbox (ART; http://www.nitrc.org/projects/artifact_detect) 15 

using a conservative movement threshold of >0.5 mm/TR and a global intensity z-score of 3. 16 

Outlier volumes were flagged and included as spike regressors during the denoising procedure 71,72.17 

 Additional denoising on the rsfMRI data was performed using the CONN toolbox (v18a: 18 

www.nitrc.org/projects/conn). Temporal and confounding factors were regressed from each voxel 19 

BOLD timeseries and the resulting residual timeseries were filtered using a temporal band-pass 20 

filter of 0.008-0.09 Hz to examine the frequency band of interest and to exclude higher frequency 21 

sources of noise such as heart rate and respiration. For noise reduction, we used the anatomical 22 

component-based noise correction method aCompCor, which models the influence of noise as a 23 
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voxel-specific linear combination of multiple empirically estimated noise sources by deriving 1 

principal components from noise regions of interest and including them as nuisance regressors in 2 

the first level general linear model (GLM)73. Residual head movement parameters (three rotations, 3 

three translations, and six parameters representing their first-order temporal derivatives) and 4 

signals from WM and CSF, and spike regressors from motion detection were regressed out during 5 

the computation of functional connectivity maps.  6 

 First-level ROI-to-ROI functional connectivity analysis was performed using the CONN 7 

toolbox. For this analysis, we used 12 FreeSurfer ROIs that included unilateral amygdala, fusiform 8 

gyrus/perirhinal cortex, and inferior temporal gyrus as part of the AT network and retrosplenial 9 

cortex, parahippocampal cortex, and precuneus as part of the PM network (Figure 1). Semi-partial 10 

correlations were used for these first-level analyses to determine the unique variance of each 11 

(unilateral) seed, controlling for the variance of all other seed regions entered into the same model. 12 

For each participant, the rsfMRI time series within each of the ROIs was extracted and the mean 13 

time series was computed. Then, the cross-correlation of each ROI’s time course with every other 14 

ROI’s time course was computed, creating a 12 x 12 correlation matrix for each subject. 15 

Correlation coefficients (i.e., graph edges) were converted to z-values using Fisher’s r-to-z 16 

transformation38. As in previous studies11–13, the diagonal of the matrix was removed and negative 17 

correlations were set to zero as we were mainly interested in positive connections39. We also 18 

performed the same analyses with inclusion of both positive and negative correlations and 19 

observed similar results. Finally, AT and PM network segregation were calculated as the difference 20 

in mean within-network FC and mean between-network FC divided by the mean within-network 21 

FC13.  22 

 23 
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PET data processing 1 

 As part of our standard PET preprocessing procedure, 1.5T structural MRI data were 2 

preprocessed with FreeSurfer to derive ROIs in subject native space. These ROIs were then used 3 

for the calculation of PiB-PET global distribution volume ratio (DVR) and region-specific, partial 4 

volume corrected (PVC 40) FTP standardized uptake value ratio (SUVR) measures. FTP images 5 

were processed with SPM12. Images were realigned, averaged, and coregistered to each 6 

participant’s 1.5T structural MRI scan. SUVR images were calculated by averaging the mean 7 

tracer uptake over the 80-100 minute data and normalized by an inferior cerebellar gray reference 8 

region 74. The mean SUVR of each (FreeSurfer segmented) ROI was extracted from the native 9 

space images. This data was then partial volume corrected using a modified Geometric Transfer 10 

Matrix approach 75 as previously described 40. The weighted mean (by region size), partial volume 11 

corrected FTP SUVR of all AT (amygdala, FuG/perirhinal cortex, ITG) and PM (RSC, PHC, and 12 

precuneus) ROIs were used in subsequent analyses. Tau positivity was defined as the mean SUVR 13 

in a BraakIII-IV composite ROI (cut-off 1.26) that included regions from both AT (amygdala, FuG, 14 

and ITG) and PM (PHC, RSC) systems. APOE was not related to segregation (ps > 0.63); 15 

therefore, we did not control for APOE in these analyses.   16 

 PiB images were also processed with SPM12. Images were realigned, averaged across 17 

frames from the first 20 minutes of acquisition, and coregistered to each participant’s 1.5T 18 

structural MRI image. DVR values for PiB-PET images were calculated with Logan graphical 19 

analysis over 35-90 minute data and normalized by a cerebellar gray matter reference region 76,77. 20 

Global PiB was calculated across cortical FreeSurfer ROIs as previously described41, and a 21 

threshold of 1.065 was used to classify participants into Aβ- and Aβ+ groups42. One participant 22 
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was missing PiB DVR data, and therefore was excluded from all analyses involving measures of 1 

Aβ.  2 

 3 

Statistical analyses 4 

 Statistical analyses were conducted using R (http://www.R-project.org/) and SPSS (SPSS 5 

Inc., Chicago IL) software. Independent sample t-tests were used to test for age group differences 6 

in within- and between-network FC and segregation. Pearson correlations and multiple regression 7 

models were used to assess the relationship between segregation, Aβ and tau, and cognitive 8 

performance. To assess the relationship between tau and segregation, we first examined the 9 

relationship across all OA, regardless of Aβ or tau status. We then split the group into Aβ- and 10 

Aβ+ subgroups to determine whether there was an interaction of Aβ pathology and tau on 11 

segregation. We used the same procedure to assess the relationship between Aβ and network 12 

segregation. Similarly, to assess the relationship between segregation and cognition, we first 13 

examined this relationship across all OA, regardless of Aβ or tau status. We then split the group 14 

into Aβ- and Aβ+ subgroups to determine whether there was an interaction of Aβ pathology and 15 

segregation on cognitive performance. As a follow-up analysis, we also split the groups into tau- 16 

and tau+ groups to confirm that the results remained the same. As the results did not change 17 

depending on whether we split the groups by Aβ or tau status, we report the results in the present 18 

study by splitting the group by Aβ status.   19 

 Longitudinal cognitive measures were modelled using linear mixed-effects regression with 20 

a random intercept and slope using the lme4 package in R v3.6.3 (www.r-project.org). In order to 21 

examine the relationship between baseline segregation, Aβ and tau, and change in cognitive 22 

performance, the models included two-way interactions between baseline segregation and time, 23 
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baseline Aβ and time as well as tau and time. We were specifically interested in the segregation x 1 

time interaction to determine whether baseline segregation was associated with longitudinal 2 

episodic memory decline. As a control analysis, we also examined change in working memory and 3 

executive function performance over time using the same model. 4 

All predictor variables were standardized before entered into the model. All models were 5 

adjusted for age and sex, and years education (for models including cognitive measures). All 6 

statistical analyses used a two-tailed level of 0.05 for determining statistical significance. Reported 7 

p-values were not corrected for multiple comparisons.  8 
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AT and PM networks are less segregated with older age regardless of analysis approaches 1 

The relationship between age group and segregation was assessed across multiple analysis 2 

approaches related to matrix thresholding, bivariate vs. semi-partial correlations, various network 3 

metrics of intersystem relationships, and network labeling. 4 

To assess the influence of matrix thresholding on age group differences in network 5 

segregation, this supplementary analysis was identical to the original analysis (in the main text) 6 

except we retained both positive and negative correlations in each subject’s z-matrix (Figure S1A). 7 

Similarly, to assess the influence of type of correlation analysis on age group differences in 8 

network segregation, this supplementary analysis was identical to the original one except we 9 

calculated bivariate correlations instead of semi-partial correlations (Figure S1B).  10 

 To examine the influence of network labeling on age group differences in network 11 

segregation, we used two different labeling schemes (in addition to our original one). First, we 12 

used the Brainnetome Atlas1, using all ROIs from amygdala (4 ROIs), FuG (6 ROIs), ITG (14 13 

ROIs), PHC (12 ROIs), RSC (4 ROIs), and precuneus (8 ROIs). To create these ROIs, we produced 14 

4mm-radius spheres centered around each MNI coordinate from the literature (Figure S1C). To 15 

create AT and PM networks based on the same AT and PM regions used in one of the seminal 16 

papers defining AT and PM systems2, we added 4 FreeSurfer ROIs each to our original AT and 17 

PM networks. These additional FreeSurfer regions included bilateral lateral orbitofrontal cortex 18 

and temporal pole for the AT network and medial orbitofrontal and posterior cingulate cortices for 19 

the PM network, creating a total of 10 ROIs for each network (Figure S1D).  20 

To assess the influence of various network metrics of intersystem relationships, we used 21 

the Brain Connectivity Toolbox in Matlab to calculate participation coefficient and modularity 22 

values for each subject. The participation coefficient of a given ROI measures to what extent an 23 
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ROI interacts with ROIs in other networks in relation to the total number of connections it contains 1 

in its own network. Each subject’s participation coefficient value was calculated from their 2 

respective z-matrix. Participation coefficients for each ROI were computed based on the following 3 

formula: 4 

𝑃(𝑖) = 1 − + ,
𝑘'(𝑚)
𝑘'

/
()

*+,

 5 

 6 

where 𝑘'(𝑚) is the weighted connections of ROI i with nodes in network 𝑚 and 𝑘' is the 7 

total weighted connections ROI i exhibits. Thus, higher participation coefficient values indicate 8 

proportionally greater communication with ROIs in other networks (Figure S1E).  9 

Similar to network segregation, modularity assesses the strength of module (i.e., network) 10 

segregation. Specifically, the modularity index (Q) compares the observed intra-module functional 11 

connectivity with that which is expected by chance. Thus, higher modularity values reflect stronger 12 

separation of the system’s modules. The modularity index is formally defined as: 13 

 14 

𝑄 =
1
2𝐸+3𝐴'- − 𝛾𝑒'-7𝛿(𝑚' , 𝑚-)

'-

 15 

 16 

Where 𝐸  is the number of graph connections (i.e., edges), A is the adjacency matrix, 𝛾 is the 17 

resolution parameter, e is the null model, and 𝛿 is an indicator that equals 1 if ROIs i and j belong 18 

to the same module and 0 otherwise (Figure S1F).  19 

 20 

 21 
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 1 

Figure S1. Older adults show significantly less segregated networks compared to younger adults 2 

across multiple analysis approaches related to A) matrix thresholding: inclusion of positive and 3 

negative correlations (t = 2.8, p = 0.006), B) bivariate correlations (t = 2.4, p = 0.019), network 4 

labeling: C) Brainnetome Atlas (t = 3.4, p = 0.001) and D) inclusion of 20 FreeSurfer ROIs used 5 

in Ranganath et al. 2012. (t = 5.7, p < 0.001), and various network metrics of intersystem 6 

relationships: E) participation coefficient (t = 4.7, p < 0.001), and F) modularity (t = 7.9,  p < 7 

0.001).  8 

 9 

AD pathology moderates the association between segregation and episodic memory in AT and 10 

PM networks 11 

 To examine the association between network segregation and episodic memory in the main 12 

text, we computed a single segregation measure by averaging the AT and PM segregation values 13 

because our episodic memory composite measure included both object- and spatial-related 14 
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memory domains. Figure S2 below shows that the results were essentially the same in both the AT 1 

and PM networks separately.  2 

 3 

 4 

Figure S2. Alzheimer’s disease pathology moderates the association between network 5 

segregation and episodic memory performance in AT and PM systems. (A) Less segregated 6 

AT networks are associated with better performance in Aβ- older adults whereas (B) AT 7 

segregation is not associated with performance in Aβ+ older adults. (C) Similarly, less segregated 8 

PM networks are associated with better performance in Aβ- older adults whereas (D) PM 9 

segregation is not associated with performance in Aβ+ older adults. 10 

 11 

Baseline segregation predicts longitudinal memory decline using various measures of pathology 12 
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 1 

In order to examine the relationship between baseline segregation, baseline Aβ and tau, 2 

and change in cognitive performance, we used a linear mixed model that included two-way 3 

interactions between baseline segregation and time, global Aβ and time, and tau and time. In the 4 

main text, we report the results using continuous measures of global Aβ and BraakIII-IV tau as they 5 

retain more statistical power in the model. The results were very similar whether we used BraakIII-6 

IV tau (Table 3 in main text), AT-tau (Table S1) or PM tau (Table S2) and whether we used 7 

dichotomous (Table S3) or continuous Aβ and tau (Table 3 in main text) in the model. All models 8 

were adjusted for age, sex, and education. 9 

 10 

Table S1. Linear mixed model results for segregation and pathology (including AT-tau) predicting 11 

longitudinal episodic memory change. 12 

 
 
    
Predictor Estimate p 
Age -0.20 0.02 
Sex -0.003 0.97 
Education 0.13 0.12 
Segregation -0.23 0.007 
Time  -0.07 0.051 
AT-tau -0.11 0.4 
Aβ 0.03 0.79 
AT-tau x Time -0.19 <0.001 
Aβ x Time 0.007 0.87 
Segregation x Time 0.07 0.049 

   
 13 

 14 
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Table S2. Linear mixed model results for segregation and pathology (including PM-tau) predicting 1 

longitudinal episodic memory change. 2 

   
Predictor Estimate p 
Age -0.20 0.03 
Sex 0.02 0.84 
Education 0.13 0.13 
Segregation -0.18 0.036 
Time  -0.07 0.071 
PM-tau -0.11 0.29 
Aβ 0.03 0.79 
PM-tau x Time -0.08 0.073 
Aβ x Time -0.05 0.25 
Segregation x Time 0.07 0.05 

   
 3 

Table S3. Linear mixed model results for segregation and (dichotomous) pathology predicting 4 

longitudinal episodic memory change. 5 

   
Predictor Estimate p 
Age -0.20 0.02 
Sex 0.007 0.94 
Education 0.13 0.15 
Segregation -0.18 0.032 
Time  -0.06 0.09 
Tau-status 0.009 0.93 
Aβ-status 0.03 0.78 
Tau-status x Time -0.09 0.03 
Aβ-status x Time -0.01 0.78 
Segregation x Time 0.07 0.05 

   
 6 
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