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Abstract. Viruses and bacteria commonly exhibit spatial repetition of surface molecules that directly
interface with the host immune system. However the complex interaction of patterned surfaces with
multivalent immune molecules such as immunoglobulins and B-cell receptors is poorly understood,
and standard characterization typically emphasizes the monovalent affinity. We developed a mechanistic
model of multivalent antibody-antigen interactions as well as a pipeline for constructing such models
from a minimal dataset of patterned surface plasmon resonance experiments in which antigen pattern
geometries are precisely defined using DNA origami nanostructures. We modeled the change in
binding enhancement due to multivalence and spatial tolerance,i.e. the strain-dependent interconversion
of bound antibodies from monovalently bound to bivalently bound states at varying antigen separation
distances. The parameterized model enables mechanistic post hoc characterization of binding behavior
in patterned surface plasmon resonance experiments as well as de novo simulation of transient
dynamics and equilibrium properties of arbitrary pattern geometries. Simulation on lattices shows
that antigen spacing is a spatial control parameter that can be tuned to determine antibody residence
time and migration speed. We found that gradients in antigen spacing are predicted to drive persistent,
directed antibody migration toward favorable spacing. These results indicate that antigen pattern
geometry can influence antibody interactions, a phenomenon that could be significant during the
coevolution of pathogens and immunity in processes like pathogen neutralization or affinity maturation.
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1 Introduction

Due to their multiple binding domains, immunoglobulin molecules like the bivalent IgG antibody exhibit
complex interactions with multivalent antigens, i.e. clusters of multiple copies of molecules or molecular
domains occurring on the order of 1-30 nm separation distances. Multivalent interactions enhance the
stability of binding interactions by enabling simultaneous attachment of multiple ligands, increasing the
statistical ratio of bound to unbound states and extending the residence times of bound antibodies[9, 8].

Many pathogenic surfaces exhibit spatial repetition at length scales relevant to antibody multivalence.
Viral capsid proteins undergo self-assembly into periodic patterns [15], and some neutralizing antibodies
achieve their high affinity and neutralization capability through bivalence [3, 14]. Self-assembling crystalline
arrays of surface-layer (S-layer) proteins, the outermost structure on many bacteria and archaea, are a
major contact point between pathogen and host [1] and are implicated as mediators of innate [13] and
adaptive immunity [6, 5]. Their repetitive organization may be integral to their immunological role, as
their removal from cell surfaces was seen to reduce immune response [12]. Multivalence is also likely an
important factor during affinity maturation of antibodies and thus in vaccine design [16, 7].

Antibody interaction with patterned surfaces presents a challenge for mathematical modeling as it is a
many-bodied problem occurring on timescales of seconds to minutes. Such systems are too computationally
expensive for full-atom molecular simulation. Models treating antibodies and antigens as abstract binding
and non-binding units have been the most successful at capturing relevant dynamics, and have historically
treated multivalence as a function of ligand coating density whereby multivalence emerges as ligand nearest-
neighbor distance statistically decreases with higher densities [10]. More recently, coarse-grained molecular
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simulations have been used fruitfully to investigate the role of antibody multivalence on binding kinetics [2].
However a challenge of precisely calibrating such models remains due to the absence of both experimental
tools to independently assess monovalent and multivalent binding dynamics as well as a computational
pipeline to connect such data to models.

The patterned surface plasmon resonance (PSPR) technique (Fig 1 a) enables measurement of binding
kinetics on precise, monodisperse patterns of ligands, achieving robust control of geometry through the
use of DNA origami nanostructures [11]. Herein, we demonstrate a pipeline for the automated conversion
of PSPR data into a flexible, experimentally parameterized model of antibody interaction with arbitrarily
complex multivalent surfaces. The model is based on a coarse-grained simplification of bivalent antibody
binding to antigens as a discrete Markov process with distinct states: empty antigen, monovalent antibody-
antigen complexes, and bivalent antibody-antigen complexes with transitions between these states governed
by elementary rates (Fig 1 b). From this basis, the dynamics of more complex patterns of multiple antigens
can be reduced (Fig 1 c) to combinations of these elementary states. We show how the spatial tolerance, i.e.
the range and impact of antigen separation distances on bivalent binding kinetics (Fig 1 d), can be exploited
in the design of antigen patterns to modulate the effective binding affinity, the walking speed of antibody
migration, and even the direction of antibody migration on patterned surfaces. A causal linkage between
pattern geometry and antibody dynamics could play a role in the co-evolution of adaptive immunity and
pathogens.

2 Results

We developed a model parameterization pipeline based on progressive fitting of the transient SPR profiles
for first monovalent and then bivalent binding processes in order to reduce degrees of freedom at each
stage of fitting. In the first 1-antigen configuration stage, we used an anti-digoxygenin single-cycle-kinetics
program whereby progressively higher concentrations of antibody were exposed to the immobilized antigen
substrate (Fig 2 a). This program was performed with a 1-antigen configuration (Fig 2 b, d) in order
to parameterize our Markov model yielding respective association and dissociation rates k1 = 2.1 ×
107M−1s−1 and k−1 = 5.3×10−4s−1 as well as a monovalent dissociation constant KD1 = 2.5×10−11 M .
Parameterizating intercoversion between monovalent and bivalent states was done by fixing the previously
determined monovalent parameters and fitting the model to experiments involving multiple adjacent
antigens via adjustment of KD2 or the interconversion constant defined by the ratio of reverse and
forward interconversion rates. For structures configured with 2 antigens separated by ≈ 14 nm, we find
KD2 = 5.8× 10−2 (Fig 2 c, e).

Applying progressive fitting to PSPR runs with structures patterned with 2 adjacent antigens of
varied separation distances, we found the internal conversion process to vary accordingly. Small and large
separation distances correspond to reduced bivalence, i.e. larger KD2. We constructed a phenomenological
equation modeling the interconversion constant (Fig 2 f). The model is composed of a logistic tension-
term representing the reduced bivalence at large separation distances and an exponential compression-term
representing the penalty to bivalence observed at extremely close separation distances. The interconversion
constant is thus a function of adjacent antigen separation distance with the form

KD2 =
Kmax
D2

1 + e−αt(x−`t)
+Kmax

D2 e−αc(x−`c), (1)

where `t and `c are characteristic lengths defining the scale of the tensile and compressive terms, αt is
the sharpness of the tensile penalty, αc is the decay parameter of compressive penality to bivalence, and
Kmax
D2 is the value of KD2 at which contributions of bivalence to binding dynamics is vanishingly small.

In order to determine the dependence of system bivalence on solution phase concentration, we used
the parameterized model to obtain the steady state probability distributions for a range of solution phase
concentrations (Fig 3 a). This revealed concentration regimes of differing dominant states: empty, bivalent,
and saturated monovalent at respectively low, medium, and high solution phase concentrations. Entropic
maxima occur at transitions between these domains (Fig 3 b), and transitions in bivalent and monovalent
contributions to chemical potential occur in accordance with the transition from bivalent to saturated
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Fig. 1. Scheme for modeling binding dynamics of antibodies on multi-antigen substrates. a: Illustration of patterning
concept, whereby small molecule antigens (haptens) are arranged using short, flexible tethers at well-defined
locations on DNA origami nanostructures. This enables multivalent interaction of antibodies with antigen patterns.
b: Markov model of antibody binding whereby only basic binding/unbinding and bivalent interconversion processes
are used to couple discrete monovalent and bivalent binding states. c: Model extension to more complex pattern
geometries is accomplished by separating the system into elementary transitions between states comprising different
combinations of empty and monovalently or bivalently occupied antigens. d: Pairs of antigens separated by different
lengths elicit differing antibody binding kinetics due to the separation distance dependent impact of antibody
structure on the chance of bivalent interconversion.
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Fig. 2. A progressive fitting pipeline for obtaining a parameterized model from minimal experimental data. a:
Concentration versus time plot of antibody solution exposed to patterned antigen substrates in a single cycle kinetics
PSPR experiment. b and c: Experimental binding kinetics data (black line) of 1 antigen and 2 antigen configurations
respectively, superimposed over the occupancy calculated from the parameterized model. Model occupancy is
divided and colored according to state, with height corresponding to the state’s contribution to total antibody
occupancy per structure. d and e: 1 and 2 antigen configuration respective transient state probabilities stratified
according to model prediction, colored and stacked to satisfy the normalization condition whereby all probabilities
add to 1. f: Interconversion constants (magenta points) plotted versus 2-antigen configuration separation distance
x and the fitted spatial tolerance model (blue line).

monovalent regimes (Fig 3 c). In addition to simulating de novo steady state properties, the model enables
us to simulate transient dynamics of hypothetical systems with arbitrary geometries and arbitrary timing in
the introduction of different solution phase concentrations. To demonstrate this, we simulated the evolution
of state probability for a system with antigens arrayed in a 12× 16× 20 nm right triangle (Fig 3 d) with
arbitrarily timed introduction of solution phase concentrations: 5 × 10−4, 6 × 10−2, 5 × 10−1, 1 nM at 0,
1000, 2000, and 3000 seconds respectively. This allowed us to track the evolution of entropy (Fig 3 e) as
the system approaches steady state, revealing differences in both the total and individual values among
states under the influence of different solution concentrations and time evolution. We also saw the time
evolution of the number of antibodies bound bivalently or monovalently (Fig 3 f), whose relative values
become inverted when a change in concentration triggered a transition from a bivalently dominated to a
monovalently dominated regime.

For larger systems, complete enumeration of states scales poorly with larger numbers of adjacent
antigens. We developed a Markov Chain Monte Carlo implementation of the model to sample trajectories
that converges to state probabilities with large sample numbers. Rather than enumerating all system
states (i.e. combinations of antibodies and binding modes on a structure and possible transitions), the
system performs a random walk through the large state space, computing at any point in time its rate of
escape into neighboring states. We then examined collections of individual trajectories for such systems to
understand their average behavior. Specifically, we examined the role of repetitive antigen spacing in simple
1D arrays. Antigens arranged according to a gradient in spacing spanning that of the region of steepest
slope in Equation 1 in the range of 10 - 22 nm separation distances elicit asymmetric accumulation toward
the narrow spaced end of the array (Fig 4 a), individual walking trajectories that tend toward the narrow-
spaced end (Fig 4 b), asymmetric velocity (Fig 4 c), and asymmetric net displacement (Fig 4 d) according
to the direction of the gradient. Antibodies binding to 1D arrays of uniform spacing exhibited divergent
residence times, with antibodies spending less cumulative time on 22 nm spaced arrays (Fig 4 e) than those
of narrow 10 nm spaced arrays (Fig 4 f). A comparison of net displacement also shows that antibodies
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Fig. 3. De novo simulation with parameterized kinetics. a: Stationary distributions colored by state of a 2-antigen
system (14 nm separation) for a range of solution phase antibody concentrations demonstrating clear regions
of predominantly empty, bivalent single antibody occupancy, and monovalent two antibody occupancy regimes
connected by smooth transition regions. b: Distribution of state entropic contributions to free energy for a range
of solution phase antibody concentrations. c: Chemical potential contributions at equilibrium from each state for a
range of concentrations. (legend shows top 5 most abundant states) d: Transient state probability distribution for
a simulation of a trimeric 12× 16× 20 nm antigen configuration with step changes in concentration. (legend shows
top 5 most abundant states) e: The evolution of entropy for the trimeric system stratified by state. f: The transient
evolution of monovalent and bivalent contributions of antibodies to the average number of antibodies per structure
in the trimeric system. The cross between the two lines demonstrates transition between regimes by changing the
concentration.
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Fig. 4. Manipulation of antibody movement through choice of antigen pattern geometry. a: Cumulative antibody
residence times as a function of antibody location on 1D antigen gradients oriented with increasing spacing (top)
and decreasing spacing (bottom) b: Random walk trajectories of antibodies tracked from their initial landing
locations on 1D antigen gradients with increasing (top) and decreasing (bottom) spacing gradients. c: Histograms
of antibody velocity on 1D antigen gradients of increasing (left) and decreasing (right) spacing distance. d: Net
displacement of antibodies tracked from their initial binding location on 1D antigen gradients of increasing (left)
and decreasing (right) spacing gradients. e: Histogram of antibody residence times on uniform 1D antigen array
with wide 22 nm spacing. f: Histogram of antibody residence times on uniform 1D antigen array with narrow 10
nm spacing. g: Histogram of antibody displacements tracked from their initial binding locations for uniform 1D
antigen arrays with wide (magenta) and narrow (blue) spacings.
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moved further from their initial binding location on widely spaced arrays relative to narrowly spaced (Fig
4 g).

3 Conclusion

In summary, we developed a pipeline for converting a minimal dataset from 2 PSPR experiments into
a flexible stochastic model of antibody binding and walking. The model enabled us to determine steady
regimes of bivalent and monovalent-dominated states depending on the solution phase concentration. We
developed an enhancement to the model in order to simulate arbitrary geometries with differing separation
distances between antigens by determining the binding behavior as a function of separation distance from
PSPR experiments with varied spacings. This enabled us to develop an analytical expression for the change
in interconversion rate as a function of antigen separation that could be applied to arbitrary geometries.
The model shows that antigen patterns can influence the global movements of antibodies, with gradients in
antigen spacing leading to directed migration as well as residence time control through change in uniform
spacing of patterns. Taken together, this work reveals the importance of antigen pattern geometry as a
control parameter in the dynamics of antibody binding and migration on multi-antigen substrates and
provides a framework for modeling and exploring such phenomena using PSPR-parameterized Markov
models.
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4 Supplementary Data

4.1 List of model assumptions, constraints

Assume a fixed amount of bound structures that does not change with time. i.e.

dRstruct
dt

≈ 0 (2)

and
dnstruct
dt

≈ 0 (3)

The system has an IgG reservoir that is large compared to the available binding surface and thus has
an effectively fixed concentration, i.e.

dcAb
dt
≈ 0 (4)

4.2 Conversion from SPR signal Rab to bound antibody nab

Consider first the simple 1-1 interaction of an antibody analyte that binds and unbinds to a structure
containing a single antigen ligand.

σ
cAbk1−−−−⇀↽−−−−
k−1

σAb (5)

We may work in terms of molar quantities rather than concentrations or surface densities, as the
dimensions of the system do not change

nstruct = n + nAb, (6)

or the molar amount of structures both occupied and unoccupied [mol], where nAb is the number of bound
antibody-structure complexes and n is the number of unoccupied structures and both where nAb and n
are functions of t.

State probabilities are therefore:

p =
n

nstruct
(7)

and

pAb =
nAb
nstruct

(8)

We define also an occupancy, the number of antibodies that are bound to a single structure for a given
state. For simple, 1 antigen structures, this value is zero for the empty state and 1 for the bound state or

ω = 0 (9)

and

ωAb = 1 (10)
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The average occupancy is a macroscopic description of the state of the system comprising N states, or
the average fraction of bound antibodies per structure.

Ω =
N∑
i=1

piωi (11)

For the case of a 1 antigen structure system, this becomes

Ω = pAb · 1 + p · 0 =
nAb
nstruct

(12)

In a 1-1 binding model, change in SPR signal is proportional to the amount of bound material or in
other words the change in molar amount of structures with occpupied binding sites nAb.

RAb = nAbξAb (13)

The rate of change of occupied sites is equal to the rate of conversion of unoccupied sites via binding
events minus the rate of conversion of occupied sites via unbinding events.

dnAb
dt

= k1cAbn − k−1nAb (14)

The SPR signal after the structure binding step is proportional to the molar of amount of bound
structure

Rstruct = nstructξstruct (15)

Substitute RU-based expressions of molar amounts into Equation 6:

n =
Rstruct
ξstruct

− RAb
ξAb

(16)

Substituting RU-based expressions of molar amounts into Equation 14 yields

dnAb
dt

=
1

ξAb

dRAb
dt

= k1cAb

(
Rstruct
ξstruct

− RAb
ξAb

)
− k−1

(
RAb
ξab

)
(17)

which simplifies to

dRAb
dt

=
ξAbk1cAbRstruct

ξstruct
− k1cAbRAb − k−1RAb (18)

Since we have gathered both conversion constants into one term in Equation 18, we define now the
occupancy signal factor

ξ∗ ≡
ξAb
ξstruct

(19)

or the dimensionless ratio of molar conversion factors: bound-antibody relative to structure.
Note by rearrangement the relationship to average occupancy - i.e. the occupancy signal factor is the

ratio of occupancy in terms of SPR signal to that of molar quantities.

ξ∗ =
RAb
nAb

nstruct
Rstruct

=
RAb
Rstruct

(
nAb
nstruct

)−1

(20)

=
RAb
Rstruct

Ω−1 (21)

Substituting ξ∗ we then arrive at the expression for the rate of change in SPR signal with respect to
time as a function of structure-binding signal and antibody-binding signal:

dRAb
dt

= ξ∗k1cAbRstruct − k1cAbRAb − k−1RAb (22)
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In the case of a monovalent structure (1 antigen available for binding) at the point of maximal saturation
when average occupancy is unitary (Ω = 1), the molar quantities of bound antibody and structures are
equal:

nmaxAb = nstruct (23)

Under maximal saturation conditions, the monovalent occupancy signal factor then reduces to

ξ∗ =
RmaxAb

Rstruct
· 1 (24)

This relationship is then used to produce a standard curve from monovalent structure binding data in
order to obtain the linear relationship:

RmaxAb = Rstructξ∗ (25)

where an empirically determined ξ∗ enables one to estimate the SPR signal corresponding to an occupancy
of 1 antibody per structure from the Rstruct signal. This is useful for structures with valency greater than
1 and whose binding kinetics do not obey simple 1-1 equations. Since RmaxAb on a multivalent structure
will not resemble that of the monovalent 1-1 system, we refer to this conversion factor obtained from the
monovalent RmaxAb as RAbmono , i.e. an SPR signal to antibody number conversion factor:

RAbmono ≈ RmaxAb , Vstruct = 1, (26)

where Vstruct is the valency.
In such cases, we obtain the average occupancy using the estimated RmaxAb from the linear regression.

Ω = f(RAb) =
nAb
nstruct

=
RAb
RmaxAb

(27)

4.3 Empirical estimation of Rabmax

Thus, we obtain a standard curve used to convert the SPR signals for arbitrary structure configurations by
empirically determining the correlation between structure binding signals and the max signals corresponding
to saturated monovalent (1 antigen) structures, enabling conversion from SPR signal to occupancy in the
absence of a well-understood binding model provided knowledge of the structure binding signal.

The structure bound signal (Fig 4.3 a) is taken to be the difference between signals before and after
structures are flowed over the chip and allowed to bind.

Guess values of the parameters k1, k−1, and ξ∗ are supplied to a numerical minimization of the
autocorrelation of residuals between experimental and theoretical curves for the 4th order Runga Kutta
approximation of Equation 22, i.e. the function dRAb

dt = f(RAb) recursively approximated according to the
formula

RAb,t+1 = RAb,t +
h

6
(κn1 + 2κn2 + 2κn3 + κn4) (28)

where h is a small timestep and the constituent terms have the form

κn1 = f(RAb,t) (29)

κn2 = f(RAb,t +
h

2
κn1) (30)

κn3 = f(RAb,t +
h

2
κn2) (31)

κn4 = f(RAb,t + hκn) (32)
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Supplementary Figure 1. a: Sensorgram of DNA origami nanostructure binding to chip in SPR response units
(RU). b: Sensorgram of antibodies binding to a 1 antigen structure proceeding the structure-binding phase in (a)
shown in SPR response units (RU). c: Calculated monovalent Rmax

Ab representing the number of RU corresponding
to 1 antibody bound to every structure for various instances of monovalent ODE model fits to experimental binding
data plotted against their corresponding structure binding signal RStruct and the linear fit used to estimate the
proportionality of the two variables. d: Demonstration of ODE model’s ability to predict Rmax

Ab , a point of saturation
that the monovalent system converges to as higher concentrations push more structures into the monovalently-bound
state. e: Experimental data (blue) and model (magenta) after normalization by Rmax

Ab , with the more useful units
of antibodies per structure (AB/struct) instead of RU.
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12 I. T. Hoffecker et al.

For each monovalent run (Fig 4.3 b) with a unique value of Rstruct, a projected value of RmaxAb is
computed with Equation 25. This enables us to make a standard curve to adjust RmonoAb according to
Rstruct in the absence of a 1-1 RmaxAb (Fig 4.3 c). This is possible because parameterization of the monovalent
models by determining their rate constants enables computational prediction of RmaxAb (Fig 4.3 d) in the
absence of experimental saturation. We use this value as a conversion factor, enabling us to convert SPR
response units into the number of antibodies per structure (Fig 4.3 e). By knowing Rstruct, we can estimate
this conversion factor for non-trivial antigen configurations where the multivalence influences the ease of
reaching a saturation value corresponding to RmaxAb .

4.4 Equilibrium characterization with dissociation constants

The equilibrium dissociation constant concisely describes the relationship between analyte and ligand, and
provides a good basis for comparison bewteen systems across experimental conditions in which dynamic
behavior can vary significantly. Given a model of the process, we can derive a formula for the equilibrium
dissociation constant by solving the system of equations. For a 1-1 process we have

At steady state:

dRAb
dt

= 0 (33)

k1cAbR
max
Ab = k1cAbRAbeq + k−1RAbeq (34)

rearranging yields
k1cAbRAbmax = (k1cAb + k−1)RAbeq (35)

and

RAbeq

(
k1

k−1
cAb + 1

)
=

k1

k−1
cAbR

max
Ab (36)

For a 1-1 monovalent model, the dissociation constant is

KD =
k−1

k1
(37)

thus, at equilibrium, the SPR signal is

RAbeq =
cAbR

max
Ab

KD + cAb
(38)

Empirical measurement of the dissociation constant is obtained by determining the equilibrium binding
signals at multiple concentrations and fitting the linearized form of Equation 38 or

1

RAbeq
=

KD

cAbRmaxAb

+
1

RmaxAb

(39)

The equilibrium dissociation constant is a good descriptive parameter which captures the essential
dynamics concisely.

From the dissociation constant, we know the occupancy: and the corresponding occupancy is

Ωeq =
RAbeq

RmaxAb

=
cAb

KD + cAb
(40)

Such a concise description is desireable for complex structures as well. However difficulty arises in the
case of multivalent structures which no longer exhibit simple 1-1 dynamics. One approach is to simply
approximate the dynamics with a 1-1 model and obtain an apparent dissociation constant.

For the only modestly more complicated bivalent system, we can derive the relationship between an
apparent dissociation constant and a complete model with two dissociation constants to describe the
multiple processes taking place.
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The geometric determinants of programmed antibody migration and binding on multi-antigen substrates 13

In the case of the 2-antigen structure, there are N = 5 total states, corresponding to an empty structure
(σ ), two states with 1 monovalently occupied antigen each (σAb and σ Ab), one state with both antigens
bivalently occupied by one antibody (σ.Ab.), and a state with both antigens monovalently occupied by
antibodies (σAbAb).

First, the reaction system can be represented according to the diagram in Figure 1 from the main text
or the set of reactions below:

σ ,
cAbk1−−−−⇀↽−−−−
k−1

σAb, ;σ ,
cAbk1−−−−⇀↽−−−−
k−1

σ ,Ab (41)

σAb,
cAbk1−−−−⇀↽−−−−
k−1

σAb,Ab;σ ,Ab
cAbk1−−−−⇀↽−−−−
k−1

σAb,Ab (42)

σAb,
k2−−⇀↽−−
k−2

σ.Ab.;σ ,Ab
k2−−⇀↽−−
k−2

σ.Ab. (43)

We have two dissociation constants respectively for the processes of monovalent binding and bivalent
interconversion.

KD1 =
k−1

k1
(44)

KD2 =
k−2

k2
(45)

The system can be represented with a system of differential equations:

dpσ
dt

= −2cAbk1pσ + k−1pσAb
+ k−1pσ Ab

(46)

dpσAb

dt
= cAbk1pσ − cAbk1pσAb

− k2pσAb
− k−1pσAb

+ k−1pσAbAb
+ k−2pσ.Ab.

(47)

dpσ Ab

dt
= cAbk1pσ − cAbk1pσ Ab

− k2pσ Ab
− k−1pσ Ab

+ k−1pσAbAb
+ k−2pσ.Ab.

(48)

dpσ.Ab.

dt
= k2pσAb

+ k2pσ Ab
− 2k−2pσ.Ab.

(49)

dpσAbAb

dt
= cAbk1pσAb

+ cAbk1pσ Ab
− 2k−1pσAbAb

(50)

where pσ pσAb
pσ Ab

pσ.Ab.
pσAbAb

the probabilities of each of the five states in the bivalent systems,
subject to the normalization condition:

pσ + pσAb
+ pσ Ab

+ pσ.Ab.
+ pσAbAb

= 1 (51)

Given knowledge of the constituent equilibrium constants, we can in the simple case of the bivalent
system, solve for the apparent dissociation constant as a function of the microconstants. This is, in effect,
specifying a certain equilbrium value predicted on the basis of the complete bivalent model, and assuming
instead that it is the result of 1-1 kinetics. However for multiple concentrations, the equilibrium will not
shift proportionately, thus the apparent binding constant is a function of the concentration from which the
equilibrium value is derived, making its value depent on the conditions rather than serving as a concise
description of the system as a whole.

The bivalent system has, at equilibrium, the condition that the rate of change of each of its states is
zero (

dσ

dt

)
eq

=

(
dσAb
dt

)
eq

=

(
dσ Ab

dt

)
eq

=

(
dσ.Ab.
dt

)
eq

=

(
dσAbAb
dt

)
eq

= 0 (52)
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14 I. T. Hoffecker et al.

This condition plus the normalization conditions allows us to solve for the equilibrium concentrations
of each of the species in terms of rate constants and the fixed solution concentration of analyte antibody.

peqσ =
k2
−1k−2

c2Abk
2
1k−2 + cAbk1k2k−1 + 2cAbk1k−1k−2 + k2

−1k−2
(53)

peqσAb
=

cAbk1k−1k−2

c2Abk
2
1k−2 + cAbk1k2k−1 + 2cAbk1k−1k−2 + k2

−1k−2
(54)

peqσ Ab
=

cAbk1k−1k−2

c2Abk
2
1k−2 + cAbk1k2k−1 + 2cAbk1k−1k−2 + k2

−1k−2
(55)

peqσ.Ab.
=

cAbk1k2k−1

c2Abk
2
1k−2 + cAbk1k2k−1 + 2cAbk1k−1k−2 + k2

−1k−2
(56)

peqσAbAb
=

c2Abk
2
1k−2

c2Abk
2
1k−2 + cAbk1k2k−1 + 2cAbk1k−1k−2 + k2

−1k−2
(57)

We can combine states according to their correponding occupancy - i.e. the number of antibodies that
the state contributes to the overall signal due to bound antibody, where

pσ + pσAb
+ pσ Ab

+ pσ.Ab.
+ pσAbAb

= 1 (58)

The probabilistic definition of occupancy is the expectation value of state occupancy. Each state has a
corresponding integer occupancy associated with the number of antibodies bound to the structure in that
state as well as a respective probability of that state at any point in time. The equilibrium occupancy is
thus the average occupancy of all the states weighted by their equilibrium probabilities.

Ωeq =
N∑
i=1

pσi
ωσi

= peqσ · 0 + (peqσAb
+ peqσ Ab

+ peqσ.Ab.
) · 1 + peqσAbAb

· 2 (59)

substituting Equations 53 through 57, we arrive at

Ωeq =
cabk1 (2cabk1k−2 + k−1 (k2 + 2k−2))

c2abk
2
1k−2 + cabk1k2k−1 + 2cabk1k−1k−2 + k2

−1k−2
(60)

4.5 Apparent dissociation constant

Taking the 2-antigen system equilibrium occupancy from Equation 60 and applying it to the equilibrium
occupancy in terms of the 1-1 dissociation constant Equation 40 can be used to solve for an apparent
equilibrium dissociation constant of the form

KDapp =
cAb(1−Ωeq)

Ωeq
=

k−2

(
k2
−1 − c2abk2

1

)
k1 (2cabk1k−2 + k2k−1 + 2k−1k−2)

(61)

This constant is a value that would be obtained from a 1-1 fit to an equilibrium SPR value that arose
from the 2-antigen kinetics. Rearranging and substituting Equations 44 and 45 into Equation 61, the
formula simplifies to

KDapp =
−KD2(c2Ab −K2

D1)

2cAbKD2 +KD1 + 2KD1KD2
(62)

which we may note is a function of concentration, and which has a root at the critical value when
cAbK

2
D2 = K2

D1, i.e. the point at which average equilibrium occupancy greater than 1 is expected in the
2-antigen system, and rendering impossible any 1-1 kinetic description.

Rearrangement of Equation 62 enables us to determine the interconversion constant from an apparent
dissociation constant provided that we know the monovalent binding constant.
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Supplementary Figure 2. Log-log (base 10) plot of the apparent dissociation constant as a function of
concentration represented as a fraction of the monovalent dissociation constant. For concentrations approaching
that of the monovalent dissociation constant, the apparent binding constant changes significantly, whereas low
concentrations lead to less concentration dependence.

KD2 =
KDappKD1

−c2Ab +K2
D1 − 2KDappcAb − 2KDappKD1

(63)

At concentrations where cAb � KD1, the relationship between K2
D2 and K2

Dapp is relatively constant
(Fig 2). Note that this is only valid for PSPR data with a 2-antigen topology of a single separation distance.

4.6 Mathematical description of spatial tolerance

Spatial tolerance refers the favorability of bivalent antibody binding according to the spatial distribution
of the 2 adjoining antigens. Some antibodies stretch and compress more than others leading to a greater
chance of entering and remaining in a bivalent state. In our model, we propose that the monovalent
binding step occurs separately from the bivalent binding step, and that it is purely dependent on the
solution phase concentration and the epitope-paratope binding affinity. Spatial tolerance therefore is a
property of the interconversion step from monovalent to bivalent states and the reverse process from
bivalent back to monovalent. For antigens separated by very small distances, electrostatic repulsion in
response to compression and steric hindrance within the IgG molecule occurs, penalizing conversion to
bivalent binding and/or favoring unbinding back to monovalent states. Conversely, at larger separation
distances, the molecule must stretch to accomodate the gap, again penalizing conversion to bivalence
and/or favoring conversion back to monovalence.

Spatial tolerance is a description of the landscape of this tradeoff - the breadth of the favorable region
in between extremes that is conducive to bivalent binding, the sharpness and degree of symmetry of
the transitions to monovalent preference at close and far separations. We can model spatial tolerance
phenomenologically with an equation for determining the interconversion constant KD2 as a function of
the separation distance between two antigens x:

KD2 = KD2−tensile +KD2−compression, (64)

where KD2−compression (Fig 3 a) and KD2−tensile (Fig 3 b) are respectively exponential and logistic
terms. These model separately the decrease in interconversion due to tensile stretch of the molecule at
increasing distances and that due to the onset of exluded volume, electrostatic repulsion, or steric hindrance
caused by compression of the molecule to bridge close distances.
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16 I. T. Hoffecker et al.

Supplementary Figure 3. Measurment and modeling of spatial tolerance of antibody with increasing spatial
separation of 2 antigens. a: Exponential compression term of spatial tolerance plotted alone versus distance.
b: Sigmoidal tension term of spatial tolerance plotted alone versus distance. c: The spatial tolerance function,
experimental interconversion constant values (magenta) and the fitted spatial tolerance model (cyan) both plotted
against separation distance of two antigens. d: The apparent dissociation constant assuming 1-1 binding kinetics
for what is actually a 2-antigen bivalent system calculated from interconversion constant data on the basis of
equilibrium occupancy predicted by the bivalent model in terms of individual rate parameters.
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The tensile term is built from a logistic function and has the form:

KD2−tensile =
Kmax
D2

1 + e−αt(x−`t)
(65)

where Kmax
D2 is an upper limit of the value of KD2, αt is the logistic growth rate or steepness with

which the tensile penalty grows at increasing separation distances and has units of inverse length, and `t
is the value of the midpoint of the sigmoidal curve which can be thought of as a characteristic length that
defines the scale below which favorable interconversion will occur and above which the function approaches
minimal interconversion.

The exponential compressive term has the form:

KD2−compression = Kmax
D2 e−αc(x−`c), (66)

where αc is the exponential decay rate which has units of inverse length, and `c is another characteristic
length parameter with units of length. The model is subject to the constraint `c < `t.

The combined expression yields Equation 1 which predicts the interconversion constant as a function
of separation distance (Fig 3 c). This can be converted to an effective or apparent dissociation constant
as if a 1-1 model on the basis of the bivalent model’s prediction of equilibrium occupancy (Fig 3 d) - see
Section 4.5.

4.7 Markov model of arbitrary antigen pattern geometries

For the binding kinetics of multi-antigen patterns of systems of sizes on the order of 2-8 adjacent antigens,
we employ a fully enumerative Markov chain model based on a complete transfer matrix, i.e. all possible
states and transitions of the system. The antigen pattern itself is modeled as a discrete network of antigen
sites with a Euclidean distance matrix

D =


0 d1,2 d1,3 . . . d1,N

d2,1 0 d2,3 . . . d2,N

d3,1 d3,2 0 . . . d3,N

...
...

...
. . .

...
dN,1 dN,2 dN,3 . . . 0

 (67)

An adjacency matrix is formed by applying a critical distance cutoff to D, such that long range
interactions will be ignored, greatly reducing the number of states and transitions to enumerate.

Ai,j =

{
0 , if Di,j > dcrit

Di,j , if Di,j ≤ dcrit
(68)

A single state σi of the system is defined as a set of antigens, their status (empty, monovalently
occupied, bivalently occupied) and a pointer indicating of which bivalent-status antigens are linked to each
other. The state space of a system is the set of all states that a structure in the system can assume, i.e.
S := {σ0, σ1, . . . σN}. The set of states are thus all the possible configurations of empty, monovalently
bound, and bivalently bound antibodies given the constraints of the pattern geometry (Fig 4).

Each state is linked to adjacent states by elementary transitions, i.e. the change in status of individual
antibodies comprising the state. Those transitions are either the concentration-dependent addition or the
subtraction of a single antibody to the system via monovalent binding or unbinding:

σı
cAbk1−−−−⇀↽−−−−
k−1

σj (69)

or a bivalent interconversion event where a monovalently bound antibody binds to an adjacent antigen
site, changing its status to bivalently bound and vice versa:
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18 I. T. Hoffecker et al.

Supplementary Figure 4. Enumerated states for basic and arbitrary geometries. a: Dimensions of a basic bivalent
antigen pattern with 15 nm separation between antigens. b: The set of possible states for the basic bivalent geometry
with blue dots indicating monovalently bound antibodies, blue lines connecting two dots indicating a bivalently
bound antibody, and red dots indicating empty antigen sites. c: The dimensions of an arbitrary geometry, a
12 × 16 × 20 nm right triangle. d: The set of states corresponding to the right triangle geometry.
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σı
k2−−⇀↽−−
k−2

σj (70)

The system parameters are the set of zero order transition rates {r1 = cAbk1, r−1 = k−1, r2 = k2, r−2 =
k−2}. The multi-antigen-antibody system is thus fully described by the continuous time Markov model
(S,R) defined as its set of states and its corresponding transition rate matrix of the form:

R =

{
r(i, j) , if Ai,j > 0

0 , if Di,j = 0
(71)

Automated enumeration of states in systems of arbitrary antigen pattern geometry is accomplished
using an implementation of the breadth-first search (BFS) algorithm. The algorithm searches for edges
between adjacent states and assigns the appropriate elementary rate process. A queue of neighboring
states is made upon the visitation of any state. One-by-one, the algorithm visits each state in the queue,
populating it with additional states when they are discovered, and skipping the addition of states that
have already been visited. The algorithm thus is characterized by an initial expansion phase of the queue
followed by a systematic reduction of the queue until all states have been visited, and the queue becomes
empty. This exhaustive enumeration is deterministic, and enables us to assemble a complete transition
matrix regardless of antigen geometry. However as the number of adjacent antigens grows, the number
of combinations increases dramatically, thus for larger systems, a sampling based approach must be used
instead.

4.8 Transient (non-equilibrium) dynamics of enumerative PSPR models

The continuous time Markov model enables us to compute transient evolution of the system. The probability
distribution

p(t) =


p0(t)
p1(t)

...
pN (t)

 (72)

is a vector whose elements pi(t) are the probabilities of the respective system states σ0, σ1, . . . σN at
time t. A uniform probability distribution would, for example, represent equal probabilities of finding a
structure in any one of the possible states. Or another example is at the start of a single cycle kinetics
PSPR run, when the initial condition p(t0) is that of a distribution where p (t0) = 1 for the state σ
corresponding to an empty structure and pi(t0) = 0 for all other states.

The transient evolution of state probabilities is computed from an intitial condition using the linear
system of Chapman-Kolmogorov differential equations:

p(t+∆t) = p(t) ·Q (73)

making use of an infinitessimal generator matrix Q which is obtained from the rate matrix and used
to determine the relative rates at which state probabilities change with incremental time.

Qi,j =

Ri,j , for i 6= j

−
∑
i 6=j

Ri,j , for i = j (74)

The infinitessimal generator is then used to compute the change in state probability distribution going
from one time point to the next by the matrix exponential formula:

p(t+∆t) = p(t) · eQ·∆t = p(t)
∞∑
η=0

(Q ·∆t)η

η!
(75)
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where η is the computation’s depth of recursion - the higher the more accurate, and ∆t is an incremental
advancement in time. Due to numerical instability of this solution, we employ the uniformized discrete
time Markov chain method of Fox and Glynn in order to stably compute Equation 75 [4]. The continuous
Markov model (S,R) is approximated by a discrete model (S,U) by renormalizing the generator matrix
with respect to the fastest outgoing rate or the uniformization rate q:

U := I +
Q

q
, q ≥ maxi{|Qi,i|} (76)

where I is the identity matrix. Equation 75 becomes the approximation

p(t+∆t) = p(t) · eQ·∆t = p(t) · eq(U−I)·∆t = p(t) · eqU∆te−qI∆t = p(t)e−q∆t · eqU∆t (77)

The matrix exponential is then approximated with the following Taylor series expansion:

p(t+∆t) = p(t) · eq∆t ·
∞∑
η=0

(q∆tU)η

η!
=
∞∑
η=0

e−q∆t(q∆t)η

η!
· p(t) ·Uη (78)

Using Equation 78, we can stably compute the transient evolution of a system from an initial condition.
The system entropy can by computed by

S = −kB
∑
σi∈S

pi(t) ln(pi(t)) (79)

4.9 Fitting continuous time Markov models to PSPR data using autocorrelation of
residuals

Using Equation 78 to compute the transient probability distribution of the system, we are able to also
compute the occupancy at each time point using the definition from Equation 11. The system occupancy
is thus a function of time of the form

Ω(t) =
N∑
i=1

pi(t)ωi (80)

The continuous time Markov model is fitted to experimental data by comparing occupancies computed
on the basis of Equations 78 and 80 with that of occupancy computed from normalizing PSPR data via
Equation 27 and we can see that the theoretical curve either correctly or incorrectly fits the experimental
data depending on the parameterization (Fig 5 a and Fig 6 a). Residuals (Fig 5 b and Fig 6 b) are computed
by

e(t) = Ω(RAb)−Ω(t, S,U) (81)

While fitting by minimizing the sum of squared residuals can be used to obtain acceptable model
parameterizations, we used residual analysis with autocorrelation to improve the robustness of fitting and
reduce systematic mis-parameterization by making fits more sensitive to divergence in curve shapes. We
compute an absolute, average autocorrelation over a fixed interval k∆t with k = 50 by :

ρe,e(t, t+ k∆t) =

√
(
∑
k e · |~v|)2

k
(82)

where e(t, k) = [e(t), e(t + ∆t), . . . e(t + k∆t)], v = [0, 1, . . . k], and |v| is the conjugate of v. The
objective function numerically minimized min(E) to obtain fits to experimental PSPR data is then the
sum squared residual vector weighted by its autocorrelation vector:

E =

tf−k+1∑
t=0

ρe,e(t, t+ k)
√
e(t)2 (83)

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.10.12.336164doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.12.336164
http://creativecommons.org/licenses/by-nd/4.0/


The geometric determinants of programmed antibody migration and binding on multi-antigen substrates 21

Supplementary Figure 5. Example of a well-parameterized bivalent model, with strong agreement between
experimental and theoretical occupancy. a: Markov model (magenta) prediction of average occupancy (antibodies
per structure) superimposed on experimental PSPR binding data for a 2 antigen pattern (blue). b: Residuals
comparing the theoretical and experimental curves in a. c: Residuals from b weighted by autocorrelation.

Supplementary Figure 6. Example of a misparameterized bivalent model with visual misalignment between
theoretical and experimental occupancy curves and corresponding divergence of residuals. a: Markov model
(magenta) prediction of average occupancy (antibodies per structure) superimposed on experimental PSPR binding
data for a 2 antigen pattern (blue). b: Residuals comparing the theoretical and experimental curves in a. c: Residuals
from b weighted by autocorrelation.
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This provides an error function sensitive to sustained divergence of model and experimental data (Fig 6
c) even if the two curves cross paths, and like summing the residuals provides a low value when alignment
is good (Fig 5 c).

Supplementary Figure 7. a: Matrix depicting the sum of residuals (color map) for Markov models parameterized
on experimental binding data from antigen patterns on the vertical axis (training dataset) and performance-tested
against other patterns (test dataset). b: Same as (a) except that colormap indicates the residuals weighted by their
autocorrelations.

We performed cross validation of Markov model fitting by parameterizing based on experimental data
from various antigen patterns (all with fixed nearest-neighbor separation distances between antigens to
remove the complication of separation distance dependence of the binding kinetics). The rate parameters
derived from these training data were then fixed and the model was applied to other patterns as a limited
test of extrapolation of a parameterized model to different antigen pattern geometries. Absolute sums of
residuals (Fig 7 a) and absolute sums of residuals weighted by autocorrelation (Fig 7 b) show that the
best-performing models were the those that are the most complex and exhibiting bivalence such as the
hexagonal and pentagonal configurations in the last two rows. This suggests that downward extrapolation
in pattern complexity is more viable than upward.

4.10 Determination of thermodynamic properties

We can obtain equilibrium probabilities from the uniformized CTMC first by simulation out to long time
scales at fixed solution concentration until probabilities cease to change:

p∗ = lim
t→∞

p(t),

(
d

dt
p(t)

)
cAb

= 0 (84)

We can determine the steady state probability distribution more expediently on the basis of the
infinitessimal generator matrix, Equation 74, solving numerically for the probability distribution which,
when multiplied with the generator matrix produces a vector of zeros, meaning that there is zero change
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from one moment to the next, subject to the normalization condition whereby all probabilities must sum
to 1. I.e. the steady state probability distribution is the solution to the matrix equation

p ·Q = 0,
∑
σi∈S

pi = 1 (85)

The multi-antigen structure in the context of a PSPR experiment is an open system, freely allowed
to exchange particles with the large external reservoire connected to it. With (T, V, cAb) held constant,
the system (an antigen patterned structure) will approach a minimum free energy at steady state by
exchanging antibodies with the bath, obeying the Boltzmann distribution law

p∗i =
e−Ei/kBT∑

σi∈S
e−Ei/kBT

=
e−Ei/kBT

Z
(86)

where Z is a grand canonical partition function which predicts equilibrium at a grand potential free
energy minimum dΦ(T, V, µAb) = 0 with chemical potential µAb = −kbT ln cAb, and Eipi = µAb +
µmononmono +µbivnbiv are state energies determined by the environmental potential due to solution phase
antibody concentration as well as the individual potentials of antibody monovalent and bivalent bonds
populating the state, nmono monovalent bonds and nbiv bivalent bonds with respective chemical potentials
µmono and µbiv. The value of Z and the state energies are solved numerically for a given steady state
probability distribution, making it possible for us to determine thermodynamic quantities.

We can obtain thermodynamic quantities such as the solution concentration dependent equilibrium
grand potential free energy via:

Φ∗ = −kBT lnZ (87)

The equilibrium probabilities enable us to calculate relative potential differences via

p∗i
p∗j

= e−(Ei−Ej)/kBT (88)

This makes it possible to compute chemical potentials of monovalent and bivalent bonds, for example
from the basic 2-antigen system of a fixed separation, by comparing equilibrium probabilities in states that
differ by exactly 1 bond of a given type. This is equivalent to obtaining the change in free energy via the
dissociation constant for that process.

µ0−1 = Emono−Eempty =

(
∂Φ

∂Nmono

)
T,P,Nbiv

= −kBT ln

∑
nmono

p∗mono∑
nempty

p∗empty
+kBT ln cAb = −kBT ln

nmono
nemptyKD1

(89)

µ1−2 = Ebiv − Emono =

(
∂Φ

∂Nbiv

)
T,P,Nempty

= −kBT ln

∑
nbiv

p∗biv∑
nmono

p∗mono
= −kBT ln

nbiv
nmonoKD2

(90)

where nempty, nmono, and nbiv are the respective degeneracies of empty, monovalently 1-occupied,
and bivalently 1-occupied states. For the 2 antigen system, these values are respectively 1, 2, and 1. For
the rabbit IgG, anti-digoxygen model and a separation distance of 15 nm, the chemical potentials are
µ0−1 = 1.805× 10−20 J / particle and µ1−2 = 8.889× 10−21 J/particle.

We can also obtain a stand-alone bivalent binding chemical potential such that talleying the number
of monovalent and bivalent molecules in a state would yield the potential of that state.
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µ0−2 = Ebiv − Eempty = µ0−1 + µ1−2 =

(
∂Φ

∂Nbiv

)
T,P,Nmono

= −kBT ln

∑
nbiv

p∗biv

p∗empty
+ kBT ln cAb (91)

This gives us µ0−2 = 2.693×10−20 J / particle for the 15 nm separation. By this method, the distance-
dependent KD2 model of Equation 1 can be converted to a chemical potential curve.

4.11 Markov chain Monte Carlo version of model

Systems with larger numbers of bivalent connections have many states and transitions, and the fully
enumerative CTMC does not scale well. For these systems, we use a Markov Chain Monte Carlo (MCMC)
sampling approach whereby only local states are computed throughout the trajectory of a single system.
Multiple trajectories are sampled to approach and approximate the probability distributions that would
otherwise be computed exactly for the enumerative method. Instead of computing the flux in state
probabilities over fixed intervals of time, we instead computing Poisson intervals (dwell times) of states
according to the rates of processes that each state is subject to.

5 Experimental Methods

The experimental data used in this work was presented previously as supplementary control data in [11]
and was not analyzed further than a basic fitting to a standard 1-1 model. In the current work, we have
used the data to develop a more accurate mechanistic model, a pipeline for constructing such models from a
minimal dataset, an in-depth physical characterization framework, and de novo simulation that go beyond
previous work.

5.1 Reagents

Oligonucleotides (unmodified and digoxigenin-modified) were purchased from IDT (Belgium) in 96-well
plates format. Chemicals (NaCl, KCl, MgCl2, Tris-HCl, EDTA, PEG800, NaOH, KOAc, KOH, NaOAc) for
buffer preparation were purchased from Sigma-Aldrich. Streptavidin was purchased from Sigma-Aldrich.
Phosphate-buffered saline 1M stock solution was purchased from Sigma-Aldrich. BIAcore consumables
(CM3 sensor chip, HBS-EP running buffer) were purchased from GE Healthcare. Amicon centrifugal filters
with 100 kDa MWCO were purchased from Merk Millipore.

5.2 Origami design and production

The 18-helix bundle DNA origami nanotube was designed with caDNAno[?], using the honeycomb lattice.
This structure has been characterized earlier[11, ?,?,?]. In short: the p7560 scaffold was extracted from M13
phage, and the 18-helix bundle DNA nanotube was folded under the following condition: 20 nM scaffold,
100 nM each staple oligonucleotide, 13 mM MgCl2, 5 mM Tris pH 8.5, 1 mM EDTA. The mixture was
subjected to heat denaturation at 80◦C for 5 min followed by a slow cooling ramp from 80◦C to 60◦C over
20 min and 60◦C to 24◦C over 14 hr. The excess staples were removed by ultrafiltration with Amicon 100
kDa MWCO filters. The wash buffer used was 1× PBS supplemented with 10 mM MgCl2.

5.3 Pattern surface plasmon resonance protocol

The BIAcore t200 instrument from GE Healthcare was used for surface plasmon resonance experiments.
The running buffer used in all experiments is HBS-EP supplemented with 10 mM MgCl2. The flowrate
used for all kinetic experiments is 30 µl/min . Streptavidin was diluted to a final concentration of 10 µg/ml
in 10 mM NaOAc pH 4.5 and chemically attached to the CM3 sensor chip with NHS/EDC coupling, using
the standard protocol from GE Healthcare. Anchor oligonucleotides containing a 3’ biotin modification
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were diluted to 200 nM in 1× HBS-EP running buffer and was injected over the surface for 20 min followed
by washing of nonspecifically bound oligos by injecting 50 mM NaOH for 5 mins. The DNA nanostructures
were diluted to 5 nM and injected over the surface for 20 mins followed by washing with running buffer
for 10 mins. Antibodies were diluted to various concentration in running buffer ranging from 0.025 nM to
0.5 nM. The single cycle kinetics injection method was used to sequentially inject the antibody solution
over the surface, started from the lowest concentration, the contact time for each concentration is 5 min.
After the final antibody injection, the dissociation curve was recorded for 15 min. The immobilized DNA
nanostructures and bound antibodies were removed from the surface by injecting 50 mM NaOH for 5 mins
and then the surface is ready for the next round of experiment. The t200 evaluation software was used
initially to fit the acquired data, for this we used a 1:1 Langmiur binding model to fit the data and estimate
the ka, kd, KD and antibody binding capacity.
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