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Abstract 

Genome-wide association studies (GWAS) have discovered 27 loci associated with glioma risk. 

Whether these loci are causally implicated in glioma risk, and how risk differs across tissues, has yet 

to be systematically explored.  

We integrated multi-tissue expression quantitative trait loci (eQTLs) and glioma GWAS data using a 

combined Mendelian randomisation (MR) and colocalisation approach. We investigated how 

genetically predicted gene expression affects risk across tissue type (brain, estimated effective 

n=1,194 and whole blood, n=31,684) and glioma subtype (all glioma (7,400 cases, 8,257 controls) 

glioblastoma (GBM, 3,112 cases) and non-GBM gliomas (2,411 cases)). We also leveraged tissue-

specific eQTLs collected from 13 brain tissues (n=114 to 209). 

The MR and colocalisation results suggested that genetically predicted increased gene expression of 

12 genes were associated with glioma, GBM and/or non-GBM risk, three of which are novel glioma 

susceptibility genes (RETREG2/FAM134A, FAM178B and MVB12B/FAM125B). The effect of gene 

expression appears to be relatively consistent across glioma subtype diagnoses. Examining how risk 

differed across 13 brain tissues highlighted five candidate tissues (cerebellum, cortex, and the 

putamen, nucleus accumbens and caudate basal ganglia) and four previously implicated genes (JAK1, 

STMN3, PICK1 and EGFR).  

These analyses identified robust causal evidence for 12 genes and glioma risk, three of which are 

novel. The correlation of MR estimates in brain and blood are consistently low which suggested that 

tissue specificity needs to be carefully considered for glioma. Our results have implicated genes yet 
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to be associated with glioma susceptibility and provided insight into putatively causal pathways for 

glioma risk. 

Introduction 

Gliomas are the largest group of intrinsic brain tumours, with age-adjusted incidence rates ranging 

from 4.67 to 5.73 per 100,000 [1]. Furthermore, malignant gliomas cause significant years of life lost 

compared with other cancer types – about 20 years of life lost on average – due to late diagnosis 

and poor treatment outcomes [2]. Broadly, gliomas can be subclassified as glioblastoma (GBM, 

World Health Organisation (WHO) grade IV), which are the most aggressive subtype with a relatively 

short clinical overall survival, and what is termed non-GBM, lower-grade WHO grade II and III 

gliomas which have longer survival times. This lower-grade glioma group has not been precisely 

defined in our dataset but may be presumed to include mostly diffuse astrocytoma, anaplastic 

astrocytoma, oligodendroglioma and anaplastic oligodendroglioma. To date, there are only two 

broadly accepted risk factors for glioma. The first, exposure to ionising radiation, accounts for only a 

small portion of cases [3]. The second includes rare heritable genetic factors. The latest glioma 

genome-wide association study (GWAS) identified 27 loci that are associated with glioma risk, but it 

is estimated that we have uncovered only about a third of the risk posed by familial or inheritable 

factors (27% for GBM and 37% for non-GBM) [4], indicating a large portion of genetic glioma risk is 

still to be uncovered. 

Investigating and understanding how genes are differentially expressed in tumour subtypes has led 

to a better understanding of gliomagenesis through potentially related mechanisms and pathways 

and has also improved clinical outcomes for patients due to differential treatments. Previous studies 

have shown that genes are differentially expressed in glioma dependent on subtype [5-10]. 

Furthermore, gene expression profiling was proposed as a better method of diagnosis over the 

previous clinical practice of histological grading because classification based on gene expression 

seemed to better predict for survival [6, 8, 11]. In 2016, the WHO classification for central nervous 
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system tumours updated their diagnostic rubric to include analysis of the tumour genome [12]. It is 

likely that in the latest WHO guidelines, which at the time of writing are undergoing consultation, 

will still include genetic diagnostic and prognostic biomarkers to inform glioma classification and 

outcome [13]. Whilst including genetic factors into the classification criteria has seen measurable 

benefits for patients, functional studies have been limited and it is not known if certain mutations 

are merely correlated with gliomagenesis and subtype differentiation or play a causal role in risk. 

How genetic markers differ by subtype diagnosis is therefore important both to elucidating 

mechanisms of glioma risk and development, and to further improve clinical outcomes for patients. 

In this study, we utilise Mendelian randomisation (MR) – an established instrumental variable 

method – to assess the causal relationship between genetically predicted gene expression on glioma 

subtype risk [14]. MR suffers less from biases, such as reverse causation and confounding, that 

invariably limit causal inference in traditional epidemiological studies [14, 15]. Colocalisation is a 

complementary statistical method that can identify putative causal genetic variants shared by two 

traits [16]. It provides orthogonal evidence of causality and strengthens MR findings where 

genetically predicted gene expression affects glioma subtype risk. Integrating MR analyses with 

expression data from brain tissues provides insight into how tissue-specific gene expression may 

differentially alter glioma risk across the brain. These data are linked to eQTLs derived from blood to 

determine how the risk profile for glioma differs between brain tissue and whole blood. 

Methods 

Data 

We used summary-level data from different GWAS to compare eQTLs from brain tissue (estimated 

effective n = 1,194) [17] and from whole blood (n = 31,684) [18]. Our analysis involved a two-sample 

MR framework, whereby the exposure and outcome data comprise independent populations, to 

estimate the causal effect of gene expression variation on glioma risk (based on subtype diagnoses 

of all glioma, GBM and non-GBM). In follow-up sensitivity analyses, we used eQTLs from Genotype-
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Tissue Expression version 8 (GTEx v8, https://gtexportal.org/home/ [19]) (n = 114 to 209) [20] to 

examine tissue-specific effects of gene expression. Table 1 summarises the datasets used in this 

analysis. The glioma data were based on a meta-analysis of three glioma GWAS consisting of 7,400 

glioma cases and 8,257 controls (Glioma International Case-Control Study (GICC), MD Anderson 

Study (MDA) and GliomaScan datasets [4]). These include 3,112 GBM cases and 2,411 non-GBM 

cases – the remaining 1,877 glioma cases did not have subtype diagnosis available. 

Instrument Selection 

We constructed instruments from each dataset (Table 1) using independent (r2 < 0.01) SNPs that 

met genome-wide significance (P < 5.00x10-8) . We pre-specified that results must meet a strict 

Bonferroni-corrected P value threshold of 7.30x10-6 (0.05 / 6,849, the number of tests ran) or a 

suggestive P value threshold of 9.49x10-5 (0.05 / 6,849, multiplied by 13 for each tissue type). eQTLs 

were categorised based on whether they were cis-acting or trans-acting, defined as SNPs within and 

without a 1Mbp window of the gene regulatory region, respectively. We included only cis-acting 

eQTLs in our analysis as trans-acting eQTLs are more prone to horizontal pleiotropy due to their 

distal nature on the genome.  

Identifying the Causal Effects of Genetically Predicted Gene Expression on 

Glioma Risk 

For the main MR analysis, we applied two-sample MR to estimate the causal relationship between 

eQTLs and glioma using the MR-Base R package [21]. Most (86%) of tests consisted of the Wald ratio 

MR method as many eQTLs were instrumented by a single SNP; eQTLs that were instrumented by 

multiple SNPs were analysed using the inverse variance weighted (IVW) method. We obtained MR 

results associated with all glioma, GBM and non-GBM risk. Each eQTL that met at least the 

suggestive P value threshold (P < 9.49x10-5) had a region of ±500Kbp around the instrumented 

SNP(s) extracted, which was subjected to a conditional analysis using Conditional and Joint analysis 

(GCTA-COJO) [22] to ensure only independent signals within the region remained before 
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colocalisation using the coloc R package [16]. The coloc package provides estimates for five 

hypotheses related to whether a single causal variant is shared between two traits. The final 

hypothesis, H4, indicates the percentage chance the tested variant is causal and shared between 

both traits. Throughout we provide the colocalisation estimates in regard to the H4 hypothesis as this 

is the only estimate required for our analyses. Further details about the coloc R package are given by 

Giambartolomei, et al. [16].  

Finally, we also applied the Steiger filtering method to ensure results were not distorted due to the 

presence of reverse causation [23]. Results from the Steiger filtering analysis are presented as a 

categorical variable to aid comprehension: true, if the direction of effect is from exposure to 

outcome and P < 0.05; false, if the direction of effect is reversed and P < 0.05; uncertain if P ≥ 0.05.   

Examining Tissue-Specific Effects of Gene Expression on Glioma Risk 

We included each MR association which passed the suggestive P value threshold (P < 9.49x10
-5

) in a 

follow-up sensitivity analysis to examine tissue-specific effects of gene expression on all glioma, 

GBM and non-GBM risk. Genes were systematically mapped to relative genes across 13 brain tissues 

from GTEx v8 based on Ensembl IDs (ENSG). We selected instruments from independent (r
2
 < 0.01) 

SNPs that met a lenient threshold (P < 5.00x10-4) to ensure a greater chance that there will be an 

eQTL for each tissue type. This threshold should be viewed as enabling a heuristic approach to the 

tissue-specific analyses by allowing for more genes to be instrumented in different tissues [24]. Only 

cis-acting eQTLs were included to avoid potentially pleiotropic trans-acting eQTLs. We analysed 

these data using the MR-Base R package and compared the magnitude and direction of the effect 

estimate across tissue types and subtype diagnosis.  

To ascertain whether tissue-specific gene expression differentially altered risk of glioma, GBM and 

non-GBM, we conducted heterogeneity analyses using Cochran’s Q test. We also calculated the tau-

score, a quantitative measure of tissue-specificity derived by Kryuchkova-Mostacci and Robinson-

Rechavi [25]. This method can be naively summarised as summing the weighting of a gene’s 
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expression in a single tissue against the maximum expression over all tissues. The tau-score will 

range between 0 and 1, where 0 means the gene is broadly expressed and 1 means specific 

expression; in their paper, Kryuchkova-Mostacci and Robinson-Rechavi define a threshold cut-off for 

specific expression at 0.8 which we also use [25]. Finally, we constructed Z-scores for each SNP to 

determine which SNPs in which tissues may be driving heterogeneity in the results. 

We hypothesised that due to the presence of the blood-brain barrier, brain-based eQTLs and blood-

based eQTLs should have little correlation with one another. We systematically linked causal 

estimates for eQTLs that appeared in both brain tissue and blood. We then compare these data to 

determine whether blood-based eQTLs were correlated with brain-based eQTLs and whether easier-

to-gather blood data could proxy sufficiently for brain data. 

Results  

In total, our MR analysis of brain and blood eQTLs identified 34 associations that met at least the 

suggestive P value threshold (P < 9.49x10-5) for 17 genes associated with risk of glioma, GBM or non-

GBM (Figure 1). Altogether, six genes were instrumented by eQTLs in blood and 12 genes had eQTLs 

from brain tissue – one gene, JAK1, had an associated eQTL in both brain and blood. We found that 

20 associations had strong evidence (H4 ≥ 80%, see Methods for explanation) of colocalisation. 

Steiger filtering revealed the direction of the causal estimate was correctly orientated from gene 

expression to subtype diagnosis in 29 associations; the remaining five showed an uncertain result 

due to the P value for Steiger filtering not reaching 0.05. Overall, 17 tissue-subtype associations for 

12 genes showed robust causal evidence from the MR and colocalisation analyses and passed the 

Steiger filtering analysis. These 17 associations and 12 genes formed our main results and were 

subjected to the tissue-specific analyses. Results are presented in Table 2 (with further details in 

Supplementary Table 1). 

Comparing our results with previously identified GWAS associations (noted in a review conducted by 

Kinnersley, et al. [26]) revealed that RETREG2 (FAM134A), FAM178B and MVB12B (FAM125B) are 
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putative novel genes implicated in glioma risk that are not also located on a known glioma risk locus 

and formed part of our main results. The remaining results have been previously implicated in 

glioma risk through GWAS associations or are located on a known susceptibility locus. 

Figure 2 shows the MR effect estimates for each of the 12 genes and all glioma, GBM and non-GBM 

subtypes. The direction and magnitude of the estimated causal effect broadly agreed across all 

genes and subtypes. However, the non-GBM results were noticeably attenuated, for example, in the 

case of JAK1.  

To examine how tissue-specific gene expression affected glioma risk, the 12 genes which formed our 

main results were systematically linked to eQTLs across 13 brain tissues using GTEx v8. The effects of 

tissue-specific expression of most genes were assessed using MR in 8 to 13 tissues (mean = 10 

tissues) except for ABCB6, which had data in four tissues (Supplementary Table 2). Full results for 

the tissue-specific MR analysis are in Supplementary Table 3a. These results broadly agreed with the 

main MR analysis, though results were attenuated due to the smaller sample sizes present in the 

GTEx v8 dataset. Applying the same threshold for the discovery MR analysis (P < 7.30x10
-6

) revealed 

that 56% of the results arise in five tissues: putamen (basal ganglia) (12%), cortex (11%), cerebellum 

(11%), caudate (basal ganglia) (11%) and nucleus accumbens (basal ganglia) (11%) (Supplementary 

Table 3b). Furthermore, 100% of these results arose due to four genes: STMN3 (32%), EGFR (26%), 

PICK1 (23%) and JAK1 (18%) (Supplementary Table 3c). 

Two tissue-specific results showed evidence of high heterogeneity. These were EGFR for all glioma 

(Cochran’s Q = 155.96, P = 1.72x10-28) and GBM (Cochran’s Q = 162.38, P = 3.49x10-27) subtype 

analyses (Supplementary Table 4). Examination of the EGFR SNPs’ Z-scores highlighted three tissues 

(hippocampus, hypothalamus and substantia nigra) whereby the effect of the instrumented SNP was 

in the opposite direction (positive Z-scores) compared to the remaining 10 SNPs in other tissues 

(negative Z-scores) (Supplementary Table 5). Only PICK1 showed potential tissue-specific expression 

with a tau-score of 0.78 (Supplementary Table 4). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.10.12.335661doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.12.335661
http://creativecommons.org/licenses/by-nd/4.0/


Finally, we compared effect estimates between of the estimated effects from the MR analysis of the 

same gene expressed in brain and blood tissues on glioma risk. We applied four P value thresholds (P 

< 0.1, 0.05, 0.01, 0.005) to examine whether the strength of the MR association influences the 

correlation between estimates in brain and blood tissues. Overall, we observed a low correlation 

between brain and blood eQTLs (Pearson correlation = 0.18, number of genes = 632) at the highest P 

value threshold (P < 0.1). After applying the more stringent threshold (P < 0.005), the correlation 

increased but remained low (Pearson correlation = 0.21, number of genes = 45). These results are 

shown in Figure 3. 

Discussion 

In this study, we combined MR and colocalisation analyses to estimate the genetically predicted 

gene expression on glioma risk which provided causal evidence for 12 genes. Three of these genes 

are novel in the context of glioma risk. Overall, these results were robust to sensitivity analyses, 

including Steiger filtering and tissue-specific analyses.  

RETREG2 (or FAM134A), FAM178B and MVB12B appear to be novel findings related to glioma risk. 

Reticulophagy Regulator Family Member 2 (RETREG2, FAM134A) is a protein-coding gene whose 

function is largely unknown. Examination of the Human Protein Atlas reveals that expression of 

RETREG2 RNA and protein is primarily located in the brain and testes, though tissue specificity is low 

[27]. Family with Sequence Similarity 178 Member B (FAM178B) is another protein-coding gene with 

an undocumented function. It is an important paralogue of gene SLF2 whose protein plays a role in 

the DNA damage response. Finally, Multivesicular Body Subunit 12B (MVB12B, FAM125B) is a 

regulator of vesicle trafficking and has been implicated in lipid and ubiquitin binding. Overexpression 

of this gene and its protein inhibits HIV-1 infectivity by regulating ESCRT (endosomal sorting complex 

required for transport-I)-mediated virus budding [28]. A 2014 study created a nine-gene-signature 

panel, which included MVB12B, that accurately predicted prognosis for glioma patients, further 
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implicating the gene’s role in glioma biology [29]. Further research into these genes is warranted to 

provide replication and to elucidate potential pathways by which these genes affect glioma risk. 

When considering differential risk across subtype diagnosis, our MR results showed agreement in 

the direction of effect for risk of all glioma, GBM and non-GBM. However, we also found that 

associations with non-GBM risk tended to be weaker in magnitude than associations with the other 

two subtypes of glioma and are generally attenuated. Case numbers are broadly similar – 3,112 GBM 

cases versus 2,411 non-GBM cases – but may still be underpowered in the non-GBM analysis. This is 

evidenced by the consistently larger P values for the MR results of the non-GBM analysis when 

compared to the GBM analysis. Whether this attenuation is due to the heterogeneous nature of 

brain tumours, or due to the lack of power in the subtype analysis, requires follow-up analyses in 

larger datasets. Overall, however, there is little evidence to conclude there exists a large difference 

in the gene expression risk profile of GBM and non-GBM tumours. Therefore, future studies in this 

area may seek to consolidate data independent of subtype diagnosis such that larger statistical 

power may be achieved. 

Gliomas may develop across the entirety of the central nervous system but are generally found in 

the cerebrum, particularly the frontal and temporal lobe, and less commonly in the cerebellum 

depending on the age of the patient [30]. We sought to determine how genetically predicted gene 

expression in the 13 brain tissue types collected by GTEx v8 [19] compared to the anatomical regions 

within which tumours are found. The 12 genes that formed our main results were matched to, on 

average, an eQTL in 10 brain tissues allowing for a broad investigation on how glioma risk is affected 

by gene expression in disparate tissues. Applying MR and a similar P value threshold (P < 7.30x10-6) 

revealed that 56% of the results that met that threshold arise in five of the 13 tissues. Two of these 

are common/uncommon tissues for glioma (cortex (11%), cerebellum (11%), respectively). The other 

three tissues were from the deep brain and are considered rarer locations for glioma (putamen 

(basal ganglia) (12%), caudate (basal ganglia) (11%) and nucleus accumbens (basal ganglia) (11%)) 
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(Supplementary Table 3b). These analyses provided evidence that gene expression in these five 

tissues potentially drives glioma risk and, owing to the diffusive nature of the tumours, are then 

found elsewhere in the brain. Furthermore, 100% of these results arose due to four genes: STMN3 

(32%), EGFR (26%), PICK1 (23%) and JAK1 (18%) (Supplementary Table 3c) highlighting these genes 

of high importance for follow-up studies. EGFR also showed high heterogeneity for all glioma and 

GBM subtypes risk, indicating gene expression in certain tissues may affect risk differently – for EGFR 

these were the hippocampus, hypothalamus and substantia nigra. However, our analyses showed 

little evidence of tissue-specific gene expression, with one gene showing suggestive evidence of 

tissue specificity (PICK1, tau-score = 0.78). Larger sample sizes will allow us to clarify exactly how 

gene expression across multiple tissues differentially affects glioma risk. Broadly we have shown in 

our analyses that gene expression across the entire brain, agnostic of tissue site, drives glioma risk as 

opposed to gene expression specific to certain tissues, though the same gene expressed in different 

tissues may differentially affect risk. 

We also investigated whether blood eQTLs, for which there are datasets of large sample sizes 

available, can proxy for relatively low powered brain tissue eQTLs. We compared how the MR effect 

estimates differed between eQTLs that were systematically linked between datasets. We found that 

even after applying an increasingly stringent P value threshold, there is little correlation between the 

MR associations for brain and blood in the context of glioma risk (Figure 2). We interpreted these 

results to mean that should gene expression in brain be associated with glioma risk, the same gene 

expression in blood cannot be assumed to also affect risk similarly; in some cases, the risk profile of 

genes expressed in brain and blood differed in direction of effect, e.g. STMN3 seems to increase risk 

when expressed in blood and decrease risk when expressed in brain. A potential avenue of future 

research is to determine why some genes, like STMN3, differentially affect risk depending if they are 

expressed in brain or blood. 
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Strengths of our analysis include the use of genetic variants that proxy for gene expression levels, 

which should reduce the influence of confounding and bias through reverse causation. Furthermore, 

these genetic variants were obtained from relatively large meta-analyses allowing for increased 

statistical power and more precise estimates. The addition of subtype diagnoses and tissue-specific 

data has allowed us to deeper investigate the risk profile of glioma. 

Our methodology is also a strength of our analysis. MR is less liable to sources of confounding and 

bias, and provides evidence of causal relationships between genetic expression and glioma risk. 

Combining the MR results with colocalisation provides further evidence of causality by determining 

whether gene expression and glioma risk share a single, causal variant or through distinct causal 

variants that are in linkage disequilibrium with one another. Follow-up analyses in different tissues 

also act as a replication study providing further evidence of causality. However, despite evidence of 

causality, this study does not prove causality and further studies would be required to determine 

this. 

Our study is not without limitations. Despite the use of relatively large datasets for the traits we 

studied, i.e. gene expression and glioma, our analyses still likely suffer from low statistical power 

arising from small sizes particularly evidenced in the non-GBM subtype analyses. All but one of our 

main results were instrumented by a single SNP which limited our ability to undertake common MR 

sensitivity analyses to detect, for example, horizontal pleiotropy, a common source of confounding 

in MR studies. Colocalisation has been proffered as a sensitivity analysis that can at least eliminate 

spurious associations that have arisen due to horizontal pleiotropy because a shared causal variant 

for two traits is necessary, though not sufficient, for them to be causally related [23]. Despite this, 

horizontal pleiotropy remains a concern for QTL studies like ours due to instruments generally 

consisting of single SNPs. Another limitation to our study is that MR will provide effect estimates for 

lifetime exposure to gene expression whereas expression levels of genes can frequently change and 

even within glioma, cells at the leading edge of the tumour appear to exhibit a different expression 
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profile to those at the core [31]. Overall, whilst our results are consistent across the sensitivity 

analyses we performed, there remains a possibility that they were biased through confounding and 

horizontal pleiotropy. 

We demonstrated the effectiveness of MR and colocalisation to identify putatively causal genes for 

glioma susceptibility. Our study has revealed causal evidence for three novel genes (RETREG2, 

FAM178B and MVB12B) associated with glioma risk. We show that there is no distinct difference 

between the causal gene expression profile and glioma subtype risk. Finally, our tissue analyses 

suggested that the causal estimates for glioma are different based on whether the gene is expressed 

in brain or blood tissue. Finally, our tissue analyses highlight five candidate tissues (cerebellum, 

cortex, and the putamen, caudate and nucleus accumbens basal ganglia) and four genes (JAK1, 

STMN3, PICK1 and EGFR) which had causal evidence for affecting glioma risk in further research. 
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Figure 1 

Volcano plot of all results from the main MR analysis of brain and blood eQTLs and all glioma. The 

horizontal dot-dashed line represents the Bonferroni-corrected P value threshold (P < 7.30x10-6) and 

the horizontal dashed line is the suggestive P value threshold (P < 9.49x10-5). Genes are labelled if 

they pass at least the suggestive threshold. 

Figure 2 

Forest plot of Mendelian randomisation results for the 12 genes which had robust MR and 

colocalisation evidence and also passed the Steiger filtering analysis.  

Figure 3 

Systematic comparison between the MR results from brain tissues and blood.  

Any eQTL that appeared in both brain and blood datasets was included in this analysis. We plotted 

the odds ratios for blood against brain, deciding which results to include based on a P value cut-off: 

(a) P < 0.1, (b) P < 0.05, (c) P < 0.001 and (d) P < 0.005. Labels are provided for genes which had an 

association that passed at least the suggestive P value threshold (P < 9.49x10-5). 
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Table 1 

List of datasets used in this study. The meta-analysis is taken from Qi, et al. [17] which includes data 

from GTEx v6 [20], the Religious Order Study and Memory and Ageing Project (ROSMAP) [32] and 

CommonMind Consortium (CMC) [33]. eQTLGen Consortium (eQTLGen) [34] contains eQTLs from 

whole blood. GTEx v8 data is used to interrogate tissue-specific expression [20]. 

Dataset  Tissue No. of Genes Sample Size 

Meta-analysis Brain 8,277 1,194 

eQTLGen Whole blood 19,942 31,684 

GTEx v8 

Amygdala 3,726 129 

Anterior cingulate cortex (BA24) 5,640 147 

Caudate (basal ganglia) 8,362 194 

Cerebellar hemisphere 10,027 175 

Cerebellum 11,240 209 

Cortex 9,082 205 

Frontal cortex (BA9) 7,335 175 

Hippocampus 5,517 165 

Hypothalamus 5,499 170 

Nucleus accumbens (basal ganglia) 8,198 202 

Putamen (basal ganglia) 6,902 170 

Spinal cord (cervical c-1) 4,483 126 

Substantia nigra 3,301 114 
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Table 2 

Main associations which showed robust evidence from the Mendelian randomisation, colocalisation and Steiger filtering analyses. The colocalisation result 

for a single, shared causal variant between the gene and all glioma is provided (“Coloc (%)”, see Methods). Steiger filtering showed the correct orientation 

for the direction of effect between gene expression and subtype risk for all results in this table. 

Gene SNP(s) Tissue Subtype OR (95% CI) P value Coloc (%) Steiger P value 

ABCB6 rs75450661 Brain All glioma 0.57 (0.44, 0.74) 2.20x10
-5

 97 7.41x10
-6

 

BAIAP2L2 rs1004764 Brain All glioma 0.65 (0.55, 0.78) 1.62x10
-6

 96 2.36x10
-10 

GBM 0.60 (0.49, 0.73) 2.85x10
-7 

81 1.25x10
-9 

EGFR rs6979446, 

rs759170 

Brain GBM 0.45 (0.38, 0.53) 9.99x10
-20 

81 3.53x10
-6 

FAM178B rs13407036 Brain All glioma 1.47 (1.23, 1.77) 3.59x10
-5 

94 1.97x10
-16 

JAK1 rs2780902 Brain All glioma 1.21 (1.13, 1.29) 6.95x10
-8 

81 6.89x10
-139 

GBM 1.27 (1.17, 1.37) 1.56x10
-9 

95 1.84x10
-134 

MVB12B rs4837096 Brain All glioma 1.24 (1.12, 1.38) 5.27x10
-5

 97 2.53x10
-23 

PANK4 rs2985862 Blood All glioma 0.46 (0.32, 0.67) 4.30x10
-5 

97 4.62x10
-10 

PICK1 rs5756894 Brain All glioma 1.72 (1.39, 2.14) 8.82x10
-7 

97 4.34x10
-7 
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GBM 1.96 (1.54, 2.51) 6.60x10
-8 

92 2.13x10
-6 

PRLR rs67975005 Brain All glioma 0.66 (0.54, 0.82) 9.33x10
-5

 91 1.13x10
-7 

RETREG2 rs1996719 Brain All glioma 0.68 (0.57, 0.80) 9.54x10
-6

 98 7.90x10
-11 

GBM 0.67 (0.55, 0.81) 6.13x10
-5

 95 9.91x10
-11 

STMN3 rs6011016 Brain All glioma 0.36 (0.29, 0.46) 1.44x10
-16

 96 1.44x10
-16 

GBM 0.29 (0.22, 0.38) 4.55x10
-19 

97 7.88x10
-3 

TP53 rs35850753 Blood Non-GBM 0.17 (0.09, 0.32) 9.61x10
-8

 98 3.35x10
-2 
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